材料科学基础I__第九章-2__(回复与再结晶)教学文稿
合集下载
材料科学基础I第九章-2(回复与再结晶).PPT文档共49页
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生ห้องสมุดไป่ตู้像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
材料科学基础I第九章-2(回复与再结晶). 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生ห้องสมุดไป่ตู้像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
材料科学基础I第九章-2(回复与再结晶). 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
回复与再结晶ppt
金属材料的回复与再结晶
金属材料在高温或高压下发生塑性变形,随后在较低的温度 或压力下发生再结晶,改变晶格结构和相变,提高材料的强 度和韧性。
半导体材料的回复与再结晶
半导体材料在高温或高压下的回复过程中,通过晶格结构的 变化和缺陷的修复,材料的电学性能得到改善。
THANKS
谢谢您的观看
汇报的目的和背景
汇报目的
本次汇报旨在探讨回复与再结晶对金属材料性能的影响以及应用方面的研究 进展。
背景
随着工业和科技的发展,金属材料在各个领域的应用越来越广泛,而回复与 再结晶作为金属材料热处理过程中的重要环节,对于提高金属材料的综合性 能具有重要意义。
02
回复
回复的定义和特点
回复是指一种物质在受到外部刺激(如温度、压力、电磁波 等)后,产生的某种反应或变化。
对回复与再结晶未来发展的展望
探索新的回复与再结晶技术,提高材料的综合 性能和可靠性,以满足现代科技和工业发展的 需求。
加强回复与再结晶基础理论的研究,深入探讨 材料在回复与再结晶过程中微观结构和物理性 质的演变规律。
研究新型材料在回复与再结晶过程中的行为和 特性,拓展回复与再结晶理论的应用范围。
对回复与再结晶具体案例的分析
升温
将金属加热到一定温度,使其发生再结晶 。
形核
在金属中形成新的晶核。
晶粒细化
通过控制温度和变形量,细化晶粒,提高 金属性能。
长大
新晶核逐渐长大,形成新的晶粒组织。
04
回复与再结晶的关系
回复与再结晶的联系
两种现象都与材料在高温下发生的物理性质变化有关。 两种现象都受到材料内部结构的影响。
回复与再结晶的区别
回复的特点是具有滞后性和不完全性。即,回复是在外部刺 激作用下的一个过程,需要一定的时间和能量,且回复的程 度往往不能完全恢复到初始状态。
金属材料在高温或高压下发生塑性变形,随后在较低的温度 或压力下发生再结晶,改变晶格结构和相变,提高材料的强 度和韧性。
半导体材料的回复与再结晶
半导体材料在高温或高压下的回复过程中,通过晶格结构的 变化和缺陷的修复,材料的电学性能得到改善。
THANKS
谢谢您的观看
汇报的目的和背景
汇报目的
本次汇报旨在探讨回复与再结晶对金属材料性能的影响以及应用方面的研究 进展。
背景
随着工业和科技的发展,金属材料在各个领域的应用越来越广泛,而回复与 再结晶作为金属材料热处理过程中的重要环节,对于提高金属材料的综合性 能具有重要意义。
02
回复
回复的定义和特点
回复是指一种物质在受到外部刺激(如温度、压力、电磁波 等)后,产生的某种反应或变化。
对回复与再结晶未来发展的展望
探索新的回复与再结晶技术,提高材料的综合 性能和可靠性,以满足现代科技和工业发展的 需求。
加强回复与再结晶基础理论的研究,深入探讨 材料在回复与再结晶过程中微观结构和物理性 质的演变规律。
研究新型材料在回复与再结晶过程中的行为和 特性,拓展回复与再结晶理论的应用范围。
对回复与再结晶具体案例的分析
升温
将金属加热到一定温度,使其发生再结晶 。
形核
在金属中形成新的晶核。
晶粒细化
通过控制温度和变形量,细化晶粒,提高 金属性能。
长大
新晶核逐渐长大,形成新的晶粒组织。
04
回复与再结晶的关系
回复与再结晶的联系
两种现象都与材料在高温下发生的物理性质变化有关。 两种现象都受到材料内部结构的影响。
回复与再结晶的区别
回复的特点是具有滞后性和不完全性。即,回复是在外部刺 激作用下的一个过程,需要一定的时间和能量,且回复的程 度往往不能完全恢复到初始状态。
材料科学基础第09章再结晶-文档资料
其中A为与材料类型结构有关的常数,Q为激活能,R为 气体常数,T发生回复的温度,t为回复进行的时间。
回复动力学
因此在不同的温度下,回复到相同的程度 所用的时间的为:
即ln(t)和1/T成线形关系。一方面可以由此测 量计算它的激活能;另一方面说明热激活过程 中时间和温度的等效关系。实际上任何材料变 形后都在慢慢的发生回复,平时在室温下未见 到性能变化的仅因为变化的速度很慢。
其他组织变化
再结晶织构:材料的冷变形程度较大,如果产生了变 形织构,在再结晶后晶粒取向的遗传,组织依然存在 择优取向,这时的织构称为再结晶织构。
晶粒的非正常长大
在长大过程中,一般晶粒在正常缓慢长大时,如 果有少数晶粒处在特别优越的环境,这些大量吞食周 围晶粒,迅速长大,这种现象称为晶粒的异常长大。 这些优先长大的少数晶粒最后到互相接触,早期的 研究以为是形核和核心的生长过程,而称为“二次再 结晶”,但实质并不是靠重新产生新的晶核,而是在 一次再结晶后的长大过程中,某些晶粒的环境特殊而 产生的优先长大。 材料发生异常长大时,出现了晶粒大小分布严重 不均匀,长大后期可能造成材料晶粒尺寸过大,它们 都对材料的性能带来十分不利的影响。
回复
所谓回复,即在加热温度较低时,仅因金属中的 一些点缺陷和位错的迁移而引起的某些晶内的变化。 回复阶段一宏观应力基本去除,微观应力仍然残存; 2. 物理性能,如电阻率,有明显降低,有的可 基本回到未变形前的水平;
3. 力学性能,如硬度和流变应力,觉察不到有 明显的变化; 4. 光学金相组织看不出任何变化,温度较高发 生回复,在电子显微镜下可间到晶粒内部组 织的变化。(位错的胞状组织转变为亚晶)
晶粒长大的动力分析
两晶粒的界面如果是弯曲 如图所示,则在晶粒Ⅰ内存在 附加压力
第九章 材料变形与再结晶
8. 再结晶织构
(1)具有变形织构的组织在再结晶过程形成的织构称为 再结晶织构。
9. 退火孪晶
• 面心立方结构在再结晶退火过程形成的片状孪晶称为 退火孪晶。
材料科学基础
第九章 材料的变形与再结晶
第八节 晶体的高温变形
一、动态回复和动态再结晶
(1)在高温变形过程,与变形同时进行的回复和再结晶称 为动态回复和动态再结晶。
lnt Q A RT
(2)在一定温度下,x与时间的关系曲线为回复动力学 曲线。
• 没有孕育期;
• 初期回复率大,随后变慢, x趋于一恒定值;
• 每一温度下,x存在一个恒定值,温度越高,恒定值 越低,达到此恒定值所需时间越短。
五、再结晶
1. 再结晶 (1)再结晶过程是由无畸变的晶粒形核长大的过程。 (2)再结晶后,晶体结构不变,组织改变,由变形晶粒
(1)变形织构
塑性变形后多晶体具有择优取向的结构称为变形织构。
(2)织构类型
• 丝织构:各晶粒中某一晶向[uvw]趋于平行力轴方向。 • 板织构:各晶粒中某一晶面(hkl)趋于平行轧面,某
一晶向[uvw]趋于平行轧向。 (3)织构表示——极图
二、冷变形后的性能
1. 加工硬化
(1)金属对塑性变形的抗力(流变应力)随变形量(应变) 增加而提高的现象称为加工硬化(应变硬化)。
1. 回复机制(组织变化) (1)低温回复:点缺陷运动,消失,点缺陷浓度减少。 (2)中温回复:位错滑移,异号抵消,位错密度减小, 胞壁转化为亚晶界。
(3)高温回复:位错攀移和滑移,(a)形成位错墙, 称为多边形化;(b)亚晶合并。
2. 回复动力学(性能衰减)
• 回复阶段性能的变化主要与点缺陷的显著减少,位错 运动重新分布排列,形成稳定的低能组态,导致弹性 应变降低。这一过程与热激活有关。
《材料科学基础》回复与再结晶
G:晶界迁移速度; G0:常数; QG:晶界迁移激活能。
45
(2)弥散第二相粒子: 弥散第二相粒子对晶界移动有钉扎作用。 产生原因:晶界开始穿过粒子时,晶界面积减小, 即减少了总的界面能量,这时粒子是帮助晶界前进 的。
但当晶界到达粒子的最大截面处后,晶界继续 移动又会重新增加晶界面积,即增加了总的界面能 量,这时粒子对晶界移动产生拖曳力,即起钉扎作 用。
16
多边形化: 刃型位错通过攀移和滑移构成竖直排列(位错 墙),形成位错墙的过程称为多边形化。
17
回复亚晶:多边化形成小角度晶界,亚晶界将原来 的晶粒分割成许多亚晶块。
实质是胞壁处的缠结位错不断聚集、使胞壁 变薄,逐渐形成网络,构成清晰的亚晶界过程。
18
过程示意
19
三、回复退火的应用
主要用作去应力退火,使冷加工金属在基本 上保持加工硬化的状态下降低其内应力,以稳定 和改善性能,减少变形和开裂,提高耐蚀性。
这说明冷变形铁的回复,不能用一种单一的 回复机制来描述。
12
二、回复机理
点缺陷和位错在退火过程中发生运动,从而改 变了它们的组态和分布。 回复时空位迁动和消失是不会影响显微组织的, 只有涉及位错迁动时才会影响显微组织。 位错迁动和重排引起的显微组织变化主要是多 边形化和亚晶形成和长大。
13
1. 低温回复(0.1-0.3 Tm) 点缺陷运动:(1)空位、间隙原子移至晶界、位 错处消失;(2)空位聚集(空位群、对)。→点 缺陷密度降低 2. 中温回复(0.3-0.5 Tm)
回复速率和温度有阿累尼乌斯关系:
10
两边取对数得回复方程式:
以ln ( 1/t )对1/T作图,得直线,直线斜率为 Q/R,可求出回复过程的激活能。
材料科学基础-回复与再结晶
— 电阻: 回复阶段已有大的变化(与点缺陷有
关) — 内应力:
回复阶段消除大部或全部内应力; 再结晶阶段全部消除微观内应力 — 亚晶粒尺寸: 回复阶段变化小; 接近再结晶时,显著增大 — 密度: 再结晶阶段急剧增高(缺陷减少) — 储存能的变化: 再结晶阶段释放多
第二节:回复
现象:除内应力大大减少外,在光学显微镜下看不到金 相组织的变化。在电子显微镜下观察,点缺陷有所减少,位 错在形态上也有变化,但数量没有明显减少。
正常长大影响因素
1)温度:温度影响界面迁移速度,温度越高,界面迁移速 度越大,因而晶粒长大速度也越快。
2)时间:正常晶粒长大时,一定温度下,平均晶粒直径随 保温时间的平方根而增大。
3)第二相粒子:第二相粒子对界面迁移有约束力,阻碍界 面迁移、晶粒长大。粒子尺寸越小,粒子的体积分数越大, 极限的平均晶粒尺寸也越小。
再结晶织构的形成机制
— 定向生长理论:晶核位向各异,只有特殊位向的容易长大 — 定向形核理论:再结晶晶核具有择优取向
制耳现象:在冲制筒形和杯形零件时,各向变形不均匀, 造成薄厚不均、边缘不齐的现象。
第五节:金属的热变形
金属的热变形:金属在再结晶温度以上进行的加工、变形。
热变形的实质是:变形中形变硬化和动态软化同时进行的过程, 形变硬化为动态软化所抵消,因而不显示加工硬化作用。
— 退火温度的影响:
退火温度对刚完成再结晶时晶粒尺寸的影响不 大;但对再结晶速率影响很大,降低临界变形 度数值;促进再结晶后的晶粒的长大,温度越 高晶粒越粗
第四节:晶粒长大
晶粒长大:再结晶结束后,材料通常得到新的细小的无畸变的 等轴晶粒,若继续提高加热温度或延长加热时间,引起晶粒进 一步长大的现象 驱动力:总晶界能的降低 按特点分类: — 正常长大:大多数晶粒几乎同时逐渐均匀长大 — 异常长大:少数晶粒突发性的不均匀长大
关) — 内应力:
回复阶段消除大部或全部内应力; 再结晶阶段全部消除微观内应力 — 亚晶粒尺寸: 回复阶段变化小; 接近再结晶时,显著增大 — 密度: 再结晶阶段急剧增高(缺陷减少) — 储存能的变化: 再结晶阶段释放多
第二节:回复
现象:除内应力大大减少外,在光学显微镜下看不到金 相组织的变化。在电子显微镜下观察,点缺陷有所减少,位 错在形态上也有变化,但数量没有明显减少。
正常长大影响因素
1)温度:温度影响界面迁移速度,温度越高,界面迁移速 度越大,因而晶粒长大速度也越快。
2)时间:正常晶粒长大时,一定温度下,平均晶粒直径随 保温时间的平方根而增大。
3)第二相粒子:第二相粒子对界面迁移有约束力,阻碍界 面迁移、晶粒长大。粒子尺寸越小,粒子的体积分数越大, 极限的平均晶粒尺寸也越小。
再结晶织构的形成机制
— 定向生长理论:晶核位向各异,只有特殊位向的容易长大 — 定向形核理论:再结晶晶核具有择优取向
制耳现象:在冲制筒形和杯形零件时,各向变形不均匀, 造成薄厚不均、边缘不齐的现象。
第五节:金属的热变形
金属的热变形:金属在再结晶温度以上进行的加工、变形。
热变形的实质是:变形中形变硬化和动态软化同时进行的过程, 形变硬化为动态软化所抵消,因而不显示加工硬化作用。
— 退火温度的影响:
退火温度对刚完成再结晶时晶粒尺寸的影响不 大;但对再结晶速率影响很大,降低临界变形 度数值;促进再结晶后的晶粒的长大,温度越 高晶粒越粗
第四节:晶粒长大
晶粒长大:再结晶结束后,材料通常得到新的细小的无畸变的 等轴晶粒,若继续提高加热温度或延长加热时间,引起晶粒进 一步长大的现象 驱动力:总晶界能的降低 按特点分类: — 正常长大:大多数晶粒几乎同时逐渐均匀长大 — 异常长大:少数晶粒突发性的不均匀长大
材料科学基础-回复再结晶和热加工
再结晶动力学方程的推导
假设条件: 形核率不随时间变化,形核地点在整个体积内随 机分布; 所有核心的长大速率相同,各向同性,并且不随 时间变化; 核心在相碰处停止长大。
推导过程: 设在再结晶时间t前某一时刻η形成一个晶核,如果在 长大过程中未与其它晶核相碰,则在t时刻此晶核的体积V 为:
V fG (t )
再结晶晶核形核机制 目前,有两种已被人普遍接受的形核机制:亚晶迁 移机制、亚晶合并机制 相同点:形变后,在加热过程中发生胞壁平直化, 形成亚晶,借助亚晶作为再结晶的核心。 不同点:借助亚晶形成再结晶晶核的方式有不同。 亚晶迁移机制
位错密度较高的亚晶界,两侧亚晶的位向差角 较大,故在加热过程中易发生迁移并逐渐变为大角 度晶界。亚晶尺寸随之长大,有可能成为再结晶晶 核。 低层错能的金属中,多以该种亚晶迁移机制形核。
9.2 回复
9.3 再结晶
9.4 再结晶后的晶粒长大
9.5 动态回复和动态再结晶
9.6 金属的热加工
9.1 变形金属加热时的变化
1. 概述
金属冷变形后,金属中晶体缺陷密度增大,自 由焓增高, 组织和性能都发生了明显的变化。其变化程度随着形变量 加大而加大,而且形式也越来越复杂。
形变过程中大部分机械能都转化为热,只有约百分之几的 储存在形变材料中,依附于点缺陷、位错、层错等缺陷形 式存在。 从热力学角度看,冷变形金属是不稳定的,只要有合适的 动力学条件,它就有释放此储存能,向低能量状态转变的 倾向。也就是消除形变所带来的“损伤”,恢复形变前组 织结构的状态。
再结晶后会消除或改变原来的形变的形变织构, 因为再结晶核心是通过大角度界面的迁动来实现 的。
材料科学基础课件第九章 回复、再结晶与热加工
t
C
由(4)式得出:回复阶段性能随时间而衰减,服从指数规律。
如果采用两个不同的温度将同一冷变形金属的性能回复到同样的 程度,则
A exp
Q RT1
t1
A
exp
Q RT2
t2
t1
exp
R T2
e
R
1 T2
1 T1
t2
exp
R T1
回复动力学方程
例:已知锌单晶的回复激活能Q=20000cal/mol,在0℃
光谱纯铜
140
Cu的原子半径为1.28Å
光谱纯铜加入 0.01%Ag
光谱纯铜加入 0.01%Cd
2Байду номын сангаас5
Ag的原子半径为1.44
Å
305
Cd 原子半径为1.52 Å
影响再结晶速率与再结晶温度的主要因素之
4.第二相:第二相可能促进,也可能阻碍再结晶,主要取决
于基体上第二相粒子的大小及其分布。
设粒子间距为λ ,粒子直径为di: λ≥1μm , di≥0.3μm 第 二 相 粒 子 降 低 再 结 晶 温 度 , 提 高
F总=NSπrσ(1+cosα) 设单位体积中有NV个质点,其体积 分数为f,f=(4 π/3)r3 NV /1
= (4 π/3)r3 NV
(3)
故, NV = 3 f / (4 π r3 )
(4)
晶粒长大极限半径公式的推导-----
取单位晶界面积两侧厚度皆为r的正方体,所有中心位于这个 1×1×2r体积内半径为r的第二相颗粒,都将与这部分晶界交截, 单位面积晶界将与1×1×2r×NV个晶粒交截。
度降低,并逐步趋于一稳定值。 例1:纯Zr 当面积缩减13%时,557℃完成等温再结晶需40h
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高温回复 (>0.5)Tm 高温回复的主要机制为多边化。 由于同号刃位错的塞积而导致晶体点阵弯曲,在退火过程中
通过刃型位错的攀移和滑移,使同号刃型位错沿垂直于滑移面 的方向排列成小角度的亚晶界。此过程称为多边(形)化。
多晶体金属塑性变形时, 滑移通常是在许多互相交 截的滑移面上进行,产生 由缠结位错构成的胞状组 织。因此,多边化后不仅 所形成的亚晶粒小得多, 而且许多亚晶界是由位错 网组成的。
右图: a) 缠结位错 b) 位错线伸直 c) 位错网络 d)Hale Waihona Puke 大的稳定网络三、回复退火的应用
回复退火主要用作去除残余应力,使冷变形的金属件在基本 保持应变硬化状态的条件下,降低其内应力,以免变形或开裂, 并改善工件的耐蚀性。
例如,冷拉钢丝卷制弹簧,在卷成弹簧后要在250~300进行退 火,以降低内应力并使其定型。
1、金相法 以显微镜观察到第一个新晶粒或晶界因凸出形核而出现锯齿状
边缘的退火温度定为再结晶温度。适用于变形量<10~15%的金 属与合金。 2、硬度法
以硬度开始显著降低的温度定为再结晶温度。有时也采用软化 50%的退火温度定为再结晶温度。 3、完全再结晶法
工业生产中常采用经过大变形量(>70%)的冷变形金属,经过1 小时完全再结晶退火的最低温度定为再结晶温度。
可见,再结晶温度是靠实验测出来的。
对于纯金属的再结晶温度,可用经验公式计算: Tr=(0.35~0.4)Tm
公式使用条件:工业纯金属,大变形量,退火时间0.5~1小时。
五、影响再结晶的因素
1、温度
加热温度越高,再结晶速度越快,产生一定体积分数的再结 晶组织需要的时间越短。
2、变形程度
变形程度越大,储能越多, 再结晶驱动力越大,因此变形 程度越大,再结晶速度越快。
二、回复过程机制
低温回复 (0.1~0.3)Tm 低温回复阶段主要是空位浓度明显降低。原因: 1、空位迁移到金属表面或晶界而消失; 2、空位与间隙原子结合而消失; 3、空位与位错交互作用而消失; 4、空位聚集成片,晶体崩塌而转变成位错环。
中温回复 (0.3~0.5)Tm 此阶段由于位错运动会导致异号位错合并而相互抵消,位错 密度有所降低,但降幅不大。所以力学性能只有很少恢复。
上面讨论的影响再结晶的因素,凡是促进再结晶的都会使再 结晶晶粒尺寸变得更大。下面再对变形度的影响讨论一下。
对铸件、焊件的去应力退火,也是通过回复作用来实现的。
§9-8 再结晶
一、再结晶过程的特征
再结晶是一种形核和长大的过程。靠原子的扩散进行。 冷变形金属加热时组织与性能最显著的变化就是在再结晶阶 段发生的。
特点: 1、组织发生变化,由冷变形的伸长晶粒变为新的等轴晶粒; 2、力学性能发生急剧变化,强度、硬度急剧下降,塑性迅速升
三、再结晶核心的长大
再结晶核心形成后,在变形基体中长大。实质是具有临界曲 率半径的大角度晶界向变形基体迁移,直至再结晶晶粒相遇, 变形基体全部消失。
温度越高,扩散越快,再结晶速度越快,时间越长,再结晶 晶粒越粗大。
四、再结晶温度
冷变形金属开始进行再结晶的温度,称为再结晶温度。可以采 用不同的方法来测定,常用方法有:
3、材料的纯度
微量的溶质原子对再结晶影 响巨大。
溶质或杂质原子偏聚在位错和晶界处,对位错的运动和晶界 的迁移起阻碍作用,因此不利于再结晶,使再结晶温度升高。
例如,纯铜50%再结晶的温度为140ºC,加入0.01%Ag后升高到 205ºC,若加入0.01%Cd(镉)后升高到305ºC。
4、原始晶粒尺寸
高,应变硬化全部消除,恢复到变形前的状态; 3、变形储能在再结晶过程中全部释放。三类应力(点阵畸变)
消除,位错密度明显降低。
二、再结晶的形核
由于再结晶形核的区域不同,形核方式有:亚晶粒合并形核, 亚晶粒长大形核,凸出形核。
1、亚晶粒合并形核
相邻两亚晶粒之间的晶界是由位错构成的。在再结晶温度,位 错发生攀移和滑移并入到邻近的晶界中。这样两个亚晶粒就合并 成为一个晶粒了。驱动力来自晶界能,晶界减少,形核自发进行。
由于变形大,位错密度高,亚晶界曲率大,易于迁移。亚晶界 迁移过程中清除并吸收其扫过亚晶的位错,使迁移亚晶界的位错 增多,变成大角度晶界。当尺寸超过临界晶核时就成了再结晶的 核心。
3、凸出形核
当冷变形量较 小时,再结晶在 原晶界处形核。
对于多晶体,不同晶粒的变形 程度不同,变形大的位错密度高, 畸变能高;变形小的位错密度低, 畸变能低。低畸变区向高畸变区 伸展,以降低总的畸变能。
原因:粒子阻碍位错运动和亚晶界迁移,使亚晶粒生长减慢 或停止,就阻碍了再结晶的形核与长大。
例如,钢中加入少量的V, Ti, Nb, Zr, Al时,可生成弥散分布的 化合物,其尺寸、间距都很小,都会提高钢的再结晶温度。所 以,含有这些元素的钢一般都有较高的使用温度。
六、再结晶后晶粒大小
再结晶后的晶粒呈等轴状,其大小受多种因素的影响,主要 有变形度、退火温度、退火时间、杂质及合金成分等。
材料科学基础I__第九章-2__(回 复与再结晶)
冷变形金属在加热过程中性能随温度升高而变化,在再结晶 阶段发生突变。
§9-7 回复
一、回复过程的特征
1、回复过程中组织不发生变化; 2、宏观一类应力全部消除,微观二类应力部分消除; 3、力学性能变化很小,电阻率显著降低,密度增加; 4、变形储存的能量部分释放。
其他条件相同时,原始晶粒越细,冷变形抗力越大,变形后 储存能越多,再结晶温度越低。
同样变形度,原始晶粒越细,晶界总面积越大,可供再结晶 形核的地方越多,形核率高,再结晶速度快。
5、第二相粒子
根据粒子尺寸和间距的大小,可分为二种情况: 1)粒子较粗大,间距较远——促进再结晶
原因:粒子对位错运动、亚晶界迁移的阻碍作用小;另一方 面,加速再结晶形核。 2)粒子细小,间距小——阻碍再结晶
这种形核方式一般出现在冷变形量很大的金属中。通过再结 晶前多边化形成较小的亚晶,亚晶界曲率不大,不易迁移,但 某些亚晶界中的位错可通过攀移和滑移而迁移走,使亚晶界消 失,亚晶合并。
2、亚晶粒长大形核
当变形量很大时,较大的无应变亚晶(多边化时产生)为基础 直接长大,吞食周围的亚晶,亚晶界向周围迁移。
通过刃型位错的攀移和滑移,使同号刃型位错沿垂直于滑移面 的方向排列成小角度的亚晶界。此过程称为多边(形)化。
多晶体金属塑性变形时, 滑移通常是在许多互相交 截的滑移面上进行,产生 由缠结位错构成的胞状组 织。因此,多边化后不仅 所形成的亚晶粒小得多, 而且许多亚晶界是由位错 网组成的。
右图: a) 缠结位错 b) 位错线伸直 c) 位错网络 d)Hale Waihona Puke 大的稳定网络三、回复退火的应用
回复退火主要用作去除残余应力,使冷变形的金属件在基本 保持应变硬化状态的条件下,降低其内应力,以免变形或开裂, 并改善工件的耐蚀性。
例如,冷拉钢丝卷制弹簧,在卷成弹簧后要在250~300进行退 火,以降低内应力并使其定型。
1、金相法 以显微镜观察到第一个新晶粒或晶界因凸出形核而出现锯齿状
边缘的退火温度定为再结晶温度。适用于变形量<10~15%的金 属与合金。 2、硬度法
以硬度开始显著降低的温度定为再结晶温度。有时也采用软化 50%的退火温度定为再结晶温度。 3、完全再结晶法
工业生产中常采用经过大变形量(>70%)的冷变形金属,经过1 小时完全再结晶退火的最低温度定为再结晶温度。
可见,再结晶温度是靠实验测出来的。
对于纯金属的再结晶温度,可用经验公式计算: Tr=(0.35~0.4)Tm
公式使用条件:工业纯金属,大变形量,退火时间0.5~1小时。
五、影响再结晶的因素
1、温度
加热温度越高,再结晶速度越快,产生一定体积分数的再结 晶组织需要的时间越短。
2、变形程度
变形程度越大,储能越多, 再结晶驱动力越大,因此变形 程度越大,再结晶速度越快。
二、回复过程机制
低温回复 (0.1~0.3)Tm 低温回复阶段主要是空位浓度明显降低。原因: 1、空位迁移到金属表面或晶界而消失; 2、空位与间隙原子结合而消失; 3、空位与位错交互作用而消失; 4、空位聚集成片,晶体崩塌而转变成位错环。
中温回复 (0.3~0.5)Tm 此阶段由于位错运动会导致异号位错合并而相互抵消,位错 密度有所降低,但降幅不大。所以力学性能只有很少恢复。
上面讨论的影响再结晶的因素,凡是促进再结晶的都会使再 结晶晶粒尺寸变得更大。下面再对变形度的影响讨论一下。
对铸件、焊件的去应力退火,也是通过回复作用来实现的。
§9-8 再结晶
一、再结晶过程的特征
再结晶是一种形核和长大的过程。靠原子的扩散进行。 冷变形金属加热时组织与性能最显著的变化就是在再结晶阶 段发生的。
特点: 1、组织发生变化,由冷变形的伸长晶粒变为新的等轴晶粒; 2、力学性能发生急剧变化,强度、硬度急剧下降,塑性迅速升
三、再结晶核心的长大
再结晶核心形成后,在变形基体中长大。实质是具有临界曲 率半径的大角度晶界向变形基体迁移,直至再结晶晶粒相遇, 变形基体全部消失。
温度越高,扩散越快,再结晶速度越快,时间越长,再结晶 晶粒越粗大。
四、再结晶温度
冷变形金属开始进行再结晶的温度,称为再结晶温度。可以采 用不同的方法来测定,常用方法有:
3、材料的纯度
微量的溶质原子对再结晶影 响巨大。
溶质或杂质原子偏聚在位错和晶界处,对位错的运动和晶界 的迁移起阻碍作用,因此不利于再结晶,使再结晶温度升高。
例如,纯铜50%再结晶的温度为140ºC,加入0.01%Ag后升高到 205ºC,若加入0.01%Cd(镉)后升高到305ºC。
4、原始晶粒尺寸
高,应变硬化全部消除,恢复到变形前的状态; 3、变形储能在再结晶过程中全部释放。三类应力(点阵畸变)
消除,位错密度明显降低。
二、再结晶的形核
由于再结晶形核的区域不同,形核方式有:亚晶粒合并形核, 亚晶粒长大形核,凸出形核。
1、亚晶粒合并形核
相邻两亚晶粒之间的晶界是由位错构成的。在再结晶温度,位 错发生攀移和滑移并入到邻近的晶界中。这样两个亚晶粒就合并 成为一个晶粒了。驱动力来自晶界能,晶界减少,形核自发进行。
由于变形大,位错密度高,亚晶界曲率大,易于迁移。亚晶界 迁移过程中清除并吸收其扫过亚晶的位错,使迁移亚晶界的位错 增多,变成大角度晶界。当尺寸超过临界晶核时就成了再结晶的 核心。
3、凸出形核
当冷变形量较 小时,再结晶在 原晶界处形核。
对于多晶体,不同晶粒的变形 程度不同,变形大的位错密度高, 畸变能高;变形小的位错密度低, 畸变能低。低畸变区向高畸变区 伸展,以降低总的畸变能。
原因:粒子阻碍位错运动和亚晶界迁移,使亚晶粒生长减慢 或停止,就阻碍了再结晶的形核与长大。
例如,钢中加入少量的V, Ti, Nb, Zr, Al时,可生成弥散分布的 化合物,其尺寸、间距都很小,都会提高钢的再结晶温度。所 以,含有这些元素的钢一般都有较高的使用温度。
六、再结晶后晶粒大小
再结晶后的晶粒呈等轴状,其大小受多种因素的影响,主要 有变形度、退火温度、退火时间、杂质及合金成分等。
材料科学基础I__第九章-2__(回 复与再结晶)
冷变形金属在加热过程中性能随温度升高而变化,在再结晶 阶段发生突变。
§9-7 回复
一、回复过程的特征
1、回复过程中组织不发生变化; 2、宏观一类应力全部消除,微观二类应力部分消除; 3、力学性能变化很小,电阻率显著降低,密度增加; 4、变形储存的能量部分释放。
其他条件相同时,原始晶粒越细,冷变形抗力越大,变形后 储存能越多,再结晶温度越低。
同样变形度,原始晶粒越细,晶界总面积越大,可供再结晶 形核的地方越多,形核率高,再结晶速度快。
5、第二相粒子
根据粒子尺寸和间距的大小,可分为二种情况: 1)粒子较粗大,间距较远——促进再结晶
原因:粒子对位错运动、亚晶界迁移的阻碍作用小;另一方 面,加速再结晶形核。 2)粒子细小,间距小——阻碍再结晶
这种形核方式一般出现在冷变形量很大的金属中。通过再结 晶前多边化形成较小的亚晶,亚晶界曲率不大,不易迁移,但 某些亚晶界中的位错可通过攀移和滑移而迁移走,使亚晶界消 失,亚晶合并。
2、亚晶粒长大形核
当变形量很大时,较大的无应变亚晶(多边化时产生)为基础 直接长大,吞食周围的亚晶,亚晶界向周围迁移。