电力电子技术_直流-交流变换技术
第五章直流交流(DCAC)变换.

第五章直流—交流(DC—AC)变换5.1 逆变电路概述5.1.1 晶闸管逆变电路的换流问题DC—AC变换原理可用图5-1所示单相逆变电路来说明,其中晶闸管元件VT1、VT4,VT2、VT3成对导通。
当VT1、VT4导通时,直流电源E通过VT1、VT4向负载送出电流,形成输出电压左(+)、右(-),如图5-1(a)所示。
当VT2、VT3导通时,设法将VT1、VT4关断,实现负载电流从VT1、VT4向VT2、VT3的转移,即换流。
换流完成后,由VT2、VT3向负载输出电流,形成左(-)、右(+)的输出电压,如图5-1(b)所示。
这两对晶闸管轮流切换导通,则负载上便可得到交流电压,如图5-1(c)波形所示。
控制两对晶闸管的切换导通频率就可调节输出交流频率,改变直流电压E的大小就可调节输出电压幅值。
输出电流的波形、相位则决定于交流负载的性质。
图5-1 DC—AC变换原理要使逆变电路稳定工作,必须解决导通晶闸管的关断问题,即换流问题。
晶闸管为半控器件,在承受正向电压条件下只要门极施加正向触发脉冲即可导通。
但导通后门极失去控制作用,只有使阳极电流衰减至维持电流以下才能关断。
常用的晶闸管换流方法有:(1)电网换流(2)负载谐振式换流(3)强迫换流5.1.2 逆变电路的类型逆变器的交流负载中包含有电感、电容等无源元件,它们与外电路间必然有能量的交换,这就是无功。
由于逆变器的直流输入与交流输出间有无功功率的流动,所以必须在直流输入端设置储能元件来缓冲无功的需求。
在交—直—交变频电路中,直流环节的储能元件往往被当作滤波元件来看待,但它更有向交流负载提供无功功率的重要作用。
根据直流输入储能元件类型的不同,逆变电路可分为两种类型:图5-4 电压源型逆变器图5-5 无功二极管的作用1.电压源型逆变器电压源型逆变器是采用电容作储能元件,图5-4为一单相桥式电压源型逆变器原理图。
电压源型逆变器有如下特点:1)直流输入侧并联大电容C用作无功功率缓冲环节(滤波环节),构成逆变器低阻抗的电源内阻特性(电压源特性),即输出电压确定,其波形接近矩形,电流波形与负载有关,接近正弦。
电力电子技术 徐德鸿版 习题解答

+
1 × U d D(1 −
2
fL
D)
= 15A
(3)增加 L 可以使 ΔI 下降
I VTm = 110%I 0 = 11A
1 ΔI = 11 −10 = 1A 2 L=500μH
1 × U d D(1 − D) = 1A
2
fL
2、Boost 电路如图 2.17 所示,设输入电压为 100V,电感 L 是 1000μH,电 容 C无穷大,输出接 10Ω 的电阻,电路工作频率 50kHz,MOSFET 的导通占 空比为0.5,求:(1)输出直流电压 Uo,输出直流电流 Io;
(2)电感电流平均值 IL; (3)MOSFET 阻断时的电压。
解:(1)U o
=
Ud 1− D
=
200V
I o= U o / R = 20A
(2) I L
=
I in
=
Io 1− D
=
40A
(3)U VTm = U o = 200V
1
3、设有两组蓄电池,A 组电压为 100V,B 组电压为 200V,用 Buck 电路和 Boost 电路组合设计一种电路,以完成既能由 A 组蓄电池向 B 组蓄电池充电,又能由 B 组蓄电池向 A 组蓄电池充电的功能。
解:(1)占空比范围
Uo < D < Uo
U dmax
U dmin
得:
0.25 < D < 0.5
(2)电感电流临界连续时,有
I omin
=
1 2
ΔI
L
=
5 10
=
0.2A
开关关断期间,有
L = U o (1 − D)T = U o (1 − D)T
电力电子技术考核点总结--填空选择

1 简要说明四类基本的电力电子变流电路表答:交流变直流,即整流电路交流变交流,即交流电力控制电路或变频变相电路直流变直流,即直流斩波电路直流变交流,即逆变电;2 美国学者W.Newell用倒二角形对电力电子技术进行形象的描述,认为电力电子学是由电力学,电子学,控制理论三个学科交义而形成的。
3 电力电子技术是使用电力电子器件对电能进行变换和控制的技术,其电力变换常分为四大类:直流变直流、直流变交流、交流变交流、交流变直流。
4 根据二极管反向恢复时间的长短,可以将二极管分为普通二极管、快恢复二极管和肖特基二极管。
5 驱动电路需要提供控制电路和主电路之间的电气隔离环节,一般采用光隔离和磁隔离。
6 电力电子装置中可能发生的过电压分为外因过电压和内因过电压,其中内因过电压包括换相过电压和关断过电压。
7 电力电子系统一般由控制电路,驱动电路,主电路组成8 电力电子器件的损耗主要包括开关损耗和通态损耗9 单相半波整流电路带阻性负载时,晶闸管触发角a移相范围是【0~π】,晶闸管导通角沒和触发角α之间的关系是α+β=π或互补10 三相半波整流电路带阻性负载时,晶闸管触发角a移相范围是0-150度,输出电压连续时触发角α移相范围是0-30度11 同步信号为锯齿波的晶闸管触发电路主耍由脉冲的形成与放大,锯齿波的形成和脉冲移相,同步环节三个基本环节12 一般来说,电力电子变流电路中换流方式有器件换流、负载换流、电网换流和强迫换流。
13 直流斩波电路主要有三种控制方式:脉宽调制、脉频调制和混合调制。
14 正弦脉宽调制(SPWM)中,根据载波比N是否为固定值,可以分为同步调制和异步调制15 PWM控制方案优劣体现在输出波形谐波的多少、直流侧电压利用率; 一个周期内的开关次数。
16 PWM整流电路根据是否引入电流反馈可分为直接电流控制和间接电流控制17 根据电力电子电路中的功率器件开关过程中是否产生损耗,其开关方式可以分为软开关和硬开关。
电力电子技术课件05直流-交流(DC-AC)变换

第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。
VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。
(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。
电力电子技术

电力电子技术1.1:电力变换通常可分为四大类,即交流变直流(AC-DC)、直流变交流(DC-AC)、直流变直流(DC-DC)和交流变交流(AC-AC )。
交流变直流称为 整流 ,直流变交流称为 逆变 。
1.2:(1);晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于 半控型器型 。
对晶闸管电路的控制方式主要是相位控制方式,简称 相控方式 。
(2);才用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM)方式。
相对应相位控制方式,可称为斩波控制方式,简称 斩控方式 。
2.1.2:电力电子器件在实际应用中,一般是由 控制电路 、 驱动电路 、和以 电力电子器件 为核心的主电路组成一个系统。
2.1.3:电力电子器件分为以下三类:1)通过控制信号可以控制其导通而不能控制其关断的电力电子器件被称为 半控型器件 。
2)通过控制信号既可以控制其导通,又可以控制其关断的女电力电子器件被称为全控型器件 。
3)也有不能用控制信号来控制其通断的电力电子器件,因此也就不需要驱动电路,这就是 电力二极管 ,又被称为 不可控器件 。
2.2.1:从外形上看,电力二极管可以有 螺栓形 、 平板形 等多种封装。
2.3.2:晶闸管正常工作的特性如下:1)当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都 不会导通 。
2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管 才能导通 。
3)晶闸管一旦导通,门极就失去控制作用,无论门极触发电流是否还存在,晶闸管都 保持导通 。
4)若要使已导通的晶闸管 关断 ,只能利用外加电压电路的作用使流过晶闸管的电流降到接近零的某一数值以下。
2.3.4:晶闸管的派生器件分为哪几类 快速晶闸管 、 双向晶闸管 、 逆导晶闸管 、光控晶闸管 。
3.1.1:(1)从晶闸管开始承受正向阳极电压起,到施加触发脉冲止的电角度称为 触发延迟角 ,α用表示,也称 触发角 或 控制角 。
电力电子技术

1. 电力电子技术:使用电力电子器件对电能进行变换和控制的技术。
2. 半导体变流技术:包括用电力电子器件构成电力变换电路和对其进行控制的技术,以及构成电力电子装置和电力电子系统的技术。
3. 整流:直流变交流。
4. 逆变:交流变直流。
5. 电力电子器件:是直接用于主电路电路中,实现电能的变换或控制的电子器件。
6. 主电路:是在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。
7. 维持电流:使晶闸管维持导通所必需的最小电流称为维持电流。
8. 擎住电流:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流称为擎住电流。
9. 双向晶闸管:双向晶闸可认为是一对反并联联接的普通晶闸管的集成。
10. 逆导晶闸管:是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。
11. 光控晶闸管:又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。
12. 电流关断增益:GTO最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。
13. 功率模块:将多个电力电子器件封装在一个模块中,称为功率模块。
14. 功率集成电路:将功率器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上的集成电路。
15. 直流斩波电路:直流到另一固定电压或可调电压的直流电的变换电路。
16. 脉冲宽度调制:周期不变,导通时间变化,即通过导通占空比的改变来改变变压比,控制输出电压的调制方法。
17. 脉冲频率调制:导通时间不变,周期变化,导通比也能发生变化,从而达到改变输出电压目的的调制方法。
18. 双极式PWM:一个开关周期内,斩波电路所输出的负载电压极性交替变化的PWM控制方式。
19. 单极式PWM:一个开关周期内,斩波电路所输出的负载电压极性单一的PWM控制方式。
20. 正激变换器:指在开关管开通时,电源将能量直接传送给负载一种带隔离变压器的DC-DC变换器。
21. 反激变换器:指在开关管开通时电源将电能转为磁能储存在电感(变压器)中,当开关管关断时再将磁能变为电能传送到负载的一种带隔离变压器的DC-DC变换器。
电力电子技术

拓扑结构
常见的升降压型DC/DC变换器拓 扑结构包括Buck-Boost电路、
Zeta电路等。
应用领域
升降压型DC/DC变换器在需要宽 范围电压输入的场合中得到了广 泛应用,如电动汽车充电桩、工
业自动化设备、通信设备等。
2024/1/28
19
05交流-Leabharlann 流变换技术2024/1/28
20
交流调压电路原理及分类
分类
根据控制信号的性质,交流调功电路可分为 模拟控制交流调功电路和数字控制交流调功 电路。
2024/1/28
22
交流电力电子开关及应用
交流电力电子开关
是一种能够控制交流电通断的开关器件,具 有快速、可靠、节能等优点。常见的交流电 力电子开关有晶闸管、双向晶闸管、可关断 晶闸管等。
2024/1/28
拓扑结构
应用领域
升压型DC/DC变换器在太阳能发电、 风力发电等新能源领域,以及电动汽 车、电动自行车等交通工具中得到了 广泛应用。
常见的升压型DC/DC变换器拓扑结构 包括Boost电路、Sepic电路等。
2024/1/28
18
升降压型DC/DC变换器
工作原理
升降压型DC/DC变换器结合了降 压型和升压型变换器的特点,可 以实现输入电压的升降压转换。
电力电子技术
2024/1/28
1
目录 CONTENTS
• 电力电子技术概述 • 电力电子器件 • 整流与逆变技术 • 直流-直流变换技术 • 交流-交流变换技术 • 电力电子技术应用实例分析
2024/1/28
2
01
电力电子技术概述
2024/1/28
3
定义与发展历程
电力电子技术知识点总结

电力电子技术知识点总结电力电子技术是现代电力系统中的关键部分,它将电力系统与电子技术相结合,用于有效地控制、转换和传递电能。
本文将对电力电子技术的基本概念、分类和应用进行综述。
1. 电力电子技术的概述电力电子技术是指应用电子器件和电子控制器件来实现电力的调节、变换和传递的技术。
通过电力电子技术,可以实现电能的高效利用,提高能量转换效率和电力质量,同时也可以实现对电力系统的灵活控制。
2. 电力电子技术的分类电力电子技术根据其应用领域和转换方式可以分为多种类型,常见的包括:2.1 直流-直流变换技术(DC-DC)直流-直流变换技术主要是通过电力电子器件实现直流电能的调节和变换。
常见的直流-直流变换技术包括升压、降压、反相等。
2.2 直流-交流变换技术(DC-AC)直流-交流变换技术是将直流电能转换为交流电能,常见的应用场景包括太阳能发电系统和电动汽车充电桩。
2.3 交流-直流变换技术(AC-DC)交流-直流变换技术是将交流电能转换为直流电能,常见的应用场景包括电力系统中的整流器和UPS电源。
2.4 交流-交流变换技术(AC-AC)交流-交流变换技术主要是通过电力电子器件实现交流电能的调节和变换。
常见的交流-交流变换技术包括电压调节、频率调节和相位调节等。
3. 电力电子技术的应用电力电子技术在现代电力系统中有着广泛的应用,常见的应用包括:3.1 电力传输与配电电力传输与配电中的变压器、线路的无功补偿和电压调节等都会涉及到电力电子技术的应用。
通过电力电子技术,可以降低传输损耗、提高电力质量。
3.2 新能源发电电力电子技术在新能源发电领域有着重要的应用,如风能发电和太阳能发电系统中的逆变器、控制器等都需要电力电子技术来实现能量转换。
3.3 智能电网智能电网是未来电力系统的发展方向,电力电子技术在智能电网中有着重要的作用,通过电力电子器件和控制策略的应用,可以实现对电力系统的高效调节和控制。
4. 电力电子技术的发展趋势随着新能源的快速发展和电力系统的智能化改造,电力电子技术将得到更广泛的应用。
电力电子技术第2章 交流-直流变换电路习题和答案K

一、选择题2-1、单相半波电阻性负载可控整流电路中,控制角α的最大移相范围是( D)A、0º-90°B、0º-120°C、0º-150°D、0º-180°2-2、单相半波可控整流电路输出最大直流电压的平均值等于整流前交流电压的(C)倍。
A 1,B 0.5,C 0.45,D 0.9.2-3、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差(A )度。
A、180°,B、60°,C、360°,D、120°2-4、在单相桥式全控整流电路中,大电感负载时,控制角α的有效移相范围是(A)。
A、0°~90°B、0°~180°C、90°~180°2-5、普通的单相半控桥可控整流装置中一共用了(B )晶闸管。
A 一只,B 二只,C 三只,D 四只。
2-6、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差(A)度。
A 、180度;B、60度;C、360度;D、120度2-7、α为( C )度时,三相半波可控整流电路电阻性负载输出电压波形处于连续和断续的临界状态。
A,0度,B,60度,C,30度,D,120度,2-8、晶闸管触发电路中,若改变(B)的大小,则输出脉冲产生相位移动,达到移相控制的目的。
A,同步电压,B、控制电压,C、脉冲变压器变比。
2-9、三相半波可控整流电路的自然换相点是( B)A、交流相电压的过零点;B、本相相电压与相邻相电压正、负半周的交点处;C、比三相不控整流电路的自然换相点超前30°;D、比三相不控整流电路的自然换相点滞后60°。
2-10、α=( 60度)度时,三相全控桥式整流电路带电阻负载电路,输出负载电压波形处于连续和断续的临界状态。
A、0度;B、60度;C、30度;D、120度;2-11、三相全控桥式整流电路带大电感负载时,控制角α的有效移相范围是(A)度。
电力电子技术在高速列车供电系统中的应用

电力电子技术在高速列车供电系统中的应用随着科技的发展和社会对高速列车的需求增加,高速列车供电系统的可靠性、效率和稳定性变得越发重要。
在这个背景下,电力电子技术应运而生,成为高速列车供电系统的关键技术之一。
本文将探讨电力电子技术在高速列车供电系统中的应用,并分析其在提高系统效率和稳定性方面的作用。
1. 交流-直流变换器(AC/DC Converter)在高速列车供电系统中,交流-直流变换器(AC/DC Converter)是必不可少的设备。
它将来自电网的交流电转换为高速列车所需的直流电。
传统的整流器在效率和可靠性方面存在诸多问题,而采用电力电子器件构成的交流-直流变换器则具有更高的效率和更低的功率损耗。
电力电子器件的快速开关特性和可调节的电压转换功能使得交流-直流变换器能够快速响应电网电压的波动,并能够在列车启动和制动时灵活地调整输出电压。
因此,电力电子技术在交流-直流变换器中的应用显著提高了供电系统的效率和稳定性。
2. 逆变器(Inverter)除了交流-直流变换器,逆变器(Inverter)也是高速列车供电系统中重要的电力电子设备之一。
逆变器将直流电转换为交流电,为高速列车的电动驱动系统提供所需的交流电能。
传统的电力逆变器在频率和电压调节方面存在限制,而采用电力电子器件构成的逆变器具有快速调节的特性,能够在不同运行条件下灵活控制输出频率和电压。
此外,电力电子技术还可以实现逆变器的能量回馈功能,在高速列车制动时将制动能量转换为电能并反馈回电网。
因此,电力电子技术在逆变器中的应用不仅提高了供电系统的效率和稳定性,还有助于能源的节约和回收利用。
3. 高效能电机驱动系统在高速列车供电系统中,高效能电机驱动系统是实现列车高速行驶的关键。
电力电子技术在电机驱动系统中的应用能够提高动力转换效率和控制精度。
通过采用电力电子器件驱动电机,可以提供高效能的动力输出,减少能量的损耗。
此外,电力电子技术还能够实现对电机的精确控制,使得高速列车在起动、制动和转弯等运行过程中更加稳定和安全。
电力电子技术第3章 直流-交流变换电路习题和答案K

一、选择题3-1、当交流侧接在电网上,即交流侧接有电源时,称为(A )逆变;当交流侧直接和负载连接时,称为(B )逆变。
A、有源B、无源C、电压型D、电流型3-2、逆变电路最基本的工作原理是把直流电变成交流电,改变两组开关的切换(D ),即可改变输出交流电的频率。
A、周期B、电流C、电压D、频率3-3、不属于换流方式的是(C )。
A、器件换流B、电网换流C、单相换流D、负载换流3-4、要实现负载换流,负载电流的相位必须( B )于负载电压。
A、滞后B、超前C、相同D、三个都不对3-5、可实现有源逆变的电路为(A )。
A、三相半波可控整流电路,B、三相桥式半控整流电路,C、单相全控桥接续流二极管电路,D、单相半控桥整流电路。
3-6、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理(A )。
A、30º-35º,B、10º-15º,C、0º-10º,D、0º。
3-7、在有源逆变电路中,逆变角β的移相范围应选(B )为最好。
A、β=90º~180º,B、β=35º~90º,C、β=0º~90º3-8、电压型三相桥式逆变电路的基本工作方式是( C )导电方式。
A、90°B、120°C、180°D、270°3-9、PWM控制是对脉冲的( C )进行调制的技术。
A、长度B、高度C、宽度D、面积3-10、在调制法中,通常采用等腰三角波或锯齿波作为载波,其中(A )应用最多。
A、等腰三角波B、锯齿波二、判断题3-1、有源逆变指的是把直流电能转变成交流电能送给负载。
(╳)3-2、变频调速装置是属于无源逆变的范畴。
(√)3-3、有源逆变装置是把逆变后的交流能量送回电网。
(√)3-4、无源逆变电路是把直流电能逆变成交流电能,送给电网,(╳)3-5、变频器总是把直流电能变换成50Hz交流电能。
电力电子技术_交流-直流变换技术

电路稳态工作时,每组晶闸管均在另一组晶闸管触发
导通时才换流关断,每组晶闸管导通时间均为180º 。
25
26
4.3
单相桥式全控整流电路
大电感负载运行参数分析
交流电源电压 u2 2U2 sint 整流输出电压平均值
Udav 1
2U 2rms sintd(t )
直流电流平均值Idav
I dav U dav 0.9U 2rms 1 cos R R 2
23
4.3
单相桥式全控整流电路
I VTrms 2U 2rms U 2rms 1 2 ( R sint ) d(t ) 2 R 2
1
晶闸管的电流有效值(方均根值)
不控整流电路
i2=-id
i2=-id
4
4.2
不控整流电路
自然换流点的认识 0~时段
VD1、VD4导通,负载上得到正弦交流电压的正半波。
~2时段
VD2、VD3导通,负载上得到正弦交流电压的负半波 在0、、 2时刻,VD1、VD4与VD2、VD3的工作状态 (导通或阻断)由外部电源电压变化而自然变换,器件的这种 切换叫做换流或换相,对应的切换点(相应的时刻)叫做换流 点或换相点,由于不存在主动控制过程,这些换相点称为自然 换流点或自然换相点。
I VTrms
1 Id 2
变压器二次交流电流有效值
I 2rms Id
27
4.3
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作波形
28
4.3
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作分析
电力电子技术-第四章习题解析

直流-交流变换器(7)
第4章 习题(2)
第2部分:简答题 1.试说明PWM控制的基本原理。(略)
2.单极性和双极性PWM调制有什么区别?三相桥式PWM型逆变电路中,输
出相电压(输出端相对于直流电源中点的电压)和线电压SPWM波形各有几种
电平?
答:单极性PWM调制在调制信号的半个周期内载波只在正或负一种极性范围
分段同步调制优点:在输出频率高的频段采用较低的载波比,以使载 波频率不致过高,限制在功率开关器件允许的范围内。在输出频率低的频 段采用较高的载波比,以使载波频率不致过低而对负载产生不利影响。 7.什么是SPWM波形的规则化采样法?和自然采样法比规则采样法有什么 优点? 答:规则采样法是取三角波两个正峰值之间为一个采样周期,使每个脉冲 的中点都以相应的三角波中点为对称,在三角波的负峰值时刻对正弦信号 波采样得到一点,过该点作一水平直线和三角波交与两点,在这两个时刻 控制器件通断。规则采样法生成的SPWM波形与自然采样法接近,优点是 计算量大大减少。
刻(不含0和Л时刻)可以控制,可以消去的谐波有几种?
答:这是计算法中一种较有代表性的方法,为了减少谐波并简化控制,应 尽量使波形对称:首先,为消除偶次谐波,应使波形正负两半周期镜对称 ;其次,为消除谐波中余弦项,应使波形在半周期内前后1/4周期以π/2为 轴线对称。满足使波形四分之一周期对称后,再设法消去几种种特定频率 的谐波。 如果半个信号波周期内有10个开关时刻(不含0和Л时刻)可以控制,则可 以消去9种频率的谐波。
直流-交流变换器(7)
第4章 习题(2)
第1部分:填空题
1.PWM控制的理论基础是面积等效 原理,即冲量相等而形状不同的窄脉冲 加在具有惯性的环节上时,其效果基本相同。 2.根据“面积等效原理”,SPWM控制用一组等幅不等宽的脉冲(宽度按正弦 规律变化)来等效一个正弦波。 3.PWM控制就是对脉冲的宽度进行调制的技术;直流斩波电路得到的PWM 波是等效直流波形,SPWM控制得到的是等效正弦波形。 4.PWM波形只在单个极性范围内变化的控制方式称单极性控制方式,PWM 波形在正负极性间变化的控制方式称双极性控制方式,三相桥式PWM型逆 变电路采用双极性控制方式。 5.SPWM波形的控制方法:改变调制信号ur的幅值可改变基波幅值;改变调 制信号 ur 的频率可改变基波频率; 6.得到PWM波形的方法一般有两种,即计算法和调制法,实际中主要采用 调制法。 7.根据载波和信号波是否同步及载波比的变化情况,PWM调制方式可分为 同步调制和异步调制。一般为综合两种方法的优点,在低频输出时采用异步 调制方法,在高频输出时采用同步调制方法。
电力电子技术---第三章

第三章
直流—交流变换技术
主讲:李 善 寿 电话: 0551-351314 电邮:xlisq79@
3.1 概述
一、逆变概念
逆变——与整流相对应,直流电变成交流电。
交流侧接电网,为有源逆变; 交流侧接负载,为无源逆变;
本章讲述无源逆变。
二、逆变器的分类
(1)按功率器件分:
3.3
单相方波逆变电路的电压控制
二、两级调压逆变电路
电路结构
Udc Ud Uac
DC/DC变换
DC/AC变换
电路特点 优点:分级调压、调频,调节方便; 缺点:电路结构复杂,效率低。
3.3
单相方波逆变电路的电压控制
三、电流连续工作状态下移相调压控制
1、移相调压的工作原理 ug1、ug4互补输出,ug2、ug3互补输出,但两组信号的相位在0~ 之间可调,输出脉宽可以变化,从而调节输出电压基波和有效值。 (1)ωt=0时刻开始,0~θ1时间段: 此时ug1,3>0、ug2,4=0,VT1、VT3所在桥臂导通,由于是感性负 载,电流滞后,此时负载电流与电压反向,因此VD3、VD1 导通, 负载电感储能向直流母线回馈,负载电流绝对值按照指数规律下 降,直到θ1时刻负载电流过零,负载电压Uo=+Ud,直流母线的输 入电流与负载电流相同。
3.3
单相方波逆变电路的电压控制
一、单相方波逆变的输出电压控制的基本方法
调节直流母线电压:可以通过相控整流或者整流后加DCDC变换器来实现;
移相调压控制:两套方波逆变器通过变压器进行串联移
相调压或通过移相调压全桥逆变电路实现。 方波PWM电压控制:在输出方波电压中加入脉宽调制波, 调节输出电压的平均值,从而调节输出电压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按输出波形分:方波逆变器、正弦波逆变器
按电路结构分:桥式和非桥式逆变电路、组合逆变电路 和多电平逆变电路 按开关器件工作状态分:硬开关和软开关逆变电路
3.2
单相桥式方波逆变
基本电路结构
3.2
单相桥式方波逆变
电路分析条件简化
1、功率器件忽略损耗、忽略开关延时;
2、输入直流电源电压稳定,无直流脉动; 3、直流侧并接电容无等效串并联电阻和电感; 4、忽略电路分布、寄生参数的影响,连接线为理想零阻抗; 5、负载为理想线性元件,电阻无寄生电感和电容,电抗器无 损耗和饱和,电容器无等效串并联电阻和电感。
3.5 单相SPWM逆变
正弦脉宽调制(SPWM)技术的理论基础
采样控制理论中有一个重要结论:形状不同但面积相等的窄 脉冲加之于线性环节时,得到的输出效果基本相同。如图所示, 分别是矩形、三角形、正弦半波窄脉冲和理想单位脉冲函数为波 形的电压源 u(t) 施加于R、L负载上的情况,当负载时间常数远 大于激励脉冲持续时间时,响应 i(t) 基本一致,只在上升段有所 不同。由于响应持续时间较长的下降段体现了低频成份,持续时 间短的上升段体现了响应的高频分量,因此各个响应按傅里叶分 析在低频段基本一致,差别存在于高频段。当激励脉冲越窄(或 负载惯性常数与脉冲持续时间相差越大),则响应的高频段所占 比例愈小,整个响应愈相近。
规则采样法的原理
以载波周期谷点时刻调制波瞬时值为整个载波周期内调制波的幅
值,这样调制波与与载波比较得到SPWM信号的方法称为规则采样法。
规则采样法的特点
(1)相当于以载波周期谷点时刻调制波瞬时值为基准的阶梯波代替正 弦调制波来产生SPWM波; (2)在数字控制系统中,SPWM信号由计算机产生,各个脉冲起始与 终止时刻需要实时计算或查表,采用这种方法计算工作量大为 减小,因此,在数字控制系统中应用广泛。
规则采样法的等效示意图
3.5
单相SPWM逆变
几个概念
SPWM采用的调制波为正弦波,us (t ) U sm sint 载波uc是峰峰值为2Ucm,频率为fc的三角波
U sm 幅度调制比: ma U cm
频率调制比(载波比):
fc mf f
f c为 载 波 频 率 , f 为调制波频率
与单相方波逆变相同
矩形波调制桥式逆变控制模式
输出电压波形正半波时,VT1恒开通, VT4恒定关断,VT2、 VT3互补开关,其脉冲宽度恒定,脉冲频率可变,从而调节脉宽 的占空比,调节输出电压的基波值和平均值。 输出 电压波形负半波时,VT2恒开通,VT3 恒定关断,VT1、 VT4互补开关,控制规律与正半波相同。
θ3~θ4时间段
VT2、VT4所在桥臂导通,由于电感续流,实际VD2、VD4
导通,负载电感储能向直流母线回馈,负载电流θ4时刻过零, 负载电压UAB=-Ud,直流母线输入电流与负载电流相反。
3.3
移相控制单相方波逆变
θ4~θ5时间段
VT2、VT4所在桥臂导通,负载电流由VD2、VD4切换到 VT2、VT4,负载电压UAB=-Ud ,直流母线输入电流与负载电流 相反。
3.2
单相方波逆变电路
3.2
单相桥式方波逆变
相关参数分析
(1)按傅立叶级数展开分析,输出电压:
uAB 4U d sinnt , n n
2f , f 为开关频率 n 1,3,5, 其中
(2)基波电压幅值: U AB1m 1.27Ud
(3)基波电压有效值: U AB1rms 0.9Ud
电力电子技术
第三章 直流—交流变换技术
3.1 概述
逆变概念
逆变:直流电变成交流电(频率、电压幅度可调或固定)。 有源逆变:交流侧接电网 无源逆变:交流侧接负载 本章主要介绍讲述无源逆变。
3.1 概述
逆变电路的分类
按输出相数分:单相、三相、多相逆变电路
按功率器件分:半控器件和全控型器件逆变电路 按输出负载情况分:有源逆变、无源逆变
双极性SPWM控制逆变
桥式逆变电路结构与单相方波逆变相同 单极性SPWM控制桥式逆变控制方法
将调制波us与三角载波uc进行比较,输出一列SPWM波用 来控制桥式逆变器的两组开关 VT1、VT3 和VT2、VT4 分别成组并互补工作 典型控制方法
3.5
单相SPWM逆变
第三节
单相SPWM逆变电路
3.5
单相SPWM逆变
输出特性分析
输出基波电压幅值
U AB1m maU d
ma 1
( m f 1 )
直流电压利用率
AV U AB1rms 0.707ma Ud
输出谐波
分布于载波频率的偶数倍附近
3.5
单相SPWM逆变
优点:分级调压、调频,调节方便; 缺点:电路结构复杂,效率低。
3.3
移相控制单相方波逆变
电流连续工作状态下移相调压控制
移相调压的桥式电路结构
与单相方波逆变相同
移相调压的控制模式
uGS1、uGS4互补输出,uGS2、uGS3互补输出,但两组信号的
相位在0~之间可调。
3.3
单相方波逆变电路的电压控制
4U d n u AB si n cos nt , n 2 n
4U d n U ABnm sin n 2
输出电压
n 1,3,5,
输出谐波 各次谐波幅值
n 1,3,5,
U ABnm 1 n sin 各次谐波相对幅值 C n U AB1m n 2
(以 、n 1 时的 U AB 1m 为基准值)
3.2
单相桥式方波逆变
电路工作波形分析
(1)0~1时段,VT1、VT3开通,VT2、VT4关断,电流滞后电 压,VD1、VD3续流,电流方向A-VD1-Cd-VD3-B,
uAB Ud 。
(2)1~ 时段, VT1、VT3开通,VT2、VT4关断,电流过零为 正,电流方向:VT1-A-B-VT3,uAB Ud 。 (3) ~ 2时段,VT2、VT4 开通, VT1、VT3关断,VD2、VD4 续流,电流方向:B-VD2-Cd-VD4-A, uAB U d 。 (4)2~ 2时段, VT2、VT4 开通, VT1、VT3关断,电流过零 为负,电流方向:VT2-B-A-VT4, uAB U d 。
3.3
移相控制单相方波逆变
波形分析
0~θ1时间段
VT1、VT3所在桥臂导通,由于是感性负载,电流滞后,此
时负载电流与电压反向,因此VD1、VD3 导通,负载电感储能向
直流母线回馈,负载电流到θ1时刻过零,负载电压UAB=+Ud。
θ1~θ2时间段
VT1、VT3所在桥臂导通,负载电流由VD1、VD3转换到VT1、
3.5
单相SPWM逆变
规则采样法示意
uc为三角载波,周期为Tc
us为正弦调制波,周期为Ts 以载波周期谷点时刻调制波瞬时值 为整个载波周期内调制波的幅值us(t0) 当 us> uc 时,输出+Uo(或-Uo ) 当 us< uc 时,输出 -Uo (或+Uo )
3.5
单相SPWM逆变
I om
1 e 1 e
T 2 T 2
Ud R
t U U ~2期间:i ( t ) d ( I d ) e o om R R
L R
3.2
单相桥式方波逆变
方波逆变电路的输出电压控制 电路结构
Udc
DC/DC变换
Ud
DC/AC变换
Uac
电路特点
U AB1rms 0.9 (4)基波电压增益: AV Ud
3.2
单相桥式方波逆变
THD
n
(5)谐波失真度:
1 U AB1m
2 U ABnm 2 2 C n 2
其0~期间:io ( t ) ( I om ) e R R t
θ5~θ6时间段
VT3、VT4 所在桥臂导通,由于电感续流,负载电流由VT2切
换到VD3,负载被VT4、VD3“短路”,负载电感储能在负载电阻 中消耗,负载电压UAB =0,直流母线输入电流为0。
3.3
移相控制单相方波逆变
方波移相调压逆变电路的输出电压分析
输出电压波形特点
3.3
移相控制单相方波逆变
3.5
单相SPWM逆变
线性系统周期性窄脉冲群的响应可以等效为各个窄脉冲相 应的叠加。 对于一个正弦波,可看成N个彼此相连的脉冲序列所组成, 利用等幅不等宽但面积相等的矩形脉冲代替这N等分正弦波,使 矩形脉冲中点与相应正弦波中点重合,即形成SPWM波。 开关功率变换器输出为脉冲函数,利用高频SPWM波施加于 负载,并配置低通滤波环节就能够产生需要的低频正弦响应— 即SPWM 逆变技术的基本原理与方法。
VT3,负载电流按照指数规律正向增大,负载电压UAB=+Ud, 直流母线的输入电流与负载电流相同。
3.3
移相控制单相方波逆变
θ2~θ3时间段
VT1、VT2所在桥臂导通,由于电感续流,负载电流由VT3切 换到VD2,此时负载被VT1、VD2“短路”,负载电感储能在负载 电阻中消耗,负载电压UAB =0,直流母线的输入电流为0。
3.4 矩形波调制单相逆变
3.4 矩形波调制单相逆变
输出电压分析
uAB 2U d n n (cos n 2 j 1 cos n 2 j ) sin nt ; n 1,3,5.... j 1
i
谐波分析
假定斩波周期为TC(频率fC) ;电路工作周期为T(频率f ); 则设定载波比为: fC T mf TC f