PKPM计算结果,PKPM计算书合理性判定
结构设计pkpm软件SATWE计算结果分析
结构设计pkpm软件SATWE计算结果分析分析与设计参数定义一.总信息1.墙元细分最大控制长度:墙元细分时需要的一个参数,对于尺寸较大的剪力墙,小墙元的边长不得大于给定的限制Dmax,程序限定1.0≤Dmax≤5.0,隐含值Dmax=2.0,Dmax=2.0.对一般工程,Dmax=2.0对于框支剪力墙结构,Dmax=1.5或者1.02.对搜有楼层强制采用刚性楼板假定当计算结构位移比时,需要选择此项。
除了位移比计算,其他的结构分析,设计不应选择此项。
3.墙元侧向节点信息这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”墙元的变形协调性好,分析结果符合剪力墙的实际,但计算量较大。
若选“内部”,这时带洞口的墙元两侧边中部的节点为变形不协调点,是对剪力墙的一种简化模拟,精度略逊于前者,但效率高,实用性好,计算量比前者少。
多层结构—(剪力墙较少,工程规模相对较小)选---出口高层结构—内部4.模拟施工加载3计算竖向力,采用分层刚度分层加载模型,与模拟施工加载1类似,只是在分层加载时去掉了没有用的刚度,使其更接近于施工过程。
计算恒载。
5.考虑偶然偏心如果考虑偶然偏心,程序将自动增加计算4个地震工况,分别是质心沿Y正、负向偏移5%的X地震和质心沿X正、负向偏移5%的Y 地震。
6.考虑双向地震作用若考虑,程序自动对X,Y的地震作用效应Sx,Sy进行修改。
Sx←sign(Sx)√Sx2+(0.85Sy)2Sy←sign(Sy)√Sy2+(0.85Sx)27.计算振型个数一般计算振型数应大于9 ,多塔结构多一些。
但是一个规则的两层结构,采用刚性楼板假定,每块刚性楼板只有三个有效动力自由度,整个结构共有6个有效动力自由度,系统自身只有6个特征值,最多取6个8.活荷质量折减系数计算重力荷载代表值时的活荷载组合值系数,缺省取值与荷载组合中的活荷载组合值系数相同(一般为0.5),如果用户需要,也可以自己修改。
9.周期折减系数为了充分考虑框架结构和框架-剪力墙结构的填充墙刚度对计算周期的影响。
2011.4.15PKPM计算结果的判断和调整-2011
3、出现软弱层、薄弱层的处理
1)高规5.1.14、抗规3.4.4.2 地震力放大1.15
(竖向构件不连续乘1.25~2.0) 2)符合抗规5.5.2条或高规5.5.1条,进行薄 弱层弹塑性验算(satwe可以对12层以下框 架结构自动进行弹塑性验算,结果在satk.out下)
4、周期比
高规 4.3.5 结构扭转为主的第一自振周期Tt
与平动为主的第一自振周期T1之比,A级高 度高层建筑不应大于0.9,B级高度高层建 筑、混合结构高层建筑及本规程第10章所 指的复杂高层建筑不应大于0.85。
该值反映的是结构本身的抗扭能力问题。
有时结构本身是规则的,但是由于主要抗 侧力构件布置不合理,导致扭转周期比较 大,比如框架-核心筒。
该值较大时,结构的扭转效应会加大。
层间位移角的控制: 框架: 1/550 框-剪:1/800 剪力墙:1/1000 少墙框架:按框架承担的底部倾覆力矩比在框 -剪和框架间插值。(少墙框架尚应按框架和 框-剪两种模型包络设计) 上海规范补充规定:剪力墙底层:1/2500 框-剪底层:1/2000 (上述指标不需考虑偶然偏心的影响 高规4.6.3 条)
梁高改变柱子刚度、改变连梁高度调整剪 力墙刚度、设置水平伸臂构件等均可改变 竖向体系的性能。
1、周期
1)周期是判断结构是否合理的主要指标。 2)根据经验,各种结构非耦连计算的合理
第一周期如下: 框架结构:T1=(0.1~0.15)n 框架—剪力墙和框架—核心筒结构:T1= (0.08~0.12)n 剪力墙结构: T1= (0.04~0.08)n 和筒中筒结构: T1= (0.06~0.10)n 式中n—结构层数,周期为程序计算周期
3、对应的抗倾覆弯矩Mr/倾覆弯矩Mov分别
浅谈PKPM软件的合理应用技巧与计算结果的分析(精)
甘肃科技纵横2006年(第35卷第3期摘要:阐述结构计算中的模型的选取,设计参数的合理选取,地震调整,结构整体性能的控制,计算结果正确性的判断关键词:模型选取设计参数地震调整控制随着经济的发展建筑结构造型多变、高层建筑的发展及新规范全面颁布,合理的应用计算机软件使选择参数更符合规范条文及实际工程就变得尤为重要。
1.1“分缝结构”与“多塔结构”的区别1.1.1多塔结构同一个结构的基体上沿高度伸出几个部分,这几个部分拥有相同的底部,而上部却有各自的独立的变形,而且各独立体的四周都有独立的迎风面。
1.1.2对于大底盘多塔结构在计算时,应该考虑两种模型(a 内力分析时如果把裙房部分按塔的形式切开计算,则下部裙房计算误差较大,且各塔间的相互影响无法考虑。
因此,宜采用整体建模。
(b 多塔结构适用规范条文的应注意:第一扭转周期与第一平动周期比值限值、最大位移与平均位移比值的限值时,对多塔结构特别注意,目前程序结果是不对的,不能直接采用,必须将多塔结构分开建模分别计算,方可判断两者的比值。
1.1.3分缝结构就是指将一个不规则或超长结构采用抗震缝、伸缩缝分为几个相对独立的结构,对于分缝建筑,其上每个部分有独立的变形,但没有独立的迎风面。
1.1.4对分缝结构,最好是将分缝结构的各块分开建模分开计算1.2有关高层建筑超限审查的规定建设部第111号令2002年7月25日颁发《超限高层建筑工程抗震设防管理规定》,规定超限高层建筑并规程规定应当进行抗震专项审查的高层建筑。
注意:取消了对于高宽比超限时审查的要求。
高层建筑的高宽比,是对结构刚度、整体稳定及经济合理性的宏观控制。
2.1抗震等级确定(1规范中抗震等级均指"丙"类建筑,如果是"甲"、"乙"、"丁"则需按规范要求对抗震等级进行调整:例如医院。
(2接近或等于高度分界时,应结合房屋不规则程度及场地、地基条件适当确定抗震等级:(3当转换层的位置设置在3层及3层以上时,其框支柱、剪力墙底部加强部位的抗震墙等级宜按《抗规》6.1.2条或《高规》4.8条查得的抗震等级提高一级采用,已为特一级时可不再提高。
必须检查的PKPM计算结果输出信息
必须检查的PKPM计算结果输出信息PKPM(平面剪力墙结构设计与计算软件)是一种常用的建筑结构设计和分析软件,主要用于计算平面剪力墙结构的受力性能和稳定性。
在进行PKPM计算时,输出的信息对于工程师和设计师来说非常重要,以下是一些必须检查的PKPM计算结果输出信息:1.结构受力情况:PKPM可以输出各个构件(如墙体、柱子、梁等)的受力情况,包括受力大小和受力位置。
这对于工程师来说非常重要,可以帮助他们判断结构的承载能力和是否满足设计要求。
2.结构位移:PKPM可以计算和输出结构的位移情况,包括水平位移和垂直位移。
这对于工程师来说非常重要,可以帮助他们判断结构的变形程度和是否满足使用要求。
3.结构刚度:PKPM可以计算和输出结构的刚度,包括全局刚度和局部刚度。
这对于工程师来说非常重要,可以帮助他们判断结构的抗震性能和稳定性。
4.配筋设计:PKPM可以根据结构的受力情况和构件的尺寸要求,计算并输出结构的配筋设计方案。
这对于设计师来说非常重要,可以帮助他们确定适当的钢筋尺寸和数量,以满足结构的强度要求。
5.结构荷载:PKPM可以计算和输出结构的荷载情况,包括静力荷载和动力荷载。
这对于工程师来说非常重要,可以帮助他们确定结构受力状态和是否满足设计要求。
6.结构稳定性:PKPM可以计算和输出结构的稳定性分析结果,包括反力、剪力、扭矩和弯矩等。
这对于工程师来说非常重要,可以帮助他们判断结构的稳定性和是否满足设计要求。
7.结构抗震性能:PKPM可以计算和输出结构的抗震性能,包括层间位移、层间剪力和楼房位移等。
这对于工程师来说非常重要,可以帮助他们评估结构的抗震性能和是否满足设计要求。
8.结构动力特性:PKPM可以计算和输出结构的动力特性,包括周期、振动模态和阻尼比等。
这对于工程师来说非常重要,可以帮助他们评估结构的动力响应和抗震设防水平。
9.结构破坏模式:PKPM可以预测和输出结构的破坏模式,包括剪力破坏、弯剪破坏和压弯破坏等。
PKPM计算结果的分析
PKPM计算结果的分析PKPM(全称:Profile and Kinematic Program Analysis)是一种结构分析软件工具,广泛用于建筑、桥梁、隧道和其他工程结构的分析和设计。
PKPM可以通过计算和分析来评估结构的稳定性、承载能力和变形性能。
在进行PKPM计算结果的分析时,我们可以考虑以下几个方面:1.结构的稳定性分析:PKPM通过计算结构在施加荷载时的内力和变形来评估结构的稳定性。
可以通过分析结果来判断结构是否满足设计要求,并识别可能的问题。
例如,当工程结构承受荷载时,PKPM可以计算各个零件的受力情况,以评估结构的抗压、抗弯和抗剪性能。
2.承载能力分析:PKPM可以计算结构在不同荷载作用下的极限承载能力,包括总荷载和局部荷载。
通过分析结果,可以评估结构是否能够承受实际工作条件下的荷载,并确定需要采取的增强措施。
3.变形性能分析:PKPM可以计算结构在施加荷载时的变形情况,包括整体变形和零件之间的相对位移。
通过分析结果,可以确定结构的变形情况是否满足设计要求,并识别可能的变形问题。
例如,在桥梁设计中,可以通过PKPM计算桥梁在车辆通过时的变形情况,以评估是否会产生超限振动和不平顺。
4.材料和构件的应力分析:PKPM可以计算结构中各个构件和材料的应力值,包括混凝土、钢筋等。
通过分析结果,可以评估结构中各个构件的应力是否满足设计要求,并优化构件的尺寸和材料选择。
5.倒塌分析和安全系数计算:PKPM可以通过分析结构在极限工况下的力学行为来评估结构的安全系数,并识别潜在的倒塌风险。
通过该分析结果,可以确定是否需要采取进一步的加固措施以提高结构的安全性。
总之,PKPM计算结果的分析涉及结构的稳定性、承载能力、变形性能、应力分析、倒塌分析等多个方面,这些分析结果将为工程师提供关于结构设计和加固的重要信息,以确保结构的安全和性能满足设计要求。
PKPM-SATWE输出结果的合理性判断与调整
7 输出结果的合理性判断与调整目前用于高层建筑结构分析的软件种类繁多,不同软件往往会导致不同的计算结果。
因此设计人员应对程序的适用范围、技术条件等全面了解。
在计算机辅助设计时,由于程序与结构某处实际情况不符,或人工输入有误,或软件本身有缺陷均会导致错误的计算结果,因而要求设计人必须对这些结果从力学概念和工程经验等方面加以认真分析对比、慎重校核,确认其合理性和可靠性,方可用于工程设计。
分析判断的内容一般包括:(1)结构整体性能方面,如结构自振周期和振型形态、结构整体位移和位移形态、楼层剪力、刚度等是否超限,合理。
(2)局部超限,主要是构件配筋超筋和截面尺寸超应力控制等情况。
对受力复杂的构件(如异型、转换、越层、悬挑和有特殊荷载的构件),其内力和应力分布是否与力学概念、工程经验一致等。
结构整体性能的超限处理,一般需要调整结构布置,局部超限的处理则需要通过调整构件材料和截面尺寸来实现。
4.7.1 周期周期输出结果文件(WZQ.OUT)中给出了振型号及其对应的自振周期、振动方向角、平动系数和扭转系数。
对周期的合理性分析主要从以下三方面来考虑:(A)基本自振周期的大小按正常的设计,一般高层建筑结构的基本自振周期大概在下列范围内:框架结构:T1=(0.08~0.10)n;框架-剪力墙和框架-核心筒结构:T1=(0.06~0.08)n;筒中筒和剪力墙结构:T1=(0.05~0.06)n,式中n为结构层数。
(B)第一周期是平动振动周期根据《高规》的规定,高层建筑结构必须考虑扭转的影响。
一个周期是平动振动周期还是扭转振动周期,可以通过扭转系数来判定。
若扭转系数等于1,则说明该周期为纯扭转振动周期;若平动系数等于1,则说明该周期为纯平动振动周期,其振动方向角为α(与x方向的夹角)。
α=0°时,则为x方向的平动;α=90°时,则为y方向的平动;0°<α<90°时,为沿方向角α 的空间振动。
pkpm软件计算结果审查分析_secret分析
PKPM软件计算结果审查分析Senegal 2011-20/11计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。
对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。
一、计算结果合理性判定1、对重力荷载作用下计算结果的分析审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。
当以上三者出现异常情况时,需要返回原始数据进行检查。
2、对风荷载作用下计算结果的分析审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。
3、对水平地震荷载作用下计算结果的分析水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。
水平地震荷载作用下,对其计算结果的分析重点如下。
3.1.结构的自振周期对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。
如结构的基本自振周期(即第一周期)大致为:框架结构T1≈ ( 0.12~0.15) n框-剪和框-筒结构T1≈ ( 0.08~0.12) n剪力墙和筒中筒结构 T1≈(0.04~0.06)n式中,n为建筑物的总层数。
如何判断PKPM电算结果的正确性
对于梁和扳,在出来电算结果以后,我一般采用手算结构中一些比较重要的地方,采用公式As=M/(fy*h0),在这儿漏算了γs,我一般是算出配筋面积以后,再除以,,三个数字(因为大部分情况下γs在1 和之间),算出结果以后与电算结果进行比较,如果相差不大,则认同电算结果,我通过很多次计算发现一般情况下是电算结果远远小于手算结果(如果电算结果真的有错的话),这种情况一般是电算过程中计算机漏算了荷载,或者与个人计算参数设置有误有关。
我们一般都是要校核软件的配筋系统的,很多情况下,软件的计算出的内力和配筋量是没有什么问题的,可是在配筋时容易出错。
最好根据配筋面积图和配筋图校核一下!要从两个方面判断:1、合理性。
1)周期、振型和地震力。
非耦联计算地震作用时,其第一周期一般在以下范围内:框架结构 T1=~;框剪结构 T1=~;剪力墙结构 T1=~。
其中N为计算层数(N≤40)振型曲线光滑连续,零点位置符合一般规律。
2)位移位移曲线应上下渐变,不应出现较大的突变,位移值满足规范要求。
3)构件配筋的合理性。
满足构造要求,最小配筋率,箍筋肢距,梁加腰筋等。
2、平衡性。
分析在单一重力荷载或风荷载作用下内外力平衡条件是否满足。
画图的话应该自己参照配筋计算出来的面积自己画,计算机出的图比较不可靠!要特别注意一下挑梁,大跨度梁的配筋。
首先,要保证结构模型和实际相符,如底层结构高度、铰接梁和框架角柱等特殊构件定义等其次,复核输入的荷载,如建筑隔墙、电梯吊钩、空调基座、消防水箱和特殊房间荷载等第三,计算参数必须逐一复核,使之和实际相符,详pkpm使用手册第四,判断电算结果的正确性:下述9大指标全部pass的话,整个结构方案应是合理的1、轴压比;2、剪重比;3、刚度比;4、位移比;5、周期比;6、刚重比;7、参与振动质量比;8、倾覆力矩比;9、楼层最大位移与层高之比具体规范条文详后附件最后,有目的的手工复核一些特殊构件:柱轴压比、较大跨度的梁、上部栽柱的梁等另外,“三分计算,七分构造”,对楼板大洞口周边梁板、转角窗房间楼板、不能贯通框架梁之间楼板、楼梯间休息平台梁处短柱、地下室顶板、大底盘顶板等电算结果反映不出来的部位只能通过构造措施加强,使之和计算模型相符这篇文章可以参考:高层建筑结构布置复杂,构件很多,计算后数据输出量很大,如何对计算结果进行分析是非常重要的问题。
PKPM结果合理性判定
PKPM结果合理性判定原文地址:PKPM结果合理性判定作者:kobeduan1.检查原始数据是否有误,特别是是否遗漏荷载;2.计算简图是否与实际相符,计算程序是否选则正确3。
7大指标判定:(1).柱及剪力墙轴压比是否满足要求,主要为控制结构延性;见抗规6.3.7和6.4.6(2).剪重比:主要为控制各楼层最小地震剪力,确保结构安全性;见抗规5.2.5剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系数取0.2amax”,由此可据《抗规》表5.1.4-1推算出各地震列度下的剪力系数:9度为0.2*0.32=0.064,8度为0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为0.2*0.04=0.008。
在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。
即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。
剪重比主要是考虑基本周期大于3s的长周期结构。
地震对于此类结构的破坏相比短周期的结构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪重比的原因。
另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的 1.15倍。
在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调整的信息,多看看这一信息,对剪重比的理解会更深刻.注意剪重比和剪压比是两个截然不同的概念,不可混淆。
PKPM计算结果正确性的大致判别
PKPM计算结果正确性的大致判别结构CAD毕竟是一个辅助设计工具,智能化功能很弱,在概念设计、计算模型选择、结果分析等方面必须由设计人员来做,而且结构CAD也会有漏洞、出错,这在软件工程理论来说是不可避免的,因而还需要校审把关。
如果设计人员不考虑计算模型是否适用,不考虑计算结果是否合理,不检查输入数据是否正确,一味迷信计算机是很危险的。
因为高层建筑结构复杂,构件多,计算后数据输出量很大,如何对计算结果进行分析是非常重要的问题,上机计算并不能保证计算结果一定正确,设计人员必须要对计算结果进行分析,判断其正确性。
计算结果产生错误的原因大致有两方面:一方面是程序的计算模型和假定与工程的实际情况是否对应;另一方面输入数据错误:一个工程要准备成千上万条原始数据,虽经多方校对,也难保证不出错误。
查看SSW计算结果总信息。
对计算结果分析可按以下项目进行:⒈自振周期:在文件中,依次给出所有周期或先X后Y。
按正常的设计,大量工程的自振周期大约在下列范围(未考虑周期折减的计算值)。
第一周期即基本自振周期为:框架结构: T1=(0.12~0.15)n框剪框筒结构: T1=(0.08~0.12)n剪力墙筒中筒结构 T1=(0.04~0.05)n中给H为EK式中 FEK—结构底部水平地震作用标准值。
G —建筑物总质量。
文件中层数多,刚度小时FEK 偏于较小值;层数少,刚度大时FEK趋于较大值。
当计算的地震作用小于上述的下限,宜适当加大结构的截面尺寸,提高结构的刚度,使设计地震作用不至太小而不安全;当计算的地震作用大于上述的上限太多,宜适当减小结构的截面尺寸,降低结构的刚度,使结构设计比较经济合理。
一般情况下,按振型分解法计得的结构底部剪力小于底部剪力法求得的数值。
只有在结构刚度质量沿竖向变化很大,很不均匀时,才会出现振型组合法计算结果较大的现象。
通常,采用振型分解方法计算水平地震作用时,第一振型的底部剪力V01大于第二振型的底部剪力V02;第二振型的底部剪力V02大于第三振型的底部剪力V03。
pkpm参数详解
pkpm参数详解08PKPM参数详解第一章 SATWE参数合理选取一.总信息1.水平力与整体坐标夹角:地震力、风荷载作用方向与整体坐标的夹角,需按该夹角重新计算地震力、风荷载,程序自动按照输入的方向进行水平力的计算(建议取0,输入角度验算)。
2.裙房层数:裙房层数应包含地下室层数。
3.转换层层号:转换层层号应包含地下室层数。
4.墙元细分最大控制长度:1.0~5.0,缺省值2.0(一般工程),对于框支剪力墙和短肢剪力墙取1.5.5.对所有楼层采用刚性板假定:仅在计算位移比时采用。
6.墙元侧向节点信息“内部节点”(效率高)、“出口节点”(精度高)如何选择:如无特殊要求均可采用“内部节点”。
7.恒活荷载计算信息:模拟施工1(往往无法满足各点弯矩平衡条件)、模拟施工3(更符合工程实际)。
二.风荷载信息1.修正后的基本风压:指考虑地点和环境的影响,如沿海地区和强风地带等把基本风压放大1.1或1.2倍。
(不需乘以风高变化系数和风振系数,程序会自动考虑)。
2.结构基本周期:用于计算风荷载中的风振系数用的,先按缺省值计算,计算完后再将程序输出的第一平动周期值填入即可。
3.设缝多塔背风面体型系数:程序允许设计人员指定各塔的挡风面体型系数通常取0.5(不能取0,否则无法考虑挡风面的影响)。
三.地震信息1.“偶然偏心”和“双向地震作用”:总是先选择偶然偏心,当位移比大于1.2时考虑双向地震作用,如同时选择程序自动选择较大值计算而非叠加。
2.计算振型个数:振型组合数保证质量有效系数不小于0.9,如果振型组合数已经很大,有效质量系数仍不满足要求,应分析原因,考虑结构方案是否合理。
3.活荷载质量折减系数:“抗震规范”5.1.3条,一般情况该值与活荷载组合值系数相同,但建筑各层使用功能不同时,设计人员必须多次计算才行。
4.周期折减系数:“高规”3.3.16条,框架结构0.6~0.7(填充墙较多)、0.7~0.8(填充墙较少)、框剪结构0.8~0.9、纯剪力墙结构不折减。
PKPM判断确定整体结构的合理性
运用PKPM判断确定整体结构的合理性整体结构的科学性和合理性是新规范特别强调内容。
新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。
(1)周期比:是控制结构扭转效应的重要指标。
它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。
也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。
《高规》第4.3.5条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。
如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。
设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。
以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列。
同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。
验算周期比的目的,主要是为了控制结构在罕遇大震下的扭转效应。
如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。
所以一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。
PKPM计算结果分析及调整方法
PKPM计算结果分析及调整方法摘要:PKPM是目前在国内设计行业应用最为普遍的CAD系统,拥有用户上万家,市场占有率达90%以上,它紧跟行业需求和规范更新,及时满足了我国建筑行业快速发展的需要,显著提高了设计效率和质量。
在该程序使用过程中,设计人员应注意对计算机的后处理结果和中间计算结果认真分析并做相应调整,不能盲目直接采用和出图,这既有利于保证设计项目的产品质量也有利于提高设计人员的专业水平。
关键词: PKPM计算结果,分析,调整1、对输入的各种参数和原始数据进行检查比较,核对模型与分析图进行整体分析。
包括系统总信息,楼层信息,各层等效尺寸,层塔属性,工况信息等。
核查结构质量分布,楼层质量沿高度宜均匀分布,楼层质量不宜大于相邻下部楼层的1.5倍。
2、审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。
3、复核风荷载作用下的内力图和位移是否符合受力规律;如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大的突变。
4、核查立面规则性的相关数据。
高规3.5.3条规定,A级高度高层建筑的楼层抗侧力结构的层间受剪承载力不宜小于其相邻上一层受剪承载力的80%,不应小于其相邻上一层受剪承载力的65%;B级高度高层建筑的楼层抗侧力结构的层间受剪承载力不应小于其相邻上一层受剪承载力的75%。
5、抗震分析和调整方法5.1、轴压比:柱(墙)轴压比N/(fcA)是指柱(墙)轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比。
主要为控制结构的延性,为了使墙柱具有很好的延性和耗能能力,规范采取的措施之一就是限制轴压比,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5。
定义。
轴压比不满足情况下,可以增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
pkpm计算结果判断与分析
结构休系Δu/h限值
框架1/550
框架-剪力墙,框架-核心筒1/800
筒中筒,剪力墙1/1000
框支层1/1000
名词释义:
(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
Ratio-Dx,Ratio-Dy :最大层间位移与平均层间位移的比值
即要求:
Ratio-(X)= Max-(X)/ Ave-(X)最好<1.2不能超过1.5
Ratio-Dx= Max-Dx/ Ave-Dx最好<1.2不能超过1.5
Y方向相同
电算结果的判别与调整要点:
1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;
振型号周期转角平动系数(X+Y)扭转系数
1 0.6306 110.18 0.99 ( 0.12+0.88 ) 0.01
2 0.6144 21.19 0.95 ( 0.82+0.12 ) 0.05
3 0.4248 2.39 0.06 ( 0.06+0.00 ) 0.94
4 0.1876 174.52 0.96 ( 0.95+0.01 ) 0.04
结构位移输出文件(WDISP.OUT)
Max-(X)、Max-(Y)----最大X、Y向位移。(mm)
Ave-(X)、Ave-(Y)----X、Y平均位移。(mm)
Max-Dx,Max-Dy : X,Y方向的最大层间位移
Ave-Dx,Ave-Dy : X,Y方向的平均层间位移
Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。
PKPM计算结果的分析
计算机的后处理结果,即最终打印结果指内力图、配筋图和详细的内力及配筋表(按构件编号依次输出),有抗震计算时还输出中间分析结果(如自震周期、振型、位移、底部总剪力等)设计人应认真对最终打印结果进行分析,确认无误或无异常情况后再绘制施工图,必要时应将最终确定的构件编号、构件截面和配筋数量、规格绘制成简单的平面图,供校核审定和归档用。
对最终打印结果不进行分析,盲目采用其配筋直接绘制施工图的做法是不可取的,往往会造成不良的严重后果,既对工程不负责任、有不利于提高自己的设计水平。
一、整体分析一、对重力荷载作用下计算结果的分析审查重力荷载作用下的内力图是否符合受力规律;可以利用结构底层检查竖向内外力的平衡,即底层柱、墙在重力荷载作用下的轴力之和应等于总重量;如果结构对称、荷载对称,其结构内力图必然对称,即检查其对称性。
当以上三者出现异常情况时,需要返回原始数据进行检查。
二、对风荷载作用下计算结果的分析审查风荷载作用下的内力图和位移是否符合受力规律;可以利用结构底层检查侧向内外力的平衡,即底层柱、墙在风荷载作用下的剪力之和应等于全部风力值(需注意局部坐标与整体坐标的方向);如果结构沿竖向的刚度变化较均匀、且风荷载沿高度的变化也较均匀时,其结构的内力和位移沿高度的变化也应该是均匀的,不应有大正大负、大出大进等突变。
三、对水平地震荷载作用下计算结果的分析水平地震荷载作用下,可以利用其结果进行如同风荷载作用下的渐变性分析,但不能进行对称性分析,也不能利用结构底层进行内外力平衡的分析(因为振型组合后的内力与地震作用力不再平衡)。
水平地震荷载作用下,对其计算结果的分析重点如下。
1.结构的自振周期对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的范围内。
如结构的基本自振周期(即第一周期)大致为:框架结构T1≈ ( 0.12~0.15) n框-剪和框-筒结构T1≈ ( 0.08~0.12) n剪力墙和筒中筒结构T1≈(0.04~0.06)n式中,n为建筑物的总层数。
结构设计pkpm软件SATWE计算结果分析报告
学习笔记PMCAD中--进入建筑模型与荷载输入:板荷:点《楼面恒载》会有对话框出来,选上自动计算现浇楼板自重,然后在恒载和活载项输入数值即可,一般恒载要看楼面的做法,比如有抹灰,找平,瓷砖,吊顶什么的,在民用建筑中可以输2.0,活载就是查荷载规范。
梁间荷载:PKPM中梁的自重是自己导入的,所以梁间荷载是指梁上有隔墙或者幕墙或者女儿墙之内在建模时不建的构建,把他们折算成均布荷载就行。
比如,一根梁上有隔墙,墙厚200mm,层高3000mm,梁高500mm,如果隔墙自重为11KN/m3,那么恒载为11*(3000-500)*200+墙上抹灰的自重什么的即可。
结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架1/550框架-剪力墙,框架-核心筒1/800筒中筒,剪力墙1/1000框支层1/1000 名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。
(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。
其中:最大水平位移:墙顶、柱顶节点的最大水平位移。
平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。
层间位移角:墙、柱层间位移与层高的比值。
最大层间位移角:墙、柱层间位移角的最大值。
平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。
控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。
PKPM计算结果分析-
计算文件分析基本情况:框剪结构(带转换层,地上十二层(38m,地下一层,其他基本情况如下: ///////////////////////////////////////////////////////////////////////////| 公司名称: || || 建筑结构的总信息|| SA TWE 中文版|| 文件名: WMASS.OUT || ||工程名称: 设计人: ||工程代号: 校核人: 日期:2006/ 5/25 |///////////////////////////////////////////////////////////////////////////总信息..............................................结构材料信息: 钢砼结构混凝土容重(kN/m3: Gc = 27.00钢材容重(kN/m3: Gs = 78.00水平力的夹角(Rad: ARF = 0.00地下室层数: MBASE= 1竖向荷载计算信息: 按模拟施工加荷计算方式风荷载计算信息: 计算X,Y两个方向的风荷载地震力计算信息: 计算X,Y两个方向的地震力特殊荷载计算信息: 不计算结构类别: 框架-剪力墙结构裙房层数: MANNEX= 0转换层所在层号:MCHANGE= 2墙元细分最大控制长度(m DMAX= 2.00墙元侧向节点信息: 出口节点是否对全楼强制采用刚性楼板假定否采用的楼层刚度算法层间剪力比层间位移算法结构所在地区全国风荷载信息..........................................修正后的基本风压(kN/m2: WO = 0.45地面粗糙程度: B 类结构基本周期(秒: T1 = 0.49体形变化分段数: MPART= 3各段最高层号: NSTi = 1 2 13各段体形系数: USi = 1.30 1.30 1.30地震信息............................................振型组合方法(CQC耦联;SRSS非耦联 CQC计算振型数: NMODE= 15地震烈度: NAF = 6.00场地类别: KD = 3设计地震分组: 一组特征周期TG = 0.45多遇地震影响系数最大值Rmax1 = 0.04罕遇地震影响系数最大值Rmax2 = 0.50 框架的抗震等级: NF = 3 剪力墙的抗震等级: NW = 4 活荷质量折减系数: RMC = 0.50 周期折减系数: TC = 0.80 结构的阻尼比(%: DAMP = 5.00 是否考虑偶然偏心: 是是否考虑双向地震扭转效应: 否斜交抗侧力构件方向的附加地震数= 0活荷载信息..........................................考虑活荷不利布置的层数不考虑柱、墙活荷载是否折减不折算传到基础的活荷载是否折减折算------------柱,墙,基础活荷载折减系数-------------计算截面以上的层数---------------折减系数1 1.002---3 0.854---5 0.706---8 0.659---20 0.60> 20 0.55调整信息........................................中梁刚度增大系数:BK = 1.50 梁端弯矩调幅系数:BT = 0.85梁设计弯矩增大系数:BM = 1.10 连梁刚度折减系数:BLZ = 0.70 梁扭矩折减系数:TB = 0.40全楼地震力放大系数:RSF = 1.00 0.2Qo 调整起始层号:KQ1 = 0 0.2Qo 调整终止层号:KQ2 = 0 顶塔楼内力放大起算层号:NTL = 13 顶塔楼内力放大:RTL = 1.50配筋信息........................................梁主筋强度(N/mm2: IB = 300柱主筋强度(N/mm2: IC = 300墙主筋强度(N/mm2: IW = 210 梁箍筋强度(N/mm2: JB = 210柱箍筋强度(N/mm2: JC = 210墙分布筋强度(N/mm2: JWH = 210 梁箍筋最大间距(mm: SB = 100.00柱箍筋最大间距(mm: SC = 100.00墙水平分布筋最大间距(mm: SWH = 200.00墙竖向筋分布最小配筋率(%: RWV = 0.30单独指定墙竖向分布筋配筋率的层数: NSW = 0 单独指定的墙竖向分布筋配筋率(%: RWV1 = 0.60 设计信息........................................结构重要性系数: RWO = 1.00柱计算长度计算原则: 有侧移梁柱重叠部分简化: 不作为刚域是否考虑P-Delt 效应:否柱配筋计算原则: 按单偏压计算钢构件截面净毛面积比: RN = 0.85梁保护层厚度(mm: BCB = 30.00柱保护层厚度(mm: ACA = 30.00荷载组合信息........................................恒载分项系数: CDEAD= 1.20活载分项系数: CLIVE= 1.40风荷载分项系数: CWIND= 1.40水平地震力分项系数: CEA_H= 1.30竖向地震力分项系数: CEA_V= 0.50特殊荷载分项系数: CSPY = 0.00活荷载的组合系数: CD_L = 0.70风荷载的组合系数: CD_W = 0.60活荷载的重力荷载代表值系数: CEA_L = 0.50地下信息..........................................回填土对地下室约束相对刚度比: Esol = 3.00回填土容重(kN/m3: Gsol = 18.00回填土侧压力系数: Rsol = 0.50外墙分布筋保护厚度(mm: WCW = 35.00室外地平标高(m: Hout = -0.40地下水位标高(m: Hwat = -0.60室外地面附加荷载(kN/m2: Qgrd = 0.00人防设计等级: Mars = 6人防地下室层数: Mair = 1地下室顶板竖向等效荷载(kN/m2 QE1 = 60.00地下室外围墙的人防水平人防等效(kN/m2 QE2 = 55.00 正负零以下解除回填土约束的层数MMSOIL = 0剪力墙底部加强区信息.................................剪力墙底部加强区层数IWF= 4剪力墙底部加强区高度(m Z_STRENGTHEN= 12.50********************************************************* * 各层的质量、质心坐标信息********************************************************** 层号塔号质心X 质心Y质心Z 恒载质量活载质量(m (m (t (t13 1 35.468 16.118 38.600 124.9 2.312 1 35.481 16.257 35.700 544.4 14.311 1 35.454 16.394 32.800 734.1 57.210 1 35.466 16.384 29.900 724.2 57.29 1 35.475 16.420 27.000 715.0 56.78 1 35.475 16.420 24.100 715.0 56.77 1 35.475 16.420 21.200 715.0 56.76 1 35.475 16.420 18.300 715.0 56.75 1 35.475 16.420 15.400 715.0 56.74 1 35.475 16.420 12.500 715.0 56.73 1 35.475 16.420 9.600 715.0 56.72 1 35.484 16.736 6.700 1102.6 60.41 1 35.471 16.338 3.200 1174.4 65.6活载产生的总质量(t: 653.857恒载产生的总质量(t: 9409.759结构的总质量(t: 10063.616恒载产生的总质量包括结构自重和外加恒载结构的总质量包括恒载产生的质量和活载产生的质量活载产生的总质量和结构的总质量是活载折减后的结果(1t = 1000kg ********************************************************* * 各层构件数量、构件材料和层高********************************************************** 层号塔号梁数柱数墙数层高累计高度(混凝土 (混凝土 (混凝土 (m (m1 1 114(30 79(30 75(30 3.200 3.2002 1 220(30 68(30 38(30 3.500 6.7003 1 182(30 85(30 35(30 2.900 9.6004 1 182(30 85(30 35(30 2.900 12.5005 1 182(30 85(30 35(30 2.900 15.4006 1 182(30 85(30 35(30 2.900 18.3007 1 182(30 85(30 35(30 2.900 21.2008 1 182(30 85(30 35(30 2.900 24.1009 1 182(30 85(30 35(30 2.900 27.00010 1 183(30 85(30 35(30 2.900 29.90011 1 203(30 85(30 35(30 2.900 32.80012 1 206(30 85(30 35(30 2.900 35.70013 1 63(30 24(30 14(30 2.900 38.600********************************************************* * 风荷载信息********************************************************** 层号塔号风荷载X 剪力X 倾覆弯矩X 风荷载Y剪力Y倾覆弯矩Y 13 1 55.94 55.9 162.2 102.70 102.7 297.812 1 59.95 115.9 498.3 148.75 251.4 1027.011 1 57.16 173.1 1000.2 142.00 393.4 2168.010 1 54.35 227.4 1659.6 135.19 528.6 3701.19 1 51.49 278.9 2468.4 128.26 656.9 5606.18 1 48.55 327.4 3418.0 121.10 778.0 7862.37 1 45.49 372.9 4499.5 113.61 891.6 10448.06 1 42.23 415.2 5703.4 105.63 997.2 13340.05 1 38.70 453.9 7019.6 96.94 1094.2 16513.14 1 35.41 489.3 8438.5 88.89 1183.1 19944.03 1 34.00 523.3 9956.0 85.63 1268.7 23623.22 1 39.13 562.4 11924.4 98.95 1367.6 28410.01 1 0.00 562.4 13724.1 0.00 1367.6 32786.5============================================================ ===============各楼层等效尺寸(单位:m,m**2============================================================ ===============层号塔号面积形心X 形心Y等效宽B 等效高H 最大宽BMAX 最小宽BMIN1 1 602.17 35.48 15.97 47.99 16.70 47.99 16.702 1 564.36 35.49 16.69 43.56 14.48 43.56 14.483 1 535.55 35.48 16.22 42.83 13.83 42.83 13.834 1 535.55 35.48 16.22 42.83 13.83 42.83 13.835 1 535.55 35.48 16.22 42.83 13.83 42.83 13.836 1 535.55 35.48 16.22 42.83 13.83 42.83 13.837 1 535.55 35.48 16.22 42.83 13.83 42.83 13.838 1 535.55 35.48 16.22 42.83 13.83 42.83 13.839 1 535.55 35.48 16.22 42.83 13.83 42.83 13.8310 1 541.16 35.47 16.17 42.63 13.88 42.63 13.8811 1 540.87 35.49 16.16 42.62 13.88 42.62 13.8812 1 541.80 35.47 16.16 42.69 13.87 42.69 13.8713 1 51.12 35.47 19.58 43.29 6.24 43.29 6.24============================================================ ===============各楼层的单位面积质量分布(单位:kg/m**2============================================================ ===============层号塔号单位面积质量g[i] 质量比max(g[i]/g[i-1],g[i]/g[i+1]1 1 2059.15 1.002 1 2060.85 1.433 1 1440.96 1.004 1 1440.96 1.005 1 1440.96 1.006 1 1440.96 1.007 1 1440.96 1.008 1 1440.96 1.009 1 1440.96 1.0010 1 1443.96 1.0011 1 1462.99 1.4212 1 1031.27 0.7013 1 2488.76 2.41============================================================ =============== 计算信息============================================================ =============== Project File Name : 11计算日期: 2006. 5.25开始时间: 13:34:32可用内存: 784.00MB第一步: 计算每层刚度中心、自由度等信息开始时间: 13:34:32第二步: 组装刚度矩阵并分解开始时间: 13:34:47FALE 自由度优化排序Beginning Time : 13:34:52.31End Time : 13:34:56. 3Total Time (s : 3.72FALE总刚阵组装Beginning Time : 13:34:56. 3End Time : 13:34:58.96Total Time (s : 2.93VSS 总刚阵LDLT分解Beginning Time : 13:34:58.96End Time : 13:34:59.39Total Time (s : 0.43VSS 模态分析Beginning Time : 13:34:59.40End Time : 13:34:59.54Total Time (s : 0.14形成地震荷载向量形成风荷载向量形成垂直荷载向量VSS LDLT回代求解Beginning Time : 13:35: 7.78End Time : 13:35: 8.81Total Time (s : 1.03第五步: 计算杆件内力开始时间: 13:35:18结束日期: 2006. 5.25时间: 13:36:23总用时: 0: 1:51============================================================ =============== 各层刚心、偏心率、相邻层侧移刚度比等计算信息Floor No : 层号Tower No : 塔号Xstif,Ystif : 刚心的X,Y坐标值Alf : 层刚性主轴的方向Xmass,Ymass : 质心的X,Y坐标值Gmass : 总质量Eex,Eey : X,Y方向的偏心率Ratx,Raty : X,Y方向本层塔侧移刚度与下一层相应塔侧移刚度的比值Ratx1,Raty1 : X,Y方向本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值中之较小者RJX,RJY,RJZ: 结构总体坐标系中塔的侧移刚度和扭转刚度============================================================ =============== Floor No. 1 Tower No. 1Xstif= 35.4675(m Ystif= 18.7028(m Alf = -0.2167(DegreeXmass= 35.4713(m Ymass= 16.3381(m Gmass= 1305.5305(tEex = 0.0002 Eey = 0.1309Ratx = 1.0000 Raty = 1.0000Ratx1= 142.0880 Raty1= 155.1798 薄弱层地震剪力放大系数= 1.00RJX = 7.0081E+08(kN/m RJY= 6.3129E+08(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 2 Tower No. 1Xstif= 35.4528(m Ystif= 15.4350(m Alf = -0.2864(DegreeXmass= 35.4836(m Ymass= 16.7358(m Gmass= 1223.5151(tEex = 0.0018 Eey = 0.1091Ratx = 0.0101 Raty = 0.0092Ratx1= 4.5304 Raty1= 2.6543 薄弱层地震剪力放大系数= 1.00RJX = 7.0461E+06(kN/m RJY= 5.8116E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 3 Tower No. 1Xstif= 35.4520(m Ystif= 17.4620(m Alf = -0.1750(DegreeXmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(tEex = 0.0012 Eey = 0.0800Ratx = 0.3153 Raty = 0.5382Ratx1= 2.1014 Raty1= 2.0637 薄弱层地震剪力放大系数= 1.00RJX = 2.2218E+06(kN/m RJY= 3.1279E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 4 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(DegreeXmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(tEex = 0.0012 Eey = 0.0795Ratx = 0.6798 Raty = 0.6922Ratx1= 1.6283 Raty1= 1.7561 薄弱层地震剪力放大系数= 1.00RJX = 1.5104E+06(kN/m RJY= 2.1652E+06(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 5 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(DegreeXmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.8464 Raty = 0.8135Ratx1= 1.5059 Raty1= 1.6271 薄弱层地震剪力放大系数= 1.00 RJX =1.2785E+06(kN/m RJY= 1.7614E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 6 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.8953 Raty = 0.8606Ratx1= 1.4540 Raty1= 1.5736 薄弱层地震剪力放大系数= 1.00 RJX =1.1446E+06(kN/m RJY= 1.5159E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 7 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.9222 Raty = 0.8853Ratx1= 1.4538 Raty1= 1.5804 薄弱层地震剪力放大系数= 1.00 RJX =1.0555E+06(kN/m RJY= 1.3419E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 8 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.9319 Raty = 0.8956Ratx1= 1.5228 Raty1= 1.6066 薄弱层地震剪力放大系数= 1.00 RJX =9.8362E+05(kN/m RJY= 1.2018E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 9 Tower No. 1Xstif= 35.4521(m Ystif= 17.4563(m Alf = -0.1811(Degree Xmass= 35.4747(m Ymass= 16.4200(m Gmass= 828.3961(t Eex = 0.0012 Eey = 0.0795Ratx = 0.9281 Raty = 0.8892Ratx1= 1.5785 Raty1= 1.6707 薄弱层地震剪力放大系数= 1.00 RJX =9.1288E+05(kN/m RJY= 1.0686E+06(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 10 Tower No. 1Xstif= 35.4490(m Ystif= 17.4545(m Alf = -0.1702(Degree Xmass= 35.4662(m Ymass= 16.3838(m Gmass= 838.6104(t Eex = 0.0010 Eey = 0.0821Ratx = 0.9050 Raty = 0.8551Ratx1= 1.7276 Raty1= 1.8632 薄弱层地震剪力放大系数= 1.00 RJX =8.2619E+05(kN/m RJY= 9.1376E+05(kN/m RJZ = 0.0000E+00(kN/m ---------------------------------------------------------------------------Floor No. 11 Tower No. 1Xstif= 35.4490(m Ystif= 17.4525(m Alf = -0.1700(Degree Xmass= 35.4544(m Ymass= 16.3942(m Gmass= 848.4893(t Eex = 0.0003 Eey = 0.0811Ratx = 0.8269 Raty = 0.7667Ratx1= 2.3127 Raty1= 2.5293 薄弱层地震剪力放大系数= 1.00RJX = 6.8318E+05(kN/m RJY= 7.0060E+05(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 12 Tower No. 1Xstif= 35.4490(m Ystif= 17.4525(m Alf = -0.1700(DegreeXmass= 35.4805(m Ymass= 16.2566(m Gmass= 573.0540(tEex = 0.0017 Eey = 0.0917Ratx = 0.6177 Raty = 0.5648Ratx1= 5.1204 Raty1= 6.5880 薄弱层地震剪力放大系数= 1.00RJX = 4.2200E+05(kN/m RJY= 3.9571E+05(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------Floor No. 13 Tower No. 1Xstif= 35.4679(m Ystif= 19.9288(m Alf = 0.0000(DegreeXmass= 35.4680(m Ymass= 16.1177(m Gmass= 129.5021(tEex = 0.0000 Eey = 0.2846Ratx = 0.2441 Raty = 0.1897Ratx1= 1.2500 Raty1= 1.2500 薄弱层地震剪力放大系数= 1.00RJX = 1.0302E+05(kN/m RJY= 7.5081E+04(kN/m RJZ = 0.0000E+00(kN/m---------------------------------------------------------------------------============================================================ ================ 高位转换时转换层上部与下部结构的等效侧向刚度比============================================================ ================ 采用的楼层刚度算法:层间剪力比层间位移算法转换层所在层号= 2转换层下部结构起止层号及高度= 2 2 3.50转换层上部结构起止层号及高度= 3 3 2.90X方向下部刚度= 0.7046E+07 X方向上部刚度= 0.2222E+07 X方向刚度比= 0.2613Y方向下部刚度= 0.5812E+07 Y方向上部刚度= 0.3128E+07 Y方向刚度比= 0.4460============================================================ ================ 抗倾覆验算结果============================================================ ================ 抗倾覆弯矩Mr 倾覆弯矩Mov 比值Mr/Mov 零应力区(%X风荷载2231607.3 15072.3 148.06 0.00Y风荷载1000071.9 36653.0 27.28 0.00X 地震2231607.3 38868.4 57.41 0.00Y地震1000071.9 41758.4 23.95 0.00============================================================ ================ 结构整体稳定验算结果============================================================ ================ X向刚重比EJd/GH**2= 8.64Y向刚重比EJd/GH**2= 9.87该结构刚重比EJd/GH**2大于2.7,可以不考虑重力二阶效应******************************************************************** *** 楼层抗剪承载力、及承载力比值********************************************************************* ** Ratio_Bu: 表示本层与上一层的承载力之比----------------------------------------------------------------------层号塔号X向承载力Y向承载力Ratio_Bu:X,Y----------------------------------------------------------------------13 1 0.1227E+04 0.3522E+04 1.00 1.0012 1 0.5557E+04 0.1029E+05 4.53 2.9211 1 0.6428E+04 0.1122E+05 1.16 1.0910 1 0.7212E+04 0.1259E+05 1.12 1.129 1 0.7921E+04 0.1374E+05 1.10 1.098 1 0.8752E+04 0.1485E+05 1.10 1.087 1 0.9566E+04 0.1577E+05 1.09 1.066 1 0.1028E+05 0.1663E+05 1.07 1.055 1 0.1089E+05 0.1731E+05 1.06 1.044 1 0.1139E+05 0.1780E+05 1.05 1.033 1 0.1200E+05 0.1813E+05 1.05 1.022 1 0.1749E+05 0.2225E+05 1.46 1.231 1 0.3169E+05 0.3612E+05 1.81 1.62============================================================ ========== 周期、地震力与振型输出文件(VSS求解器============================================================ ========== 考虑扭转耦联时的振动周期(秒、X,Y方向的平动系数、扭转系数振型号周期转角平动系数(X+Y 扭转系数1 1.0740 0.03 1.00 ( 1.00+0.00 0.002 0.9540 90.02 1.00 ( 0.00+1.00 0.003 0.8662 132.55 0.00 ( 0.00+0.00 1.004 0.3012 179.96 1.00 ( 1.00+0.00 0.005 0.2453 89.97 0.90 ( 0.00+0.90 0.106 0.2370 44.38 0.00 ( 0.00+0.00 1.007 0.2160 90.96 0.04 ( 0.00+0.04 0.968 0.2082 123.72 0.00 ( 0.00+0.00 1.009 0.2047 89.51 0.37 ( 0.00+0.37 0.6310 0.1497 179.99 0.97 ( 0.97+0.00 0.0311 0.1247 3.81 0.00 ( 0.00+0.00 1.0012 0.1217 177.88 0.01 ( 0.00+0.00 0.9913 0.1213 178.37 0.01 ( 0.01+0.00 0.9914 0.1196 179.72 0.33 ( 0.33+0.00 0.6715 0.1138 179.10 0.00 ( 0.00+0.00 1.00地震作用最大的方向= -0.409 (度============================================================ 仅考虑X 向地震作用时的地震力Floor : 层号Tower : 塔号F-x-x : X 方向的耦联地震力在X 方向的分量F-x-y : X 方向的耦联地震力在Y方向的分量F-x-t : X 方向的耦联地震力的扭矩振型 1 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m13 1 41.85 0.02 -7.5512 1 172.91 0.15 -15.0711 1 227.17 0.19 -14.3210 1 204.34 0.16 -8.689 1 179.55 0.13 -5.288 1 154.89 0.10 -3.787 1 128.26 0.07 -4.136 1 100.43 0.04 -6.085 1 72.41 0.01 -9.264 1 45.60 -0.01 -13.003 1 21.82 -0.02 -16.122 1 7.96 -0.02 -21.291 1 0.08 0.00 -0.08振型 2 的地震力------------------------------------------------------- Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m13 1 0.00 -0.05 -0.0112 1 0.00 -0.22 -0.0411 1 0.00 -0.28 -0.0510 1 0.00 -0.25 -0.049 1 0.00 -0.21 -0.048 1 0.00 -0.18 -0.037 1 0.00 -0.15 -0.036 1 0.00 -0.11 -0.025 1 0.00 -0.08 -0.024 1 0.00 -0.05 -0.013 1 0.00 -0.03 -0.012 1 0.00 -0.01 0.001 1 0.00 0.00 0.00Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 0.00 0.91 12 1 0.00 0.00 4.61 11 1 0.00 -0.01 6.08 10 1 0.00 -0.01 5.449 1 0.00 0.00 4.848 1 0.00 0.00 4.187 1 0.00 0.00 3.476 1 0.00 0.00 2.745 1 0.00 0.00 2.024 1 0.00 0.00 1.333 1 0.00 0.00 0.732 1 -0.01 0.00 0.401 1 0.00 0.00 0.00振型 4 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -40.76 0.07 -17.63 12 1 -130.13 -0.17 -78.97 11 1 -114.14 -0.10 -73.03 10 1 -36.43 0.04 -22.929 1 37.70 0.16 28.838 1 99.95 0.26 73.067 1 141.74 0.30 100.596 1 157.20 0.29 105.415 1 145.15 0.22 86.604 1 109.83 0.12 49.403 1 60.83 0.02 5.092 1 26.49 -0.05 -33.991 1 0.32 0.00 -0.08振型 5 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 0.22 0.03 12 1 0.00 0.32 0.08 11 1 0.00 0.25 0.07 10 1 0.00 0.04 0.029 1 0.00 -0.14 -0.028 1 0.00 -0.28 -0.067 1 0.00 -0.38 -0.086 1 0.00 -0.40 -0.095 1 0.00 -0.37 -0.08振型 6 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.04 -0.11 48.35 12 1 -0.28 -0.11 127.17 11 1 -0.33 -0.09 110.81 10 1 -0.13 -0.01 35.579 1 0.03 0.06 -35.398 1 0.17 0.11 -95.367 1 0.32 0.14 -136.636 1 0.45 0.15 -154.115 1 0.57 0.13 -146.624 1 0.63 0.10 -117.573 1 0.62 0.06 -75.062 1 0.82 0.04 -46.441 1 0.01 0.00 -0.44振型7 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 0.00 0.00 12 1 0.00 0.00 0.00 11 1 0.00 0.00 0.00 10 1 0.00 0.00 0.009 1 0.00 0.00 0.008 1 0.00 0.00 0.007 1 0.00 0.00 0.006 1 0.00 0.00 0.005 1 0.00 0.00 0.004 1 0.00 0.00 0.003 1 0.00 0.00 0.002 1 0.00 0.00 0.001 1 0.00 0.00 0.00振型8 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.01 -0.01 -9.15 12 1 -0.02 0.01 9.38 11 1 -0.01 0.01 10.16 10 1 0.00 0.00 5.529 1 0.01 0.00 0.624 1 0.02 -0.01 -8.343 1 0.03 0.00 -5.492 1 0.06 0.00 -3.481 1 0.00 0.00 -0.03振型9 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.00 -0.08 0.00 12 1 0.00 0.07 -0.01 11 1 0.00 0.08 -0.01 10 1 0.00 0.04 0.009 1 0.00 0.00 0.008 1 0.00 -0.03 0.017 1 0.00 -0.06 0.016 1 0.00 -0.07 0.015 1 0.00 -0.07 0.014 1 0.00 -0.06 0.013 1 0.00 -0.04 0.012 1 0.00 -0.02 0.001 1 0.00 0.00 0.00振型10 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 39.00 -0.02 75.43 12 1 66.39 0.07 53.72 11 1 13.41 0.01 -7.79 10 1 -57.35 -0.05 -78.049 1 -92.01 -0.07 -104.518 1 -80.21 -0.02 -73.007 1 -28.42 0.07 2.416 1 38.52 0.16 85.615 1 89.44 0.19 135.224 1 101.55 0.13 126.003 1 71.67 0.01 63.772 1 38.34 -0.11 -6.251 1 0.53 0.00 0.33振型11 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.04 0.00 2.109 1 -0.02 0.00 -1.148 1 -0.04 0.00 -0.877 1 -0.03 0.00 -0.236 1 0.00 0.00 0.535 1 0.03 0.00 1.104 1 0.04 0.00 1.283 1 0.03 0.00 1.022 1 0.01 0.00 0.721 1 0.00 0.00 0.01振型12 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.15 0.01 -1.98 12 1 0.08 0.00 -0.53 11 1 0.09 0.00 0.36 10 1 0.03 -0.01 1.219 1 -0.04 -0.01 1.478 1 -0.09 -0.01 1.137 1 -0.07 0.00 0.336 1 -0.02 0.00 -0.595 1 0.05 0.01 -1.304 1 0.10 0.01 -1.563 1 0.09 0.01 -1.302 1 0.07 0.01 -1.021 1 0.00 0.00 -0.01振型13 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 -0.21 0.01 -3.12 12 1 0.09 0.00 -0.67 11 1 0.10 0.00 0.53 10 1 0.03 -0.01 1.699 1 -0.04 -0.01 2.088 1 -0.09 0.00 1.617 1 -0.08 0.00 0.496 1 -0.02 0.00 -0.825 1 0.05 0.01 -1.834 1 0.10 0.01 -2.193 1 0.10 0.01 -1.822 1 0.08 0.00 -1.401 1 0.00 0.00 -0.02 振型14 的地震力13 1 -12.26 0.06 -102.72 12 1 6.99 0.00 -44.88 11 1 8.82 -0.02 15.75 10 1 3.10 -0.06 73.059 1 -3.80 -0.05 93.808 1 -8.06 -0.03 74.167 1 -7.18 0.01 25.166 1 -1.67 0.05 -33.165 1 5.11 0.08 -79.244 1 9.09 0.08 -97.633 1 8.03 0.05 -84.242 1 5.72 0.02 -68.961 1 0.07 0.00 -0.71振型15 的地震力-------------------------------------------------------Floor Tower F-x-x F-x-y F-x-t(kN (kN (kN-m 13 1 0.08 0.00 -2.67 12 1 -0.03 -0.01 -3.69 11 1 -0.05 0.00 -0.97 10 1 -0.03 0.00 2.759 1 0.00 0.01 4.838 1 0.02 0.01 4.567 1 0.01 0.00 2.186 1 0.00 0.00 -1.265 1 -0.02 -0.01 -4.264 1 -0.01 -0.01 -5.583 1 0.01 -0.01 -4.792 1 0.05 0.00 -3.651 1 0.00 0.00 -0.04各振型作用下X 方向的基底剪力------------------------------------------------------- 振型号剪力(kN1 1357.282 0.003 0.004 457.755 0.006 2.837 0.008 0.139 0.0010 200.8611 0.0612 0.13各层X 方向的作用力(CQCFloor : 层号Tower :塔号Fx : X 向地震作用下结构的地震反应力Vx : X 向地震作用下结构的楼层剪力Mx : X 向地震作用下结构的弯矩Static Fx: 静力法X 向的地震力------------------------------------------------------------------------------------------Floor Tower Fx Vx (分塔剪重比 (整层剪重比 Mx Static Fx(kN (kN (kN-m (kN (注意:下面分塔输出的剪重比不适合于上连多塔结构13 1 69.79 69.79( 5.49% ( 5.49% 202.39 240.48 12 1 225.73 292.19( 4.26% ( 4.26% 1043.75 240.66 11 1 254.26 537.23( 3.64% ( 3.64% 2586.89 313.14 10 1 215.18722.85( 3.20% ( 3.20% 4644.13 281.899 1 205.30 872.71( 2.88% ( 2.88% 7092.33 251.398 1 201.25 1003.49( 2.64% ( 2.64% 9866.43 224.397 1 193.57 1118.54( 2.45% ( 2.45% 12925.35 197.386 1 191.44 1219.51( 2.28% ( 2.28% 16234.27 170.385 1 187.40 1309.15( 2.14% ( 2.14% 19763.21 143.384 1 159.26 1383.20( 2.01% ( 2.01% 23482.62 116.383 1 98.87 1428.82( 1.87% ( 1.87% 27348.80 89.382 1 48.97 1450.05( 1.64% ( 1.64% 32143.92 94.021 1 0.65 1450.31( 1.44% ( 1.44% 36594.62 47.87X 方向的有效质量系数: 87.98%============================================================ 仅考虑Y向地震时的地震力Floor : 层号Tower : 塔号F-y-x : Y方向的耦联地震力在X 方向的分量F-y-y : Y方向的耦联地震力在Y方向的分量F-y-t : Y方向的耦联地震力的扭矩振型 1 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m13 1 0.03 0.00 0.0012 1 0.11 0.00 -0.0111 1 0.14 0.00 -0.0110 1 0.12 0.00 -0.012 1 0.00 0.00 -0.011 1 0.00 0.00 0.00振型 2 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.01 49.86 6.59 12 1 -0.02 198.14 33.97 11 1 -0.08 255.14 44.61 10 1 -0.10 225.19 39.739 1 -0.13 194.33 35.188 1 -0.15 164.88 30.187 1 -0.18 134.58 24.926 1 -0.20 104.23 19.525 1 -0.22 74.92 14.184 1 -0.21 47.98 9.143 1 -0.18 25.10 4.712 1 -0.15 13.41 1.971 1 0.00 0.13 0.01振型 3 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.01 0.01 -7.21 12 1 -0.03 0.03 -36.49 11 1 -0.02 0.05 -48.12 10 1 -0.02 0.04 -43.069 1 -0.02 0.03 -38.338 1 -0.02 0.03 -33.067 1 -0.01 0.02 -27.486 1 0.00 0.02 -21.715 1 0.01 0.01 -15.984 1 0.02 0.01 -10.553 1 0.03 0.00 -5.792 1 0.05 0.00 -3.151 1 0.00 0.00 -0.02振型 4 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m6 1 0.40 0.00 0.275 1 0.37 0.00 0.224 1 0.28 0.00 0.123 1 0.15 0.00 0.012 1 0.07 0.00 -0.091 1 0.00 0.00 0.00振型 5 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.05 -68.70 -9.35 12 1 0.22 -101.50 -24.03 11 1 0.15 -78.70 -21.39 10 1 0.07 -13.62 -7.149 1 0.00 44.63 6.328 1 -0.05 90.97 17.687 1 -0.12 120.19 25.476 1 -0.19 129.18 28.705 1 -0.27 118.12 27.144 1 -0.32 90.82 21.453 1 -0.33 54.58 13.212 1 -0.41 32.27 7.271 1 0.00 0.45 0.07振型 6 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.01 -0.02 8.11 12 1 -0.05 -0.02 21.34 11 1 -0.05 -0.02 18.59 10 1 -0.02 0.00 5.979 1 0.00 0.01 -5.948 1 0.03 0.02 -16.007 1 0.05 0.02 -22.936 1 0.08 0.02 -25.865 1 0.09 0.02 -24.604 1 0.11 0.02 -19.733 1 0.10 0.01 -12.602 1 0.14 0.01 -7.791 1 0.00 0.00 -0.07(kN (kN (kN-m 13 1 -0.05 2.44 -0.11 12 1 0.02 -4.34 0.26 11 1 0.00 -4.16 0.15 10 1 0.00 -1.89 0.029 1 0.00 0.36 -0.088 1 0.00 2.32 -0.147 1 0.01 3.74 -0.186 1 0.01 4.40 -0.205 1 0.01 4.25 -0.194 1 0.00 3.39 -0.163 1 0.00 2.10 -0.122 1 -0.01 1.27 -0.111 1 0.00 0.02 0.00振型8 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.00 0.00 1.46 12 1 0.00 0.00 -1.50 11 1 0.00 0.00 -1.63 10 1 0.00 0.00 -0.889 1 0.00 0.00 -0.108 1 0.00 0.00 0.657 1 0.00 0.00 1.236 1 0.00 0.00 1.575 1 0.00 0.00 1.594 1 0.00 0.00 1.333 1 -0.01 0.00 0.882 1 -0.01 0.00 0.561 1 0.00 0.00 0.01振型9 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.27 30.20 0.91 12 1 -0.11 -27.50 2.94 11 1 0.03 -28.89 3.40 10 1 0.05 -15.14 1.619 1 0.05 -0.88 -0.338 1 0.01 12.21 -2.197 1 -0.04 22.17 -3.636 1 -0.09 27.40 -4.425 1 -0.12 27.21 -4.444 1 -0.12 22.12 -3.74振型10 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.07 0.00 0.14 12 1 0.12 0.00 0.10 11 1 0.02 0.00 -0.01 10 1 -0.10 0.00 -0.149 1 -0.17 0.00 -0.198 1 -0.15 0.00 -0.137 1 -0.05 0.00 0.006 1 0.07 0.00 0.165 1 0.16 0.00 0.254 1 0.18 0.00 0.233 1 0.13 0.00 0.122 1 0.07 0.00 -0.011 1 0.00 0.00 0.00振型11 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 0.01 0.00 -0.27 12 1 0.00 0.00 -0.05 11 1 -0.01 0.00 0.04 10 1 0.00 0.00 0.129 1 0.00 0.00 0.158 1 0.01 0.00 0.117 1 0.00 0.00 0.036 1 0.00 0.00 -0.075 1 0.00 0.00 -0.144 1 -0.01 0.00 -0.173 1 0.00 0.00 -0.132 1 0.00 0.00 -0.091 1 0.00 0.00 0.00振型12 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t(kN (kN (kN-m 13 1 -0.03 0.00 -0.40 12 1 0.02 0.00 -0.11 11 1 0.02 0.00 0.07 10 1 0.01 0.00 0.249 1 -0.01 0.00 0.308 1 -0.02 0.00 0.23振型13 的地震力-------------------------------------------------------Floor Tower F-y-x F-y-y F-y-t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PKPM计算结果,PKPM计算书合理性判定PKPM计算结果,PKPM计算书合理性决定到设计的成败,要做到PKPM计算准确无误需要有PKPM计算结果,PKPM计算书合理性判定!我们杭州绿树结构施工图设计室在PKPM软件计算,提取计算书时对PKPM计算结果,PKPM计算书合理性判定有如下总结:1.检查原始数据是否有误,特别是是否遗漏荷载;2.计算简图是否与实际相符,计算程序是否选则正确3.7大指标判定:(1).柱及剪力墙轴压比是否满足要求,主要为控制结构延性;见抗规6.3.7和6.4.6(2).剪重比:主要为控制各楼层最小地震剪力,确保结构安全性;见抗规5.2.5 剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系数取0.2amax”,由此可据《抗规》表 5.1.4-1推算出各地震列度下的剪力系数:9度为0.2*0.32=0.064,8度为0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为0.2*0.04=0.008。
在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。
即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。
剪重比主要是考虑基本周期大于3s的长周期结构。
地震对于此类结构的破坏相比短周期的结构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪重比的原因。
另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的1.15倍。
在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调整的信息,多看看这一信息,对剪重比的理解会更深刻.注意剪重比和剪压比是两个截然不同的概念,不可混淆。
剪重比是对整个结构体系一个宏观概念,而剪压比是针对单个构件的一个控制指标(类似于剪跨比)。
一般的转换梁的截面尺寸是由剪压比计算确定,以避免脆性破坏和具有合适的含箍率.剪压比计算公式:μv=Vmax/fcbho.其中Vmax为转换梁支座截面处最大组合剪力设计值,fc为转换梁混凝土抗压强度设计值,fc为转换梁的宽度,ho为转换梁截面的有效高度.关于有没有上限的问题,首先要明白在地震作用下影响建筑水平地震剪力的内在原因是什么,这个明白了此问题也就有解了这个原因就是结构刚度,结构刚度越大产生的剪力就越大,有些建筑不满足剪重比要求多是因为建筑过柔的缘故。
结构刚度的大小可参考层间位移比,只要这个比值合适就不用担心建重比太大的问题层间位移比在框剪结构中,按经验取值为规范的2倍.根据李国胜编著的一本书,6度时可取7度时相应的1/2剪重比过大过小都需要检查。
过大,说明底部剪力过大,应检查输入信息,是否填入信息有误,或者剪力墙数量过多,结构太刚。
不论剪力重力比过大过小,都要找出原因,将其控制在适宜的范围内,其计算的位移,内力,配筋才有义。
转剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
(3).刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2新抗震规范附录E2.1规定,筒体结构转换层上下层的侧向刚度比不宜大于2。
新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。
新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。
新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D的规定。
FE.0.1底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2。
FE.0.2底部为2~5层大空间的部分框支剪力墙结构,其转换层下部框架-剪力墙结构的等效侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe 宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。
层刚度比的计算方法:F高规附录E.0.1建议的方法——剪切刚度Ki = Gi Ai / hiF高规附录E.0.2建议的方法——剪弯刚度Ki = Fi / ΔiF抗震规范的3.4.2和3.4.3条文说明中建议的计算方法:Ki = Vi / Δui层刚度比的控制方法:新规范要求结构各层之间的刚度比,并根据刚度比对地震力进行放大,所以刚度比的合理计算很重要。
新规范对结构的层刚度有明确的要求,在判断楼层是否为薄弱层、地下室是否能作为嵌固端、转换层刚度是否满足要求等等,都要求有层刚度作为依据,所以层刚度计算的准确性就比较重要。
程序提供了三种计算方法:Ø1。
楼层剪切刚度Ø2。
单层加单位力的楼层剪弯刚度Ø3。
楼层平均剪力与平均层间位移比值的层刚度三种计算方法有差异是正常的,可以根据需要选择。
Ø只要计算地震作用,一般应选择第3 种层刚度算法Ø不计算地震作用,对于多层结构可以选择剪切层刚度算法,高层结构可以选择剪弯层刚度Ø不计算地震作用,对于有斜支撑的钢结构可以选择剪弯层刚度算法转换层结构按照“高规”要求计算转换层上下几层的层刚度比,一般取转换层上下等高的层数计算。
层刚度作为该层是否为薄弱层的重要指标之一,对结构的薄弱层,规范要求其地震剪力放大1.15,这里程序将由用户自行控制。
当采用第3种层刚度的计算方式时,如果结构平面中的洞口较多,这样会造成楼层平均位移的计算误差增加,此时应选择“强制刚性楼板假定”来计算层刚度。
选择剪切、剪弯层刚度时,程序默认楼层为刚性楼板。
层刚度比即结构必须要有层的概念,但是,对于一些复杂结构,如坡屋顶层、体育馆、看台、工业建筑等,这些结构或者柱、墙不在同一标高,或者本层根本没有楼板,所以在设计时,可以不考虑这类结构所计算的层刚度特性。
对于大底盘多塔结构,或上联多塔结构,在多塔和单塔交接层之间的层刚度比是没有意义的。
如大底盘处因为离塔较远的构件,对该塔的层刚度没有贡献,所以遇到多塔结构时,层刚度的计算应该把底盘切开,只能保留与该塔2到3跨的底盘结构。
将各层位移连成位移曲线,应具有以下特征:剪力墙结构的位移曲线具有悬臂弯曲梁的特怔,位移越往上增大越快,成外弯形曲线框架结构具有剪切梁的特怔,越往上增长越慢,成内收形曲线框架--剪力墙和框架--筒体结构处于两者之间,为反S形曲线,接近一直线在刚度较均匀的情况下,位移曲线应圆曲光滑,无突然的凸凹变化和折点。
(4).位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响;见抗规3.4.2规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
程序处理:针对此条,程序中对每一层都计算并输出最大水平位移、最大层间位移角、平均水平位移、平均层间位移角及相应的比值,用户可以一目了然地判断是否满足规范。
位移比的限值:是根据刚性楼板假定的条件下确定的,其平均位移的计算方法,也基于“刚性楼板假定”。
F 控制位移比的计算模型:按照规范要求的定义,位移比表示为“最大位移/平均位移”,而平均位移表示为“(最大位移+最小位移)/2”,其中的关键是“最小位移”,当楼层中产生0 位移节点,则最小位移一定为0,从而造成平均位移为最大位移的一半,位移比为2。
则失去了位移比这个结构特征参数的参考意义,所以计算位移比时,如果楼层中产生“弹性节点”,应选择“强制刚性楼板假定”。
规范要求:高规4.3.5条,应在质量偶然偏心的条件下,考察结构楼层位移比的情况。
层间位移角:程序采用“最大柱(墙)间位移角”作为楼层的层间位移角,此时可以“不考虑偶然偏心”的计算条件。
复杂结构,如坡屋顶层、体育馆、看台、工业建筑等,这些结构或者柱、墙不在同一标高,或者本层根本没有楼板,此时如果采用“强制刚性楼板假定”,结构分析严重失真,位移比也没有意义。
所以这类结构可以通过位移的“详细输出”或观察结构的变形示意图,来考察结构的扭转效应。
对于错层结构或带有夹层的结构,这类结构总是伴有大量的越层柱,当选择“强制刚性楼板假定”后,越层柱将受到楼层的约束,如果越层柱很多,计算失真。
总之,结构位移特征的计算模型之合理性,应根据结构的实际出发,对复杂结构应采用多种手段。
(5).周期比:主要为控制结构的扭转效应,减小扭转对结构带来不利影响(此时要注意:第一、二震型在高层建筑中是不能以扭转为主);规范条文:新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。
对于通常的规则单塔楼结构,如下验算周期比:1)根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型2)通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T13)对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。