菱形的判定PPT教学课件

合集下载

18.2.2菱形 菱形的判定课件(共29张PPT) 人教版数学八年级下册

18.2.2菱形 菱形的判定课件(共29张PPT) 人教版数学八年级下册
成的四边形的什冬天么,时干啥候还希变望成别的菱呢!形?
当这个四边形的对角线互相垂直时变成菱形.
新知探究
猜想:对角线互相垂直的平行四边形是菱形.
下面我们来进行验证:
小山整把济南围了个圈儿,只有北边缺着点口儿。这一圈
已知:如小图山,在冬在天特▱A别可B爱C,D好中像是,把对济南角放在线一A个小C摇,B篮里D,相交于点O, 它们全安静不动地低声地说:“你们放心吧,这儿准保暖
G
C
和。”真的,济南的人们在冬天是面上含笑的。他们一看
∴∠A=∠B=∠C那=些∠小D山,=心9中0°便觉, 得A有D了=着B落C,,有A了B依=靠C。D他.们由天上
看到山上,便不知不觉地想起:“明天也许就是春天了H吧?
F
∵E,F,G,H分这点样幻别的想温不是暖能A,一B今时,天实夜现B里,C山他,草们C也也D许并就不,绿着A起急来,D了因的吧为中?有”这点就样,是慈这善
这样的温暖,今天夜里山草也许就绿起来了吧?”就是这
四点条幻边想不都能相一时等实现,他们也并不着急,因为有这样慈善
的冬天,干啥还希望别的呢!
两条对角线互相垂 直,并且每一条对

角线平分一组对角
新知探究
探究点1 对角线互相垂直的平行四边形是菱形.
如图,用一长一短两根木条,在它们的中点处固定一
小山整把济南围了个圈儿,只有北边缺着点口儿。这一圈
也可以反推菱形的性质来得到它的判定呢? 看到山上,便不知不觉地想起:“明天也许就是春天了吧? 这样的温暖,今天夜里山草也许就绿起来了吧?”就是这
我们大家
点幻想不能一时实现,他们也并不着急,因为有这样慈善
一起来尝试的一冬天下,干吧啥还!希望别的呢!
类比导入
图形 性质定理

菱形的判定公开课课件课件

菱形的判定公开课课件课件
第19页,幻灯片共25页
4、如图, 在△ABC中, AB=AC, 点M在边BC上, 过
点M分别作AB、AC的平行线, 与AC、AB分别相交
于点D、E. 当点M位于BC的什么位置时, 四边形
AEMD是菱形?请给予证明.
证明:∵EM∥AC,DM∥AB ∴四边形AEMD是平行四边形
若EM=DM,则□AEMD是菱形
一组邻边相等的平行四边形是菱形
O
证明:平行四边形ABCD中
B
2
E
4
C
AD∥BC
∴∠1=∠2,∠3=∠4
EF垂直平分AC ∴AO=CO,AF=CF,
∴ △AOF≌△COE
∴ AF=CE
又AF∥CE ∴四边形AFCE是平行四边形
∴平行四边形四边形AFCE是菱形
第12页,幻灯片共25页
例1.已知:平行四边形ABCD的对角线AC的垂直
求证:四边形CDEF是菱形
A
12
F
E
O
B
C
D
第23页,幻灯片共25页
小结
我学会了什么?
第24页,幻灯片共25页
第25页,幻灯片共25页
∴ □ ABCD是菱形.
组邻边相等的平行四边形是菱形)
第8页,幻灯片共25页
(一
思考与探索
你能用直尺和圆规作一个菱形吗?请作图 并说明理由。
第9页,幻灯片共25页
归纳
A
B
平行四边形 邻边相等
D
C AD=DC
A 平行四边形
B对角线互相垂直
DA
C
AC⊥BD
四边形 B 四边相等
D
AD=DC=CB=BA
AC
四边形 B对角线互相垂直平分

菱形的判定优秀课件.ppt

菱形的判定优秀课件.ppt
证明:∵ 四边形ABCD是平行四边形 ∴OA=OC=4 OB=OD=3 A 又∵AB=5 ∴AB2=AO2+BO2 ∴∠AOB=90° ∴AC⊥BD 又∵ 四边形ABCD是平行四边形 ∴四边形ABCD是菱形. D O B C
归纳
菱形常用的判定方法:
1、一组邻边相等的平行四边形叫做菱形.
2、对角线互相垂直的平行四边形是菱形.
证明:∵DE∥AC DF∥AB
E
3
12
∴四边形AEDF是平行四边形 ∵ DE∥AC B ∴∠2=∠3 ∵ AD是△ABC的角平分线 ∴ ∠1=∠2 ∴ ∠1=∠3 ∴AE=DE ∴ □AEDF是菱形
F D C
探究一
先画两条等长的线段AB、AD,然后分别以 B、D为圆心,AB为半径画弧,得到两弧的交点 C,连接BC、CD,就得到了一个四边形,猜一 猜,这是什么四边形?说出你的理由
A D
在 ABCD中, AB AD ABCD是菱形.
B
C
判定方法1:
一组邻边相等的平行四边形是菱形
A D
数学语言:
B
O
C
∵四边形ABCD是平行四边形,AB=AD ∴四边形ABCD是菱形
还有其他么方法吗?
练习:已知:如图,AD平分∠BAC, DE∥AC 交AB于E,DF∥AB交AC于F. A 求证:四边形AEDF是菱形.
(对角线互相垂直平分的四边形是菱形.) 3、有四条边相等的四边形是菱形.Biblioteka 小结:菱形的判定方法:
四条边相等
四边形 菱形
平行四边形
1.做一做:判断下列命题是否正确,并说明理由. (1)对角线互相平分且邻边相等的四边形是菱形. 对 (2)两组对边分别平行且一组邻边相等的四边形 是菱形. 对 (3)邻角相等的四边形是菱形.错 (4)有一组邻边相等的四边形是菱形.错 (5)两组对角分别相等且对角线互相垂直的四边形 是菱形. 对 错 (6)对角线互相垂直的四边形是菱形. (7)对角线互相垂直平分的四边形是菱形。 对 (8)一条对角线平分一个内角的平行四边形是菱形。 对

《菱形的性质与判定》ppt课件

《菱形的性质与判定》ppt课件

平分∠ABC,延长AD至点E,使DE=BO,连接OD.
(1)求证:四边形ABCD是菱形;
C
B
(2)若AD=4,∠DAB=60°,求OE的长.
(1)证明:∵AD∥BC,AD=BC, ∴四边形ABCD是平行四边形,∠CBD=∠ADB, ∵BD平分∠ABC, ∴∠CBD=∠ABD, ∴∠ABD=∠ADB, ∴AB=AD, ∴四边形ABCD是菱形;
A E
F
B
D
C
随堂练习
3.如图,直线l是四边形ABCD的对称轴,若AD=CB,下面四个结 论中:①AD∥CB;②AC⊥BD;③AO=OC;④AB⊥BC,一定正 确的结论的序号是___①__②__③____.
D
lA
C
B
随堂练习
4.如图,四边形ABCD中,AB∥DC,AC平分∠BAD,CE∥DA交AB于点E. 求证:四边形ADCE是菱形.
菱形的性质与判定
学习目标
1.理解并掌握菱形的两个判定方法. 2.会用这些菱形的判定方法进行有关的证明和计算.
新课导入
1、菱形的定义:一组邻边相等的平行四边形是菱形. 2、菱形的性质: ①菱形是轴对称图形,对称轴是两条对角线所在的直线; ②菱形的四条边都相等; ③菱形的对角线互相垂直平分.
3、菱形具有平行四边形的所有,应用菱形的性质可以进行 计算和推理.
证明: ∵ ∠1= ∠2, 又∵AE=AC, ∴ △ACD≌ △AED (SAS). 同理△ACF≌△AEF(SAS) .
A
21FEC来自DB∴CD=ED, CF=EF.
又∵EF=ED,
∴四边形ABCD是菱形(四边相等的四边形是菱形).
例3、在四边形ABCD中,AD∥BC,AD=BC,对角线AC、BD交于点O,BD

菱形的判定学习教材PPT课件

菱形的判定学习教材PPT课件
Leabharlann 3.四条边都相等的四边形是菱形
[例1]如下图,平行四边形ABCD的两条 对角线AC,BD相交于O点, AB= 5 ,AO=2,OB=1. (1)AC,BD有怎样的位置关系? (2)四边形ABCD是菱形吗?为什么?
小结 菱形的定义:一组邻边相等的平行 四边形是菱形. 菱形的性质: 边:四条边都相等,对边分别平行 角:对角相等 对角线:互相垂直、平分,每一条 对角线平分一组对角.
菱形的判别可用下图来表示
作业:
课本习题4.5 1, 2
方法一:将一张长方形的纸横对折,再 竖对折,然后沿图中的虚线剪 下,打开即可。
方法二:两张等宽的纸条交叉重叠在一 起,重叠的部分ABCD就是菱形.
方法三:将一张长方形纸对折,再在折痕
上取任意长为底边,剪一个等腰
三角形,然后打开即是菱形.
能说一说按这三种方法做的理由吗? 菱形的判别方法: 1.一组邻边相等的平行四边形是菱形; 2.对角线互相垂直的平行四边形是菱形;
4.3 菱 形
黄凌
图片中有你熟悉的图形吗?
这种特殊平行四边形特殊在哪里? 我们称它为菱形,你能给菱形下定 义吗?
一组邻边相等的平行四边形叫做菱形.
如图,在菱形ABCD中,AB=AD,对角 线AC,BD相交于点O。 (1)图中有哪些线段是相 等的?哪些角是相等的? (2)图中有哪些等腰三角 形、直角三角形? (3)两条对角线AC,BD有 什么特定的位置关系?
菱形是特殊的平行四边形,它除具 有平行四边形的所有性质外,还有平行 四边形所没有的特殊性质: 1.菱形的四条边都相等. 2.菱形的两条对角线互相垂直平分, 每一条对角线平分一组对角.
菱形是轴对称图形吗?如果是,它有 几条对称轴?对称轴之间有什么位置 关系? 你能画出一个菱形吗?你是怎么知道 画出的图形是菱形?

菱形性质与判定课件ppt

菱形性质与判定课件ppt

面积计算
菱形面积的计算公式为
面积 = (对角线1 × 对角线2) / 2。由于菱形的对角线互相垂直且平分,因此可以使用此公式来计算面积。
另一种计算菱形面积的方法是
面积 = 底 × 高。在这里,底是菱形的一条边,高是从这条边到对角顶点的垂直距离。
周长计算
01
菱形的周长计算公式为:周长 = 4 × 边长。由于菱形的四条边都相等, 因此可以使用此公式来计算周长。
建筑学中的应用
建筑设计
菱形结构在建筑设计中常被用作装饰元素,如菱形窗格、菱形图案的墙面等,增加建筑物的美感和独特性。
空间划分
菱形地砖、菱形玻璃等可以用于室内空间划分,创造出独特视觉效果,同时起到引导人流、划分功能区域的作用。
工程学中的应用
结构工程
菱形结构具有较好的稳定性和承重能力,在桥梁、道路、隧道等工程建设中,菱形结构 常被用于增强结构的稳定性和承载能力。
邻边互相垂直且相等判定
邻边互相垂直
菱形的任意一组邻边互相垂直,因此 可以通过测量任意一组邻边的夹角是 否为90度来判断一个四边形是否为菱 形。
邻边长度相等
除了互相垂直外,菱形的任意一组邻 边的长度还相等。这也是菱形的一个 基本性质。
03
菱形与其他四边形的比较
与矩形的关系
01
02
03
边的性质
菱形的对边相等,与矩形 相同;但菱形的邻边也相 等,这是矩形不具备的性 质。
角度关系
两组对角相等,即∠A=∠C,∠B=∠D;邻角互补,即∠A+∠B=180°, ∠B+∠C=180°。
对角线性质
对角线互相垂直: AC⊥BD。
对角线长度关系:对 角线长度不一定相等 ,但满足 AC²+BD²=4AB²。

1.1.2菱形的判定 课件(共20张PPT)

1.1.2菱形的判定 课件(共20张PPT)

教师讲评
③四边相等的四边形是菱形.
几何语言:如图,∵AB=BC=CD=DA,∴四边形ABCD是菱形.
注意点:①②两种方法都是在平行四边形的基础上外加一个条
件来判定菱形.③是在四边形的基础上加上四条边相等来判定菱
形.
典例精讲
【题型一】菱形的判定简单应用
例1.下列条件中能判断四边形是菱形的是( )
如图所示,绿丝带重叠部分形成的图形是一个漂
亮的菱形.你知道怎样判断它是一个菱形吗?
为了迎接第33届牡丹花会,公园里的园艺师建造了一个如图所示
的平行四边形花坛ABCD,经测量花坛的边长AB=20米,沿着花
坛的两条对角线修建的两条小路AC和BD交于点O,AC=24米,
BD=32米,小亮说这是个菱形花坛。他的说法正确吗?为什么?
列结论一定成立的是( )
A. AD=CD
B.四边形 ABCD面积不变
C. AC=BD
D.四边形 ABCD周长不变
典例精讲 【题型二】利用菱形的性质与判定求长度、角度或面积
例4:如图,在平行四边形ABCD中,AC与BD交于点O,点E是AB边
上的中点,连接OE,OE=2.5,AC=8,BD=6.有下列结论:①△ABD是
弧,得到两弧的交点C,连接BC,CD,就得到了一个四边形,如图.
(1)猜一猜,这是什么四边形?
(菱形)
(2)根据画图,你还有其他方法能判定此四边形的形状吗?
小组合作试着进行证明. (四边相等的四边形是菱形)
证明:因为AB=AD,AB=BC,所以AD=BC . 又因为
AB=CD,所以四边形ABCD为平行四边形.




∴OA=OC= AC=3,OD=OB= BD=4.

菱形的性质与判定ppt课件

菱形的性质与判定ppt课件
四边形
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
菱形的判定定理1 四边相等的四边形是菱形。
2020/12/10
4
合作交流、师生研讨
例1、 由自主解答①变式
如图,点E、F、G、H分别是矩形ABCD各边的中点, 四边形EFGH是怎样的特殊四边形? 证明你的结论。
A
H
D
E
G
B
F
C
2020/12/10
5
课前自主解答 ②
我们知道,当平移一个平行四边形活动框架的一边, 使这个平行四边形变成菱形时,它的两条对角线互相垂直, 反过来,对角线互相垂直的平行四边形是菱形吗?
二、数学思想 特殊与一般
四边形、平行四边形、菱形 之间的关系如图:
2020/12/10
是菱形
11
1、已知:如图,△ABC中,AB=AC,AD是角平分线,
E为AD上一点,CF//BE交AD于F,
A
连接BF、CE.
求证:四边形BECF是菱形。
E
2、已知:如图,在△ABC中, CD是∠BCA的平分线, DE∥BC交AC于E, DF∥AC 交BC于F。
如图,在□ABCD中,AC⊥BD, 垂足为O,
这个四边形是菱形吗?
A
为什么?
B
O
D
C
2020/12/10
6
菱形的判定定理2 对角线互相垂直的平行四边形是菱形。
2020/12/10
7
合作交流、师生研讨
例2、由自主解答②变式 已知:如图,在四边形ABCD中,AD∥BC,对角线AC 的垂直平分线与边AD、BC分别交于点 E、F。 求证:四边形AFCE是菱形。
A
ED
o
B
F
C
2020/12/10
8
[学以致用]
活动1:用直尺和圆规作一个菱形, 并说明你作图的道理。
2020/12/10
9
[学以致用]
活动2:将两张宽相等的矩形纸片叠合在一起得到四边形ABCD, 你认为它是什么特殊的四边形?
A D
B
C
2020/12/10
10
总结提升
一、知识点
一组邻边相等的平行四边形 对角线互相垂直的平行四边形 四条边相等的四边形
求证:四边形CFDE是菱形
A
2020/12/10
B
C
D
F
C
E
F
D
B
12
PPT教学课件
谢谢观看
Thank You For Watching
13
班级: 初二( 2 )
授课人:陈改芳
2020/12/10
1
知识回顾
1、菱形的定义是什么?
答:有一组_邻边_相等的_平行四边形 叫做菱形;
2、菱形的性质是什么?
答:① 菱形具有平行四边形的一切性质。 ② 菱形的四条边都_相等_; 。 ③ 菱形的对角线互相垂直。 ④ 菱形是轴对称图形,有2条对称轴
3、有用的结论
① 菱形的每一条对角线平分_一组对角__;
② 菱形的面积等于它的两条对角线长的乘积的一半。
2020/12/10
2
课前自主解答① 我们知道,菱形的四条边相等。 反过来,四边相等的四边形是菱形吗?
如图,四边形ABCD中,AB=BC=CD=AD, 这个四边形是菱形吗?为什么020/12/10
相关文档
最新文档