网格线中的三角函数问题
网格线中的三角函数问题
・ . .
’ . .
由勾股 定理 得 B E =
AB=
・ . ・
, A E = 2
设B D为 , C D为 2 一 , 由勾 股 定理 得
AB - BD = AD , AC 一C D = AD。 ,
・
例 2 如图3 , 在 边 长相 同的小 正方 形 网 格 中, 点 A、 B、 C 、 D都 在 这 些 小 正 方 形 的 顶
点上, A B 、 C D相 交 于 点 P, 则t a n Z AP D的 值 为
( ) .
A. 1 B. 2 C_ 3 D.
故选 : B .
,
A D: T 9 . 3
.
二、 运用方 程 。 以数 解形
.
9
几何 图形 中 的问题转 化 为用代 数 的知识
.
・ .
求解 , 这 就 是数形 结合 思想 中的“ 以数解 形” ,
s i n 肚 A D 去
数 学语言与直观 的图像结合起来 , 关键是代数 问题 与图形之间的相 互转化 , 它可以使代数 问题 几 何化 , 几何问题 代数化. 数学 中的知识 , 有的本身就可以看作是数形 的结合 . 女 口 : 锐角三角函数 的定 义是借助 于直 角三 角形 来定 义的. 下面 我们就 网格线 中锐 角三 角函数 的 问题来 体会这 种数学思
、
-"
'--4 \Fra bibliotek"- - -
.
3
aB D P, 然后 由相似 三 角形 的对 应边 成 比例 . 易得 D P : C P = 1 : 3 , 即 可得 P F : C F = P F : B F = 1 : 2 ,
网格中的三角函数
1网格中的锐角三角函数网格是同学们从小就熟悉的图形,在网格中隐含的条件有:1.直角;2.单位长度。
所以在网格中可以求一个锐角的三角函数,是近几年中考的热点,下面举例说明。
一、在网格中与勾股定理现结合求一个锐角的三角函数。
【例1】 三角形在正方形网格纸中的位如图1,则sin α的值是( ).[解析] 本题在网格中考查锐角的正弦的意义,首先要用勾股定理计算直角三角形斜边的长.一般情况下,为了减小计算量,把小正方形的边长设为1.选C .练习1(广州市2014)如图2,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则( ).(A ) (B ) (C ) (D )练习2 (2014年福州)如图3,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上,344543B .; C .35;D .A. 35图3图22sinB 的值是 .3.(2011四川)如图4,在4×4的正方形网格中, tanα= .A .1B .2C .12D4.(2011甘肃兰州)如图5,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为 .A .12B .13C .14 D3. (2011江苏连云港)如图6,△ABC 的顶点都在方格纸的格点上,则sin A =_______.在网格中求一个锐角的三角函数时,根据图中角的位置。
充分利用网格中的直角和边,然后根据勾股定理求出相应的边长,最后利用三角函数公式进行计算,达到解决问题的目的。
二、在网格中与辅助线相结合求一个锐角的三角函数。
【例2】 (2014•贺州)如图7-1网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA= .[解析] 虽然网格中隐含直角,但是∠A 是△ABC中图7-1图7-2图4图6图5的一个锐角,而△ABC不是直角三角形,不能直接运用三角函数公式进行计算,必须先做辅助线构造直角三角形,使∠A在一个直角三角形中,然后求出所对应的斜边和对边,而后解决问题。
例谈网格中求锐角三角函数值问题
例谈网格中求锐角三角函数值问题●胡永强 (阳山实验初级中学校,江苏苏州 215151) 摘 要:文章研究了在网格中求锐角三角函数值的问题,分别给出两类问题的解决策略,从“化斜为直、转化、方程”等数学思想方法角度对多种解法进行了总结.关键词:网格;锐角三角函数;化斜为直思想;转化思想;方程思想中图分类号:O124.1 文献标识码:A 文章编号:1003 6407(2020)03 0016 03 网格是一种研究数学问题的常用工具,如在图形的各种变换(如平移、翻折、旋转、位似)、函数图像、相似三角形的判定、确定圆弧的圆心、图案设计与面积计算、求锐角三角函数值等问题中有着广泛的应用.据说笛卡尔也曾受到蜘蛛结网的启发,在网格中发明了坐标系,发展出解析几何这门新的数学分支,说明网格与数学问题关系密切.本文主要探讨在网格中求锐角三角函数值问题.1 正方形网格正方形网格中主要有两大类题型:一是角的顶点在格点上;二是角的顶点不在格点上.顶点在格点上的又包括残缺三角形类型和非直角三角形类型两种.对于残缺型需补全三角形,再利用勾股定理求出相关边长即可解决;对于顶点在格点上的非直角三角形类型,常在三角形内部作高线构造直角三角形,利用勾股定理和等面积公式等知识计算出相关线段的长度即可解决;对于角的顶点不在格点上的类型通常作所求角某一条边的平行线,构造所求角的顶点在格点上的同位角,再依托其同位角构造一个直角三角形来解决.下面选取几道例题加以说明.1.1 残缺的格点三角形———补全 例1 如图1,点A,B,C是小正方形的顶点,(上接第15页)体对应关系不容易看出来,但是有了这样的观念,才会在“数形结合”思想的引领下,引入参数,顺藤摸瓜,最后让潜在的事实浮出水面.又比如几何直观的意识在问题探索中的作用.文中在一般化和特殊化原则的互动下,用动态的眼光分析问题,从图3、图4联想到图5、图6,使得一些属性呈现出高度的统一.3.2 教师要成为解题方面学生学习的典范在解题中学会解题,在解题过程的回顾中捕捉看似“浪费”的信息,学会思维环节的取舍.比如文中提及的“两条直线的斜率是互为相反数,即kAC+kBC=0,”这一特殊的数量关系,一旦察觉,就能捕捉到两个等腰三角形,从而开阔了视野.教师在解题教学时引用的例题,正是自己在问题解决过程中经历了“是什么,怎么做,为什么”这样的层层逼近,逐渐“从明确走向深刻”,甚至是领悟到“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”的妙处,因此迫不及待地想把这份体验带给学生.教师应该就自己解题时所经历的“千转百回”和“顿悟”转化为教学形态,从而成为解题方面学生学习的典范.参 考 文 献[1] 波利亚.怎样解题[M].上海:上海科技教育出版社,2007:序言.[2] 裴光亚.教学的底线[J].中学数学教学参考:中旬,2018(4):1.[3] 罗增儒.中学数学解题的理论与实践[M].南宁:广西教育出版社,2008:182.·61·中学教研(数学)2020年第3期收文日期:2019 09 23;修订日期:2019 10 25基金项目:江苏省苏州市教育规划课题(192010343)作者简介:胡永强(1981—),男,江苏新沂人,中学高级教师.研究方向:数学教育.且每个小正方形的边长为1,则tan∠BAC的值为( )A.12 B.1 C.槡33槡 D.3图1图2分析 要计算tan∠BAC的值,需要将∠BAC放到一个直角三角形中.联结BC,如图2,可通过证明△ABE≌△BCD推导出∠ABC是直角,再运用勾股定理求出∠BAC的对边BC和邻边AB的长,进而求出tan∠BAC的值.另外也可由△ABE≌△BCD得出AB=BC,再结合∠ABC是直角,可以根据正切的定义得出tan∠BAC的值为1.1.2 非直角三角形的格点三角形———作高例2 如图3,网格中的每一个正方形的边长都是1,△ABC的每一个顶点都在网格的格点处,则sinA的值为.图3图4分析 要求出sinA的值,需要把∠BAC放到一个直角三角形中,可以过点B或点C作△ABC的高线.受网格所限,如图4,可作BD⊥AC,垂足为点D,运用勾股定理求出边AB的长,运用等面积法求出高BD的长,从而计算出sinA的值.1.3 角的顶点不在格点上类型———平移图5例3 如图5,网格中的每一个正方形的边长都是1,点A,B,C,D都在格点处,AB与CD相交于点O,则tan∠BOD的值为.分析 ∠BOD的顶点O不在格点上,添加高线构造出直角三角形后,边长的计算比较困难.可以考虑平移∠BOD的某一条边,将∠BOD的顶点O平移到某一格点上,进而依托此格点在给定的网格中构造出一个格点直角三角形,这样就可以求出相关锐角的三角函数值,再根据同位角相等进行等量代换,从而解决问题.本题可以平移边OB,也可平移边OD,下面各举一例:1)如图6,平移∠BOD的边OB,使点O平移到点C处,作CE∥AB,过点D作CE的垂线,交CE于点E,得到Rt△CDE.在Rt△CDE中,求出tan∠ECD的值,由CE∥AB可得∠BOD=∠ECD,从而得到tan∠BOD的值.图6图72)如图7,平移∠BOD的边OD至AF处,过点F作AF的垂线交AB于点G,构造Rt△AGF,在Rt△AGF中完成计算.2 非正方形网格除了正方形网格之外,非正方形网格问题近来也频频出现,如矩形网格、菱形网格、等边三角形网格等.这些非正方形网格中问题的解决思路和方法与正方形网格类似,可以将正方形网格中的解题思路和方法迁移过来.2.1 矩形网格———添线例4 图8是一个长方形网格,组成网格的小长方形的长是宽的2倍,△ABC的顶点都是网格中的格点处,则sin∠BAC的值是.图8图9分析 根据网格小长方形的长为宽的2倍,可以添加两条垂线将其转化为正方形网格,如图9所示,将其转化为1.2中的问题,然后通过作高法解决.·71·2020年第3期中学教研(数学)2.2 菱形网格———求角例5 如图10,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角∠O=60°,点A,B,C都在格点上,则tan∠ABC的值是.图10图11分析 此图属于残缺型问题,如图11所示,可以通过延长BC到点D,联结AD构造△ABD,结合∠O=60°这一条件及菱形每条对角线平分一组对角的性质可证明∠ADB是直角,再结合等腰三角形和勾股定理等知识求出线段AD和线段BD的长,从而求出tan∠ABC的值.2.3 等边三角形网格———组合例6 在由10个完全相同的等边三角形构成的网格图中,∠α,∠β如图12所示,则cos(α+β)=.图12图13分析 如图13,将各个点标上字母,联结DE,利用等边三角形的性质及三角形内角和定理可得出∠α=30°.同理可得∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设每个小等边三角形的边长为a,则AE=2a,DE=槡3a.在Rt△ADE中,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.3 此类问题中蕴含的几种思想方法3.1 化斜为直思想在初中阶段,求锐角三角函数值常常需要将锐角放在直角三角形中求解,因此构造直角三角形是解决这类问题的首要条件.常用的构造方法是作高线,可以在三角形内部作高,也可以在外部作高,具体作哪条边的高线要结合题目特点作出选择,通常选取较为方便计算的一种情形.在菱形及等边三角形网格中,也需要添加适当的辅助线构造直角三角形以解决问题.3.2 转化思想转化思想是解决数学问题中一种十分常用的数学思想,它是将数学问题由难变易、由陌生变熟悉的过程.转化思想在解决此类问题中比比皆是,如将非直角三角形转化为直角三角形;将顶点不在格点上的角通过作平行线构造同位角转化为顶点在格点上的角;将非格点三角形的情形转化为格点三角形的情形;将长方形网格转化为正方形网格等都体现了转化的思想.3.3 方程思想在求锐角三角函数值的过程中,通常需要先构造直角三角形,再计算出所求三角函数值所需要的边.格点三角形的边长常常借助其形外的直角三角形使用勾股定理作为等量关系列出方程,完成计算;在格点三角形内部构造高线后,常需要用同一图形面积相等作为等量关系列出方程,完成计算;有时候还需要借助网格线的平行关系寻找相似三角形,将相似三角形对应边成比例这条定理作为等量关系列出方程,完成计算.由此可见,方程思想在解决此类问题中意义重大.4 结束语网格中可供研究的数学问题是非常丰富的,本文只是笔者在网格长河中采撷的一朵浪花,列举出在网格中求锐角三角函数值的几种类型及相应的解题策略,结合思考和分析问题的过程归纳出解决此类问题的几种常用数学思想方法.由于水平和经验有限,文中必定存在诸多瑕疵,望读者多批评指正.同时,文中所阐述的解题策略还不够完善,必然还存在其他更多优秀的解法,待广大师生在解题实践过程中不断探索和完善[1].参 考 文 献[1] 姜晓翔.初中数学命题方法之延续策略[J].中国数学教育,2019(6):39 43.·81·中学教研(数学)2020年第3期。
网格遇上三角函数——网格型三角函数中考题例析
.
、
、 、 、 \ 、
、
’
D
、 、 、
由 勾 股 定 理 知 O D : 掣, 所 以 c 。 s 厶 4 0 曰 : .
形 网格 中 , t a n c  ̄ 的值 为 (
A. 1 B. 2 c.
)
D.
, '
图3
图4
例3 ( 2 0 1 0凉 山)如 图 4 , -1的正 切 值 等 于 /
评析 显 然 1 不在 直角 三角 形 中 , 不能 直接
求 出 1的正 切值 . 因为 1 是 图形 中的圆周 角 , 所
( 2 ) ( 2 0 1 1 连 云 港 )如 图 2 , AA BC的顶 点 都 在
方格 纸 的格 点上 , 则s i n A:
.
评析 上述两道三角函数题都 可以直接利用 网格 提供 的直 角得 到直 角三 角形 , 进 而得 出答案 , 此 类问题难度不大 , 关键是仔细分析所给图形 中经过
所 在 的 AA BC并不 是 直 角三
角形 . 经 观察 发 现 线段 A B经 过 两 个 格点 , 只要 连接 5 证得 c D L A B, i = = =
蝴 容易得出其值为÷, 所以t a n / _ B = ÷, 选A . 当所求 c
4 9
C
以 1 : 2 , 而t a n / _ 2: 1 所以t a n 1 :l _ 1
,
.
本 题通
图 1
图 2
过圆周角相等实现转移角来解决 问题. 3 构造 型 例4 ( 2 0 1 2内江 )如 图 5所示 , AA B C的顶点
三角函数专题之网格中的三角函数
三角函数专题训练--网格中的三角函数第一节:网格中的正弦和余弦1.在边长为1的正方形网格中,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOD 的正弦值为()A .12B .2C D 2.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于32,则sin ∠CAB =()A .2B .35C .5D .3103.如图,在边长为1的小正方形网格中,点A 、B 、C 、C 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则cos AOD ∠=()A .2B .2C .3D 4.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC 等于()A B C .5D .105.如图,在边长1正网格中,A 、B 、C 都在网格线上,AB 与CD 相交于点D ,则sin ADC ∠是()A B C D 6.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=()A .6B .26C .13D .137.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为().A B C .35D .458.如图,在正方形网格中,△ABC 的位置如图,其中点A 、B 、C 分别在格点上,则sinA 的值是()A B .13C D9.如图,在5×4的正方形网格中,每个小正方形的边长都是l ,△ABC 的顶点都在这些小正方形的顶点上,则cos ∠BAC 的值为()A .43B .34C .35D .4510.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为()A .12B .2C D .311.三角形在方格纸中的位置如图所示,则cos 的值是()A .35B C .45D 12.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()AB C D .2313.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC 的顶点都是网格中的格点,则cos ∠ABC 的值是()A .23B .25C .35D .4514.如图,△ABC 的顶点都在正方形网格的格点上,则cos ∠BAC 的值为()A .34B .25C .35D .4515.如图,在下列网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正弦值是()A .10B .12C .13D .1016.如图,在正方形网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正弦值是__.17.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为_______.18.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.19.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A 、B 、C ,则sin ∠ABC=_____.20.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.∠=______.21.如图在边长相同的小正方形组成的网格中,点A、B、O在小正方形的顶点上,则cos OAB22.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC 的余弦值是____.23.如图,在6x6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是_____.24.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=___.25.如图,在4×4的正方形网格图中有△ABC,则∠ABC的余弦值为_____.26.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是_____.27.如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则cos∠BAC 的值为_____.的顶点都在小正方形的格点上,28.如图,在44⨯的正方形网格(每个小正方形的边长都是1)中,ABC∠=_______.则sin ACB29.如图,每个小正方形的边长都是1,点A,B,C都在小正方形的顶点上,则∠ABC的正弦值为____.第二节:网格中的正切1.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为()A .2BC .3D2.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan C 的值是()A .2B .43C .1D .343.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .3D 4.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是()A .12B .1CD .25.如图,ABC 的顶点在正方形网格的格点处,则tan C 的值为()A .12B .13C .2D .16.如图,将 ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则∠A 的正切值是()A B C .2D .127.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan BAC ∠的值为()A .43B .34C .35D .458.如图,A ,B ,C ,三点在正方形网格线的交点处,若将ABC 绕着点A 逆时针旋转得到AC B ''△,则tan B '的值为()A .12B .13C .14D .49.如图所示,ABC ∆的顶点在正方形网格的格点上,则tan A 的值为()A .12B .2C .2D .10.在图网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正切值是()A .23B .32C .35D .5311.如图,在方格纸中,点A ,B ,C 都在格点上,则tan ∠ABC 的值是()A .2B .12C D 12.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .113.如图,∠AOB 是放置在正方形网格中的一个角,则tan ∠AOB ()A .3B C .1D .2514.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为()A .16B .15C .13D .1215.如图,在55 的正方形网格中,每个小正方形的边长均为1,ABC 的顶点均在格点(网格线的交点)上,则tan B 的值为______.16.如图,点A ,B ,C ,D 在正方形网格的格点上,连接AB 、CD 交于点P ,则tan ∠APC =________________.17.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为_____.18.如图,在5×4的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan ABC ∠的值为_______.19.如图,在边长为1的正方形网格中,连接格点A ,B 和C ,D ,AB 与CD 相交于点E ,则tan AEC ∠=___.20.如图,在4×5的正方形网格中点A ,B ,C 都在格点上,则tan ∠ABC =_____.21.如图,把n 个边长为1的正方形拼接成一排,求得tan 1BA C ∠=1,tan 2BA C ∠=13,31tan 7BA C ∠=,计算4tan BA C ∠=_________________.22.如图,将BAC ∠放置在55⨯的正方形网格中,如果顶点A 、B 、C 均在格点上,那么BAC ∠的正切值为______.23.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 都在这些小正方形的顶点上,则tan ∠ABC 的值为_____.24.如图,在Rt △ABC 纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm ,则这个展开图可折成的正方体的体积为_____cm 3.25.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan C =__.26.如图,在正方形网格中,三角形ABC 的三个顶点都在网格中的格点上,则tan ∠B 的值为_____.27.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,线段AB 、CD ,相交于点P ,则tan APD ∠的值是__________.28.如图,在边长都为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是____________.29.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).。
网格线中的三角函数问题
住R l AA B E r T 1 , l a I 1 厶I B E = 2 . - . . t a n - / 4 P D = 2 .
赣 蠡 法 F a
, f 0 4 ( 2 0 1 6 ・ 山 东淄博 ) 图7 是 由边长相
同的 小 正 方 形 组 成 的 网格 , A、 B、 P 、 Q四 点 均
=
8
A . 2 B .
j
C . 三 D .
二 )
相 同的 小正 方形 戍 的 网格 中 . 点 l 、 B、 C、 D D组 — 一 D
【 方法 探究 】 如 何把 曰 c 住 某 个 翰
三 角形中是解决 本题 的关键 , 仃 m 察可 以发 现: A B在小 正 疗形 的对 角线 『 . 能联想 到 4 5 。
.
. 、 \
\
\ 、
、
\
、 、
\
\
D
例2 ( 2 0 1 6 ・ 福建福 州) 如 图3 , 6 个形状 、
、 \ D
~
大小完全相 同的 菱形组成 网格 , 菱形的顸点称 为格点. 已知 菱形的一个角( /0) 为6 0 。 , - 4 、 、 c 都在格点上 , 则t a n Z A B C的值是 .
转化 . 找 出它的“ 替 身” , 然后进行求解 . 以达到
化难 为易的目的.
C
C
、 \
【 过程展 示 】 如图 2 , 连接 4 C , 则 ̄ C A B =
9 0 。 ,  ̄. .R t %A B Cd A , t a n % 4 B C , 4 C 1 故选 D .
都在 这 些 小正方 = 形 . 4 、 C D相 交于 的顶点 上 ,
网格助解三角函数问题
网格助解三角函数问题作者:***来源:《初中生世界·九年级》2020年第06期初中数学中锐角三角函数是建立在直角三角形的基础上定义的。
但近年来的中考三角函数试题常常脱离直角三角形,需要我们利用网格的特征去构造直角三角形,对转化能力有更高的要求。
下面以2018年扬州市中考第27题为例剖析,希望能给同学们一点启示。
问题呈现如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,求tan∠CPN的值。
方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形。
观察发现问题中的∠CPN不在直角三角形中。
对此,我们常常利用网格画平行线等方法解决,比如连接格点M、N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中。
问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN的值。
思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P。
用上述方法构造网格求∠CPN的度数。
【分析】第(1)问中点P为非网格点,∠CPN也不在直角三角形中,如果直接作垂线构造直角三角形,求线段的长度有难度。
方法归纳提示我们将CE平移,使得它与DN的交点恰好是格点,再利用平行线的性质“两直线平行,内错角相等”解决问题。
第(2)问中,点P也是非网格点,∠CPN也不在直角三角形中,根据方法归纳,我们需要将CM(AN)进行适当的平移,使得它与AN(CM)的交点恰好是格点,再利用平行线的性质“两直线平行,同位角相等(内错角相等)”解决问题。
顺承问题的思路,第(3)问要求我们构造网格圖去解决问题。
我们可以利用网格,构造等腰直角三角形即可。
解:(1)如图1,由勾股定理,得DM=22,MN=2,DN=10,∴DM2+MN2=DN2,∴△DMN为直角三角形,(2)方法一:如图4中,平移AN到CD,连接DM。
在网格中巧求三角函数值
巩固练习
求tanC的值
求tanAOB的值
求tanAOB的值
求sin。
求sin∠BAC的值。
课后作业
1号,2号《同步训练》P49-53 3号—5号《同步训练》P49-52
面积法
D
例2 如图,在边长为1的小正方形组成的网格中 ,点A、B、C、D都在这些小正方形的顶点上,AB、 CD相交于点P,求tan∠APD的值。
E
O
例2 如图,在边长为1的小正方形组成的网格中 ,点A、B、C、D都在这些小正方形的顶点上,AB、 CD相交于点P,求tan∠APD的值。
O
巩固练习
在网格中求锐角三角函数值
例1(2015•山西)如图,在网格中,小正方形的 边长均为1,点A,B,C都在格点上,求∠ABC的正切 值。
利用互相垂直的相似矩形 的对角线构造直角三角形
例1(2015•山西)如图,在网格中,小正方形的 边长均为1,点A,B,C都在格点上,求∠ABC的正切 值。
例3(2015•南京二模)如图,方格纸中有三个格点A 、B、C,求sin∠ABC的值。
利用网格线 巧求三角函数值
勾 股 定 理 法
建 立 平 面 直 角 坐 标 系
利用网格线 巧求锐角三角函数
例1(2015•山西)如图,在网格中,小正方形的 边长均为1,点A,B,C都在格点上,求∠ABC的正切 值。 构造直角三角形
例2 如图,在边长为1的小正方形组成的网格中 ,点A、B、C、D都在这些小正方形的顶点上,AB、 CD相交于点P,求tan∠APD的值。
E
转化角
O
E
例3(2015•南京二模)如图,方格纸中有三个格点A 、B、C,求sin∠ABC的值。
勾股理法 面积法
D
例3(2015•南京二模)如图,方格纸中有三个格点A 、B、C,求sin∠ABC的值。
E
建立平面直角坐标系
D
O
利用网格线 巧求锐角三角函数
构 造 直 角 三 角 形
转 化 角
面 积 法
利用网格线巧求三角函数值课件
实例二:利用网格线求斜率对应的三角函数值
总结词
通过网格线确定斜率,利用三角函数关系求解
详细描述
在直角坐标系中,利用网格线将斜率划分为若干个小的等分,根据三角函数的关系(如正 弦、余弦的平方和等于1),计算出每个小斜率对应的三角函数值。
实例计算
假设要求斜率为tan(45度)的值,可以先确定45度的正切值,然后利用三角函数关系计算 出对应的余弦值和正弦值。
通过观察角度所在的网格线,可以快 速得出角度对应的三角函数值。
详细描述
在直角坐标系中,将角度所在的网格 线与x轴或y轴重合,根据三角函数的 定义,可以得出角度对应的正弦、余 弦和正切值。
方法二:利用网格线求斜率对应的三角函数值
总结词
通过观察斜率所在的网格线,可以快速得出斜率对应的三角 函数值。
详细描述
利用网格线确定三角函数值的符号
通过观察函数图像在网格线上的位置,可以确定三角函数值的正负符号,进而 简化计算过程。
利用网格线绘制三角函数图像
通过在坐标系中按照网格线进行绘图,可以更直观地理解三角函数的性质和变 化规律。
01
利用网格线求三角 函数值的方法
方法一:利用网格线求角度对应的三角函数值
总结词
传统方法求解三角函 数值较为繁琐,需要 记忆大量公式和技巧。
课程目标
掌握网格线法的基本原理和步骤。
能够利用网格线法求解任意角度 的三角函数值。
理解网格线法在解决实际问题中 的应用,提高数学应用能力。
01
网格线的概念和性 质
网格线的定义
01
网格线是指在坐标系中,按照一 定规则排列的纵横线交点所形成 的线段。
01
实例分析
实例一:利用网格线求角度对应的三角函数值
当网格遇上了三角函数
当网格遇上了三角函数
1.课题名称:当网格遇上了三角函数
2.达成目标:
通过观看教学视频,进行配套巩固练,完成《自主研究任务单》里的研究任务。
3.研究方法建议:事先复三角函数知识,勾股定理,全等,相似等知识后,再观看视频效果更佳。
4.课堂研究形式预告:本微课是针对中考总复中经常出现的以网格为背景的一类三角函数问题而制作的,利用教学视频归纳这类问题常见的几种解法,重点在构造如何构造直角三角形计算三角函数,对于计算过程简要带过。
本小节重点在于网格中直角三角形的构造和部分较为复杂的计算,建议同学们观看此微课前先熟练掌握以下内容哦!
1、各个三角函数的定义
2、利用勾股定理求解网格中任意两格点线段长度。
另外,微课中的三个题目配套练中有,请大家先做下再来看微课解析效果会更好!
二、研究任务
通过观看教学录像自学,完成下列研究任务:1、复锐角三角函数定义;
2、熟悉网格背景下构造直角三角形来求三角函数的几种常见情形;
3、通过观看视频及巩固练,熟练掌握这类问题的三种常见思想方法。
微课例题:例 1.如图,在边长都为1的小正方形组成的网格中,点A、
B、C都在这些小正方形的顶点上,则XXX∠BAC=______.
试一试3如图,在边长都为1的小正方形组成的网格中,点A、B、C都在这些小正方形的顶点上,则sin∠ABC
_____.
例2.如图,在边长都为1的小正方形组成的网
格中,点A、B、C、D都在这些小正方形的顶
点上,AB、CD相交于点P,则tan∠APD的值
点上,AB、CD相交于点P,则tan∠APD的值。
网格线中的三角函数问题
网格线中的三角函数问题作者:韩成云
来源:《初中生世界·九年级》2017年第12期
“数(代数)”与“形(几何)”是中学数学的两个主要研究对象,而这两个方面是紧密联系的.体现在数学解题中,包括“以数助形”和“以形助数”两个方面.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.数学中的知识,有的本身就可以看作是数形的结合.如:锐角三角函数的定义是借助于直角三角形来定义的.下面我们就网格线中锐角三角函数的问题来体会这种数学思想方法.
一、运用定义,以形助数
一些问题中的代数式,如方程或不等式,若以图形的形式直观地给出,问题的结果便可一
目了然.
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学.”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻画与空间形式的直觀形象巧妙、和谐地结合在一起.充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决.。
锐角三角函数“网格秀”
锐角三角函数“网格秀”在网格中计算锐角三角函数值的问题是各地中考题中一道靓丽的风景,现从近两年中考题中撷取几例解析如下,供同学们学习时参考.一、网格中的正弦例1 网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA=_______.图1分析:根据各边长可知△ABC 为等腰三角形,分别作出BC ,AB 边的高AD 和CE ,根据面积相等求出CE 的长,在Rt △AEC 中求出∠CAE 的正弦值即可.解:如图1,过点A ,作A D ⊥BC ,垂足为D ;过点C ,作CE ⊥A B ,垂足为E. 由勾股定理得,AC=25,AB=25,BC=22,∴AB=AC.∵A D ⊥BC ,∴CD=BD=2,∴AD=22(25)(2)=32. 由三角形的面积相等得,12B C ·AD=12AB ·CE ,则B C ·AD=AB ·CE , ∴CE=223225=65. 在Rt △AEC 中,可得sin ∠CAE =6535525CE AC ==. 故答案填:35. 点评:解题的关键是准确地把∠CAB 构造在一个直角三角形中,再利用正弦的定义来求得相应的函数值.二、网格中的余弦例2 如图2,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A.3B.5C.23D.25 图2分析:如图2,由勾股定理的逆定理可得△ADB 是直角三角形,再利用余弦的定义直接求出cosA 的值即可.解:如图2,在△ADB 中,222222213102 ∵2222102,∴△ADB 是直角三角形,∴cosA=222510AD AB ==. 故答案选:D.点评:在网格中找出∠A 所在的直角三角形,利用一个锐角的余弦=邻边︰斜边计算.三、网格中的正切例3 如图3,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( ) A.2 B.255 C.55D.12 图3分析:连接AC ,则△BAC 是直角三角形,直接利用正切的定义求值即可.解:如图3,连接AC.在△BAC 中,AC=2,AD=2222=22,BC=2213=10,∵(2)2+(22)2=(10)2,∴△BAC 是直角三角形,∴tan ∠ABC=21222AC AB ==. 故答案选:D.点评:在网格中找出∠ABC 所在的直角三角形,利用一个锐角的正切=对边︰邻边计算. 牛刀小试放在边长为1的小正方形组成的网格中,则tan ∠AOB=________.参考答案:12.。
网格中的三角函数
网格中的三角函数【构造直角】例:如图,网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sin ∠ABP变式1:网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,求tan 12∠BAP 的值。
变式2:网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,求tan2∠BAP 的值1.网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA 的=______________.【解析】如图,过点C 作CE ⊥AB ,则=A sin AC CE =52CE ,利用等积法,可知CE AB 21AD BC 21⋅⋅=⋅⋅,∴CE 5221232221⋅⋅=⋅⋅,∴556CE =,∴=A sin 5352556=【等角转换】 2.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .【解析】思路一:构造直角连接BE ,由四边形EDBC 为正方形可知,CD ⊥BE ,∴tan△APD=tan△BPF=PFBF,设小正方形边长为2(可自己思考一下为什么?),可得BF=1,CD=2,由△APC ∽△BPD ,且相似比为3:1可得3DP PC =,∴43CD PC =,∴PC=432⋅=23,∴PF=PC —CF=21,∴tan△BPF=2211=思路二:角度转换连接BE ,可知BE ∥CD ,∴△APD=△BPF=△ABE ,连接AE ,∵AE 和BE 均为正方形对角线,易得AE ⊥BE ,∴tan△ABE=2BEAE=3.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P , 则PBAP的值= ,tan ∠APD 的值= .4.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中△ABC 的余弦值是_________.5.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则△ABC 的正切值是________.6.如图,在正方形网格中,△ABC 的顶点都在格点上,则tan ∠ACB 的值为 .7.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .8.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为_________.9.如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .10.(一)探索发现(1)如图1,当AB=2时,连接AD ,则∠ADO=90°,BO=2DO ,AD=2,BO=232,tan ∠AOD=_________.如图2,当AB=3时,画AH ⊥BD 交BD 的延长线于H ,则AH=223, BO=________,tan ∠AOD=________. 如图3,当AB=4时,tan ∠AOD=__________.(2)猜想:当AB=n (n >0)时,tan ∠AOD=______________.(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O ,若tan ∠COE=1317,求正方形ABCD 和正方形CEFG 的边长之比.【解析】(一)探索发现(1)如图1,当AB=2时,∵BO=2DO ,BO=232, ∴OD=32,又∵∠ADO=90°,AD=2,∴tan ∠AOD=322ODAD==3,即tan ∠AOD=3. 如图2,设DCBE 为正方形,连接CE ,交BD 于F . ∵四边形BCDE 是正方形, ∴DF=CF=BF=21BD=21CE ,BD ⊥CE . 根据题意得:AB ∥DC ,∴△AOB ∽△COD ,∴DO :BO=CD :AB .当AB=3时,DO :BO=1:3,∴BO=423. ∵S △ABD =21BD •AH=21AB •ED ,∴BD •AH=AB •ED , ∴AH=22323BD ED AB ==⋅, DO :BO=CD :AB=1:3,∴DO :DF=1:2,∴OF :DF=1:2,即OF :CF=1:2. 在Rt △OCF 中,tan ∠COF=OFCF=2, ∵∠AOD=∠COF ,∴tan ∠AOD=2;如图3,当AB=4时,DO :BO=CD :AB=1:4, ∴DO :DF=1:2.5=2:5,∴OF :DF=3:5,即OF :CF=3:5. 在Rt △OCF 中,tan ∠COF=35OF CF =, ∵∠AOD=∠COF ,∴tan ∠AOD=35;故答案是:3;423;2;35;(2)猜想:当AB=n (n >0)时,tan ∠AOD=1-n 1n +(结果用含n 的代数式表示). 证明:过点A 作AH ⊥BH 于点H ,则AH=BH=22n . ∵AB ∥OD ,∴△AOB ∽△COD ,∴1nCD AB OD OB ==, ∴OB=1n n 2+.∴OH=BH ﹣OB=22n ﹣1n n 2+.∴tan ∠AOD=1-n 1n +; 故答案是:1-n 1n +;(二)解决问题(3)解:如图4,过点D 作DH ⊥CF 于点H ,则tan ∠DOH=HODH. ∵∠DOH=∠COE , ∴tan ∠DOH=1317, 又由(一)结论得:13171-n 1n =+, ∴n=215 ∴正方形ABCD 和正方形CEFG 的边长之比为215. 强化训练11.阅读下面的材料:某数学学习小组遇到这样一个问题: 如果α,β都为锐角,且tan α=,tan β=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA ,BC 在直线BD 的两侧,连接AC . (1)观察图象可知:α+β= °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tan α=3,tan β=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON 的度数.12.问题呈现如图1,在边长为1的正方形网格中,连接格点D ,N 和E ,C ,DN 和EC 相交于点P ,求tan ∠CPN 的值. 方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.13.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB :S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).15.如图,在由完全相同的小正方形组成的网格中,△ABC的三个顶点都在格点上.(1)请在网格中找一个格点P,连接PB、PC,使∠BPC=∠BAC,并简要说明理由;(2)直接写出此时tan∠BPC的值.16.如图,在正方形网格中,每个小正方形的边长都为1,点A点B在网格中的位置如图所示.(1)建立适当的平面直角坐标系,使点A点B的坐标分别为(1,2)(4,3);(2)点C的坐标为(3,6),在平面直角坐标系中找到点C的位置,连接AB、BC、CA,则∠ACB=°;(3)将点A、B、C的横坐标都乘以﹣1,纵坐标不变,分别得到点A1、B1、C1,在图中找到点A1、B1、C1并顺次连接点A1、B1、C1,得到△A1B1C1,则这两个三角形关于对称.17.如图,在正方形网格中建立平面直角坐标系,格点O为原点,格点A的坐标为(﹣1,3).(1)画出点A关于y轴对称的格点B,并写出点B的坐标(,);(2)将线段OA绕着原点O顺时针旋转90°,点A落在格点C处,画出线段OA扫过的平面区域(用阴影表示),则AC的长为;(3)过点C作AC的切线CD,D为格点,设直线CD的解析式为y=kx+b,y 随x的增大而;(填“增大”或“减小”)(4)连接BC,则tan∠BCD的值等于.。
网格线中的三角函数问题
网格线中的三角函数问题
周宏伟
【期刊名称】《初中生世界(九年级中考版)》
【年(卷),期】2016(000)012
【总页数】2页(P41-42)
【作者】周宏伟
【作者单位】江苏省东台市新街镇中学
【正文语种】中文
【相关文献】
1.简析利用衰减控制修正不规格网格多面函数在绘制降水等值线中的缺陷
2.网格法在计算机绘制等浓度曲线中的应用
3.网格中锐角三角函数问题解题策略研究
4.网格化运营模式探讨——东莞无线中心实施网格化运营的成效及反思
5.网格中的三角函数问题解题方法
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网格线中的三角函数问题
作者:周宏伟
来源:《初中生世界·九年级》2016年第12期
在我们常见的网格线中,有很多三角函数求值问题,题中蕴含着很多思想方法,为便于大家复习,现归纳如下,供大家在学习过程中参考.
一、补形的策略
例1 (2015·山西)如图1,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则∠ABC的正切值是().
A.2
B.[255]
C.[55]
D.[12]
【方法探究】如何把∠ABC放在某个直角三角形中是解决本题的关键,仔细观察可以发现:AB在小正方形的对角线上,能联想到45°角,只要连接AC即可构造出直角,然后在直角三角形中运用三角函数的定义求解.
【过程展示】如图2,连接AC,则∠CAB=90°,在Rt△ABC中,
tan∠ABC=[ACAB]=[12].故选D.
例2 (2016·福建福州)如图3,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A、B、C都在格点上,则tan∠ABC的值是 .
【方法探究】观察网格的特点,首先考虑如何将∠ABC放到一个直角三角形中,这是解决问题的关键.
【过程展示】如图4,连接DA,DC,则点B、C、D在同一直线上,设菱形的边长为a,由题意得∠ADF=30°,∠BDF=60°,∴∠ADB=90°,
AD=[3a],DB=2a,tan∠ABC=[ADBD]=[3a2a]=[32],故答案为[32].
二、转化的思想
例3 (2012·江苏泰州)如图5,在由边长相同的小正方形组成的网格中,点A、B、C、D 都在这些小正方形的顶点上,AB、CD相交于点P,则tan∠APD的值为 .
【方法探究】直接求∠APD的正切值比较困难,可以考虑利用线段的平移对∠APD进行转化,找出它的“替身”,然后进行求解,以达到化难为易的目的.
【过程展示】如图6,取小正方形的顶点E,连接AE、BE,由图可知CD∥BE,
∴∠APD=∠ABE,在Rt△ABE中,tan∠ABE=2,∴tan∠APD=2.
例4 (2016·山东淄博)图7是由边长相同的小正方形组成的网格,A、B、P、Q四点均在正方形网格的格点上,线段AB、PQ相交于点M,则图中∠QMB的正切值是().
A.[12]
B.1
C.[3]
D.2
【方法探究】如果直接求tan∠QMB可考虑连接AP、BQ,运用△APM∽△BQM求出AM或BM,然后在Rt△APM或Rt△BQM中求解;如果间接求解,应考虑对∠QMB进行转化,最好的思路是考虑线段的平移.①如图8,平移AB至A′Q,在Rt△A′PQ中求tan∠Q;②如图9,平移AB至PB′,在Rt△B′PQ中求tan∠P;③如图10,平移PQ使其经过线段AB中点D,然后在Rt△ACD中求tan∠ADC.
【过程展示】以第①种平移为例,如图8,平移AB至A′Q后,∠Q=∠QMB,在
Rt△A′PQ中,tan∠Q=[A′PA′Q]=2,所以tan∠QMB=2.故选D.
三、等积法
例5 (2015·四川乐山)如图11,已知△ABC的三个顶点均在格点上,则cosA的值为().
A.[33]
B.[55]
C.[233]
D.[255]
【方法探究】通过作三角形的高构造直角三角形,先利用等积法(或勾股定理)求出高,然后运用余弦的定义解答.
【过程展示】如图11,设小正方形的边长为1,过点B作AC边上的高BD.
由勾股定理得:AC=[32],AB=[10],
由等积法可得:[12]BC∙h=[12]∙AC∙BD,
即[12]×2×3=[12]×[32]∙BD,解得BD=[2],由勾股定理,得AD=[AB2-BD2]=[22],
∴cosA=[ADAB]=[2210]=[255].故选D.
例6 (2014·广西贺州)如图12,网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA= .
【方法探究】在替换与∠A相等的角比较困难的情况下,可以考虑通过作高进行构造,把∠A放在某个直角三角形中进行求解.
【过程展示】如图12,过点C作CE⊥AB,垂足为E,连接AD,则AD⊥BC,从不同的角度把△ABC的面积计算两次得:
S△ABC=[12]AB∙CE=[12]BC∙AD,
所以[12]×[25]×CE=[12]×[22]×[32],
所以CE=[655],在Rt△ACE中,
sin∠CAE=[CEAC]=[65525]=[35].
由此可见,遇到网格中的锐角三角函数求值问题,我们通常有两种思路:一是原地不动,想办法构造直角三角形求解;二是转移该角,如利用平行线进行转化.一般情况下,遇到求三角函数问题优先考虑转化,在没有好的转化思路的情况下再考虑如何构造.
(作者单位:江苏省东台市新街镇中学)。