上海市徐汇区上海中学2020-2021高二上学期期中考试数学(解析版)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海中学2020-2021学年高二年级第一学期期中考试数学试卷 2020.11.

考生注意:1.答卷前,考生务必在答题纸写上姓名、班级、考号等;

2.本试卷共有21道题,满分150分,考试时间120分钟.

一、填空题(本大题满分54分,共有12小题,第1-6题每题4分,第7-12题每题5分)

1. 点(2,3)P 到直线320x -=的距离为

2. 将一张坐标纸折叠一次,使得点(0,2)与点(2,0)-重合,且点(2020,2021)与点(,)m n 重合,

则n m -=

3. 已知(2,1)A ,(4,2)B -,(1,)C x -,若向量OA OB +与OC 垂直(O 为坐标原点),

则实数x 的值为

4. 直线2(1)10()x a y a +++=∈R 的倾斜角的取值范围是

5. 若实数x 、y 满足不等式组523030y x y x y ≤⎧⎪-+≤⎨⎪+-≥⎩

,则||2z x y =+的最大值是

6. 平面内b 为单位向量,(1,1)a =,且|2|6a b -=,则向量a 、b 的夹角为

7. 若关于x 、y 、z 的三元一次方程组212sin 32sin 3

x z x y z x z θθ⎧+=⎪++=⎨⎪+=⎩有唯一解,则实数θ的取值集合是

8. 平行四边形ABCD 中,3AB =,4AD =,6AB AD ⋅=-,13

DM DC =,则MA MB ⋅的值为 9. 已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,1),若对于任意的实数m ,直线l 被圆C 截得的弦长都是定值,则直线l 的方程为

10. 若不全为零的实数a 、b 、c 成等差数列,点(1,2)A 在动直线:+0l ax by c +=上的射影为P ,

点Q 在直线1:34120l x y -+=上,则线段PQ 长度的最小值是

11. 实数x 、y 满足221x y +≤,则22

x y x y ++-+的取值范围为 12. 过点(2,1)P 任意作一条直线分别交x 轴、y 轴的正半轴于点M N 、,若||||OM ON +-

||()MN m m ≤∈R 恒成立,则m 的最小值为

二、选择题(本大题满分20分,每题5分)

13. 已知{(,)|(1)(1)}A x y x x y y =-≤-,22{(,)|}B x y x y a =+≤,若A B ⊆,则实数a 的取值范围是(

) A. B. 1

[,)2+∞ C.

[2,)+∞ D. )2

+∞

14. 已知向量a 、b 为平面内的单位向量,且12a b ⋅=-,向量c 与a b +共线,则||a c +的最小值为( ) A. 1 B. 12 C. 34

D. 3 15. 如图,△ABC 是边长为1的正三角形,点P 在△ABC 所在的平面内,

且22||||PA PB +2||PC a +=(a 为常数),下列结论中,正确的是( )

A. 当01a <<时,满足条件的点P 有且只有一个

B. 当1a =时,满足条件的点P 有三个

C. 当1a >时,满足条件的点P 有无数个

D. 当a 为任意正实数时,满足条件的点P 总是有限个

16. 如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的

半圆弧上任意一点,设(,)AE x AD y AP x y =+∈R ,则2x y +的最小

值为( )A. 1- B. 1 C. 2 D. 3

三、解答题(本大题満分76分)本大题共有5题,解答下列各题必须在答题纸相应位置写出必要的步骤.

17. 已知直线l 经过原点,且与直线31y x =+的夹角为30°,求直线l 的方程.

18. 若矩阵11122122a a A a a ⎛⎫= ⎪⎝⎭,定义det()A 为行列式11122122a a a a 的值,已知t ∈R ,102t t B -+⎛⎫= ⎪-⎝⎭

,2011C ⎛⎫= ⎪-⎝⎭

,求矩阵BC 、CB ,并比较det()BC 和det()CB 的大小.

19. 如图,3xOy π

∠=,定义平面坐标系xOy 为仿射坐标系,在该仿射坐标系中,任意一点P 的斜

坐标这样定义:1e 、2e 分别为与x 轴、y 轴正方向同向的单位向量,若1OP xe =+

2(,)ye x y ∈R ,则规定点P 的斜坐标为(,)x y .

(1)求以O 为圆心,半径为1的圆在该仿射坐标系中的方程;

(2)已知点A 的斜坐标为(1,2),点B 的斜坐标为(2,0)-,求直线AB 在该仿射坐标系中的方程.

20. 在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(0,2)P 且斜率为k 的直线与圆Q 相交于不同的两点A 、B .

(1)求k 的取值范围;

(2)是否存在常数k ,使得向量OA OB +与PQ 共线,如果存在,求k 的值,如果不存在,说明理由.

21. 已知△ABC 的三个顶点(1,0)A ,(1,0)B ,(3,2)C ,其外接圆为圆H .

(1)求圆H 的方程;

(2)若直线l 过点C ,且被圆H 截得的弦长为2,求直线l 的方程;

(3)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点M 、N ,使得点M 是线段PN 的中点,求圆C 的半径r 的取值范围.

上海中学2020-2021学年高二年级第一学期期中考试数学试卷 2020.11.

一、填空题(本大题满分54分,共有12小题,第1-6题每题4分,第7-12题每题5分)

1. 点(2,3)P 到直线320x -=的距离为

【答案】 43

2. 将一张坐标纸折叠一次,使得点(0,2)与点(2,0)-重合,且点(2020,2021)与点(,)m n 重合, 则n m -=

【答案】 1

3.已知(2,1)A ,(4,2)B -,(1,)C x -,若向量OA OB +与OC 垂直(O 为坐标原点),

则实数x 的值为 【答案】23

- 4. 直线2(1)10()x a y a +++=∈R 的倾斜角的取值范围是 【答案】3[,)4

ππ 5. 若实数x 、y 满足不等式组523030y x y x y ≤⎧⎪-+≤⎨⎪+-≥⎩

,则||2z x y =+的最大值是

【答案】14

6. 平面内b 为单位向量,(1,1)a =,且|2|6a b -=,则向量a 、b 的夹角为

【答案】23

π 7. 若关于x 、y 、z 的三元一次方程组212sin 32sin 3

x z x y z x z θθ⎧+=⎪++=⎨⎪+=⎩有唯一解,则实数θ的取值集合是

【答案】{|,}2

k k πθθ≠∈Z 8. 平行四边形ABCD 中,3AB =,4AD =,6AB AD ⋅=-,13DM DC =,则MA MB ⋅的值为 【答案】 16

9. 已知圆222:(62)4560C x y m x my m m +---+-=,直线l 经过点(1,1),若对于任意的实数m ,

直线l 被圆C 截得的弦长都是定值,则直线l 的方程为

【答案】230x y +-=

10. 若不全为零的实数a 、b 、c 成等差数列,点(1,2)A 在动直线:+0l ax by c +=上的射影为P ,点Q 在直线1:34120l x y -+=上,则线段PQ 长度的最小值是

相关文档
最新文档