北京市2020届高三入学摸底模拟考试数学(理)试题含答案
2020年海淀区高三一模数学试卷及答案(理科)
2020年海淀区⾼三⼀模数学试卷及答案(理科)海淀区⾼三年级第⼆学期期中练习数学(理科) 2020.04⼀、选择题:本⼤题共8⼩题,每⼩题5分,共40分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.(1)已知集合{}1A x x =>,{}B x x m =<,且A B =R U ,那么m 的值可以是(A )1- (B )0 (C )1 (D )2 (2)在等⽐数列{}n a 中,14358a a a a ==,,则7a =(A )116(B )18 (C )14 (D )12(3)在极坐标系中,过点3(2,)2π且平⾏于极轴的直线的极坐标⽅程是(A )sin 2ρθ=- (B )cos 2ρθ=- (C )sin 2ρθ= (D )cos 2ρθ= (4)已知向量=(1)= (1)x x ,a b ,,-,若2-a b 与b 垂直,则=a(A(B(C )2 (D )4 (5)执⾏如图所⽰的程序框图,输出的k 值是(A )4 (B )5 (C )6 (D )7(6)从甲、⼄等5个⼈中选出3⼈排成⼀列,则甲不在排头的排法种数是(A )12 (B )24 (C )36 (D )48(7)已知函数2,1,()1,1,x ax x f x ax x ?-+≤=?->? 若1212,,x x x x ?∈≠R ,使得12()()f x f x =成⽴,则实数a 的取值范围是(A )2a < (B )2a > (C )22a -<< (D )2a >或2a <- (8)在正⽅体''''ABCD A B C D -中,若点P (异于点B )是棱上⼀点,则满⾜BP 与'AC 所成的⾓为45°的点P 的个数为(A )0 (B )3 (C )4 (D )6⼆、填空题:本⼤题共6⼩题,每⼩题5分,共30分,把答案填在题中横线上. (9)复数2i1ia +-在复平⾯内所对应的点在虚轴上,那么实数a = . (10)过双曲线221916x y -=的右焦点,且平⾏于经过⼀、三象限的渐近线的直线⽅程是 . (11)若1tan 2α=,则cos(2)απ2+= . (12)设某商品的需求函数为1005Q P =-,其中,Q P 分别表⽰需求量和价格,如果商品需求弹性EQEP⼤于1(其中'EQ Q P EP Q =-,'Q 是Q 的导数),则商品价格P 的取值范围是 .(13)如图,以ABC ?的边AB 为直径的半圆交AC 于点FEDC BAA'B'C'D'ABCDD ,交BC 于点E ,EF AB ^于点F ,3AF BF =,22BE EC ==,那么CDE D= ,CD = .(14)已知函数1,,()0,,x f x x ì=í?R Q Q e则(ⅰ)(())f f x = ;(ⅱ)给出下列三个命题:①函数()f x 是偶函数;②存在(1,2,3)i x i ?R ,使得以点(,())(1,2,3)i i x f x i =为顶点的三⾓形是等腰直⾓三⾓形;③存在(1,2,3,4)i x iR ,使得以点(,())(1,2,3,4)i i x f x i =为顶点的四边形为菱形. 其中,所有真命题的序号是 .三、解答题:本⼤题共6⼩题,共80分.解答应写出⽂字说明,证明过程或演算步骤.(15)(本⼩题满分13分)在ABC ?中,⾓A ,B ,C 的对边分别为,,a b c ,且A ,B , C 成等差数列.(Ⅰ)若b =3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最⼤值.(16)(本⼩题满分14分)在四棱锥P ABCD -中,AB //CD ,AB AD ^,4,2AB AD CD ===,PA ^平⾯ABCD ,4PA =.(Ⅰ)设平⾯PAB I 平⾯PCD m =,求证:CD //m ;(Ⅱ)求证:BD ⊥平⾯PAC ;PDCBA(Ⅲ)设点Q 为线段PB 上⼀点,且直线QC 与平⾯PAC所成⾓的正弦值为3,求PQPB 的值.(17)(本⼩题满分13分)某学校随机抽取部分新⽣调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直⽅图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (Ⅰ)求直⽅图中x 的值;(Ⅱ)如果上学所需时间不少于1⼩时的学⽣可申请在学校住宿,请估计学校600名新⽣中有多少名学⽣可以申请住宿;(Ⅲ)从学校的新⽣中任选4名学⽣,这4名学⽣中上学所需时间少于20分钟的⼈数记为X ,求X 的分布列和数学期望.(以直⽅图中新⽣上学所需时间少于20分钟的频率作为每名学⽣上学所需时间少于20分钟的概率)(18)(本⼩题满分13分)已知函数21()e ()(0)kx f x x x k k -=+-<.(Ⅰ)求()f x 的单调区间;(Ⅱ)是否存在实数k ,使得函数()f x 的极⼤值等于23e -?若存在,求出k 的值;若不存在,请说明理由.(19)(本⼩题满分13分)在平⾯直⾓坐标系xOy 中,椭圆G 的中⼼为坐标原点,左焦点为1(1,0)F -,P 为椭圆G 的上顶点,且145PF O ∠=?.(Ⅰ)求椭圆G 的标准⽅程;(Ⅱ)已知直线1l :1y kx m =+与椭圆G 交于A ,B 两点,直线2l :2y kx m =+(12m m ≠)与椭圆G 交于C ,D 两点,且||||AB CD =,如图所⽰.(ⅰ)证明:120m m +=;(ⅱ)求四边形ABCD 的⾯积S 的最⼤值.(20)(本⼩题满分14分)对于集合M ,定义函数1,,()1,.M x M f x x M -∈?=对于两个集合M ,N ,定义集合{()()1}M N M N x f x f x ?=?=-. 已知{2,4,6,8,10}A =,{1,2,4,8,16}B =. (Ⅰ)写出(1)A f 和(1)B f 的值,并⽤列举法写出集合A B ;(Ⅱ)⽤Card(M)表⽰有限集合M 所含元素的个数,求()()Card X A Card X B ?+?的最⼩值;(Ⅲ)有多少个集合对(P ,Q ),满⾜,P Q A B ?U ,且()()P A Q B A B =??海淀区⾼三年级第⼆学期期中练习数学(理科)参考答案及评分标准 2020.04⼀.选择题:本⼤题共8⼩题,每⼩题5分,共40分.⼆.填空题:本⼤题共6⼩题,每⼩题5分,共30分. (9)2 (10)43200x y --= (11)45- (12)(10,20)(13)60°(14)1 ①③三.解答题:本⼤题共6⼩题,共80分.解答应写出⽂字说明,证明过程或演算步骤.(15)(本⼩题满分13分)解:(Ⅰ)因为,,A B C 成等差数列,所以2B A C =+. 因为A B C ++=π,所以3B π=. ………………………………………2分因为b =3a =,2222cos b a c ac B =+-,所以2340c c --=. ………………………………………5分所以4c =或1c =-(舍去). ………………………………………6分(Ⅱ)因为23A C +=π,所以2sin sin()3t A A π=-1sin sin )22A A A =+11cos22()422A A -=+ 11sin(2)426A π=+-. ………………………………………10分因为203A π<<,所以72666A πππ-<-<.所以当262A ππ-=,即3A π=时,t 有最⼤值34.………………………………………13分(16)(本⼩题满分14分)(Ⅰ)证明:因为AB //CD ,CD ?平⾯PAB ,AB ?平⾯PAB ,所以CD //平⾯PAB . ………………………………………2分因为CD ?平⾯PCD ,平⾯PAB I 平⾯PCD m =,所以CD //m . ………………………………………4分(Ⅱ)证明:因为AP ^平⾯ABCD ,AB AD ^,所以以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴建⽴空间直⾓坐标系,则(4,0,0)B ,(0,0,4)P,(0,D,(2,C .………………………………………5分所以(4,BD =-u u u r,(2,AC =u u u r, (0,0,4)AP =u u u r,所以(4)2000BD AC ?=-?+?=u u u r u u u r,(4)00040BD AP ?=-?++?=u u u r u u u r.所以 BD AC ⊥,BD AP ⊥.因为 AP AC A =I ,AC ?平⾯PAC ,PA ?平⾯PAC ,所以 BD ⊥平⾯PAC . ………………………………………9分(Ⅲ)解:设PQPBλ=(其中01λ#),(,,)Q x y z ,直线QC 与平⾯PAC 所成⾓为θ.所以 PQ PB λ=u u u r u u u r.所以 (,,4)(4,0,4)x y z λ-=-.所以 4,0,44,x y z λλì==í??=-+即(4,0,44)Q λλ-+.所以(42,44)CQ λλ=---+u u u r .………………………………………11分由(Ⅱ)知平⾯PAC的⼀个法向量为(4,BD =-u u u r.………………………………………12分因为 sin cos ,CQ BDCQ BD CQ BDθ×=<>=×u u u r u u u ru u u r u u u r u u u r u u u r ,所以3=. 解得 7[0,1]12λ=∈. 所以 712PQ PB =. ………………………………………14分(17)(本⼩题满分13分)解:(Ⅰ)由直⽅图可得:200.025200.0065200.0032201x ?+?+?+??=. 所以0.0125x =. ………………………………………2分(Ⅱ)新⽣上学所需时间不少于1⼩时的频率为:0.0032200.12??=, ………………………………………4分因为6000.1272?=,所以600名新⽣中有72名学⽣可以申请住宿.………………………………………6分(Ⅲ)X 的可能取值为0,1,2,3,4. ………………………………………7分由直⽅图可知,每位学⽣上学所需时间少于20分钟的概率为14,4381(0)4256P X ??===141327(1)C 4464P X ===,22241327(2)C 44128P X === ? ?,334133(3)C 4464P X === ? ?,411(4)4256P X ??===.……12分812727310123412566412864256EX =?+?+?+?+?=.(或1414EX =?=)所以X的数学期望为1. ………………………………………13分(18)(本⼩题满分13分)解:(Ⅰ)()f x 的定义域为R .221'()e ()e (21)e [(2)2]kx kx kx f x k x x x kx k x k---=-+-++=-+-+,即 '()e (2)(1)(0)kx f x kx x k -=--+<. ………………………………………2分令'()0f x =,解得:1x =-或2x k=. 当2k =-时,22'()2e (1)0x f x x =+≥,故()f x 的单调递增区间是(,)-??. ………………………………………3分当20k -<<时,()f x ,'()f x 随x 的变化情况如下:所以,函数()f x 的单调递增区间是2(,)k -∞和(1,)-+∞,单调递减区间是2(,1)k………………………………………5分当2k <-时,()f x ,'()f x 随x 的变化情况如下:所以,函数()f x 的单调递增区间是(,1)-∞-和(,)k +∞,单调递减区间是(1,)k -.………………………………………7分(Ⅱ)当1k =-时,()f x 的极⼤值等于23e -. 理由如下:当2k =-时,()f x ⽆极⼤值.当20k -<<时,()f x 的极⼤值为22241()e ()f k k k-=+,………………………………………8分令22241e ()3e k k--+=,即2413,k k += 解得 1k =-或43k =(舍).………………………………………9分当2k <-时,()f x 的极⼤值为e (1)kf k-=-.………………………………………10分因为 2e e k -<,1102k <-<,所以 2e 1e 2k k --<.因为 221e 3e 2--<,所以 ()f x 的极⼤值不可能等于23e -. ………………………………………12分综上所述,当1k =-时,()f x 的极⼤值等于23e -.………………………………………13分(19)(本⼩题满分13分)(Ⅰ)解:设椭圆G 的标准⽅程为22221(0)x y a b a b+=>>.因为1(1,0)F -,145PF O ∠=?,所以1b c ==.所以2222a b c =+=. ………………………………………2分所以椭圆G 的标准⽅程为2212x y +=. ………………………………………3分(Ⅱ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y .(ⅰ)证明:由122,1.2y kx m x y =++=??消去y 得:22211(12)4220k x km x m +++-=. 则2218(21)0k m ?=-+>,1122211224,1222.12km x x km x x k ?+=-??+?-?=?+? ………………………………………5分所以||AB ====同理||CD =. ………………………………………7分因为 ||||AB CD =, 所以=因为 12m m ≠,所以120m m +=. ………………………………………9分(ⅱ)解:由题意得四边形ABCD 是平⾏四边形,设两平⾏线,AB CD 间的距离为d ,则d =因为 120m m +=,所以d =………………………………………10分所以||S AB d =?=2221121k m m -++=≤=(或S ==≤所以当221212k m +=时,四边形ABCD 的⾯积S 取得最⼤值为. ………………………………………13分(20)(本⼩题满分14分)解:(Ⅰ)(1)=1A f ,(1)=1B f -,{1,6,10,16}A B ?=.………………………………………3分(Ⅱ)根据题意可知:对于集合,C X ,①若a C ?且a X ?,则(({})()1Card C X a Card C X ?=?-U ;②若a C ?且a X ?,则(({})()1Card C X a Card C X ?=?+U .所以要使()()Card X A Card X B ?+?的值最⼩,2,4,8⼀定属于集合X ;1,6,10,16是否属于X 不影响()()Card X A Card X B ?+?的值;集合X 不能含有A B U 之外的元素.所以当X 为集合{1,6,10,16}的⼦集与集合{2,4,8}的并集时,()()Card X A Card X B ?+?取到最⼩值4. ………………………………………8分(Ⅲ)因为 {()()1}A B A B x f x f x ?=?=-,所以 A B B A ?=?.由定义可知:()()()A B A B f x f x f x ?=?.所以对任意元素x ,()()()()()()()A B C A B C A B C f x f x f x f x f x f x =?=??,()()()()()()()A B C A B C A B C f x f x f x f x f x f x =?=??.所以 ()()()()A B C A B C f x f x =. 所以 ()()A B C A B C ??=??.由 ()()P A Q B A B =?知:()()P Q A B A B =?. 所以 ()()()()()P Q A B A B A B A B =???.所以P Q=?.所以P Q=.=,即P Q因为,P Q A BU,所以满⾜题意的集合对(P,Q)的个数为72128=.………………………………………14分。
2020届北京市大兴区高三第一次模拟考试数学试题(解析版)
2020届北京市大兴区高三第一次模拟考试数学试题一、单选题1.在复平面内,复数21i+对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】利用复数的运算法则、几何意义即可得出. 【详解】在复平面内,复数21i +=()()()2111i i i -+-=1﹣i 对应的点(1,﹣1)位于第四象限. 故选D . 【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 2.已知集合{|2}A x x k k ==∈Z ,,{|22}B x x =-≤≤,则A B =I ( ) A .[11]-, B .[22]-, C .{02},D .{202}-,, 【答案】D【解析】直接根据交集运算,即可得答案; 【详解】Q {|2}A x x k k ==∈Z ,,{|22}B x x =-≤≤,∴{202}A B =-I ,,,故选:D. 【点睛】本题考查集合的交运算,考查运算求解能力,属于基础题.3.已知等差数列{}n a 的前n 项和为n S ,20a =,41a =,则4S 等于( ) A .12B .1C .2D .3【答案】B【解析】根据数列的通项公式可求得1,a d 的值,再代入前n 项和公式,即可得答案; 【详解】Q 1111,0,231,1,2a a d a d d ⎧=-⎪+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩∴4143141222S ⋅=-⋅+⋅=,故选:B. 【点睛】本题考查等差数列的通项公式和前n 项和公式,考查运算求解能力,属于基础题. 4.下列函数中,在区间(0,)+∞上单调递增且存在零点的是( ) A .e x y = B.1y =C .12log y x =-D .2(1)y x =-【答案】C【解析】根据函数的零点为方程的根,结合解析式判断函数的单调性,即可得答案; 【详解】对A ,Q 方程e 0x =无解,∴e x y =不存在零点,故A 错误; 对B ,Q10=无解,∴1y =不存在零点,故B 错误;对D ,2(1)y x =-在(0,1)单调递减,在(1,)+∞单调递增,∴2(1)y x =-在(0,)+∞不具有单调性,故D 错误; 故选:C. 【点睛】本题考查通过函数的解析式研究函数的零点和单调性,考查转化与化归思想,属于基础题.5.在(2)n x -的展开式中,只有第三项的二项式系数最大,则含x 项的系数等于( ) A .32- B .24- C .8 D .4【答案】A【解析】根据展开式的第三项的二项式系数最大可得4n =,再由二项式展开式的通项公式,即可得答案; 【详解】 由题意得4n =,∴414(2),0,,4r rr r T C x r -+=-=L , 当3r =时,3344(2)32T C x x =⋅⋅-=-,∴含x 项的系数等于32-,故选:A. 【点睛】本题考查二项式定理的运用,考查逻辑推理能力、运算求解能力,求解时注意二项式系数与系数的区别.6.若抛物线24y x =上一点M 到其焦点的距离等于2,则M 到其顶点O 的距离等于( )A B .2C .D .3【答案】C【解析】设点11(,)M x y ,根据焦半径公式可求得M 的坐标,再利用两点间的距离公式,即可得答案; 【详解】设点11(,)M x y ,F 为抛物线的焦点,Q 11||121MF x x =+=⇒=,∴214y =,∴||MO ==,故选:C. 【点睛】本题考查抛物线的焦半径公式,考查运算求解能力,属于基础题.7.已知数列{}n a 是等比数列,它的前n 项和为n S ,则“对任意*n ∈N ,0n a >”是“数列{}n S 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】根据1(2)n n n a S S n -=-≥这一关系,即可得答案; 【详解】Q 1(2)n n n a S S n -=-≥,∴0n a >10n n S S -⇒->,∴1n n S S ->,∴“数列{}n S 为递增数列”,若“数列{}n S 为递增数列”,则1100n n n n n S S S S a -->⇒->⇒>,∴“对任意*n ∈N ,0n a >”是“数列{}n S 为递增数列”的充分必要条件,故选:C. 【点睛】本题考查n a 与n S 的关系、充分必要条件的判断,考查转化与化归思想,考查逻辑推理能力、运算求解能力.8.某四棱锥的三视图如图所示,如果方格纸上小正方形的边长为1,那么该几何体的最长棱的棱长为( )A .3B .10C .13D .17【答案】D【解析】根据几何体的三视图可得,该几何体是四棱锥A BCDE -,再计算各条棱的长度,即可得答案; 【详解】根据几何体的三视图可得,该几何体是四棱锥A BCDE -∴13AB AD ==10AC =,17AE =2BE DE ==,5BC =,1CD =, ∴该几何体的最长棱的棱长为17AE =故选:D. 【点睛】本题考查利用三视图还原几何体的直观图、棱长的计算,考查空间想象能力、运算求解能力,求解时注意准确还原几何体的直观图是关键.9.已知函数π()sin()6f x x ω=+(0)>ω.若关于x 的方程()1f x =在区间[0π],上有且仅有两个不相等的实根,则ω的最大整数值为( ) A .3 B .4 C .5 D .6【答案】B【解析】利用换元法求出π6x ω+的取值范围,再根据三角函数的图象得到ω的不等式,即可得答案; 【详解】 令π6t x ω=+,Q [0π]x ∈,,∴ππ666x πωωπ≤+≤+, Q sin y t =的图象如图所示,Q 关于x 的方程()1f x =在区间[0π],上有且仅有两个不相等的实根, ∴sin 1y t ==在π[,]66πωπ+上有且仅有两个不相等的实根,∴5π175********ππωπω≤+≤⇒≤≤, ∴ω的最大整数值为4,故选:B. 【点睛】本题考查利用换元法和图象法解三角方程,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意换元后新元的取值范围.10.如图,假定两点P ,Q 以相同的初速度运动.点Q 沿直线CD 作匀速运动,CQ x =;点P 沿线段AB (长度为710单位)运动,它在任何一点的速度值等于它尚未经过的距离(PB y =).令P 与Q 同时分别从A ,C 出发,那么,定义x 为y 的纳皮尔对数,用现在的数学符号表示x 与y 的对应关系就是7710110()exy =,其中e 为自然对数的底.当点P 从线段AB 的三等分点移动到中点时,经过的时间为( )A .ln 2B .ln3C .3ln 2D .4ln 3【答案】D【解析】设P 运动点三等分点的时间为1t ,此时Q 运动的距离为1x ,P 运动点中点的时间为2t ,此时Q 运动的距离为2x ,再利用Q 做匀速运动,利用路程除以速度可得时间. 【详解】设P 运动点三等分点的时间为1t ,此时Q 运动的距离为1x ,P 运动点中点的时间为2t ,此时Q 运动的距离为2x ,Q 两点P ,Q 以相同的初速度运动,设点Q 的运动速度为710v =,∴177710211010()3e x ⋅=,277710111010()2ex⋅=, ∴711210log 3ex =,721110log 2ex =, ∴214ln 3x x t v -==, 故选:D. 【点睛】本题考查数学中的新定义问题、对数的运算法则,考查函数与方程思想、转化与化归思想、,考查逻辑推理能力、运算求解能力,求解时注意对数运算法则的运用.二、填空题11.已知向量(11)a =-r ,,(2)b t =r ,, 若//a b r r,则t =_______;【答案】2-【解析】根据向量平行,向量坐标交叉相乘相等,即可得答案; 【详解】Q //a b r r,∴1122t t -⨯=⨯⇒=-,故答案为:2t =-. 【点睛】本题考查向量平行的坐标运算,考查运算求解能力,属于基础题.12.若函数22()cos sin f x x x =-在区间[0]m ,上单调减区间,则m 的一个值可以是_______; 【答案】4π(答案不唯一,只要π02m <≤)【解析】由题意可得'()0f x ≤在区间[0]m ,上恒成立,即可得答案; 【详解】Q ()cos 2f x x =,∴'()2sin 2f x x =-,∴'()2sin 20f x x =-≤在区间[0]m ,上恒成立, ∴sin 20x ≥在区间[0]m ,上恒成立, ∴取4m π=,显然sin 20x ≥恒成立,故答案为:4π. 【点睛】本题考查余弦二倍角公式、三角函数的图象与性质,考查运算求解能力,求解时注意结合三角函数的图象进行求解.13.若对任意0x >,关于x 的不等式1a x x+≤恒成立,则实数a 的范围是_______;【答案】(2]-∞,【解析】求出函数1x x+的最小值,即可得到答案; 【详解】Q 0x >,∴12x x+≥,等号成立当且仅当1x =, ∴2a ≤,故答案为:(2]-∞,. 【点睛】本题考查不等式恒成立问题求参数的取值范围,考查运算求解能力.14.在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-= 交x 轴上方于A B ,两点,有下列三个结论: ①||||OA OB OA OB →→→→-<+ ; ②||OA OB →→-存在最大值; ③ ||6OA OB →→+>.则正确结论的序号为_______. 【答案】①③【解析】根据双曲线离心率的范围可得两条渐近线夹角的范围,再根据直线与圆的位置关系及弦长,即可得答案; 【详解】Q 21()23c b be a a a==+>⇒>,∴60AOB ∠<o ,对①,根据向量加法的平行四边形法则,结合60AOB ∠<o ,可得||||OA OB OA OB →→→→-<+成立,故①正确;对②,||||OA OB AB →→-=u u u r ,由于60AOB ∠<o ,∴AOB ∠没有最大值,∴||AB u u u r 没有最大值, 故②错误;对③,当60AOB ∠=o 时,||||22cos303OA OB ==⋅=o∴21||12122362OA OB OA OB →→+=++⋅⋅⋅=u u u r u u u r ,又Q 60AOB ∠<o ,∴2||36OA OB →→+>, ∴||6OA OB →→+>,故③正确;故答案为:①③. 【点睛】本题考查向量与双曲线的交会、向量的数量积和模的运算,考查数形结合思想,考查逻辑推理能力、运算求解能力.三、双空题15.已知()()A a r B b s ,,,为函数2log y x =图象上两点,其中a b >.已知直线AB 的斜率等于2,且||AB =a b -=_______;ab=______; 【答案】1 4【解析】根据斜率公式和两点间的距离公式,即可求得答案; 【详解】Q 直线AB 的斜率等于2,且||AB =∴且22log log 2b ab a-=-,解得:||1b a -=,Q a b >,∴1a b -=;∴22log log 24b a ab a b-=⇒=-;故答案为:1;4. 【点睛】本题考查直线的斜率公式和两点间的距离公式,考查转化与化归思想,考查逻辑推理能力运算求解能力,求解时注意对数的运算法则的应用.四、解答题16.在ABC ∆中,1c =,2π3A =,且ABC ∆的面积为2. (1)求a 的值;(2)若D 为BC 上一点,且 ,求sin ADB ∠的值. 从①1AD =,②π6CAD ∠=这两个条件中任选一个,补充在上面问题中并作答.【答案】(1)a =(2)选①,sin ADB ∠=;选②,sin ADB ∠=. 【解析】(1)利用三角形的面积公式得1sin 2ABC S bc A ∆=,再利用余弦定理,即可得答案;(2)①当1AD =时,由正弦定理sin sin b BC B BAC =∠,可求得sin 7B =,再由ADB B ∠=∠,可求得答案;②当30︒∠=CAD 时,由余弦定理和诱导公式,可求得答案; 【详解】(1) 由于 1c =,2π3A =,1sin 2ABC S bc A ∆=, 所以2b =,由余弦定理 2222cos a b c bc A =+-,解得a =(2)①当1AD =时, 在ABC ∆中,由正弦定理sin sin b BCB BAC=∠,即2sin B=,所以sin B =. 因为1AD AB ==,所以ADB B ∠=∠. 所以sin sin ADB B ∠=,即sin ADB ∠=. ②当30︒∠=CAD 时, 在ABC ∆中,由余弦定理知,222cos2AB BC AC B AB BC +-===⋅.因为120A ︒=,所以90DAB ︒∠=, 所以π2B ADB ∠+∠=, 所以sin cos ADB B ∠= ,即sin ADB ∠=. 【点睛】本题考查正余弦定理、三角形面积公式、诱导公式等知识的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.17.为了调查各校学生体质健康达标情况,某机构M 采用分层抽样的方法从A 校抽取了m 名学生进行体育测试,成绩按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布直方图.根据规定,测试成绩低于60分为体质不达标.已知本次测试中不达标学生共有20人.(1)求m 的值;(2)现从A 校全体同学中随机抽取2人,以频率作为概率,记X 表示成绩不低于90分的人数,求X 的分布列及数学期望;(3)另一机构N 也对该校学生做同样的体质达标测试,并用简单随机抽样方法抽取了100名学生,经测试有20名学生成绩低于60分.计算两家机构测试成绩的不达标率,你认为用哪一个值作为对该校学生体质不达标率的估计较为合理,说明理由. 【答案】(1)200m =;(2)分布列详见解析,数学期望为0.2;(3)用机构M 测试的不达标率0.1估计A 校不达标率较为合理,理由详见解析.【解析】(1)由频率分布直方图知,(0.0020.0020.006)1020m ⨯++⨯=,解方程可得m 的值;(2)由图知,每位学生成绩不低于90分的频率为0.0110=0.1⨯,由已知X 的所有可能取值为012,,,再根据二项分布,即可得答案; (3)机构M 抽测的不达标率为200.1200= ,机构N 抽测的不达标率为200.2100=,再从样本能否较好反映总体的分布情况说明理由. 【详解】(1)由频率分布直方图知,(0.0020.0020.006)1020m ⨯++⨯=, 解得200m =.(2)由图知,每位学生成绩不低于90分的频率为0.0110=0.1⨯ , 由已知,X 的所有可能取值为012,,, 则022(0)(10.1)0.81P X C ==⋅-=, 12(1)0.1(10.1)0.18P X C ==⋅⋅-=,222(2)0.10.01P X C ==⋅=.所以X 的分布列为X 0 1 2 P 0.810.180.01所以=00.81+10.1820.010.2EX ⨯⨯+⨯=. (3)机构M 抽测的不达标率为200.1200= , 机构N 抽测的不达标率为200.2100=. (以下答案不唯一,只要写出理由即可)①用机构M 测试的不达标率0.1估计A 校不达标率较为合理.理由:机构M 选取样本时使用了分层抽样方法,样本量也大于机构N ,样本更有代表性,所以,能较好反映了总体的分布. ②没有充足的理由否认机构N 的成绩更合理.理由:尽管机构N 的样本量比机构M 少,但由于样本的随机性,不能排除样本较好的反映了总体的分布,所以,没有充足的理由否认机构N 的成绩更合理. 【点睛】本题考查频率分布直方图、二项分布、样本与总体的关系,考查数据处理能力,求解时注意在说理由时要根据统计的相关知识来回答.18.如图,在三棱柱111ABC A B C -中,1AB AC BC AA ===,160BCC ∠=o,11ABC BCC B ⊥平面平面,D 是BC 的中点,E 是棱11A B 上一动点.(1)若E 是棱11A B 的中点,证明://DE 平面11ACC A ; (2)求二面角1C CA B --的余弦值;(3)是否存在点E ,使得1DE BC ⊥,若存在,求出E 的坐标,若不存在,说明理由.【答案】(1)详见解析;(2)5;(3)不存在,理由详见解析. 【解析】(1)取11A C 中点为P ,连结CP EP ,,证明//CP DE ,再利用线面平行判定定理,即可证得结论;(2)先证明1DC DA DB ,,两两垂直,再建立如图所示的空间直角坐标系D xyz -,求出平面1ACC 的法向量(131)n =-,,r ,平面ABC 的法向量为1(003)DC =,,uuu u r,再利用向量的夹角公式,即可得答案;(3)设111(01)A E A B λλ=≤≤uuu r uuu u r ,由10DE BC ⋅=u u u r u u u u r,解得2λ=与假设矛盾,从而得到结论. 【详解】(1)证明:取11A C 中点为P ,连结CP EP ,, 在111A B C ∆中,因为E P 、为1111A B AC 、的中点,所以11//EP B C 且1112EP B C =. 又因为D 是BC 的中点,12CD BC =, 所以//EP BC 且EP CD =, 所以CDEP 为平行四边形 所以//CP DE .又因为DE ⊄平面11ACC A , .CP ⊂平面11ACC A ,所以//DE 平面11ACC A . (2)连结1C D AD 、,因为ABC ∆是等边三角形,D 是BC 的中点, 所以AD BC ⊥,因为11BC AA CC ==,160BCC ∠=o,所以1C D BC ⊥.因为平面ABC ⊥平面11BCC B , 平面ABC I 平面11BCC B BC =,1C D ⊂平面11BCC B ,所以1C D ⊥平面ABC , 所以1DC DA DB ,,两两垂直. 如图,建立空间直角坐标系D xyz -,则(300)A ,,,(010)C -,,,1(003)C ,,, 1(013)CC =u u u u r ,,,(310)CA =u u u r,, 设平面1ACC 的法向量为()n x y z =,,r, 则100CC n CA n ⎧⋅=⎪⎨⋅=⎪⎩u u u u u ru r u r r , 即3030y z x y ⎧=⎪+=, 令1x =,则3y =1z =,所以(131)n =,,r. 平面ABC 的法向量为1(003DC =,,uuu u r, 1115cos ||||DC n DC n DC n ⋅<>==⋅,uuu u r ruuu u r r uuu u r r .又因为二面角11C CA B --为锐二面角,所以二面角11C CA B --.(3)11A ,11(10)A B =uuu u r, 设111(01)A E A B λλ=≤≤uuu r uuu u r,则1(0)A E λ=,,uuu r,所以1E λ+,,1DE λ=+,uuu r,所以1(01BC =-,uuu r,假设1DE BC ⊥,则10DE BC ⋅=u u u r u u u u r,解得2λ=,这与已知01λ≤≤矛盾.∴不存在点E . 【点睛】本题考查线面平行判定定理的运用、向量法求二面角的大小及利用向量证明直线垂直,考查转化与化归思想,考查空间想象能力、运算求解能力.19.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点(2,0),一条直线l 与椭圆C 交于P ,Q 两点,以PQ 为直径的圆经过坐标原点O . (1)求椭圆C 的标准方程; (2)求证:2211||||OP OQ +为定值.【答案】(1)22143x y +=;(2)详见解析. 【解析】(1)因为椭圆经过点(2,0),所以2a =,再根据离心率,即可求得椭圆的方程;(2)①若直线l 的斜率存在时,11(,)P x y ,22(,)Q x y ,:l y kx m =+,与椭圆方程联立,由OP OQ ⊥可得12120x x y y +=,从而得到,k m 的关系,结合点到直线的距离公式,可证明结论;②若直线l 的斜率不存在,则有1OP k =±,可证结论也成立. 【详解】(1)因为椭圆经过点(2,0),所以2a =, 又因为12c a =,则1c =,由222b a c =-,得23b =, 所以椭圆的标准方程为22143x y +=.(2)①若直线l 的斜率存在时,设:l y kx m =+,与椭圆方程联立得:22143y kx mx y =+⎧⎪⎨+=⎪⎩,有222(34)84120k x kmx m +++-=, 由题意,>0∆,设11(,)P x y ,22(,)Q x y ,所以122843km x x k +=-+,212241243m x x k -=+. 因为以PQ 为直径的圆过原点O ,由OP OQ ⊥,得 12120x x y y +=, 即1212()0()x x kx m kx m +++=,整理得,2212(1)7k m +=, 而22222222211||||||||||||||||||OP OQ PQ OP OQ OP OQ OP OQ ++== 设h 为O 到l 的距离,则 ||||||OP OQ PQ h ⋅=⋅所以222111||||OP OQ h +=,而h =,所以2211||||OP OQ +=221712k m +=. ②若直线l 的斜率不存在,则有1OP k =±, 不妨设1OP k =,设11(,)P x y ,有11x y =,代入椭圆方程22143x y +=得,21127x =,2224||||7OP OQ ==,即2211772||||2412OP OQ +=⨯=,综上22117||||12OP OQ +=.【点睛】本题考查椭圆标准方程的求解、离心率的概念、椭圆中的定值问题,考查函数与方程思想,考查逻辑推理能力、运算求解能力,求解时注意对斜率进行讨论. 20.已知函数()ln 1axf x x x =-+. (1)若1a =,求曲线()y f x =在点(1(1))f ,处的切线方程; (2)求证:函数()f x 有且只有一个零点. 【答案】(1)3450x y --=;(2)详见解析.【解析】(1)对函数进行求导,求出切线的斜率和切点坐标,即可得答案; (2)函数的定义域为(0,)+∞,要使函数()f x 有且只有一个零点,只需方程(1)ln 0x x ax +-=有且只有一个根,即只需关于x 的方程(1)ln 0x xa x+-=在(0)+∞,上有且只有一个解,利用导数可得函数(1)ln ()x xg x a x+=-在(0)+∞,单调递增,再利用零点存在定理,即可得答案; 【详解】(1)当1a =时,函数()ln 1xf x x x =-+,0x >,1(1)2f =-, 222111()(1)(1)x x f x x x x x ++'=-=++,3(1)4k f '==,所以函数()y f x =在点(1(1))f ,处的切线方程是3450x y --=. (2)函数的定义域为(0,)+∞,要使函数()f x 有且只有一个零点,只需方程(1)ln 0x x ax +-=有且只有一个根,即只需关于x 的方程(1)ln 0x xa x+-=在(0)+∞,上有且只有一个解. 设函数(1)ln ()x xg x a x+=-, 则21ln ()x xg x x +-'=,令()1ln h x x x =+-,则11()1x h x x x-'=-=, 由()0h x '=,得1x =.由于min ()(1)20h x h ==>, 所以()0g x '>,所以(1)ln ()x xg x a x+=-在(0,)+∞上单调递增, 又(1)g a =-,(e )eaa a g =,①当0a =时, (1)0g =,函数()g x 在(0,)+∞有且只有一个零点,②当0a ≠时,由于2(1)(e )0eaa a g g =-<,所以存在唯一零点.综上所述,对任意的a ∈R 函数()y f x =有且只有一个零点. 【点睛】本题考查导数的几何意义、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,求解时注意对函数进行二次求导的运用.21.已知数列1210a a a L ,,,满足:对任意的{1,2,3,4,5,6,7,8,9,10}i j ∈,,若i j ≠,则i j a a ≠,且{1,2,3,4,5,6,7,8,9,10}i a ∈,设集合12{|1,2,3,4,5,6,7,8}i i i A a a a i ++=++=,集合A 中元素最小值记为()m A ,集合A 中元素最大值记为()n A .(1)对于数列:10612783954,,,,,,,,,,写出集合A 及()()m A n A ,; (2)求证:()m A 不可能为18;(3)求()m A 的最大值以及()n A 的最小值.【答案】(1){17,9,10,18,20}A =,()9m A =,()20n A =;(2)详见解析;(3)()m A 的最大值为17, ()n A 的最小值为16.【解析】(1)由题意易得{17,9,10,18,20}A =,()9m A =,()20n A =.(2)利用反证法,假设()18m A ≥,可推出11a =,101a =这一集合元素互异性的矛盾; (3)首先求()m A ,由(2)知()18m A <,而()17m A =是可能的;再证明:()n A 的最小值为16. 【详解】(1)由题意易得{17,9,10,18,20}A =,()9m A =,()20n A =. (2)证明:假设()18m A ≥,设S =12345678910()()()55a a a a a a a a a a +++++++++=, 则10553()S m A a =+≥=10318a ⨯+,即101a ≤,因为1(1,2,3,,10)i a i =L ≥,所以101a =,同理,设S =12345678910()()()55a a a a a a a a a a +++++++++=,可以推出11a =,i a (1,2,,10)i =L 中有两个元素为1,与题设矛盾,故假设不成立,()m A 不可能为18.(3)()m A 的最大值为17,()n A 的最小值为16.①首先求()m A ,由(2)知()18m A <,而()17m A =是可能的. 当()17m A =时,设S =12345678910()()()55a a a a a a a a a a +++++++++= 则10553()S m A a =+≥=10317a ⨯+即104a ≤,又S =12345678910()()()55a a a a a a a a a a +++++++++= 得77553()51S m A a a =+=+≥,即74a ≤. 同理可得:4(1,4,7,10)i a i =≤. 对于数列:1,6,10,2,7,8,3,9,5,4此时{17,18,19,20}A =,()17()20m A n A ==,,满足题意. 所以()m A 的最大值为17; ②现证明:()n A 的最小值为16.先证明()15n A ≤为不可能的,假设()15n A ≤. 设S =12345678910()()()55a a a a a a a a a a +++++++++=,可得11553()315n A a a +⨯+≤≤,即110a ≥,元素最大值为10,所以110a =. 又12345678910()()()55a a a a a a a a a a +++++++++=443()315n A a a +⨯+≤≤, 同理可以推出410a =,矛盾,假设不成立,所以()16n A ≥. 数列为:7,6,2,8,3,4,9,1,5,10时,{13,14,15,16}A =,()13()16m A n A ==,,A 中元素的最大值为16.所以()n A 的最小值为16. 【点睛】本题考查集合的新定义和反证法的运用,考查反证法的证明,考查逻辑推理能力、运算求解能力,属于难题.。
北京市2020〖人教版〗高三数学复习试卷第一学期高三摸底考试理科数学
北京市2020年〖人教版〗高三数学复习试卷第一学期高三摸底考试理科数学一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|log 3}M x x =<,{|21,}N x x n n N ==+∈,则M N ⋂=( ) A.(0,8) B. {3,5,7} C.{0,1,3,5,7} D.{1,3,5,7} 2. 已知复数11z i =+,232z i =-,则复数21z z 在复平面内对应的点位于( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 若x ,y 满足不等式组240300x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则32x y +的最大值是()A. 6B.7C.9D.10 4==+,则与的夹角为()A.30oB.45oC.60oD.120o 5. 当2x ππ-≤≤时,函数()sin f x x x =+的( )A .最大值是1,最小值是.最大值是2,最小值是C .最大值是1,最小值是1-D .最大值是2,最小值是1- 6. 函数2cos y x =的单调增区间是( )A.(2,2),k k k Z πππ-∈B.(2,2),2k k k Z πππ-∈C.(,),k k k Z πππ-∈D.(,),2k k k Z πππ-∈7.已知函数2()(1)x f x e x ax =++在点(0,(0))f 的切线与直线260x y -+=垂直,则a =( )A .3-B .2-C .2D .38. 已知cos()(0,[0,2))y x ωϕωϕπ=+>∈的部分图象如图所示,则ϕ=( )A.32π B.74π C.4π D.0 9.执行如右下图的程序框图,若输入2015n =,则输出T 的值为( )A .12-B .23C .3D .3410.正三棱柱被一个平面截去一部分后与半圆柱组成一个几何体,该几何体的三视图如左上图所示,则该几何体的表面积为( ) A .3+4+3+7B .3+6+3πC .2+4+3+7πD .2+6+3π11.若0a >,且1a ≠,设函数2,1()2,1x a x f x x x x ⎧<⎪=⎨-≥⎪⎩,若不等式()3f x ≤的解集是(,3]-∞,则a 的取值范围是( )A.(1,)+∞(1,3) C.(0,1) D.[3,)+∞12.若偶函数()f x 的图像关于1x =对称,且当[0,1]x ∈时,()f x x =,则函数()y f x =的图象与函数lg y x =的图象的交点个数为( )A.14B.16C.18D.20 二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{}n b 的前n 项和为n S ,且231n n S b =-,则n b =.13n -14.由数字0,1,2,3,4,5组成无重复数字的五位数,则该五位数是奇数的概率为.122515.已知双曲线22221(0,0)x y a b a b-=>>的半焦距为c ,直线l 过(,0)c ,(0,)b 两点,若直线l 与双曲线的一条渐近线垂直,则双曲线的离心率为.15+ 否开始 结束输入n是 输出T 1?n <3S = 11T S=-S T =1n n =-(第10题俯视图 左视图 正视图 2222216.(3)nx y+展开式中,所有项的系数和比二项式系数和多240,则展开式中的中间项是.2254x y选择题答案:DDCCBDABBACC三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{}na的前n项和为nS,公差2d=,10120S=.(1)求na;(2)若nb=,求数列{}nb的前n项和为nT.解(1)1(1)2nn nS na d-=+,2d=,10120S= (2)分11091021202a⨯∴+⨯=,即13a= (3)分所以1(1)21na a n d n=+-=+ (4)分(2)12nnba=== (7)分1111(22222nT n∴=++++……………10分即11)2nT= (12)分18.(本小题满分12分)某号召学生在今年暑假期间至少参加一次社会公益活动(以下简称活动),该校合唱团共有100名学生,他们参加活动的次数统计如图所示;(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,用ξ表示这两人参加活动次数的和,求ξ的分布列.(结果用最简分数)解:(1)由题意得:1102603302.2100⨯+⨯+⨯=………………………………………………………… 2分∴ 合唱团学生参加活动的人均次数为2.2…………………………………………………………………3分(2)由题意得ξ的所有可能取值为2,3,4,5,6…………………………………………………………… 5分1091(2)10099110P ξ⨯===⨯, 210604(3)1009933P ξ⨯⨯===⨯,21030605923(4)100991009955P ξ⨯⨯⨯==+=⨯⨯, 230604(5)1009911P ξ⨯⨯===⨯,302987(6)10099990P ξ⨯===⨯,………………………………………………………………………………10分∴ξ的分布列为:12分19.(本小题满分12分)已知如图:四边形ABCD 是矩形,BC ⊥平面ABE ,且2AE EB BC ===,点F 为CE 上一点,且BF ⊥平面ACE . (1)求证://AE 平面BFD ;(2)求二面角C DE A --的余弦值. 解:(1)证明:连接AC 交BD 于G ,连结GF ,ABCD 是矩形∴G 为AC 的中点…………………………………… 1分由BF ⊥平面ACE 得:BF CE ⊥由EB BC =知:点F为CE 中点…………………………………………………………… 2分∴FG 为ACE ∆的中位线∴FG //AE …………………………………………………………………………………… 3分F E DC BA∵AE ⊄平面BFD ;FG ⊂平面BFD ;∴//AE 平面BFD ;………………………………………………………………………… 4分 (2)由BF ⊥平面ACE 得:BF AE ⊥;由BC ⊥平面ABE 得:BC AE ⊥,BC BE ⊥;∴AE ⊥平面BCE ,则BE AE ⊥………………………………………………………… 6分在BCE Rt ∆中,CE =同理可得:DE AB CD ===,AC =;……………………………………… 8分 ∵2AD BC AE ===∴ 取DE 中点H ,连结AH ,CH ,则AH DE ⊥,CH DE ⊥且12AH DE ==CH == 10分 ∴CHA ∠即为二面角C DE A --的平面角;在CHA ∆中,222222cos23CH AH AC CHA CH AH +-∠===-⋅;∴ 二面角C DE A --的余弦值为-………………………………………………………………… 12分20.(本小题满分12分)已知动圆过定点1(0,)4F ,且与定直线1:4l y =-相切. (1)求动圆圆心的轨迹曲线C 的方程;(2)若点00(,)A x y 是直线10x y --=上的动点,过点A 作曲线C 的切线,切点记为,M N ,求证:直线MN 恒过定点,并求AMN ∆面积S 的最小值.解:(1)根据抛物线的定义,由题意可得:动圆圆心的轨迹C 是以点1(0,)4F 为焦点,以定直线1:4l y =-为准线的抛物线;………………………………………………………………………………………………2分 设2:2(0)C x py p => ∵点1(0,)4F 到准线1:4l y =-的距离为12,∴12p =∴ 圆心的轨迹C 的方程为2x y =………………………………………………………………………… 4分(2)∵2x y =,∴2y x '=设切点,M N 的坐标分别为11(,)M x y ,22(,)N x y ,则211x y =,222x y =则过点11(,)M x y 的切线方程为1112()y y x x x -=-,即2112y x x x =-,即112y x x y =- 过点22(,)N x y 的切线方程为2222()y y x x x -=-,即2222y x x x =-,即222y x x y =-∵过点,M N 的切线都过点00(,)A x y ∴01012y x x y =-,02022y x x y =-∴点11(,)M x y ,22(,)N x y 都在直线002y xx y =-上 ∴直线MN的方程为002y xx y=-,即0020x x y y --=…………………………………………………6分又因为点00(,)A x y 是直线10x y --=上的动点,所以0010x y --= ∴直线MN 的方程为002(1)0x x y x ---=,即0(21)(1)0x x y -+-= ∴直线MN恒过定点1(,1)2…………………………………………………………………………………8分 联立00220x x y y y x--=⎧⎨=⎩得到20020x x x y -+= 又因为点00(,)A x y 是直线10x y --=上的动点,所以0010x y --=,即200210x x x x -+-=…①则12x x 、是①的二根∴20012012044(1)021x x x x x x x x ⎧∆=-->⎪+=⎨⎪⋅=-⎩,∴MN == (1)0分点00(,)A x y 到直线0020x x y y --=的距离是:d ===…………………………………………………11分∴200112S MN d x x ∆=⋅==-+即14AMN S ∆==≥=∴面积的最小值是14…………………………………………12分21.(本小题满分12分) 已知函数21()(2)2ln ()2f x ax a x x a R =-++∈. (1)若0a =,证明:()0f x <; (2)讨论函数()f x 零点的个数.解(1)证明:当0a =时,()22ln (0)f x x x x =-+> 列表:max ()()0f x f x ≤<,即()0f x <………………………………………………………………………………2分(2)2()(2)(0)f x ax a x x'=-++>…………………………………………………………………………3分讨论:01 当0a =时,由第(1)问可得函数()f x 没有零点; ……………………………………………4分02 当21a>,即02a <<时, 令(1)(2)()0x ax f x x--'=>得01x <<,或2x a >,即函数()f x 的增区间为(0,1),2(,)a +∞令(1)(2)()0x ax f x x --'=<得21x a <<,即函数()f x 的减区间为2(1,)a而11(1)(2)2ln12022f a a a =-++=--<,因为函数()f x 的减区间为2(1,)a ,所以2()(1)0f f a <<又函数()f x 的增区间为(0,1),2(,)a+∞所以当(0,1)x ∈时,()(1)0f x f <<所以当2(,)x a ∈+∞时,2()()f x f a>,x →+∞时,()f x →+∞ 所以函数()f x 在区间2(0,)a 没有零点,在区间2(,)a+∞有一个零点………………………………………6分03 当21a=,即2a =时, 2(1)(2)(1)(22)2(1)()0x ax x x x f x x x x-----'===≥恒成立即函数()f x 在(0,)+∞上递增 而11(1)222022f a =--=-⨯-<,x →+∞时,()f x →+∞ 所以函数()f x 在区间(0,)+∞有一个零点……………………………………………………………………8分04 当201a<<,即2a >时, 令(1)(2)()0x ax f x x --'=>得20x a<<,或1x >,即函数()f x 的增区间为2(0,)a ,(1,)+∞令(1)(2)()0x ax f x x --'=<得21x a<<,即函数()f x 的减区间为2(,1)a因为2a >,所以2222()22ln 22ln10f a a a a=--+<--+<,又x →+∞时,()f x →+∞根据函数单调性可得函数()f x 在区间(0,1)没有零点,在区间(1,)+∞有一个零点……………………10分05 当20a<,即0a <时, 令(1)(2)()0x ax f x x--'=>得01x <<,即函数()f x 的增区间为(0,1)令(1)(2)()0x ax f x x --'=<得1x >,即函数()f x 的减区间为(1,)+∞0x →时,()f x →-∞x →+∞时,()f x →-∞而114(1)(2)2ln12222a f a a a --=-++=--=当4(1)02a f --=>即4a <-时, 函数()f x 有两个零点;当4(1)02a f --==即4a =-时, 函数()f x 有一个零点;当4(1)02a f --=<即40a -<<时, 函数()f x 没有零点. (11)分综上,4a <-时, 函数()f x 有两个零点;4a =-时, 函数()f x 有一个零点; 40a -<≤时, 函数()f x 没有零点;0a >时, 函数()f x 有一个零点;………………………………………12分请考生在22、23、24三题中任选一题作答,如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线AP OM ⊥于P(1)证明:2OA OM OP =⋅;(2)N 为线段AP 上一点,直线NB ON ⊥且交圆O 于B 点,过B 点的切线交直线ON 于K .证明:090OKM ∠=.证明:(1)由MA是圆O的切线知:AM OA ⊥ …………………………………………………………2分 又∵AP OM ⊥;创作人:百里严守 创作日期:202B.03.31∴在Rt OAM中,由射影定理知:2OA OM OP =⋅……………………………………………………4分(2)证明:由BK 是圆O 的切线知:BN OK ⊥.同(1)2OB ON OK =⋅……………………………6分由OB OA=得:OM OP ON OK ⋅=⋅………………………………………………………………………7分即:OP OKON OM=.又NOP MOK∠=∠,则NOP MOK …………………………………………9分∴090OKM OPN ∠=∠=.………………………………………………………………………………10分(用M P N K 、、、四点共圆来证明也得分)23.(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,已知射线1C :()03πθρ=≥,动圆2C :220002cos 40()x x x R ρρθ-+-=∈.(1)求1C ,2C 的直角坐标方程;(2)若射线1C 与动圆2C 相交于M 与N 两点,求0x 的取值范围. 解(1)()tan ,03y x πθθρ==≥(0)yx x∴=≥, 所以1C 的直角坐标方程为(0)y x x =≥…………………………………………………………2分cos sin x y ρθρθ=⎧⎨=⎩,所以2C 的直角坐标方程22200240x y x x x +-+-=.…………………………2分 (2)联立()22000032cos 40()x x x R πθρρρθ⎧=≥⎪⎨⎪-+-=∈⎩ 关于ρ的一元二次方程2200040()x x x R ρρ-+-=∈在[0,)+∞内有两个实根…………………………6分 即220012021204(4)0040x x x x x x x x ⎧∆=-->⎪+=>⎨⎪⋅=->⎩,……………………………………………………………………………………8分 得000043433302,2x x x x ⎧-<<⎪⎪⎪>⎨⎪><-⎪⎪⎩或,即0432x <<…………………………………………………………………10分 (用数形结合法解出也给分)24.(本小题满分10分)选修4—5:不等式选讲已知不等式221x x a +-->.(1)当0a =时,求不等式的解集;(2)若不等式在区间[4,2]-内无解,求实数a 的取值范围.解: (1)由题意得:2210x x +-->,即:221x x +>-……………………………………………1分∴22(22)(1)x x +>-,即:231030x x ++>……………………………………………………………3分解得:3x <-或13x >-; ∴不等式的解集为1(,3)(,)3-∞-⋃-+∞……………………………………………………………………5分 (2)设()221([4,2])f x x x x =+--∈-,则:3,(41)()31,(11)3,(12)x x f x x x x x ---≤<-⎧⎪=+-≤<⎨⎪+≤≤⎩, ……………………………7分其图像如图示:则()f x 的最大值为(2)5f =……………………8分 ∵不等式221x x a +-->在区间[4,2]-无解,∴实数a 的取值范围为[5,)+∞…………………………………………10分。
2020届北京市东城区高三一模考试数学试题及答案
绝密★启用前2020届北京市东城区高三一模考试数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、单选题1.已知集合{}10A x x =->,{}1,0,1,2B =-,那么A B =()A .{}1,0-B .{}0,1C .1,0,1,2D .{}2答案:D先化简集合A ,再利用交集的定义求解. 解:∵{}1A x x =>,{}1,0,1,2B =-, ∴{}2A B ⋂=. 故选:D. 点评:本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.2.函数()f x =() A .(]1,2- B .[)2,+∞C .()[),11,-∞-+∞D .()[),12,-∞-+∞答案:B首先根据()f x =2201x x -≥+,再解不等式即可. 解:函数()f x =,令2201x x -≥+,得20x -≥, 解得2x ≥,所以()f x 的定义域为[)2,+∞.故选:B 点评:本题主要考查函数的定义域,属于简单题.3.已知()211i a R ai=-∈+,则a =() A .1B .0C .1-D .2-答案:A利用复数的除法得出211ai i+=-,进而可求得实数a 的值. 解:211i ai=-+,()()()21211111i ai i i i i +∴+===+--+,因此,1a =. 故选:A. 点评:本题考查利用复数相等求参数,考查复数除法法则的应用,考查计算能力,属于基础题.4.若双曲线()222:10y C x b b-=>的一条渐近线与直线21y x =+平行,则b 的值为()A .1 BC D .2答案:D求出双曲线C 中斜率为正数的渐近线方程,根据该直线与直线21y x =+平行可求得b 的值. 解:双曲线()222:10y C x b b-=>的一条渐近线y bx =与直线21y x =+平行,可得2b =.故选:D. 点评:本题考查利用双曲线的渐近线与直线平行求参数,考查计算能力,属于基础题.5.如图所示,某三棱锥的正(主)视图、俯视图、侧(左)视图均为直角三角形,则该三棱锥的体积为()A .4B .6C .8D .12答案:A利用三视图作出几何体的直观图,然后利用锥体的体积公式可求得该几何体的体积. 解:由三视图知,几何体是一个三棱锥1D BCD ,根据三棱锥的三视图的数据,设出三棱锥两两垂直的三条侧棱分别是4DC =,3BC =,12DD =,因此,三棱锥的体积是11432432⨯⨯⨯⨯=. 故选:A. 点评:本题考查利用三视图计算几何体的体积,解答的关键就是结合三视图还原几何体,考查空间想象能力与计算能力,属于基础题.6.已知1x <-,那么在下列不等式中,不成立的是() A .210x ->B .12x x+<- C .sin 0x x -> D .cos 0x x +>答案:D利用作差法可判断A 、B 选项的正误,利用正弦、余弦值的有界性可判断C 、D 选项的正误.综合可得出结论. 解:1x <-,则()()21110x x x -=-+>,()22112120x x x x x x x+++++==<,又sin x 、[]cos 1,1x ∈-,sin 0x x ∴->,cos 0x x +<.可得:ABC 成立,D 不成立. 故选:D. 点评:本题考查不等式正误的判断,一般利用作差法来进行判断,同时也要注意正弦、余弦有界性的应用,考查推理能力,属于中等题.7.在平面直角坐标系中,动点M 在单位圆上按逆时针方向作匀速圆周运动,每12分钟转动一周.若点M 的初始位置坐标为12⎛ ⎝⎭,则运动到3分钟时,动点M 所处位置的坐标是()A .12⎫⎪⎪⎝⎭B .1,22⎛-⎝⎭C .221⎛⎫-⎪ ⎪⎝⎭D .12⎛⎫- ⎪ ⎪⎝⎭答案:C计算出运动3分钟时动点M 转动的角,再利用诱导公式可求得结果. 解:每12分钟转动一周,则运动到3分钟时,转过的角为32122ππ⨯=.设点M 的初始位置的坐标为()cos ,sin αα,则1cos 2α=,sin 2α=, 运动到3分钟时动点M 所处位置的坐标是cos ,sin 22M ππαα⎛⎫⎛⎫⎛⎫'++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由诱导公式可得3cos sin 2παα⎛⎫+=-=- ⎪⎝⎭,1sin cos 22παα⎛⎫+== ⎪⎝⎭, 所以,点M '的坐标为3,21⎛⎫- ⎪ ⎪⎝⎭.故选:C.点评:本题考查点的坐标的求解,考查了诱导公式的应用,考查计算能力,属于基础题.8.已知三角形ABC ,那么“AB AC AB AC +>-”是“三角形ABC 为锐角三角形”的() A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:B在不等式AB AC AB AC +>-两边平方并化简得0AB AC ⋅>,判断出角A 的属性,再结合充分条件、必要条件的定义判断即可. 解:三角形ABC 中,“AB AC AB AC +>-”0AB AC ⇒⋅>,可得A 为锐角,此时三角形ABC 不一定为锐角三角形.三角形ABC 为锐角三角形A ⇒为锐角.∴三角形ABC ,那么“AB AC AB AC +>-”是“三角形ABC 为锐角三角形”的必要不充分条件. 故选:B. 点评:本题考查必要而不充分条件的判断,同时也考查了平面向量数量积的应用,考查推理能力,属于中等题.9.设O 为坐标原点,点1,0A ,动点P 在抛物线22y x =上,且位于第一象限,M 是线段PA 的中点,则直线OM 的斜率的范围为() A .(]0,1 B.⎛ ⎝⎭ C.⎛ ⎝⎦ D.⎫+∞⎪⎪⎣⎭答案:C设点2,2y P y ⎛⎫⎪⎝⎭,可得出线段PA 的中点M 的坐标,利用基本不等式可求得直线OM 的斜率的取值范围. 解:设2,2y P y ⎛⎫ ⎪⎝⎭,0y >,所以PA 的中点22,42y y M ⎛⎫+ ⎪⎝⎭, 所以222222224OMyy k y y y y ===+++,因为2y y +≥102y y<≤=+,所以0,2OM k ⎛∈ ⎝⎦, 故选:C. 点评:本题考查直线斜率取值范围的计算,涉及基本不等式的应用,考查计算能力,属于中等题. 10.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者.现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以()x t 表示,被捕食者的数量以()y t 表示.如图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法正确的是()A .若在1t 、2t 时刻满足:()()12y t y t =,则()()12x t x t =B .如果()y t 数量是先上升后下降的,那么()x t 的数量一定也是先上升后下降C .被捕食者数量与捕食者数量不会同时到达最大值或最小值D .被捕食者数量与捕食者数量总和达到最大值时,被捕食者的数量也会达到最大值 答案:C根据图形可判断A 选项的正误;根据曲线上半段中()y t 和()x t 的变化趋势可判断B 选项的正误;根据捕食者和被捕食者的最值情况可判断C 选项的正误;取()10x t =,()100y t =可判断D 选项的正误. 解:由图可知,曲线中纵坐标相等时横坐标未必相等,故A 不正确;在曲线上半段中观察到()y t 是先上升后下降,而()x t 是不断变小的,故B 不正确;捕食者数量最大时是在图象最右端,最小值是在图象最左端,此时都不是被捕食者的数量的最值处, 同样当被捕食者的数量最大即图象最上端和最小即图象最下端时,也不是捕食者数量取最值的时候,所以被捕食者数量和捕食者数量不会同时达到最大和最小值,故C 正确; 当捕食者数量最大时在图象最右端,()()25,30x t ∈,()()0,50y t ∈,此时二者总和()()()25,80x t y t +∈,由图象可知存在点()10x t =,()100y t =,()()110x t y t +=,所以并不是被捕食者数量与捕食者数量总和达到最大值时,被捕食者数量也会达到最大值,故D 错误,故选:C. 点评:本题考查函数图象的性质,考查数据分析能力,比较抽象,属于中等题. 二、填空题11.已知向量(),1a m =,()1,2b =-,()2,3c =,若a b -与c 共线,则实数m =______. 答案:3求出向量a b -的坐标,利用共线向量的坐标表示可得出关于m 的等式,进而可求得m 的值. 解:向量(),1a m =,()1,2b =-,()2,3c =,()1,3a b m ∴-=-,a b -与c 共线,1323m -∴=,解得实数3m =. 故答案为:3. 点评:本题考查利用向量共线求参数,考查计算能力,属于基础题. 12.在622()x x+的展开式中,常数项为_____.(用数字作答) 答案:60根据二项式展开式的通项公式,利用x 项的指数为0,即可求出常数项. 解: 在622()x x+的展开式中,通项公式为: 66316622()2r r r r r r r T C x C x x--+== 令6302r r -=∴=所以展开式的常数项为:226260C = 故答案为:60 点评:本题考查了二项式定理的通项公式,考查了学生概念理解,数学运算的能力,属于基础题. 13.圆心在x 轴上,且与直线1:l y x =和2:2l y x =-都相切的圆的方程为______.答案:()22112x y -+=设所求圆的方程为()()2220x a y r r -+=>,根据圆与直线1l 、2l 都相切可求得a 、r 的值,由此可得出所求圆的方程. 解:设所求圆的方程为()()2220x a y r r -+=>,因为圆()()2220x a y r r -+=>与直线1:l y x =和2:2l y x =-r ==,解得1a =,22r,所以圆的方程为()22112x y -+=.故答案为:()22112x y -+=. 点评:本题考查圆的方程的求解,同时也考查了直线与圆相切的处理,考查计算能力,属于中等题.14.设函数()()1,0,22,0.x a a xa x x f x x --⎧+<=⎨+≥⎩给出下列四个结论:①对0a ∀>,t R ∃∈,使得()f x t =无解;②对0t ∀>,a R ∃∈,使得()f x t =有两解;③当0a <时,0t ∀>,使得()f x t =有解;④当2a >时,t R ∃∈,使得()f x t =有三解.其中,所有正确结论的序号是______. 答案:③④取3a =,由一次函数的单调性和基本不等式,可得函数()f x 的值域,可判断①的正误;取0a =,判断函数()f x 的单调性,即可判断②;考虑0a <时,求得函数()f x 的值域,即可判断③;当2a >时,结合一次函数的单调性和基本不等式,以及函数()f x 的图象,即可判断④.综合可得出结论. 解:对于①,可取3a =,则()()3331,0,22,0.x xx x f x x --⎧+<=⎨+≥⎩, 当0x <时,()()()31,3f x x =+∈-∞;当0x ≥时,()3333222222x x x x f x ----=+≥⋅=,当且仅当3x =时,取得等号, 故3a =时,()f x 的值域为R ,t R ∀∈,()f x t =都有解,故①错误;对于②可取0a =时,()0,022,0x xx f x x -<⎧=⎨+≥⎩,可得()f x 在(0,)+∞上单调递增, 对0t ∀>,()f x t =至多一解,故②错误;对于③,当0a <时,0x <时,()()1f x a x =+单调递减,可得()f x a >; 又0x ≥时,0x a ->,即有21x a ->.可得222x a a x --+>,则()f x 的值域为(),a +∞,0t ∀>,()f x t =都有解,故③正确;对于④,当2a >时,0x <时,()()1f x a x =+递增,可得()f x a <;当0x ≥时,()222x a a x f x --=+≥,当且仅当x a =时,取得等号,由图象可得,当23t <<时,()f x t =有三解,故④正确. 故答案为:③④.点评:本题考查分段函数的应用,主要考查方程根的个数问题,注意运用反例法判断命题不正确,考查推理能力,属于中等题. 三、双空题15.ABC 是等边三角形,点D 在边AC 的延长线上,且3AD CD =,27BD =,则CD =______;sin ABD ∠=______.答案:2321由3AD CD =可得2AC CD =,在BCD 中利用余弦定理可求得CD 的长,在ABD △中,利用正弦定理可求得sin ABD ∠的值. 解:如图所示,等边ABC 中,3AD CD =,所以2AC CD =.又7BD =2222cos BD BC CD BC CD BCD =+-⋅⋅∠,即(()22227222cos120CD CD CD CD +-⋅⋅⋅=,解得2CD =,所以6AD =;由sin sin AD BD ABD A =∠∠,即67sin sin 60ABD =∠,解得321sin 14ABD ∠=. 故答案为:2;32114. 点评:本题考查利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题. 四、解答题16.如图,在四棱锥P ABCD -中,PD ⊥面ABCD ,底面ABCD 为平行四边形,AB AC ⊥,1AB AC ==,1PD =.(Ⅰ)求证://AD 平面PBC ;(Ⅱ)求二面角D PC B --的余弦值的大小. 答案:(Ⅰ)证明见解析;(Ⅱ)3-. (Ⅰ)根据四边形ABCD 是平行四边形得出//AD BC ,再利用线面平行的判定定理可证得//AD 平面PBC ;(Ⅱ)过D 作平行于AC 的直线Dx ,以D 为坐标原点,DC 、DP 所在直线分别为y 轴、z 轴建立空间直角坐标系,利用空间向量法可求得二面角D PC B --的余弦值. 解: (Ⅰ)证明:底面ABCD 为平行四边形,//AD BC ∴,BC ⊂平面PBC ,AD ⊄平面PBC ,//AD ∴平面PBC ;(Ⅱ)解:过D 作平行于AC 的直线Dx ,AB AC ⊥,Dx DC ⊥,又PD ⊥面ABCD ,∴以D 为坐标原点,建立如图所示空间直角坐标系D xyz -.则()0,1,0C 、()0,0,1P 、()1,2,0B ,()1,1,0CB =,()0,1,1CP =-,设平面PCB 的一个法向量为(),,n x y z =,由00n CB x y n CP y z ⎧⋅=+=⎨⋅=-+=⎩,取1y =,得()1,1,1n =-.取平面PCD 的一个法向量()1,0,0m =,则cos ,31m n m n m n⋅<>===-⨯⋅.由图可知,二面角D PC B --为钝角,∴二面角D PC B --的余弦值为3-点评:本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角的余弦值,考查推理能力与计算能力,属于中等题.17.已知函数()()2sin 22cos 066f x a x x a ππ⎛⎫⎛⎫=--+> ⎪ ⎪⎝⎭⎝⎭,且满足_______. (Ⅰ)求函数()f x 的解析式及最小正周期;(Ⅱ)若关于x 的方程()1f x =在区间[]0,m 上有两个不同解,求实数m 的取值范围.从①()f x 的最大值为1,②()f x 的图象与直线3y =-的两个相邻交点的距离等于π,③()f x 的图象过点,06π⎛⎫⎪⎝⎭.这三个条件中选择一个,补充在上面问题中并作答. 答案:满足①或②或③;(Ⅰ)()2sin 216f x x π⎛⎫=-- ⎪⎝⎭,最小正周期为π;(Ⅱ)47,33ππ⎡⎫⎪⎢⎣⎭; (Ⅰ)利用三角恒等变换思想化简函数()y f x =的解析式,根据①或②或③中的条件求得1a =,可得出()2sin 216f x x π⎛⎫=-- ⎪⎝⎭,利用正弦型函数的周期公式可求得函数的最小正周期;(Ⅱ)令()1f x =,得sin 216x π⎛⎫-= ⎪⎝⎭,解得3x k ππ=+,k Z ∈,可得出方程()1f x =在区间[]0,m 上的实数根,进而可得出实数m 的取值范围. 解:(Ⅰ)函数()2sin 22cos 66f x a x x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 2163a x x ππ⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭sin 2cos 21662a x x πππ⎛⎫⎛⎫=---+- ⎪ ⎪⎝⎭⎝⎭sin 2sin 2166a x x ππ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭()1sin 216a x π⎛⎫=+-- ⎪⎝⎭,若满足①()f x 的最大值为1,则12a +=,解得1a =,所以()2sin 216f x x π⎛⎫=-- ⎪⎝⎭,则函数()f x 的最小正周期为22T ππ==; (Ⅱ)令()1f x =,得sin 216x π⎛⎫-= ⎪⎝⎭,解得2262x k πππ-=+,k Z ∈,即3x k ππ=+,k Z ∈;若关于x 的方程()1f x =在区间[]0,m 上有两个不同解,则3x π=或43π; 所以实数m 的取值范围是47,33ππ⎡⎫⎪⎢⎣⎭. 若满足②,()f x 的图象与直线3y =-的两个相邻交点的距离等于π, 且()f x 的最小正周期为22T ππ==,所以()113a -+-=-,解得1a =; 以下解法均相同.若满足③,()f x 的图象过点,06π⎛⎫⎪⎝⎭,则()1sin 1066f a ππ⎛⎫=+-= ⎪⎝⎭,解得1a =;以下解法均相同. 点评:本题考查利用正弦型函数的基本性质求函数解析式,同时也考查了利用正弦型函数方程的根的个数求参数,考查计算能力,属于中等题.18.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统,预计2020年北斗全球系统建设将全面完成.如图是在室外开放的环境下,北斗二代和北斗三代定位模块,分别定位的50个点位的横、纵坐标误差的值,其中“⋅”表示北斗二代定位模块的误差的值,“+”表示北斗三代定位模块的误差的值.(单位:米)(Ⅰ)从北斗二代定位的50个点位中随机抽取一个,求此点横坐标误差的值大于10米的概率; (Ⅱ)从图中A ,B ,C ,D 四个点位中随机选出两个,记X 为其中纵坐标误差的值小于4-的点位的个数,求X 的分布列和数学期望;(Ⅲ)试比较北斗二代和北斗三代定位模块纵坐标误差的方差的大小.(结论不要求证明) 答案:(Ⅰ)0.06;(Ⅱ)分布列见解析,1;(Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.(Ⅰ)通过图象观察,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,由古典概率的计算公式可得所求值;(Ⅱ)通过图象可得,A ,B ,C ,D 四个点位中纵坐标误差值小于4-的有两个点:C ,D ,则X 的所有可能取值为0,1,2,分别求得它们的概率,作出分布列,计算期望即可;(Ⅲ)通过观察它们的极差,即可判断它们的方差的大小.解:(Ⅰ)由图可得,在北斗二代定位的50个点中,横坐标误差的绝对值大于10米有3个点,所以从中随机选出一点,此点横坐标误差的绝对值大于10米的概率为30.06 50=;(Ⅱ)由图可得,A,B,C,D四个点位中纵坐标误差值小于4-的有两个点:C,D,所以X的所有可能取值为0,1,2,()022416CP XC===,()112224213C CP XC===,()2224126CP XC===,所以X的分布列为所以X的期望为()1210121636E X=⨯+⨯+⨯=;(Ⅲ)北斗二代定位模块纵坐标误差的方差大于北斗三代.点评:本题考查古典概率的求法,以及随机变量的分布列和期望的求法,方差的大小的判断,考查数形结合思想和运算能力、推理能力,属于中档题.19.已知椭圆E:22221x ya b+=(0a b>>),它的上,下顶点分别为A,B,左,右焦点分别为1F,2F ,若四边形12AF BF 为正方形,且面积为2.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)设存在斜率不为零且平行的两条直线1l ,2l ,它们与椭圆E 分别交于点C ,D ,M ,N ,且四边形CDMN 是菱形,求出该菱形周长的最大值.答案:(Ⅰ)2212x y +=;(Ⅱ)(Ⅰ)由题意可得22212222b c c b a b c=⎧⎪⎪⋅⋅=⎨⎪=+⎪⎩,解出即可;(Ⅱ)设1l 的方程为1y kx m =+,2l 的方程为2y kx m =+,联立直线与椭圆方程并消元得韦达定理的结论,根据弦长公式可求得CD ,MN ,由四边形CDMN 为菱形可得0MC ND ⋅=,可得2213220m k --=,再根据基本不等式即可求出最值.解:解:(Ⅰ)∵四边形12AF BF 为正方形,且面积为2,∴22212222b cc b a b c =⎧⎪⎪⋅⋅=⎨⎪=+⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆的标准方程2212x y +=;(Ⅱ)设1l 的方程为1y kx m =+,()11,C x y ,()22,D x y , 设2l 的方程为2y kx m =+,()33,M x y ,()44,N x y ,联立12222y kx m x y =+⎧⎨+=⎩可得()22211124220k x km x m +++-=, 由>0∆可得()()22221116412220k m km-+->,化简可得221210k m +->,①1122412km x x k -=++,211222212m x x k-+=,12CD x x-===,同理可得MN =, ∵四边形CDMN 为菱形,∴CD MN =,∴2212m m =,又∵12m m ≠,∴12m m =-,∴1l ,2l 关于原点对称,又椭圆关于原点对称, ∴,C M 关于原点对称,,D N 也关于原点对称,∴3131x x y y =-⎧⎨=-⎩且4242x x y y =-⎧⎨=-⎩,∴()112,2MC x y =,()222,2ND x y =, ∵四边形CDMN 为菱形,可得0MC ND ⋅=, 即12120x x y y +=,即()()1211210x x kx m kx m +++=, 即()()2121122110kx xkm x x m ++++=,可得()221111222224012121m km km m k kk -+=--++++=⋅, 化简可得2213220m k --=,∴菱形CDMN的周长为4l CD ==28312k=+()222122142312k k k +++≤=+ 当且仅当222214k k +=+,即212k =时等号成立, 此时211m =,满足①,∴菱形CDMN 的周长的最大值为 点评:本题主要考查直线与椭圆的位置关系的应用,考查椭圆的几何性质,考查一元二次方程根与系数的应用,考查基本不等式的应用,考查转化与划归思想,考查计算能力,属于难题. 20.已知函数()()ln f x x x ax =-(a R ∈).(Ⅰ)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若()f x 有两个极值点,求实数a 的取值范围; (Ⅲ)若1a >,求()f x 在区间(]0,2a 上的最小值.答案:(Ⅰ)y x =-;(Ⅱ)10,2⎛⎫ ⎪⎝⎭;(Ⅲ)()22ln 22a a a ⎡⎤-⎣⎦.由题意得()1ln 2f x x ax '=+-;(Ⅰ)当1a =时,求得()11f '=-,()11f =-,根据点斜式方程即可求出切线方程;(Ⅱ)由题意得1ln 2xa x +=两个不等的正根,令()1ln x g x x +=,则()2ln x g x x -'=,由此可得函数()g x 的单调性,由此可求出答案;(Ⅲ)由题意可得()12f x a x''=-,由二阶导的取值符号可得到f x 的单调性,得到()()max 1ln 202f x f a a ⎛⎫''==-< ⎪⎝⎭,由此可求出函数()f x 在(]0,2a 上单调递减,从而求出最值.解:解:∵()()ln f x x x ax =-, ∴()1ln 2f x x ax '=+-;(Ⅰ)当1a =时,()11f '=-,()11f =-,∴曲线()y f x =在点()()1,1f 处的切线方程为()()11y x --=--, 即y x =-;(Ⅱ)∵若()f x 有两个极值点,∴()1ln 20f x x ax '=+-=有两个不等的正根,即1ln 2xa x+=两个不等的正根, 令()1ln xg x x +=,0x >,()2ln x g x x-'=, 令()01g x x ='⇒=,当()0,1x ∈时0g x,此时()g x 单调递增,01g e ⎛⎫=∴ ⎪⎝⎭()(,1)g x ∈-∞;当()1,x ∈+∞时0g x ,此时()g x 单调递减,()(0,1)g x ∈∴函数()g x 在1x =处取得极大值,也是最大值()11g =,因为1ln 2xa x+=两个不等的正根, ∴021a <<,得102a <<, ∴实数a 的取值范围是10,2⎛⎫ ⎪⎝⎭;(Ⅲ)∵()()ln f x x x ax =-,∴()1ln 2f x x ax '=+-,()12f x a x''=-, ∵1a >,(]0,2x a ∈,令()102f x x a''=⇒=, 当10,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x ''>,此时f x 单调递增,当1,2x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ''<,此时f x 单调递减,故()()max 1ln 202f x f a a ⎛⎫''==-< ⎪⎝⎭, ∴()f x 在(]0,2a 上单调递减,故()f x 在(]0,2a 上的最小值为()()222ln 22f a a a a ⎡⎤=-⎣⎦.点评:本题主要考查利用导数研究函数的单调性与最值,考查利用导数求曲线的切线方程,考查计算能力,考查转化与化归思想,属于难题.21.数列A :1x ,2x ,3x ,…,n x ,…,对于给定的t (1t >,t +∈N ),记满足不等式:()*n t x t x t n -≥-(n +∀∈N ,n t ≠)的*t 构成的集合为()T t .(Ⅰ)若数列2:n A x n =,写出集合()2T ; (Ⅱ)如果()T t (t +∈N ,1t >)均为相同的单元素集合,求证:数列1x ,2x ,…,n x ,…为等差数列;(Ⅲ)如果()T t (t +∈N ,1t >)为单元素集合,那么数列1x ,2x ,…,n x ,…还是等差数列吗?如果是等差数列,请给出证明;如果不是等差数列,请给出反例.答案:(Ⅰ)[]3,5;(Ⅱ)证明见解析;(Ⅲ)是等差数列,证明见解析.(Ⅰ)由题意得,()2*42n tn -≥-,分1n =和2n >两类讨论解出不等式,再根据()2T 的定义即可求出;(Ⅱ)由题意,若()T t 中均只有同一个元素,不妨设为a ,当1n t =+时,由题意可得1t t x x a +-≥,当1n t =-时,有1t t x x a --≤,则1t t x x a +-=成立,从而得出证明;(Ⅲ)不妨设(){}T i a =,(){}T j b =,1i j <<,a b ,由题意可得()j i x x a j i -≥-,()j i x x b j i -≤-,则()()j i a j i x x b j i -≤-≤-,则a b ≤;设(){}i T i t =,则23n t t t ≤≤≤≤,则i j t t ≤,首先证2t =时的情况,不妨设21x x >,由212x x t -≤,()2T 为单元素集,则212x x t -=;再证332t x x =-,由3t 和2t 的定义可证323x x t -=,则3322t x x t =->,则存在正整数4m ≥使得()222m m t x x -=-,而()()2112332m m m i i i i i x x x x t m t --==-=-≥>-∑∑,得出矛盾,从而32t t =,同理可证2345t t t t ====,由此可得结论. 解:(Ⅰ)解:由题意得,()2T 为满足不等式()*22n n x x t-≥-的*t 构成的集合,∵数列2:n A x n =, ∴()2*42n t n -≥-,即()()()*222n n n t ≥--+,当1n =时,上式可化为*3t ≤,当2n >时,上式可化为*2n t +≥,得*5t ≥,∴()[],235T =;(Ⅱ)证:对于数列A :1x ,2x ,3x ,…,n x ,…,若()T t 中均只有同一个元素,不妨设为a ,下面证明数列A 为等差数列,当1n t =+时,有1t t x x a +-≥,①当1n t =-时,有1t t x x a --≤,②∵①②两式对任意大于1的整数均成立,∴1t t x x a +-=成立,∴数列1x ,2x ,…,n x ,…为等差数列;(Ⅲ)解:对于数列A :1x ,2x ,…,n x ,…,不妨设(){}T i a =,(){}T j b =,1i j <<,a b ,由(){}T i a =,知()j i x x a j i -≥-,由(){}T j b =,知:()i j x x b i j -≥-,即()j i x x b j i -≤-,∴()()j i a j i x x b j i -≤-≤-,∴a b ≤;设(){}i T i t =,则23n t t t ≤≤≤≤,这说明1i j <<,则i j t t ≤,∵对于数列A ,()T t 中均只有一个元素,首先证2t =时的情况,不妨设21x x >,∵212x x t -≤,又()2T 为单元素集,∴212x x t -=,再证332t x x =-,证明如下:由3t 的定义可知:332t x x ≥-,3132x x t -≥,∴31332max 2,x x t x x -⎧⎫=-⎨⎬⎩⎭, 由2t 的定义可知32221x x t x x -≥=-, ∴32213133222x x x x x x t x x -+--≥-≥=,∴323x x t -=, ∵32t t >,∴3322t x x t =->,则存在正整数()4m m ≥,使得()222m m t x x -=-,③∵212323431k k x x t x x t x x x x --=≤-≤≤-≤≤-≤, ∴()()2112332m m m i i i i i x x x x t m t --==-=-≥>-∑∑,这与③矛盾,∴32t t =,同理可证2345t t t t ====,即232314x x x x x x =-=--⋅⋅⋅, ∴数列1x ,2x ,…,n x ,…还是等差数列.点评:本题主要考查数列的新定义问题,考查定义法证明等差数列,考查计算能力与推理能力,考查分类讨论思想,考查转化与化归思想,属于难题.。
北京市西城区2020届高三6月模拟测试数学试卷(含答案)
有以下三个结论:
① f ( - 1 ) =-
1; 2
② 当a ∈ ( 1 , 1 ] 时, 方程f (x ) = a 在区间 [ - 4 , 4 ] 上有三个不同的实根; 42
③ 函数f (x ) 有无穷多个零点, 且存在一个零点b ∈ Z . 其中, 所有正确结论的序号是 .
北京市西城区2020 年6 月高三数学试卷 第 3 页( 共6 页)
北京市西城区2020届高三模拟测试
数学
2020. 6
处,
本 并
试 将
卷共 答 案 写6
页 在
,答1题50卡分上。,
考试时长 分钟。考生务必将条 在 试 卷 上1作20答 无 效。 考 试 结 束 后,
形码贴在答题 将本试卷和答
卡 题
规 卡
定 一
并交回。
第 卷 ( 选择题 共 分)
一、选择题: 本大题共10 小题, Ⅰ每小题4 分, 共 40 分40. 在 每 小 题 列 出 的 四 个 选 项 中,
( Ⅰ ) 求a 的值; ( Ⅱ ) 求函数f (x ) 的极值;
( Ⅲ) 证明: f
x (x ) > x -
2.
ee
北京市西城区2020 年6 月高三数学试卷 第 5 页( 共6 页)
20 . ( 本小题满分14 分)
x2 y2 已知椭圆 E : a 2 + b 2 = 1 (a > b > 0 ) 经过点C (0 , 1 ) ,
第Ⅱ 卷 ( 非选择题 共110 分)
二、填空题: 本大题共5 小题, 每小题5 分, 共25 分.
11 . 在 (1 + 5x )6 的展开式中, x 的系数为 .
12 . 在等差数列 {a n } 中 , 若a 1 + a 2 = 16 , a 5 = 1 , 则a 1 =
东城区2020届高三一模数学(理)试题及答案(word版)
北京市东城区2020学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_______________姓名______________考号___________第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i ai ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若A B B =I ,则a 的取值范围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为(A )21 (B )1 (C )22 (D(6)一个几何体的三视图如图所示,那么该几 何体的最长棱长为 (A )2(B)(C )3(D(7)已知三点P (5,2)、1F (-6,0)、 2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9(D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e uu u v 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D的面积为 (A )12(B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
北京市日坛中学2020届高三上学期开学摸底考试(数学理)doc高中数学(1)
北京市日坛中学2020届高三上学期开学摸底考试(数学理)doc 高中数学⑴摸底考试高三年级数学〔理科〕试题 2018.8一、选择题:本大题共 8小题,每题5分,共40分.在每题给出的四个选项中,选出符合题目要求的一项•1 •复数2L 等于1 iA . 1 iB .1 iC 2 2iD .2 2i 2.命题 P :x R , 2x 0, 那么命题 p 为A .x R , 2 x 0 B .x R , 2x 0 C . x R , 2 x 0 D . x R , 2x 03.函数 ysin x cosx 的最小值和最小正周期分不是A .2,2 B • 2, 2 C •、2 , D .2,4•设等差数列{a *}的前n 项和为S n , a 2 a 4 6,那么S 5等于 A . 10 B . 12 C . 15 D . 30那么以下条件中,不能判定 a b 的是 A ・ a// ,b 〃 , B • a , b C • a ,b , D •a ,a,b 〃为13218 13 AB .C .D .21 131385 •阅读右面的程序框图,运行相应的程序,输出的结6. a, b 是不同的直线, ,是不同的平面,7 • 一个四棱锥的底面为正方形,其三视图个四棱锥的体积是A • 1B • 2 C. 3 D. 4& A、B、C、D、E五人并排站成一如下图,那么那排,假如A、B(4) f(2) f(0).其中正确命题的序号是.北京市日坛中学 2018—2018学年度第一学期 摸底考试高三年级数学〔理科〕答题纸 2018.8二、 填空题:本大题共 6小题,每题5分,共30分. 9.___.10. _____ . 11. _____ . 12. _______ .13. ____ .14 __________三、 解答题:本大题共 6小题,共80分.解承诺写出文字讲明,演算步骤或证明过程 15. 〔本小题总分值13分〕必须相邻且B 在A 的右边,那么不同的排法有A . 60 种 B. 48 种 C. 36 种D. 24 种9. 圆C 的极坐标方程2sin 化成直角坐标方程为10.向量 a (1, n), b ( 1, n),假设2a b 与b 垂直,那么|ax y 111. 设x 、y 满足约束条件y x ,那么的最大值为y 012.13.如图,O O 的直径AB 5, C 为圆周上一点,BC 4,过点C 作O O 的切线I ,过点A 作I 的垂线AD ,垂足为D ,那么CD ______ .14.定义在R 上的偶函数f (x)满足f(x 1) f(x),且在 是增函数,下面是关于f (x)的判定:(1) f(x)是周期函数;(2) f (x)的图像关于直线x 1对称;(3) f (x)在[0,1]上时增函数;、填空题:本大题共 6小题,每题5分,共30分. 9X 3的系数为9,常数a 的值为 4的展开式中[-1,0]6 2集合A x ——1 , B xx 2x m 0 .'x 1(1)当m 3时,求A C R B;⑵假设A B x 1 x 4 ,求实数m的值.16. 〔本小题总分值13分〕设f (x)是定义在0, 上的单调递增函数,满足f(xy) f(x) f(y), f(3) 1,求:〔I〕f 1 ;〔n丨假设f x f x 8 2,求x的取值范畴17. 〔本小题总分值13分〕在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个咨询题,能正确回答者进入下一轮5 4 3 1 考核,否那么被剔除•某选手能正确回答第一、二、三、四轮咨询题的概率分不为-、-、-、-,且6 5 4 3 各轮咨询题能否正确回答互不阻碍.〔I〕求该选手进入第三轮才被剔除的概率;〔n〕求该选手至多进入第三轮考核的概率;〔川〕该选手在选拔过程中回答过的咨询题的个数记为X,求随机变量X的分布列和期望•18. 〔本小题总分值14分〕三棱柱ABC A1B1C1中,侧棱与底面垂直,AC的中点.〔I〕求证:MN /平面BCC1B1;〔n〕求证:MN 平面ABQ ;〔川〕求二面角M EC A的余弦值.19. 〔本小题总分值14分〕_ I 3 2 2函数f(x) x ax (a 1)x b (a,b R).3〔I〕假设x 1为f(x)的极值点,求a的值;ABC 90 , AB BC A BB1 2 , M , N 分不是AB ,A〔n 〕假设y f(x)的图象在点〔1, f(1)丨处的切线方程为 x y 3 0,〔i 丨求f(x)在区间[2,4]上的最大值;20. 〔本小题总分值13分〕平面上两定点 M 0, 2、N 0,2 , P 为一动点,满足 MP MN | PN | |MN |. 〔I 〕求动点P 的轨迹C 的方程;其交点Q ,证明NQ AB 为定值.北京市日坛中学 2018—2018学年度第一学期 摸底考试高三年级数学〔理科〕试题 2018.8、选择题:本大题共 8小题,每题5分,共40分.在每题给出的四个选项中,选出符合题目要求的一 项•1•复数旦等于 B1 iA .1 i B . 1 ii C 2 2i D .2 2i2.命题 P :x R , 2x 0, 那么命题 P 为CA .x R , 2x 0 B . x R , 2x 0 C. x R , 2x 0D .x R , 2x 03.函数 ysin x cosx 的最小值和最小正周期分不是AA ..2, 2 B .2, 2 C ..2, D .2,4.设等差数列{a n }的前n 项和为S n , a ? a 4 6,那么S s 等于C〔ii 〕求函数 G(x) [f'(x) (m 2)xm ]e x 〔 m R 〕的单调区间.〔II 〕假设A 、B 是轨迹C 上的两不同动点,且 ANNB .分不以A 、B 为切点作轨迹C 的切线,设A. 10 B . 12 C . 15 D . 305 •阅读右面的程序框图,运行相应的程序,输出的结果为DA.空B . 21 C21 13—D .131 36 . a, b是不同的直线,,是不同的平面,那么以下条件中,不能判定 a b的是AA . a〃,b〃,B . a ,bC . a ,b ,D . a ,a ,b〃7. 一个四棱锥的底面为正方形,其三视图个四棱锥的体积是BA . 1B . 2 C. 3 D. 4& A、B、C、D、E五人并排站成一必须相邻且B在A的右边,那么不同的排A . 60 种 B. 48 种C. 36 种D. 24 种排,假如A、B 法有D_、填空题:本大题共6小题,每题5分,共30分.圆C的极坐标方程2sin化成直角坐标方程为2x y 12 110.向量a(1, n), b(1, n), 假设2a b与b垂直,那么|ax y111.设x、y满足约束条件y x,那么的最大值为.2y0.212. a - x 的展开式中x3的系数为9,常数a的值为x ■ 2 413.如图,O O的直径AB5, C为圆周上一点,BC 4,过点C作O O的切线I,过点A作如下图,那么那______ .414.定义在R 上的偶函数f(x)满足f(x 1) f(x),且在[-1,0]上是增函数,下面是关于(1) f(x)是周期函数;(2) f(x)的图像关于直线 x 1对称;(3) f (x)在[0,1] (4) f (2) f (0).其中正确命题的序号是北京市日坛中学 2018—2018学年度第一学期摸底考试高三年级数学〔理科〕答题纸 2018.8三、解答题:本大题共 6小题,共80分.解承诺写出文字讲明,演算步骤或证明过程 15. 〔本小题总分值13分〕已知集合组二壮| ----- > lkGlr 2 - 2兀一倉< 0j_4 + 1'⑴半贾=3时』求上c©詔);⑵若£ c B求实数耕的值.6T - 5解=由 ------ 矣1,得 ----- 二- 1=盂W5■二 A= [x WE}.x + 1x+1⑴当 M =3 HS>B= [1|-1<1<3]^1(>«3=奴慮W-l 或 5=3}. /.An (Cwfi) = {a|3^u^5L ⑵"「A= lxAAB — {x ・"・x=4 是方程 x'-Ex-m —C 的根.-'-4H_2 ^4_ik =0j 解得 »=8*此时E={K |-2<K <4L 符合题意,轉虹"的值为氐16. 〔本小题总分值13分〕l 的垂线AD ,垂足为D ,那么CD12~5f(x)的判定:上时增函数;设f (x)是定义在0, 上的单调增函数,满足f (xy) f(x) f (y), f (3) 1,求:〔I〕f 1 ;〔n丨假设f x f x 8 2,求x的取值范畴卅小:』国・/(仪刃叮⑴4/(3) ⑵炖=川“沪 W /(3) = 2 ,加时"d n ⑼討[盖(兀-印]"(9)叮“岸+"上的坍敬故x^-'S) i 9i>0 x-8>0 SR17. 〔本小题总分值13分〕轮咨询题能否正确回答互不阻碍〔I 〕求该选手进入第三轮才被剔除的概率; 〔n 〕求该选手至多进入第三轮考核的概率;孤"“234)表示“恢选手能正确回答第】轮1习题叫5 431由已知巩吗)飞,m )=--H 斗)=亍 (I )疇薇£表示“'该选手进入第三轮被淘沐%... ............... 3分(II )ig 峯件u 表示"该选手至多进人第三轮考檯化_ - - 15 15 431、= J D (4H^44)+m44) = -+-5<7+7x 7x (1-7)= ^-^s ^6 6 J 6 □ 4 2.. ...................... 'S呑- 5 4 1 6 □ 6M 1 6 5 - 5 4“ P(_X = 3) = PM^ = ^-x(l-^.6 j 45 43 1孔3 4)"(触禺I W 专注弓................10分.. ..... ..... i_ll 分在一个选拔项目中,每个选手都需要进行 4轮考核,每轮设有一个咨询题, 考核,否那么被剔除•某选手能正确回答第一、二、三、四轮咨询题的概率分不为能正确回答者进入下一轮 5 4 3 1—、 、 - 、一 ,且各〔川〕该选手在选拔过程中回答过的咨询题的个数记为X ,求随机变量 X 的分布列和期望•皿F ⑻二二尸园)尸径)............... 2分VYWVWYWWtfWi"^1.... §分(III )蛊的可能取值为12,3/................. 7分因此,X的分布列为X12341111P66621111E(X) 1 2 3 4 3. .......................... 13 分6 6 6 218.〔本小题总分值14分〕三棱柱ABC A1B1C1中,侧棱与底面垂直, ABC 90,AB BC BB12,M , N 分不是AB,AAC的中点.〔I〕求证:MN // 平面BCC1B1;〔n〕求证:MN 平面^B1C ;〔川〕求二面角M EC A的余弦值.〔I〕证明:连结BC1, AC1.M , N是AB , A1C的中点,在^ABC1中,MN || BC1.4 分又MN 平面BCC1B1, MN ||平面BCC1B1.〔本小题总分值14分〕f (x) 1 x 3 ax 2 (a 2 1)x b (a,b R).y f(x)的图象在点〔1, f(1)丨处的切线方程为 x y 3 0 ,〕求f(x)在区间[2,4]上的最大值;〔ii 〕求函数 G(x) [f'(x) (m 2)x m ]e x 〔 m R 〕的单调区间.(ID 图,以站次原点.崖立空U 直角坐标系场一砂.则 £L (0A0)5 (7(022), 4(-2.0.0), M-tO.2),N(-门⑴.-.^(7- (C,2,2)?时4 = (20。
精品解析:北京市陈经纶中学2020届高三上学期开学摸底考试数学试题(解析版)
,则 cos
1 2
, sin
3, 2
运动到
3
分钟时动点
M
所处位置的坐标是
M
cos
2
, sin
2
.
由诱导公式可得
cos
2
sin
3 2
,
sin
2
cos
1 2
,
所以,点 M 的坐标为
3 2
,
1 2
.
故选:C.
【点睛】本题考查点的坐标的求解,考查了诱导公式的应用,考查计算能力,属于基础题.
【详解】 x 0 , y 0 , x 2 y 2 2xy ,即 2 2 2xy ,
两边平方整理得 xy 1 , 2
当且仅当 x
1, y
1 2
时取最大值
1 2
;
1 故答案为:
2
【点睛】本题考查基本不等式的应用,考查转化思想以及计算能力,注意基本不等式成立的条件.
ax 1, x 0
15.
已知函数
【详解】①因为函数是奇函数,可找关于原点对称的点,比如 f (1 (1)) f (0) f (1) f (1) 1 1 0 ,
2
2
2
存在;
②假设存在不相等 x1 , x2 R ,使得
f ( x1 x2 ) 2
f
( x1 )
2
f
(x2 )
,即 ( x1
2
x2
)2
x12
2
x2 2
f
x
1 x
,
x
0
;②
f
x
x2 ;③
f
x
x2
1 ;具
0, x 0
2020届北京市东城区高三高考第一次模拟(4月)数学试题(解析版)
故选:A.
【点睛】
本题考查对勾型函数的性质,其中涉及到基本不等式求最值,是一道容易题.
5.已知曲线C的方程为 ,则“ ”是“曲线C为焦点在x轴上的椭圆”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】B
【解析】根据椭圆方程的特点,结合充分条件和必要条件的定义进行判断即可.
,即 为票价,
当 时, ,则 为固定成本,
由图象(2)知,直线向上平移,
不变,即票价不变,
变大,则 变小,成本减小.
故①错误,②正确;
由图象(3)知,直线与 轴的交点不变,直线斜率变大,
变大,即提高票价,
不变,则 不变,成本不变.
故③正确,④错误;
故答案为:②③
【点睛】
本题考查一次函数图象的变化,以及 和 对一次函数图象的影响,是基础题.
以 为原点,分别以 所在直线为 轴、 轴、 轴建立空间直角坐标系,如图所示
, , .
,
.
设平面 的法向量为 ,
则 ,即 ,令 ,则 , .
设直线 和平面 所成的角为 ,则
,
所以直线 和平面 所成角的正弦值为 .
【点睛】
本题考查线面垂直的性质定理和用向量的方法求空间角,考查学生的运算能力,属于中档题.
③图(3)对应的方案是:提高票价,并保持成本不变;
④图(3)对应的方案是:提高票价,并降低成本.
其中,正确的说法是____________.(填写所有正确说法的编号)
【答案】②③
【解析】根据图象可知盈利额 与观影人数 成一次函数关系,再分别根据(2)和(3)的图象进行分析即可得出答案.
【详解】
2020届北京市大兴区高三第一次模拟考试数学试题(带答案解析)
2020届北京市大兴区高三第一次模拟考试数学试题1.在复平面内,复数21i+对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{|2}A x x k k ==∈Z ,,{|22}B x x =-≤≤,则A B =I ( ) A .[11]-, B .[22]-, C .{02},D .{202}-,, 3.已知等差数列{}n a 的前n 项和为n S ,20a =,41a =,则4S 等于( ) A .12B .1C .2D .34.下列函数中,在区间(0,)+∞上单调递增且存在零点的是( )A .e x y =B .1y =C .12log y x =-D .2(1)y x =-5.在(2)nx -的展开式中,只有第三项的二项式系数最大,则含x 项的系数等于( )A .32-B .24-C .8D .46.若抛物线24y x =上一点M 到其焦点的距离等于2,则M 到其顶点O 的距离等于( )A B .2C D .37.已知数列{}n a 是等比数列,它的前n 项和为n S ,则“对任意*n ∈N ,0n a >”是“数列{}n S 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件8.某四棱锥的三视图如图所示,如果方格纸上小正方形的边长为1,那么该几何体的最长棱的棱长为( )A .3B C D9.已知函数π()sin()6f x x ω=+(0)>ω.若关于x 的方程()1f x =在区间[0π],上有且仅有两个不相等的实根,则ω的最大整数值为( ) A .3 B .4 C .5D .610.如图,假定两点P ,Q 以相同的初速度运动.点Q 沿直线CD 作匀速运动,CQ x =;点P 沿线段AB (长度为710单位)运动,它在任何一点的速度值等于它尚未经过的距离(PB y =).令P 与Q 同时分别从A ,C 出发,那么,定义x 为y 的纳皮尔对数,用现在的数学符号表示x 与y 的对应关系就是7710110()exy =,其中e 为自然对数的底.当点P 从线段AB 的三等分点移动到中点时,经过的时间为( )A .ln 2B .ln3C .3ln 2D .4ln 311.已知向量(11)a =-r ,,(2)b t =r ,, 若//a b r r,则t =_______;12.若函数22()cos sin f x x x =-在区间[0]m ,上单调减区间,则m 的一个值可以是_______;13.若对任意0x >,关于x 的不等式1a x x+≤恒成立,则实数a 的范围是_______;14.已知()()A a r B b s ,,,为函数2log y x =图象上两点,其中a b >.已知直线AB 的斜率等于2,且||AB =a b -=_______;ab=______; 15.在直角坐标系xOy 中,双曲线22221x y a b-=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-= 交x 轴上方于A B ,两点,有下列三个结论:①||||OA OB OA OB →→→→-<+ ; ②||OA OB →→-存在最大值; ③ ||6OA OB →→+>.则正确结论的序号为_______.16.在ABC ∆中,1c =,2π3A =,且ABC ∆ (1)求a 的值;(2)若D 为BC 上一点,且 ,求sin ADB ∠的值. 从①1AD =,②π6CAD ∠=这两个条件中任选一个,补充在上面问题中并作答. 17.为了调查各校学生体质健康达标情况,某机构M 采用分层抽样的方法从A 校抽取了m 名学生进行体育测试,成绩按照以下区间分为七组:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下频率分布直方图.根据规定,测试成绩低于60分为体质不达标.已知本次测试中不达标学生共有20人.(1)求m 的值;(2)现从A 校全体同学中随机抽取2人,以频率作为概率,记X 表示成绩不低于90分的人数,求X 的分布列及数学期望;(3)另一机构N 也对该校学生做同样的体质达标测试,并用简单随机抽样方法抽取了100名学生,经测试有20名学生成绩低于60分.计算两家机构测试成绩的不达标率,你认为用哪一个值作为对该校学生体质不达标率的估计较为合理,说明理由.18.如图,在三棱柱111ABC A B C -中,1AB AC BC AA ===,160BCC ∠=o,11ABC BCC B ⊥平面平面,D 是BC 的中点,E 是棱11A B 上一动点.(1)若E 是棱11A B 的中点,证明://DE 平面11ACC A ; (2)求二面角1C CA B --的余弦值;(3)是否存在点E ,使得1DE BC ⊥,若存在,求出E 的坐标,若不存在,说明理由.19.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,且经过点(2,0),一条直线l 与椭圆C 交于P ,Q 两点,以PQ 为直径的圆经过坐标原点O . (1)求椭圆C 的标准方程; (2)求证:2211||||OP OQ +为定值.20.已知函数()ln 1axf x x x =-+. (1)若1a =,求曲线()y f x =在点(1(1))f ,处的切线方程; (2)求证:函数()f x 有且只有一个零点.21.已知数列1210a a a L ,,,满足:对任意的{1,2,3,4,5,6,7,8,9,10}i j ∈,,若i j ≠,则i j a a ≠,且{1,2,3,4,5,6,7,8,9,10}i a ∈,设集合12{|1,2,3,4,5,6,7,8}i i i A a a a i ++=++=,集合A 中元素最小值记为()m A ,集合A 中元素最大值记为()n A .(1)对于数列:10612783954,,,,,,,,,,写出集合A 及()()m A n A ,; (2)求证:()m A 不可能为18;(3)求()m A 的最大值以及()n A 的最小值.参考答案1.D 【解析】 【分析】利用复数的运算法则、几何意义即可得出. 【详解】 在复平面内,复数21i +=()()()2111i i i -+-=1﹣i 对应的点(1,﹣1)位于第四象限. 故选D . 【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题. 2.D 【解析】 【分析】直接根据交集运算,即可得答案; 【详解】Q {|2}A x x k k ==∈Z ,,{|22}B x x =-≤≤,∴{202}A B =-I ,,,故选:D. 【点睛】本题考查集合的交运算,考查运算求解能力,属于基础题. 3.B 【解析】 【分析】根据数列的通项公式可求得1,a d 的值,再代入前n 项和公式,即可得答案; 【详解】Q 1111,0,231,1,2a a d a d d ⎧=-⎪+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩∴4143141222S ⋅=-⋅+⋅=,故选:B. 【点睛】本题考查等差数列的通项公式和前n 项和公式,考查运算求解能力,属于基础题. 4.C 【解析】 【分析】根据函数的零点为方程的根,结合解析式判断函数的单调性,即可得答案; 【详解】对A ,Q 方程e 0x =无解,∴e x y =不存在零点,故A 错误;对B ,Q10=无解,∴1y =不存在零点,故B 错误;对D ,2(1)y x =-在(0,1)单调递减,在(1,)+∞单调递增,∴2(1)y x =-在(0,)+∞不具有单调性,故D 错误; 故选:C. 【点睛】本题考查通过函数的解析式研究函数的零点和单调性,考查转化与化归思想,属于基础题. 5.A 【解析】 【分析】根据展开式的第三项的二项式系数最大可得4n =,再由二项式展开式的通项公式,即可得答案; 【详解】 由题意得4n =,∴414(2),0,,4r rr r T C x r -+=-=L , 当3r =时,3344(2)32T C x x =⋅⋅-=-,∴含x 项的系数等于32-,故选:A. 【点睛】本题考查二项式定理的运用,考查逻辑推理能力、运算求解能力,求解时注意二项式系数与系数的区别. 6.C 【解析】 【分析】设点11(,)M x y ,根据焦半径公式可求得M 的坐标,再利用两点间的距离公式,即可得答案; 【详解】设点11(,)M x y ,F 为抛物线的焦点,Q 11||121MF x x =+=⇒=,∴214y =,∴||MO ==,故选:C. 【点睛】本题考查抛物线的焦半径公式,考查运算求解能力,属于基础题. 7.C 【解析】 【分析】根据1(2)n n n a S S n -=-≥这一关系,即可得答案; 【详解】Q 1(2)n n n a S S n -=-≥,∴0n a >10n n S S -⇒->,∴1n n S S ->,∴“数列{}n S 为递增数列”,若“数列{}n S 为递增数列”,则1100n n n n n S S S S a -->⇒->⇒>,∴“对任意*n ∈N ,0n a >”是“数列{}n S 为递增数列”的充分必要条件,故选:C. 【点睛】本题考查n a 与n S 的关系、充分必要条件的判断,考查转化与化归思想,考查逻辑推理能力、运算求解能力. 8.D 【解析】 【分析】根据几何体的三视图可得,该几何体是四棱锥A BCDE -,再计算各条棱的长度,即可得答案; 【详解】根据几何体的三视图可得,该几何体是四棱锥A BCDE -∴AB AD ==AC =,AE =2BE DE ==,BC =1CD =, ∴该几何体的最长棱的棱长为AE =故选:D. 【点睛】本题考查利用三视图还原几何体的直观图、棱长的计算,考查空间想象能力、运算求解能力,求解时注意准确还原几何体的直观图是关键. 9.B 【解析】 【分析】利用换元法求出π6x ω+的取值范围,再根据三角函数的图象得到ω的不等式,即可得答案; 【详解】 令π6t x ω=+,Q [0π]x ∈,,∴ππ666x πωωπ≤+≤+, Q sin y t =的图象如图所示,Q 关于x 的方程()1f x =在区间[0π],上有且仅有两个不相等的实根, ∴sin 1y t ==在π[,]66πωπ+上有且仅有两个不相等的实根,∴5π175********ππωπω≤+≤⇒≤≤, ∴ω的最大整数值为4,故选:B. 【点睛】本题考查利用换元法和图象法解三角方程,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意换元后新元的取值范围. 10.D 【解析】 【分析】设P 运动点三等分点的时间为1t ,此时Q 运动的距离为1x ,P 运动点中点的时间为2t ,此时Q 运动的距离为2x ,再利用Q 做匀速运动,利用路程除以速度可得时间. 【详解】设P 运动点三等分点的时间为1t ,此时Q 运动的距离为1x ,P 运动点中点的时间为2t ,此时Q 运动的距离为2x ,Q 两点P ,Q 以相同的初速度运动,设点Q 的运动速度为710v =,∴177710211010()3e x ⋅=,277710111010()2ex⋅=, ∴711210log 3ex =,721110log 2e x =, ∴214ln 3x x t v -==, 故选:D.【点睛】本题考查数学中的新定义问题、对数的运算法则,考查函数与方程思想、转化与化归思想、,考查逻辑推理能力、运算求解能力,求解时注意对数运算法则的运用. 11.2- 【解析】 【分析】根据向量平行,向量坐标交叉相乘相等,即可得答案; 【详解】Q //a b r r,∴1122t t -⨯=⨯⇒=-,故答案为:2t =-. 【点睛】本题考查向量平行的坐标运算,考查运算求解能力,属于基础题. 12.4π(答案不唯一,只要π02m <≤)【解析】 【分析】由题意可得'()0f x ≤在区间[0]m ,上恒成立,即可得答案; 【详解】Q ()cos 2f x x =,∴'()2sin 2f x x =-,∴'()2sin 20f x x =-≤在区间[0]m ,上恒成立, ∴sin 20x ≥在区间[0]m ,上恒成立, ∴取4m π=,显然sin 20x ≥恒成立,故答案为:4π. 【点睛】本题考查余弦二倍角公式、三角函数的图象与性质,考查运算求解能力,求解时注意结合三角函数的图象进行求解. 13.(2]-∞,【解析】【分析】 求出函数1x x+的最小值,即可得到答案; 【详解】 Q 0x >,∴12x x+≥,等号成立当且仅当1x =, ∴2a ≤,故答案为:(2]-∞,. 【点睛】本题考查不等式恒成立问题求参数的取值范围,考查运算求解能力.14.1 4【解析】【分析】根据斜率公式和两点间的距离公式,即可求得答案;【详解】Q 直线AB 的斜率等于2,且||AB =∴=且22log log 2b a b a-=-, 解得:||1b a -=, Q a b >,∴1a b -=; ∴22log log 24b a a b a b-=⇒=-; 故答案为:1;4.【点睛】本题考查直线的斜率公式和两点间的距离公式,考查转化与化归思想,考查逻辑推理能力运算求解能力,求解时注意对数的运算法则的应用.15.①③【解析】【分析】根据双曲线离心率的范围可得两条渐近线夹角的范围,再根据直线与圆的位置关系及弦长,即可得答案;【详解】Q 2c b e a a==>⇒>∴60AOB ∠<o ,对①,根据向量加法的平行四边形法则,结合60AOB ∠<o ,可得||||OA OB OA OB →→→→-<+成立,故①正确;对②,||||OA OB AB →→-=u u u r ,由于60AOB ∠<o ,∴AOB ∠没有最大值,∴||AB u u u r 没有最大值, 故②错误;对③,当60AOB ∠=o 时,||||22cos30OA OB ==⋅=o ∴21||12122362OA OB OA OB →→+=++⋅⋅⋅=u u u r u u u r ,又Q 60AOB ∠<o ,∴2||36OA OB →→+>, ∴||6OA OB →→+>,故③正确;故答案为:①③.【点睛】本题考查向量与双曲线的交会、向量的数量积和模的运算,考查数形结合思想,考查逻辑推理能力、运算求解能力.16.(1)a =(2)选①,sin ADB ∠=sin ADB ∠= 【解析】【分析】(1)利用三角形的面积公式得1sin 2ABC S bc A ∆=,再利用余弦定理,即可得答案;(2)①当1AD =时,由正弦定理sin sin b BC B BAC =∠,可求得sin 7B =,再由ADB B ∠=∠,可求得答案;②当30︒∠=CAD 时,由余弦定理和诱导公式,可求得答案;【详解】(1) 由于 1c =,2π3A =,1sin 2ABC S bc A ∆=, 所以2b =,由余弦定理 2222cos a b c bc A =+-,解得a =(2)①当1AD =时,在ABC ∆中,由正弦定理sin sin b BC B BAC =∠,即2sin B =,所以sin 7B =. 因为1AD AB ==,所以ADB B ∠=∠.所以sin sin ADB B ∠=,即sin ADB ∠=. ②当30︒∠=CAD 时,在ABC ∆中,由余弦定理知,222cos2AB BC AC B AB BC +-===⋅. 因为120A ︒=,所以90DAB ︒∠=, 所以π2B ADB ∠+∠=, 所以sin cos ADB B ∠= ,即sin 7ADB ∠=. 【点睛】本题考查正余弦定理、三角形面积公式、诱导公式等知识的综合运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.17.(1)200m =;(2)分布列详见解析,数学期望为0.2;(3)用机构M 测试的不达标率0.1估计A 校不达标率较为合理,理由详见解析.【解析】【分析】(1)由频率分布直方图知,(0.0020.0020.006)1020m ⨯++⨯=,解方程可得m 的值; (2)由图知,每位学生成绩不低于90分的频率为0.0110=0.1⨯,由已知X 的所有可能取值为012,,,再根据二项分布,即可得答案; (3)机构M 抽测的不达标率为200.1200= ,机构N 抽测的不达标率为200.2100=,再从样本能否较好反映总体的分布情况说明理由.【详解】(1)由频率分布直方图知,(0.0020.0020.006)1020m ⨯++⨯=,解得200m =.(2)由图知,每位学生成绩不低于90分的频率为0.0110=0.1⨯ ,由已知,X 的所有可能取值为012,,, 则022(0)(10.1)0.81P X C ==⋅-=, 12(1)0.1(10.1)0.18P X C ==⋅⋅-=,222(2)0.10.01P X C ==⋅=.所以X 的分布列为所以=00.81+10.1820.010.2EX ⨯⨯+⨯=.(3)机构M 抽测的不达标率为200.1200= , 机构N 抽测的不达标率为200.2100=. (以下答案不唯一,只要写出理由即可)①用机构M 测试的不达标率0.1估计A 校不达标率较为合理.理由:机构M 选取样本时使用了分层抽样方法,样本量也大于机构N ,样本更有代表性,所以,能较好反映了总体的分布.②没有充足的理由否认机构N 的成绩更合理.理由:尽管机构N 的样本量比机构M 少,但由于样本的随机性,不能排除样本较好的反映了总体的分布,所以,没有充足的理由否认机构N 的成绩更合理.【点睛】本题考查频率分布直方图、二项分布、样本与总体的关系,考查数据处理能力,求解时注意在说理由时要根据统计的相关知识来回答.18.(1)详见解析;(2;(3)不存在,理由详见解析. 【解析】【分析】(1)取11A C 中点为P ,连结CP EP ,,证明//CP DE ,再利用线面平行判定定理,即可证得结论;(2)先证明1DC DA DB ,,两两垂直,再建立如图所示的空间直角坐标系D xyz -,求出平面1ACC 的法向量(11)n =-,r ,平面ABC 的法向量为1(00DC =,uuu u r ,再利用向量的夹角公式,即可得答案;(3)设111(01)A E A B λλ=≤≤uuu r uuu u r ,由10DE BC ⋅=u u u r u u u u r ,解得2λ=与假设矛盾,从而得到结论.【详解】(1)证明:取11A C 中点为P ,连结CP EP ,, 在111A B C ∆中,因为E P 、为1111A B AC 、的中点,所以11//EP B C 且1112EP B C =. 又因为D 是BC 的中点,12CD BC =, 所以//EP BC 且EP CD =,所以CDEP 为平行四边形所以//CP DE . 又因为DE ⊄平面11ACC A , .CP ⊂平面11ACC A ,所以//DE 平面11ACC A .(2)连结1C D AD 、,因为ABC ∆是等边三角形,D 是BC 的中点,所以AD BC ⊥,因为11BC AA CC ==,160BCC ∠=o ,所以1C D BC ⊥.因为平面ABC ⊥平面11BCC B ,平面ABC I 平面11BCC B BC =,1C D ⊂平面11BCC B ,所以1C D ⊥平面ABC ,所以1DC DA DB ,,两两垂直. 如图,建立空间直角坐标系D xyz -,则00)A ,,(010)C -,,,1(00C ,,1(01CC =u u u u r,10)CA =u u u r ,设平面1ACC 的法向量为()n x y z =,,r, 则100CC n CA n ⎧⋅=⎪⎨⋅=⎪⎩u u u u u r u r u r r ,即00y y ⎧=⎪+=,令1x =,则y =1z =,所以(11)n =,r . 平面ABC的法向量为1(00DC =,uuu u r ,111cos ||||DC n DC n DC n ⋅<>==⋅,uuu u r r uuu u r r uuu u r r . 又因为二面角11C CA B --为锐二面角,所以二面角11C CA B --. (3)11A,11(10)A B =uuu u r , 设111(01)A E A B λλ=≤≤uuu r uuu u r ,则1(0)A E λ=,,uuu r ,所以1E λ+,,1DE λ=+,uuu r ,所以1(01BC =-,uuu r ,假设1DE BC ⊥,则10DE BC ⋅=u u u r u u u u r ,解得2λ=,这与已知01λ≤≤矛盾.∴不存在点E .【点睛】本题考查线面平行判定定理的运用、向量法求二面角的大小及利用向量证明直线垂直,考查转化与化归思想,考查空间想象能力、运算求解能力.19.(1)22143x y +=;(2)详见解析. 【解析】【分析】(1)因为椭圆经过点(2,0),所以2a =,再根据离心率,即可求得椭圆的方程; (2)①若直线l 的斜率存在时,11(,)P x y ,22(,)Q x y ,:l y kx m =+,与椭圆方程联立,由OP OQ ⊥可得12120x x y y +=,从而得到,k m 的关系,结合点到直线的距离公式,可证明结论;②若直线l 的斜率不存在,则有1OP k =±,可证结论也成立.【详解】(1)因为椭圆经过点(2,0),所以2a =, 又因为12c a =,则1c =,由222b a c =-,得23b =, 所以椭圆的标准方程为22143x y +=. (2)①若直线l 的斜率存在时,设:l y kx m =+,与椭圆方程联立得:22143y kx m x y =+⎧⎪⎨+=⎪⎩,有222(34)84120k x kmx m +++-=, 由题意,>0∆,设11(,)P x y ,22(,)Q x y , 所以122843km x x k +=-+,212241243m x x k -=+.因为以PQ 为直径的圆过原点O ,由OP OQ ⊥,得 12120x x y y +=,即1212()0()x x kx m kx m +++=,整理得,2212(1)7k m +=, 而22222222211||||||||||||||||||OP OQ PQ OP OQ OP OQ OP OQ ++== 设h 为O 到l 的距离,则||||||OP OQ PQ h ⋅=⋅ 所以222111||||OP OQ h +=, 而h =, 所以2211||||OP OQ +=221712k m +=. ②若直线l 的斜率不存在,则有1OP k =±,不妨设1OP k =,设11(,)P x y ,有11x y =, 代入椭圆方程22143x y +=得,21127x =, 2224||||7OP OQ ==, 即2211772||||2412OP OQ +=⨯=, 综上22117||||12OP OQ +=. 【点睛】本题考查椭圆标准方程的求解、离心率的概念、椭圆中的定值问题,考查函数与方程思想,考查逻辑推理能力、运算求解能力,求解时注意对斜率进行讨论.20.(1)3450x y --=;(2)详见解析.【解析】【分析】(1)对函数进行求导,求出切线的斜率和切点坐标,即可得答案;(2)函数的定义域为(0,)+∞,要使函数()f x 有且只有一个零点,只需方程(1)ln 0x x ax +-=有且只有一个根,即只需关于x 的方程(1)ln 0x x a x+-=在(0)+∞,上有且只有一个解,利用导数可得函数(1)ln ()x x g x a x +=-在(0)+∞,单调递增,再利用零点存在定理,即可得答案;【详解】(1)当1a =时,函数()ln 1x f x x x =-+,0x >,1(1)2f =-, 222111()(1)(1)x x f x x x x x ++'=-=++,3(1)4k f '==, 所以函数()y f x =在点(1(1))f ,处的切线方程是3450x y --=.(2)函数的定义域为(0,)+∞,要使函数()f x 有且只有一个零点,只需方程(1)ln 0x x ax +-=有且只有一个根,即只需关于x 的方程(1)ln 0x x a x+-=在(0)+∞,上有且只有一个解. 设函数(1)ln ()x x g x a x+=-, 则21ln ()x x g x x +-'=, 令()1ln h x x x =+-, 则11()1x h x x x-'=-=, 由()0h x '=,得1x =.由于min ()(1)20h x h ==>, 所以()0g x '>,所以(1)ln ()x xg x a x+=-在(0,)+∞上单调递增, 又(1)g a =-,(e )eaa a g =,①当0a =时, (1)0g =,函数()g x 在(0,)+∞有且只有一个零点,②当0a ≠时,由于2(1)(e )0eaa a g g =-<,所以存在唯一零点.综上所述,对任意的a ∈R 函数()y f x =有且只有一个零点. 【点睛】本题考查导数的几何意义、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,求解时注意对函数进行二次求导的运用.21.(1){17,9,10,18,20}A =,()9m A =,()20n A =;(2)详见解析;(3)()m A 的最大值为17, ()n A 的最小值为16. 【解析】 【分析】(1)由题意易得{17,9,10,18,20}A =,()9m A =,()20n A =.(2)利用反证法,假设()18m A ≥,可推出11a =,101a =这一集合元素互异性的矛盾; (3)首先求()m A ,由(2)知()18m A <,而()17m A =是可能的;再证明:()n A 的最小值为16. 【详解】(1)由题意易得{17,9,10,18,20}A =,()9m A =,()20n A =. (2)证明:假设()18m A ≥,设S =12345678910()()()55a a a a a a a a a a +++++++++=, 则10553()S m A a =+≥=10318a ⨯+,即101a ≤,因为1(1,2,3,,10)i a i =L ≥,所以101a =,同理,设S =12345678910()()()55a a a a a a a a a a +++++++++=,可以推出11a =,i a (1,2,,10)i =L 中有两个元素为1,与题设矛盾,故假设不成立,()m A 不可能为18.(3)()m A 的最大值为17,()n A 的最小值为16.①首先求()m A ,由(2)知()18m A <,而()17m A =是可能的. 当()17m A =时,设S =12345678910()()()55a a a a a a a a a a +++++++++= 则10553()S m A a =+≥=10317a ⨯+即104a ≤,又S =12345678910()()()55a a a a a a a a a a +++++++++= 得77553()51S m A a a =+=+≥,即74a ≤. 同理可得:4(1,4,7,10)i a i =≤. 对于数列:1,6,10,2,7,8,3,9,5,4此时{17,18,19,20}A =,()17()20m A n A ==,,满足题意. 所以()m A 的最大值为17; ②现证明:()n A 的最小值为16.先证明()15n A ≤为不可能的,假设()15n A ≤. 设S =12345678910()()()55a a a a a a a a a a +++++++++=,可得11553()315n A a a +⨯+≤≤,即110a ≥,元素最大值为10,所以110a =. 又12345678910()()()55a a a a a a a a a a +++++++++=443()315n A a a +⨯+≤≤, 同理可以推出410a =,矛盾,假设不成立,所以()16n A ≥. 数列为:7,6,2,8,3,4,9,1,5,10时,{13,14,15,16}A =,()13()16m A n A ==,,A 中元素的最大值为16.所以()n A 的最小值为16. 【点睛】本题考查集合的新定义和反证法的运用,考查反证法的证明,考查逻辑推理能力、运算求解能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 17 页 北京市2020届高三入学模拟摸底考试数学(理)试题 说明:本试卷共三道大题20道小题,共4页,满分150分,考试时间120分钟;考生务必按要求将答案答在答题纸上.在试卷上作答无效.
一、选择题(本大题共8道小题,每小题5分,共40分.在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母按规定要求填涂在“答题纸”第1-8题的相应位置上.)
(1)已知集合2{20}A x x x =-≤,{1,0,1,2}B =-,则A B =I
(A ){-1,0,1} (B ){1,0,2}- (C ){0,1,2} (D ){02}A x x =≤≤
(2)下列函数中,与函数y
定义域相同的函数为 (A )y =1sin x (B )y =ln x x (C )y =x e x (D )y =sin x x
(3)已知a ÎR 且0a ¹,则“11<a
”是 “a >1”的 (A )充分不必要条件 (B )必要不充分条件
(C )充要条件 (D )既不充分也不必要条件
(4)一个几何体的三视图如图所示,则该几何体的表面积为
(A )4+ 2
(B )5+ 2 (C )7+ 2
(D )8+ 2
(5)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c
,已知,23A a b π
===则c =
(A )4 (B )3 (C )3+1 (D ) 3
(6)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,长度单位不变,建立
极坐标系,已知曲线C 的极坐标方程为ρcos(θ-π3
)=1,M ,N 分别为曲线C 与x 轴、y 轴的交点,则MN 的中点的极坐标为
(A )⎝⎛⎭⎫1,33 (B )⎝⎛⎭⎫233,π6
(C )33π⎛⎫ ⎪ ⎪⎝⎭,
(D )23⎛ ⎝⎭
, (7)若函数f (x )=x 2+ax +2b 在区间(0,1),(1,2)内各有一个零点,则a 2+(b -2)2的取值范围是 (A )(5,10) (B )(5,10) (C )(0,5)
(D )(0,10)。