(完整版)勾股定理解答证明题
勾股定理(讲义及答案)及解析
一、选择题1.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( )A .29cmB .5cmC .37cmD .4.5cm2.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .64.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .95.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .3cmB .14cmC .5cmD .4cm6.如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值是( )A .8B .9C .10D .127.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A .B .C .D .8.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间 9.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为( ) A .5 B .4 C 7D .4或5 10.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________15.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________18.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.19.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.23.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.24.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.25.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.26.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A的坐标;(2)判断DF与OE的数量关系,并说明理由;的周长.(3)直接写出ADG28.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.29.(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D 是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.30.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】解:根据题意,如图所示,最短路径有以下三种情况:(1)沿AA',A C'',C B'',B B'剪开,得图1:22222AB AB BB'=+'=++=;(21)425(2)沿AC,CC',C B'',B D'',D A'',A A'剪开,得图2:22222'=+'=++=+=;AB AC B C2(41)42529DD,B D'',C B'',C A'',AA'剪开,得图3:(3)沿AD,'22222'=+'=++=+=;AB AD B D1(42)13637综上所述,最短路径应为(1)所示,所以225AB '=,即5cm AB '=.故选:B .【点睛】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.2.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.3.C解析:C【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知2()a b + =21,大正方形的面积为13,可以得以直角三角形的面积,进而求出答案。
第3章《勾股定理》 :3.1 勾股定理(2)(含答案)
23 .据我国古代《周髀算经》记载,公元前 1120 年商高对周公说,将一根直尺 折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等 于五.后人概括为“勾三,股四,弦五”. (1)观察:3,4,5;5,12,13;7,24,25;„,发现这些勾股数的勾都是奇 数, 且从 3 起就没有间断过. 计算 1 1 1 1 (9-1) 、 (9+1) 与 (25-1) 、 (25+1) , 2 2 2 2
17 . 如图所示, 折叠长方形的一边 AD, 使点 D 落在边 BC 的点 F 处, 已知 AB=8cm, BC=10cm,则 EC 的长为 cm.
18 . 如图,在 Rt△ABC 中,∠ACB=90°,AC<BC,D 为 AB 的中点,DE 交 AC 于 点 E,DF 交 BC 于点 F,且 DE⊥DF,过 A 作 AG∥BC 交 FD 的延长线于点 G. (1)求证:AG=BF; (2)若 AE=9,BF=18,求线段 EF 的长.
6 .小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以 求出其它各边的长,若已知 CD=2,求 AC 的长.
7.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为 AB 边 上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2.
8 .如图,把矩形纸片 ABCD 沿 EF 折叠,使点 B 落在边 AD 上的点 B′处,点 A 落 在点 A′处; (1)求证:B′E=BF; (2)设 AE=a,AB=b,BF=c,试猜想 a,b,c 之间的一种关系,并给予证明.
S = l (3)说出(2)中结论成立的理由. (2)如果 a+b-c=m, 观察上表猜想:
完整版)勾股定理知识点与常见题型总结
完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
北师大版八年级上第一章勾股定理(附习题和答案)
第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C .5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBACA B E D练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例 2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cmCABD练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62 ,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
专题01 勾股定理的证明综合题(原卷版)
专题01 勾股定理的证明(综合题)知识点:勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形. ,所以.一.选择题1.(2022春•龙凤区期中)如图,在四边形ABDE 中,AB ∥DE ,AB ⊥BD ,点C 是边BD 上一点,BC =DE =a ,CD =AB =b ,AC =CE =c.下列结论:易错点拨易错题专训①△ABC≌△CDE;②∠ACE=90°;③四边形ABDE的面积是(a+b)2;④(a+b)2﹣c2=2×ab;⑤该图可以验证勾股定理.其中正确的结论个数是( )A.5B.4C.3D.22.(2022秋•杏花岭区校级月考)下面四幅图中,不能证明勾股定理的是( )A.B.C.D.3.(2022春•威县期末)课堂上,王老师要求学生设计图形来证明勾股定理,同学们经过讨论,给出两种图形,能证明勾股定理的是( )A.①行,②不行B.①不行,②行C.①,②都行D.①,②都不行4.(2022•大观区校级开学)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的一条直角边长为5,大正方形的边长为13,则中间小正方形的面积是( )A.144B.49C.64D.255.(2022春•交城县期中)勾股定理是一个古老的数学定理,它有很多种证明方法,如图所示四幅几何图形中,不能用于证明勾股定理的是( )A.B.C.D.6.(2022春•邕宁区期末)下面图形能够验证勾股定理的有( )A.4个B.3个C.2个D.1个7.(2022•邯郸三模)在证明勾股定理时,甲、乙两位同学分别设计了方案:甲:如图,用四个全等的直角三角形拼成,其中四边形ABDE和四边形CFGH均是正方形,通过用两种方法表示正方形ABDE的面积来进行证明;乙:两个全等的直角三角板ABC和直角三角板DEF,顶点F在BC边上,顶点C、D重合,通过用两种方法表示四边形ACBE的面积来进行证明.对于甲、乙两种方案,下列判断正确的是( )A.甲、乙均对B.甲对、乙不对C.甲不对,乙对D.甲、乙均不对8.(2021秋•无锡期末)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=18,则S2的值是( )A.B.6C.5D.9.(2020春•海陵区期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=6,大正方形的面积为16,则小正方形的面积为( )A.8B.6C.4D.3二.填空题10.(2021秋•漳州期末)如图所示的四边形图案是用4个全等的直角三角形拼成的.已知四边形ABCD的面积为64,四边形EFGH的面积为9,若用x、y表示直角三角形的两直角边(x>y);下列四个结论:①x2+y2=64;②x﹣y=3;③x+y=;④2xy+9=64.其中正确的是 .(写出所有正确结论的序号)11.(2021秋•皇姑区期末)把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为 .12.(2021秋•迎泽区校级月考)“赵爽弦图”是由四个全等的直角三角形拼接而成.如图,若直角三角形的短直角边长为2,小正方形的面积为4,则大正方形边长为 .13.曾任美国总统的加菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理的证明.如图,这就是他用两个全等的直角三角形拼出的图形.上面的图形整体上拼成一个直角梯形.所以它的面积有两种表示方法.既可以表示为 ,又可以表示为 .对比两种表示方法可得 .化简,可得a2+b2=c2.他的这个证明也就成了数学史上的一段佳话.三.解答题14.(2021秋•东坡区期末)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,使点A、E、D 在同一条直线上.利用此图的面积表示式证明勾股定理.15.(2021春•利辛县期中)如图,小明用4个图1中的矩形组成图2,其中四边形ABCD,EFGH,MNPQ都是正方形,证明:a2+b2=c2.16.(2021春•滑县期末)如图是用硬纸板做成的四个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.请你开动脑筋,用它们拼出正方形图案,要求拼图时直角三角形纸片不能互相重叠.(1)请你画出拼成的这个图形的示意图;(2)利用(1)中画出的图形证明勾股定理.17.(2021秋•汝州市期中)用四个全等的直角三角形拼成如图①所示的大正方形,中间也是一个正方形.它是美丽的弦图.其中四个直角三角形的直角边长分别为a,b(a<b),斜边长为c.(1)结合图①,求证:a2+b2=c2;(2)如图②,将这四个全等的直角三角形无缝隙无重叠地拼接在一起,得到图形ABCDEFGH.若该图形的周长为24,OH=3,求该图形的面积;(3)如图③,将八个全等的直角三角形紧密地拼接成正方形PQMN,记正方形PQMN、正方形ABCD、正方形EFGH的面积分别为S1、S2、S3,若S1+S2+S3=18,则S2= .18.(2022春•大观区校级期末)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.19.(2021秋•武汉月考)2000多年来,人们对直角三角形三边之间的关系的探究颇感兴趣,古往今来,下至平民百姓,上至帝王总统都愿意探究它,研究它的证明,新的证法不断出现.下面给出几种探究方法(由若干个全等的直角三角形拼成如图图形),试用面积法选择其中一种推导直角三角形的三边a、b、c 之间的数量关系(1)三边a、b、c之间的数量关系为 ;(2)理由: .20.(2018•保定二模)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b ﹣a∵S 四边形ADCB =S △ACD +S △ABC =b 2+ab .又∵S 四边形ADCB =S △ADB +S △DCB =c 2+a (b ﹣a )∴b 2+ab =c 2+a (b ﹣a )∴a 2+b 2=c 2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB =90°.求证:a 2+b 2=c 2.。
勾股定理(讲义及答案)含答案
一、选择题1.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD ⊥CE ,③∠ACE +∠DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( ) A .1 B .2 C .3D .4 2.△ABC 的三边的长a 、b 、c 满足:2(1)250a b c -+-+-=,则△ABC 的形状为( ).A .等腰三角形B .等边三角形C .钝角三角形D .直角三角形3.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm 4.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形 5.下列四组数中不能构成直角三角形的一组是( )A .1,26B .3,5,4C .5,12,13D .3,2136.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =7.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A.8 B.9.6 C.10 D.128.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是()A.6 B.32πC.2πD.129.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9 B.210C.326+D.1210.下列四组线段中,可以构成直角三角形的是()A.1、2、3B.2、3、4 C.1、2、3 D.4、5、6二、填空题11.将一副三角板按如图所示摆放成四边形ABCD,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD=32,则AB的长为__________.12.如图,△ABC是一个边长为1的等边三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,……B n-1B n是△AB n-2B n-1的高,则B4B5的长是________,猜想B n-1B n的长是________.13.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.14.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .17.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.18.已知a 、b 、c 是△ABC 三边的长,且满足关系式2222()0c a b a b --+-=,则△ABC 的形状为___________19.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.20.如图,E 为等腰直角△ABC 的边AB 上的一点,要使AE =3,BE =1,P 为AC 上的动点,则PB +PE 的最小值为____________.三、解答题21.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒;②求AB 的长.23.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.26.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.27.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.28.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .(1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.29.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).(1)AE=(用含t的代数式表示),∠BCD的大小是度;(2)点E在边AC上运动时,求证:△ADE≌△CDF;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∴△BAD ≌△CAE (SAS ),∴BD=CE ,故①正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD ⊥CE ,故②正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵△ADE 为等腰直角三角形,∴AE=AD ,∴DE 2=2AD 2,∴BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt △BDC 中,BD BC <,而BC 2=2AB 2,∴BD 2<2AB 2,∴()2222BE AD AB<+故④错误,综上,正确的个数为2个.故选:B.【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.2.D解析:D【分析】由等式可分别得到关于a、b、c的等式,从而分别计算得到a、b、c的值,再由222+=a b c的关系,可推导得到△ABC为直角三角形.【详解】∵2(1)0a c-=又∵()210ac⎧-≥≥-≥⎪⎩∴()21=0ac⎧-⎪⎪⎨⎪⎪⎩∴12abc⎧=⎪=⎨⎪=⎩∴222+=a b c∴△ABC为直角三角形故选:D.【点睛】本题考察了平方、二次根式、绝对值和勾股定理逆定理的知识;求解的关键是熟练掌握二次根式、绝对值和勾股定理逆定理,从而完成求解.3.D解析:D【分析】根据折叠的性质可得AD=A'D,AE=A'E,易得阴影部分图形的周长为=AB+BC+AC,则可求得答案.【详解】解:因为等边三角形ABC的边长为1cm,所以AB=BC=AC=1cm,因为△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC =1+1+1=3(cm ).故选:D .【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.4.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.5.A解析:A【解析】A. 12+22)2,不能构成直角三角形,故此选项符合题意;B. 32+42=52,能构成直角三角形,故此选项不符合题意;C. 52+122=132,能构成直角三角形,故此选项不符合题意;D. 32+222,能构成直角三角形,故此选项不符合题意;故选A.6.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.7.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B. 【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.8.A【分析】分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(cm2);S△ABC=6(cm2);∴S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(24)2210++=.故选:B.【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.10.A【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A 、12+)2=2∴以1,故本选项正确;B 、22+32≠42 ∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误; C 、12+22≠32 ∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;D 、 42+52≠62 ∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;故选A..【点睛】本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.二、填空题11.【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.12.32 2n 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=2,求出△ABC 的面积是4;求出113ABB BCB S S ==B 1B 2=4,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2=4,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4,B 4B 5,…,B n﹣1B n=3.故答案为:332,32n.【点睛】本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.13.75或6或9 4【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.【详解】在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t=7.52=3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,所以4t2=4.52+(4.5﹣2t)2,解得:t=94,综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=94.故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.14.36或84【分析】过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC 的长度,然后根据三角形的面积公式列式计算即可得解.【详解】解:过点A 作AD ⊥BC 于点D ,∵BC 边上的高为8cm ,∴AD=8cm ,∵AC=17cm ,由勾股定理得: 22221086BD AB AD =-=-=cm ,222217815CD AC AD =-=-=cm ,如图1,点D 在边BC 上时,BC=BD+CD =6+15=21cm ,∴△ABC 的面积=12BC AD =12×21×8=84cm 2, 如图2,点D 在CB 的延长线上时,BC= CD −BD =15−6=9cm , ∴△ABC 的面积=12BC AD =12×9×8=36 cm 2, 综上所述,△ABC 的面积为36 cm 2或84 cm 2,故答案为:36或84.【点睛】本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,PM=22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.55【解析】【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】展开图如图所示:由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ),故答案为:5【点睛】本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.172【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..18.等腰直角三角形【解析】根据非负数的意义,由()22220c a b a b --+-=,可知222c a b =+,a=b ,可知此三角形是等腰直角三角形.故答案为:等腰直角三角形.点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式. 19.78. 【解析】 ∵∠C =90°,AB =5,BC =4,∴AC 2254-.∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 20.5【解析】试题分析:作点B 关于AC 的对称点F ,构建直角三角形,根据最短路径可知:此时PB +PE 的值最小,接下来要求出这个最小值,即求EF 的长即可,因此要先求AF 的长,证明△ADF ≌△CDB ,可以解决这个问题,从而得出EF =5,则PB +PE 的最小值为5.解:如图,过B 作BD ⊥AC ,垂足为D ,并截取DF =BD ,连接EF 交AC 于P ,连接PB 、AF ,则此时PB +PE 的值最小,∵△ABC 是等腰直角三角形,∴AB =CB ,∠ABC =90°,AD =DC ,∴∠BAC =∠C =45°,∵∠ADF =∠CDB ,∴△ADF ≌△CDB ,∴AF =BC ,∠FAD =∠C =45°,∵AE =3,BE =1,∴AB =BC =4,∴AF =4,∵∠BAF =∠BAC +∠FAD =45°+45°=90°,∴由勾股定理得:EF 22AF AE +2243+,∵AC 是BF 的垂直平分线,∴BP =PF ,∴PB +PE =PF +PE =EF =5,故答案为5.点睛:本题主要考查最短路径问题.解题的关键在于要利用轴对称知识,结合两点之间线段最短来求解.三、解答题21.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.22.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.【详解】解:(1)BC−AC=AD.理由如下:如图(a),在CB上截取CE=CA,连接DE,∵CD平分∠ACB,∴∠ACD=∠ECD,又CD=CD,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=3BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(3BF)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中, AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB 2222126AB AO -=-3∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE 222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD ()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.25.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵AE CD=,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF,∴∠F=∠EBF=45°,∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===,∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()262312CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.26.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆203123. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=c ∴=根据优三角形的定义,分以下三种情况:当2a b c +=时,6a +=,整理得24360a a -+=,此方程没有实数根当2a c b +=时,12a =,解得92a =当2b c a +=时,62a =,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b =<故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x = 2222,3AB BD x AD AB BD x ∴===-=22222(3)(4)224AC AD CD x x x x =+=++=++11432322ABC S BC AD x x ∆=⋅=⨯⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即222444x x x +++=,解得103x =则10203232333ABC S x ∆==⨯= 当2AC AB BC +=时,即222428x x x +++=,解得65x =则6123232355ABC S x ∆==⨯= 当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为2033或1235.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.27.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】。
(完整版)勾股定理典型例题详解及练习(附答案)
典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。
跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。
/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。
A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。
专题01 勾股定理的证明(解析版)
专题01 勾股定理的证明1.做8个全等的直角三角形,设它们的两条直线边分别为a ,b ,斜边为c ,再做3个边长分别为a ,b ,c 的正方形,把它们按下图所示的方式拼成两个正方形.利用两个正方形的面积相等来证明勾股定理:a 2+b 2=c 2【答案】证明见解析【解析】【分析】根据不同图形拼成的两个正方形面积相等即可证明【详解】证明:①左图大正方形的边长为:a +b ,则面积为(a +b )2,分成了四个直角边为a ,b ,斜边为c 的全等的直角三角形和一个边长为c 的小正方形,()22142a b ab c \+=´+;②右图大正方形的边长为:a +b ,则面积为(a +b )2,分成了边长为a 的一个正方形,边长为b 的一个正方形,还有四个直角边为a ,b ,斜边为c 的全等的直角三角形,()222142a b a b ab \+=++´;综上所述:2142ab c ´+()222142a b a b ab =+=++´,即222+=a b c .【点睛】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.2.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD 和AC 都可以分割四边形ABCD )【答案】证明见解析【解析】【详解】如图,连接DB,过点D作BC边上的高DF,根据S四边形ADCB=S△ACD+S△ABC=S△ADB+S△DCB 即可求解.【解答】证明:如图,连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a)∴12b2+12ab=12c2+12a(b﹣a)∴a2+b2=c2.【点睛】本题考查了等面积法证明勾股定理.解题得关键在于利用等面积法进行证明.3.如图,四边形ACFD是一个边长为b的正方形,延长FC到B,使BC=a,连接AB,使AB=C;E是边DF上的点且DE=a.(1)判断△ABE的形状,并证明你的结论;(2)用含b的式子表示四边形ABFE的面积;(3)求证:a2+b2=c2.【答案】(1)△ABE 是等腰直角三角形,证明见解析;(2)b 2;(3)证明见解析.【解析】【分析】(1)由题意可以得到△ADE ≌△ACB ,从而得到△ABE 是等腰直角三角形;(2)由(1)可得四边形ABFE 的面积=正方形ACFD 的面积=b 2;(3)由(2)可得正方形ACFD 的面积=△ABE 的面积+△BEF 的面积,把a 、b 、c 代入上式即可整理得a 2+b 2=c 2.【详解】解:(1)△ABE 是等腰直角三角形,理由如下:∵四边形ACFD 是正方形,∴AC =AD ,∠D =∠DAC =∠ACB =90°,∵CB =a =DE ,∴△ADE ≌△ACB ,∴AB =AE ,∠BAC =∠EAD ,∴∠BAE =90°,∴△ABE 是等腰直角三角形.(2)∵△ADE ≌△ACB ,∴四边形ABFE 的面积=正方形ACFD 的面积=b 2.(3)证明:∵四边形ABFE 的面积=△ABE 的面积+△BEF 的面积,∴正方形ACFD 的面积=△ABE 的面积+△BEF 的面积,∴()()221122b c b a b a =++-,∴22222b c b a =+-,∴a 2+b 2=c 2.【点睛】本题考查正方形的综合应用,熟练掌握正方形的性质、三角形全等的判定与性质、等腰直角三角形的判定方法、三角形与四边形面积的灵活计算是解题关键 .4.如图,小明用6个图1中的矩形组成图2,其中四边形ABCD ,EFGH ,MNPQ 都是正方形,证明:222+=a b c .【答案】见解析【解析】【分析】根据4BEF ABCD EFGH S S S =+V 正方形正方形,列式计算即可求解.【详解】证明:由图得:4BEF ABCD EFGH S S S =+V 正方形正方形,∴()22142a b c ab +=+´,整理得:22222a ab b c ab ++=+,∴222a b c +=.【点睛】本题考查了勾股定理的证明,得到4BEF ABCD EFGH S S S =+V 正方形正方形是解题的关键.5.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt ABC V 中,90ACB Ð=°,若AC b =,BC a =,请你利用这个图形说明222+=a b c ;【答案】见解析【解析】【分析】根据题意,可在图中找出等量关系,由大正方形的面积等于中间的小正方形的面积加上四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【详解】解:∵大正方形面积为2c ,直角三角形面积为12ab ,小正方形面积为()2b a -,∴()222214222c ab b a ab b ab a =´+-=+-+,即222c a b =+.【点睛】本题考查了对勾股定理的证明,解决问题的关键是在图中找出等量关系.7.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD 中,BD ⊥CD ,AE ⊥BD 于点E ,且△ABE ≌△BCD .求证:AB 2=BE 2+AE 2.【答案】证明见解析【解析】【分析】连接AC ,根据四边形ABCD 面积的两种不同表示形式,结合全等三角形的性质即可求解.【详解】解:连接AC ,∵△ABE ≌△BCD ,∴AB =BC ,AE =BD ,BE =CD ,∠BAE =∠CBD ,∵∠ABE +∠BAE =90°,∴∠ABE +∠CBE =90°,∴∠ABC =90°,∴S 四边形ABCD =2111111222222ABD BDC S S BD AE BD CD AE AE BD BE AE BD BE D D +=×+×=×+×=+×,又∵S 四边形ABCD =2111111222222ABC ADC S S AB BC CD DE AB AB BE DE AB BE DE D D +=×+×=×+×=+×,2211112222AE BD BE AB BE DE +×=+×Q ,∴AB 2=AE 2+BD •BE -BE •DE ,∴AB 2=AE 2+(BD -DE )•BE ,即AB 2=BE 2+AE 2.【点睛】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.8.【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC V 中,90ACB Ð=°,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC V 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .(1)证明:AD LC =;(2)证明:正方形ACHI 的面积等于四边形ACLM 的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI 和BFGC 分别是以ABC V 的两边为一边的平行四边形,探索在AB 下方是否存在平行四边形ADEB ,使得该平行四边形的面积等于平行四边形ACHI 、BFGC 的面积之和.若存在,作出满足条件的平行四边形ADEB (保留适当的作图痕迹);若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)见解析(4)存在,见解析【解析】【分析】(1)根据正方形的性质和SAS 证明△ACB ≌△HCG ,可得结论;(2)证明S △CHG =S △CHL ,所以S △AMI =S △CHL ,由此可得结论;(3)证明正方形ACHI 的面积+正方形BFGC 的面积=▱ADJK 的面积+▱KJEB 的面积=正方形ADEB,可得结论;(4)如图2,延长IH和FG交于点L,连接LC,以A为圆心CL为半径画弧交IH于一点,过这一点和A作直线,以A为圆心,AI为半径作弧交这直线于D,分别以A,B为圆心,以AB,AI为半径画弧交于E,连接AD,DE,BE,则四边形ADEB即为所求.(1)证明:如图1,连接HG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC ≌△AMI (ASA ),由(1)知:△ACB ≌△HCG ,∴△AMI ≌△HGC ,∵四边形CGLH 是矩形,∴S △CHG =S △CHL ,∴S △AMI =S △CHL ,∴正方形ACHI 的面积等于四边形ACLM 的面积;(3)证明:由正方形ADEB 可得AB DE ∥,又AD LC P ,所以四边形ADJK 是平行四边形,由(2)知,四边形ACLM 是平行四边形,由(1)知,AD LC =,所以ACHI ADJK ACLM S S S ==正方形平行四边形平行四边形,延长EB 交LG 于Q ,同理有BFGC KJEB CBQL S S S ==正方形平行四边形平行四边形,所以+ACHI BFGC ADEB ADJK KJEB S S S S S +==正方形正方形正方形平行四边形平行四边形.所以222AC BC AB +=.(4)解:如图为所求作的平行四边形ADEB .【点睛】本题是四边形的综合题,考查的是全等三角形的性质和判定,平行四边形的性质和判定,矩形的性质和判定,正方形的性质,勾股定理的证明等知识;熟练掌握正方形的性质和全等三角形的判定与性质,根据图形面积的关系证出勾股定理是解题的关键,属于中考常考题型.9.阅读理解下列材料,并解决相应的问题.材料一:对角线互相垂直的四边形的面积等于对角线乘积的一半.如图1,四边形ABCD 中,若AC BD ^,则12ABCD S AC BD =×四边形.材料二:人教版教材八年级下册介绍了几种利用全等直角三角形通过拼图证明勾股定理的方法.这些方法的共同特点:利用两种不同的方法计算同一个拼图的面积,然后建立等量关系,化简即可证明勾股定理.小文发现:把两块全等的直角三角板ACB 和直角三角板DEF 摆成图2的形状,点C 与点F 重合,并且点C ,E ,B 在同一条直线上,连接DA ,DB .利用这种摆放方式,也能证明勾股定理.问题:如图2,已知(),90,,,ABC CDE ACB DEC BC DE a AC CE b a b Ð=Ð=°====>△≌△AB CD c ==,AB ,CD 交于点O .求证:(1)AB CD ^;(2)222+=a b c .【答案】(1)见解析(2)见解析【解析】【分析】(1)根据全等三角形的性质得到∠CAB =∠DCE ,利用等角的余角相等得到结论(2)根据四边形的对角线垂直得到四边形的面积,再利用BDE ACBD ACED S S S =+V 四边形梯形得到四边形的面积,即可得到结论.(1)证明:∵△ABC ≌△CDE ,∴∠CAB =∠DCE ,∵∠DCE +∠ACO =90°,∴∠CAB +∠ACO =90°,∴∠AOC =90°,即AB ⊥CD ;(2)∵四边形ACBD 中,若AB ⊥CD ,∴21122ACBD S AB CD c =×=四边形.∵BDEACBD ACED S S S =+V 四边形梯形=()1122AC DE CE DE BE +×+×=()()1122b b a a a b ++-=221122b a +,∴222111222b ac +=,即222+=a b c .【点睛】此题考查了全等三角形的性质,应用题意的结论进行推论论证,正确理解题意并应用是解题的关键.10.数学王老师在探索乘法公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,我国三国时期的数学家赵爽创造了一幅“勾股圆方图”(也称“赵爽弦图”)证明了勾股定理.2002年在北京召开的国际数学家大会把“赵爽弦图”作为会徽(如图1),彰显了这一中国古代的重大成就.运用“赵爽弦图”证明勾股定理的基本思路如下:“赵爽弦图”是将四个完全相同的直角三角形(如图2,其中构成直角的两条边叫直角边,边长分别为a 和b ,且a b <;最长的那条边叫做斜边,边长为c )围成一个边长为c 的大正方形(如图3),中间空的部分是一个边长为b a -的小正方形.(1)验证过程:大正方形的面积可以表示为2S c =,又可用四个直角三角形和一个小正方形的和表示为214()2S ab b a =´+-,∴2214()2c ab b a =´+-.化简等号右边的式子可得∴2c =_______.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小新把这四个相同的直角三角形拼成了另一个大的正方形(如图4),模仿上述过程也能验证这个结论,请你帮助小新完成验证的过程.【答案】(1)a 2+b 2;(2)见解析【解析】【分析】(1)化简等号右边的式子,即可得出答案;(2)利用以c为边的正方形和4个直角三角形的面积和等于以边为a+b的正方形的面积建立方程,即可得出结论.(1)解:(1)验证过程:大正方形的面积可以表示为S=c2,又可用四个直角三角形和一个小正方形的和ab+(b-a)2,表示为S=4×12ab+(b-a)2.∴c2=4×12化简等号右边的式子可得c2=a2+b2.即直角三角形两直角边的平方和等于斜边的平方.故答案为:a2+b2;(2)如图4,∵大的正方形的面积可以表示为(a+b)2,ab,大的正方形的面积又可以表示为c2+4×12∴c2+2ab=a2+b2+2ab,∴a2+b2=c2.【点睛】本题考查了勾股定理的证明.求面积时,利用了“分割法”.11.阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示的“弦图”,后人称之为“赵爽弦图”(边长为c的大正方形中放四个全等的直角三角形,两直角边长分别为a,b,斜边长为c).(1)请根据“赵爽弦图”写出勾股定理的推理过程;探索研究:(2)小亮将“弦图”中的2个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;问题解决:(3)如图2,若6a =,8b =,此时空白部分的面积为__________;(4)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,3OC =,求该风车状图案的面积.【答案】(1)见详解;(2)见详解;(3)52;(4)24.【解析】【分析】(1)运用等面积法4S S S =+△小正方形大正方形计算即可;(2)连接大正方形一条对角线,运用等面积法2BDE ACDE S S S =+△△梯形化简计算即可;(3)先用勾股定理计算出c ,再利用2S S S =-△空白大正方形计算面积即可;(4)将风车周长表示出来4()24C c b a =+-=风车,其中a =OC =3,得到b 、c 的等量关系,再结合勾股定理求解出b ,最后计算面积即可.(1)证明:由图可知,每个直角三角形的面积为12S ab =△,空白小正方形的面积为2()S b a =-小正方形,整个围成的大正方形的面积为2S c =大正方形,∵4S S S =+△小正方形大正方形,即2222221()4222c b a ab b a ab ab b a =-+×=+-+=+,故222c b a =+;(2)如下图所示,连接大正方形一条对角线DE可知2BDE ACDE S S S =+△△梯形 ,其中,1()()2ACDE S a b a b =++梯形,212BDE S c =△,12S ab =△,代入可得,22111()2222a b ab c +=×+,即222+=a b c ;(3)由图2可知,2S S S =-△空白大正方形,∵6a =,8b =,∴10c ==,则2S c =大正方形=100,∴21210068522S c ab =-×=-×=空白,故空白部分的面积为52;(4)由题意可知,风车的周长为4()24C c b a =+-=风车 ,其中OC =a =3,代入上式可得c +b =9,则c =9-b ,且222+=a b c ,即2229c b a -==,将c =9-b 代入得,22(9)9b b --=,解得b =4,则1144342422S ab =×=×××=风车.【点睛】本题考查了勾股定理的证明与运用,灵活掌握等面积法在证明勾股定理中的作用是解题的关键.12.勾股定理在全世界有超过400种证法,下面介绍欧几里得的证法:(不得直接运用勾股定理结论进行证明)在Rt ABC V 中,90ACB Ð=°分别以AB ,BC ,AC 为边向Rt ABC V 外侧做正方形,求正方形,分别得到正方形ACDE ,正方形BCJK ,正方形ABGF .(1)如图1,连接CF ,BE ,试证明线段CF 和线段BE 的数量关系.(2)如图2,过点C 作直线l AB ^交正方形ABGF 中AB 边于点H ,FG 边于点I ,求证:ACDE AHIF S S =正方形长方形.(3)设BC a =,AC b =,AB c =,运用此图合勾股定理的学习经验证明结论:222+=a b c .(不得直接运用勾股定理结论证明)【答案】(1)EB =CF ,证明见解析(2)见解析(3)见解析【解析】【分析】(1)连接BE ,CF ,再证明EAB CAF SAS ()△≌△即可;(2)首先得出,·ACDE S EA AC =正方形,·AHIF S AF AH =长方形,再根据EAB CAF △≌△可得结论;(3)根据第第二问结论,可得出ACDE AHIF S S =正方形长方形,BCJK BGHI S S =正方形长方形即可证明.(1)解:如图,连接BE ,CF∵ACDE ,BCJK 为正方形∴AC =AE ,AB =AF ,∠EAC =90°,∠BAF =90°EAB CAF Ð=Ð∴EAB CAF SAS ()△≌△ ∴EB =CF .(2)证明:过B 作BR EA ^于点R ,·ACDE S EA AC =正方形.1·2EAB S EA BR =V .∵BR =AC ∴12ACDE S 正方形=EAB S V (同底等高三角形面积是长方形的一半)·AHIF S AF AH =长方形.1·2FAC S AF SC =V .∵AH =SC ∴12FAC AHIF S S =V 长方形又∵EAB CAF△≌△∴EAB FACS S =V V ∴ACDE AHIF S S =正方形长方形.(3)证明:如图,已知ACDE AHIFS S =正方形长方形同理可证BCJK BGHIS S =正方形长方形∴ACDE BCJK AHIF BGHI S S S S +=+正方形正方形长方形长方形.即ACDE BCJK ABGFS S S +=正方形正方形正方形又∵2ACDE S b =正方形,2BCJK S a =正方形,2ABGF S c=正方形∴222+=a b c .【点睛】本题考查了勾股定理的验证,理解题意根据图形,找出等量关系是解题的关键.13.(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE 的中心O ,作FG ⊥HP ,将它分成4份,所分成的四部分和以BC 为边的正方形恰好能拼成以AB 为边的正方形.若AC =12,BC =5,求EF 的值.【答案】(1)222+=a b c ,见解析;(2)EF 为172或72【解析】【分析】(1)根据大正方形的面积等于4个直角三角形的面积与小正方形的面积和证明;(2)分a >b 和a <b 两种情况求解.【详解】解:(1)222+=a b c (直角三角形两条直角边的平方和等于斜边的平方),证明如下:∵如图①,∵△ABE ≌△BCF ≌△CDG ≌△DAH ,∴AB =BC =CD =DA =c ,∴四边形ABCD 是菱形,∴∠BAE +∠HAD =90°,∴四边形ABCD 是正方形,同理可证,四边形EFGH 是正方形,且边长为(b ﹣a ),∵=4+ABE ABCD EFGHS S S △正方形正方形∴2211=4+()22c ab a b ´´´-,∴222+=a b c (2)由题意得:正方形ACDE 被分成4个全等的四边形,设EF =a ,FD =b ,分两种情况:①a >b 时,∴a +b =12,∵正方形ABIJ 是由正方形ACDE 被分成的4个全等的四边形和正方形CBLM 拼成,∴E 'F '=EF ,KF '=FD ,E 'K =BC =5,∵E 'F '﹣KF '=E 'K ,∴a ﹣b =5,∴=125a b a b +ìí-=î解得:a =172,∴EF =172;②a <b 时,同①得:=125a b b a +ìí-=î,解得:a =72,∴EF =72;综上所述,EF 为172或72.【点睛】本题考查了勾股定理的证明和应用,熟练掌握面积法证明勾股定理,并灵活运用是解题的关键.14.勾股定理是人类重大科学发现之一.我国古代数学书《周髀算经》记载,约公元前11世纪,我国古代劳动人民就知道“若勾三,股四,则弦五”,比西方早500多年.请你运用学到的知识、方法和思想探究以下问题.【探究一】我国汉代数学家赵爽创制了“赵爽弦图”,通过图形切割、拼接,巧妙地利用面积关系证明了勾股定理.古往今来,人们对勾股定理的证明一直保持着极大的热情.意大利著名画家达·芬奇用两张一样的纸片,拼出不一样的空洞,利用空洞面积相等也成功地证明了勾股定理(如图).请你写出这一证明过程(图中所有的四边形都是正方形,三角形都是直角三角形).【探究二】在学习勾股定理的过程中,我们获得了以下数学活动经验:分别以直角三角形的三边为边向外侧作正方形(如图2),它们的面积1S,2S,3S之间满足的等量关系是:__________.迁移应用:如图3,图中所有的四边形都是正方形,三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,3,2,则正方形E的面积是________.【探究三】如图4,分别以直角三角形的三边为直径向外侧作半圆,则它们的面积1S,2S,3S之间满足的等量关系是________.迁移应用:如图5,直角三角形的两条直角边长分别为a ,b ,斜边长为c ,分别以三边为直径作半圆.若5a =,13c =,则图中阴影部分的面积等于________.【探究四】《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尺.问索长几何.译文:今有一竖立着的木柱,在木桩的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长多少?【答案】【探究一】:见解析;【探究二】:S 1+S 2=S 3;迁移应用:47;【探究三】S 1+S 2=S 3;迁移应用:30;【探究四】绳索长为736尺.【解析】【分析】【探究一】根据直角三角形以及正方形的面积公式计算即可解决问题.【探究二】由正方形面积公式以及勾股定理得S 1+S 2=S 3;迁移应用:根据正方形的面积公式,结合勾股定理,能够导出正方形A ,B ,C ,D 的面积和即为正方形E 的面积;【探究三】利用直角△ABC 的边长就可以表示出半圆S 1、S 2、S 3的大小;迁移应用:求出阴影部分的面积等于直角三角形的面积,然后列式计算即可得解;【探究四】设绳索长为x尺,根据勾股定理列出方程解答即可.【详解】解:【探究一】:由题意得:②的面积为a2+b2+212´ab=a2+b2+ab;图③的面积为c2+212´ab=c2+ab,∴a2+b2+ab=c2+ab,即a2+b2=c2;【探究二】S1+S2=S3.证明如下:∵S3=c2,S1=a2,S2=b2,∴S1+S2=a2+b2=c2=S3;故答案为:S1+S2=S3;迁移应用:根据勾股定理的几何意义,可知SE=SF+SG=SA+SB+SC+SD=32+52+32+22=47;故答案为:47;【探究三】S1+S2=S3.证明如下:∵S3=18πc2,S1=18πa2,S2=18πb2,∴S1+S2=18πa2+18πb2=18πc2=S3;故答案为:S1+S2=S3;迁移应用:阴影部分面积和=S1+S2+12ab-S3=12ab,∵a=5,c=13,∴b==12,∴阴影部分面积和=12×5×12=30,故答案为:30;【探究四】设绳索长为x尺,根据题意得:x2-(x-3)2=82,解得:x=736,答:绳索长为736尺.【点睛】本题考查了勾股定理的证明及应用,读懂题目材料的信息并用两种方法准确表示出同一个图形的面积是解题的关键.。
(完整版)勾股定理经典题目及答案
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
勾股定理最全题型完整答案
勾股定理最全题型完整答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米? 2.细心观察图形,认真分析各式,然后解答问题.OA 22212=+=,12S =;OA 322213=+=,22S =;OA 422214=+=,32S =… (1)(直接写出答案)OA 10= ,并用含有n (n 是正整数)的等式表示上述变规律:OA n 2= ;S n = .(23的点.4.有一个水池,水面是一个边长为10尺的正方形,在水池的正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,求水的深度是多少?5.如图,直角坐标系中的网格由单位正方形构成,△ABC 中,A 点坐标为(2,3),B 点坐标为(-2,0),C 点坐标为(0,-1). (1)求AC 的长; (2)求证:AC ⊥BC .6.在Rt ABC ∆中,90︒∠=C()1如图①,已知12,13BC AB ==,求AC 的长;()2如图②,CD AB ⊥,垂足为点D ,已知6,8BC AC ==,求CD 的长.7.如图,在Rt△ABC中,∠C=90°,点D是AC上一点,∠BDC=45°,AB=13,BC=5.(1)求BD的长;(2)求AD的长.8.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×12ab+(a-b)2,所以4×12ab+(a-b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC 的两直角边长为3和4,则斜边上的高为 .(3)试构造一个图形,使它的面积能够解释(a -2b )2=a 2-4ab +4b 2,画在上面的网格中,并标出字母a ,b 所表示的线段.9.如图,在四边形ABCD 中,90,90,3,4,12BAD DBC AD AB BC ︒∠=︒∠====,求CD .10.如图,某城市接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15/km h 的速度移动,已知城市A 到BC 的距离100AD km =. (1)台风中心经过多长时间从B 移动到D 点?(2)已知在距台风中心30km 的圆形区域内都会受到不同程度的影响,若在点D 的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?11.请在方格内画△ABC ,使它的顶点都在格点上,且三边长分别为2,,求①△ABC 的面积;②最长边上的高.12.如图,某位老师在讲“实数”时,画了一个图,即“以数轴的单位长线段为边作一个正方形,然后以原点为圆心,正方形的对角线长为半径画弧交数轴于一点A ”,作这样的图用来说明:13.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b ,斜边为c ,然后按图1的方法将它们摆成正方形. 由图1可以得到221()42a b ab c +=⨯+, 整理,得22222a ab b ab c ++=+. 所以222+=a b c .(1)如果把图1中的四个全等的直角三角形摆成图2所示的正方形, 请你参照上述证明勾股定理的方法,用图2证明勾股定理.(2)图2中若大正方形的面积是13,小正方形的面积是1,求()2a b +的值. 14.在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1) (2)连接AB 、BC 、AC ,试判断△ABC 的形状.15.如图在四边形ABCD 中, AD=1,AB=BC=2,DC=3,AD ⊥AB,求ABCD S 四边形16.任选一题作答,只计一题的成绩:一、如图,某工厂C 和一条笔直的公路AB ,原有两条路AC ,BC 可以C 到达AB ,经测量600m AC =,800m BC =,1000m AB =,现需要修建一条新公路,使C 到AB 的距离最短.请你帮C 设计一种方案,并求新建公路的长.二、如图,90ADC ∠=︒,4=AD m ,3CD =m , 13AB =m ,12BC =m . (1)试判断以点A ,B ,C 为顶点的三角形的形状,并说明理由; (2)求该图的面积.17.阅读:已知a 、b 、c 为△ABC 的三边长,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:因为a 2c 2﹣b 2c 2=a 4﹣b 4,①所以c 2(a 2﹣b 2)=(a 2﹣b 2)(a 2+b 2).② 所以c 2=a 2+b 2.③所以△ABC 是直角三角形.④ 请据上述解题回答下列问题:(1)上述解题过程,从第 步(该步的序号)开始出现错误,错的原因为 ; (2)请你将正确的解答过程写下来.18.已知:a 、b 、c 是ABC ∆的三边,()215170b c -+-=,ABC ∆面积等于______.19.(1)特例求解:在△ABC 中,若三角形的三边为6、8、10,则这个三角形的面积 为 .(2)一般化探究:在三角形ABC 中,若AB=13,AC=14,BC=15,求△ABC 的面积. (3)模型建立:在图1三角形中,分别以AB ,BC 为边向外作正方形ABDE 和正方形BCFG ,试说明S △ABC =S △BDG .(温馨提示:作DP ⊥BG ,AH ⊥BC)(4)模型应用:分别以图1中三角形的三边为边向外作正方形ABDE 、正方形BCFG 和正方形AMNC ,如图3,利用(3)中的结论求多边形DEMNFG 的面积,直接写出结论.20.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高6BC cm =,P 是BC 上一点且23PC BC =.一只蚂蚁从点A 出发沿着圆柱的侧面爬行到点P ,求爬行的最短路程是多少.21.如图,折叠长方形的一边AD ,使点D 落在BC 边上的点F 处,BC 10cm =,8AB cm =.(1)求BF 的长;(2)求EC 的长.22.法国数学家费尔马早在17世纪就研究过形如x 2+y 2=z 2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x ,y ,z )叫做勾股数,如(3,4,5)就是一组勾股数.(1)在研究勾股数时,古希腊的哲学家柏拉图曾指出:如果n 表示大于1的整数,x =2n ,y =n 2﹣1,z =n 2+1,那么,以x ,y ,z 为三边的三角形为直角三角形(即x ,y ,z 为勾股数),请你加以证明;(2)探索规律:观察下列各组数(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,直接写出第6个数组.23.如图所示,已知ABC ∆中,8AB cm =,6AC cm =,BC 10cm =.分别以三边,AB AC 及BC 为直径向外作半圆,求阴影部分的面积.24.如图,在ABC V 中,90B ∠=︒,25AC cm =,15BC cm =,P ,Q 分别是ABC V 边AB ,BC 上的两个动点,其中点P 以每秒2个单位的速度由点A 向点B 运动;点Q 以每秒3个单位的速度由点B 到点C 再到点A 运动;它们同时出发,当一个点到达终点停止,另一个点继续运动到终点也停止,设运动时间为t 秒。
八年级数学上册 第三章 3.1 勾股定理的证明知识点与同步训练(含解析)苏科版
勾股定理的证明一.勾股定理1.如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.2.勾股定理的变形:22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明1.如下图,()22142ABCDS c a b ab==-+⨯正方形,所以222a b c+=.HGFEDCBA cba 2.如下图,2()()112222ABCDa b a bS ab c+-==⨯+梯形,所以222a b c+=.cb ac baEDCBA一.勾股定理逆定理1.如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形.2.勾股定理与其逆定理的区别是:勾股定理以“一个三角形是直角三角形”为前提,得到这个三角形的三边长的数量关系;勾股定理的逆定理以“三角形的三边长满足222a b c+=”为前提,得到这个三角形是直角三角形.两者的题设和结论正好相反,应用时要注意其区别.二.勾股数1.满足222a b c+=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.2.常用勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17;9、40、41.题模一:证明例1.1.1请根据我国古代数学家赵爽的弦图(如图),说明勾股定理.【答案】见解析【解析】∵△ABC、△BMD、△DHE、△AGE是全等的四个直角三角形,∴AE DE BD AB===,1809090EAG BAC EAG AEG∠+∠=∠+∠=︒-︒=︒,∴四边形ABDE是正方形,∵90AGE EHD BMD ACB∠=∠=∠=∠=︒,∴90HGC∠=︒,∵GH HM CM CG b a====-,∴四边形GHMC是正方形,∴大正方形的面积是2c c c⨯=,大正方形的面积也可以是:2222214222ab b a ab a ab b a b⨯+-=+-+=+(),∴222a b c+=,即在直角三角形中,两直角边a b(、)的平方和等于斜边c()的平方.例1.1.2如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF.(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;(2)求OPDEFS S 矩形的最小值;(3)当OPDEFSS 矩形的值最小时,过点A 作BC 的平行线交直线BP 与Q ,这时线段AQ 的长与m ,n ,k 的取值是否有关?请说明理由.【答案】 见解析 【解析】 解法一:(1)据题意,∵a+h=-n m ,ah=k m∴所求正方形与矩形的面积之比: 2()a h ah+=2()n m k m-=2n mk (1分) ∵n 2-4mk≥0,∴n 2≥4mk,由ah=km知m ,k 同号, ∴mk>0 (2分)(说明:此处未得出mk >0只扣(1分),不再影响下面评分) ∴2n mk ≥4mk mk=4(3分) 即正方形与矩形的面积之比不小于4.(2)∵∠FED=90°,∴DF 为⊙O 的直径.∴⊙O 的面积为:S ⊙O =π(2DF )2=π24DF =4π(EF 2+DE 2). (4分)矩形PDEF 的面积:S 矩形PDEF =EF•DE. ∴面积之比:OPDEFSS 矩形=4π(EF DE+DE EF),设EF DE=f .OPDEFSS 矩形=4π(f+1f)=4π[(f )2+(1f )2-2f -1f+2f1f]=4π(f -1f)2+2π.(6分)∵(f -1f )2≥0,∴4π(f -1f)2+2π≥2π,∴f =1f,即f=1时(EF=DE ),OPDEFSS 矩形的最小值为2π(7分)(3)当OPDEFSS 矩形的值最小时,这时矩形PDEF 的四边相等为正方形.过B 点过BM⊥AQ,M 为垂足,BM 交直线PF 于N 点,设FP=e ,∵BN∥FE,NF∥BE,∴BN=EF,∴BN=FP=e. 由BC∥MQ,得:BM=AG=h . ∵AQ∥BC,PF∥BC,∴AQ∥FP, ∴△FBP∽△ABQ. (8分)(说明:此处有多种相似关系可用,要同等分步骤评分) ∴FP AQ =BNBM,(9分) ∴e AQ =eh,∴AQ=h (10分) ∴AQ=242n n mkm -±-(11分)∴线段AQ 的长与m ,n ,k 的取值有关. (解题过程叙述基本清楚即可) 解法二:(1)∵a,h 为线段长,即a ,h 都大于0,∴ah>0 (1分)(说明:此处未得出ah >0只扣(1分),再不影响下面评分) ∵(a-h )2≥0,当a=h 时等号成立. 故,(a-h )2=(a+h )2-4ah≥0.(2分) ∴(a+h )2≥4ah,∴2()a h ah+≥4.(﹡) (3分)这就证得2()a h a h+-≥4.(叙述基本明晰即可)(2)设矩形PDEF 的边PD=x ,DE=y ,则⊙O 的直径为22x y +. S ⊙O =π(222x y +)2(4分),S 矩形PDEF =xyOPDEFSS 矩形=22()4x y xyπ+=4π[22(2)2x xy y xy xy ++-]=4π[2()x y xy +-2](6分)2()x y xy+≥4由(1)(*). ∴4π[2()x y xy +-2]≥4π(4-2)=2π.∴OPDEFSS 矩形的最小值是2π(7分)(3)当OPDEFSS 矩形的值最小时,这时矩形PDEF 的四边相等为正方形.∴EF=PF.作AG⊥BC,G为垂足.∵△AGB∽△FEB,∴ABBF =AGEF.(8分)∵△AQB∽△FPB,ABBF =AQPF,(9分)∴ABBF =AGEF=AQPF.而EF=PF,∴AG=AQ=h,(10分)∴AG=h=242n n mkm-+-,或者AG=h=242n n mkm---(11分)∴线段AQ的长与m,n,k的取值有关.(解题过程叙述基本清楚即可)题模二:勾股定理例1.2.1如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式()A.a<c<b B.a<b<c C.c<a<b D.c<b<a【答案】C【解析】∵AC=2243+=5=25,BC=2241+=17,AB=4=16,∴b>a>c,即c<a<b.故选C.例1.2.2有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5B.7C.5或7D.不确定【答案】C【解析】本题考查勾股定理的使用.此题要分两种情况进行讨论:①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.①当3和4为直角边时,第三边长为22345+=②当4为斜边时,第三边长为22437-=,故选C.例1.2.3在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.334【答案】A【解析】根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB=22AC BC+=15,过C作CD⊥AB,交AB于点D,又S△ ABC=12AC•BC=12AB•CD,∴CD=AC BCAB=91215⨯=365,则点C到AB的距离是365.故选A例1.2.4已知直角三角形的一直角边等于35cm,另外两条边的和为49cm,求斜边长.【答案】斜边长为37cm【解析】设直角三角形的斜边长为x cm,则另一直角边为()49x-cm,根据勾股定理可列方程:()2223549x x+-=,解得37x=随练1.1勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a)∴12b2+12ab=12c2+12a(b-a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结____.∵S五边形ACBED=____.又∵S五边形ACBED=____.∴____.∴a2+b2=c2.【答案】(1)BD,过点B作DE边上的高BF,则BF=b-a(2)S△ ACB+S△ ABE+S△ ADE=12ab+12b2+12ab,(3)S△ ACB+S△ ABD+S△ BDE=12ab+12c2+12a(b-a)(4)12ab+12b2+12ab=12ab+12c2+12a(b-a)【解析】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S 五边形ACBED =S △ ACB +S △ ABE +S △ ADE =12ab+12b 2+12ab , 又∵S 五边形ACBED =S △ ACB +S △ ABD +S △ BDE =12ab+12c 2+12a (b-a ), ∴12ab+12b 2+12ab=12ab+12c 2+12a (b-a ), ∴a 2+b 2=c 2.随练1.2 如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC 的三个顶点均在格点上,则△ABC 的周长为=_____,面积为_____【答案】 62610+;36【解析】 该题考查的是勾股定理和三角形面积计算.由勾股定理得:2239310AB =+=,226662BC =+=,1.2239310AC =+=, 2. 所以△ABC 的周长为62610AB AC BC ++=+,1199662393622ABC S =⨯-⨯⨯-⨯⨯⨯=△随练1.3 若一直角三角形两边长为6和8,则第三边长为()A . 10B . 27C . 10或D . 10【答案】C【解析】 该题考查的是勾股定理.(1)当6和8是直角边时,斜边10==;(2)当8是斜边时,另一直角边==;故选C .随练1.4 若一直角三角形两边长为6和8,则第三边长为( )A . 10B .C . 10或D . 10【答案】C【解析】 该题考查的是勾股定理.(1)当6和8是直角边时,斜边10==;(2)当8是斜边时,另一直角边==;故选C .随练1.5 设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是____A . 1.5B . 2C . 2.5D . 3【答案】D【解析】 本题考查了勾股定理和三角形的周长以及完全平方公式的运用.由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab 的值.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b 是直角三角形的两条直角边,∴a 2+b 2=2.52,②由①②可得ab=3,故选D .随练1.6 已知在Rt △ABC 中,90C ∠=︒,AB c =,BC a =,AC b =.如果26c =,:5:12a b =,求a 、b 的值.【答案】 10a =,24b =【解析】 ∵Rt ABC △中,90C ∠=︒,26c =,:5:12a b =,可设5a x =,则12b x =,∴()()22251226x x +=,解得2x =,∴10a =,24b =.作业1 如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了( )m 的路,却踩伤了花草.A . 5B . 4C . 3D . 2【答案】B【解析】 该题考查的是勾股定理.根据直角三角形勾股定理两直角边长的平方和等于斜边长的平方,可得斜边长为2251213+=,因此少走的路为512134+-=.所以本题的答案是B .作业2 如图,点E 在正方形ABCD 内,满足90AEB ∠=︒,6AE =,8BE =,则阴影部分的面积是( )E ACB D A . 48B . 60C . 76D . 80【答案】C 【解析】 211100687622ABE ABCD S S S AB AE BE ∆=-=-⨯⨯=-⨯⨯=正方形阴影部分.故选C .作业3 已知一个直角三角形的两条直角边分别为6cm ,8cm ,那么这个直角三角形斜边上的高为cm.【解析】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.作业4如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于____.【答案】2π【解析】S1=12π(2AC)2=18πAC2,S2=18πBC2,所以S1+S2=18π(AC2+BC2)=18πAB2=2π.故答案为:2π.作业5学习勾股定理相关内容后,张老师请同学们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同学通过计算得到第三边是5,你认为张华的答案是否正确:_____________,你的理由是______________________________________________________________________【答案】不正确;若4为直角边,第三边为5;若4为斜边,第三边为7【解析】本题需要分类讨论.当4为直角边时,第三边的长为22345+=;当4为斜边时,第三边的长为22437-=.因此答案为5或7.作业6如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.【答案】5连接BD ,∵等腰直角三角形ABC 中,D 为AC 边上中点,∴BD⊥AC(三线合一),BD=CD=AD ,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C,又∵DE 丄DF ,∴∠FDC+∠BDF=∠EDB+∠BDF,∴∠FDC=∠EDB,在△EDB 与△FDC 中,∵EBD C BD CD EDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB≌△FDC(ASA ),∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在Rt△EBF 中,EF 2=BE 2+BF 2=32+42,∴EF=5.答:EF 的长为5.作业7 操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a 、b 、c (如图①),分别用4张这样的直角三角形纸片拼成如图②③的形状,图②中的两个小正方形的面积2S 、3S 与图③中小正方形的面积1S 有什么关系?你能得到a 、b 、c 之间有什么关系?【答案】 三个小正方形的面积满足231S S S +=,其边长满足222a b c +=【解析】 分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和等于图3中的小正方形的面积,即231S S S +=,这个结论用关系式可表示为222a b c +=.如有侵权请联系告知删除,感谢你们的配合!。
数学勾股定理(讲义及答案)附解析
一、选择题1.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .92.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①BC=2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个B .2个C .3个D .4个 3.以线段a 、b 、c 的长为边长能构成直角三角形的是( ) A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=54.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10B .a =41,b =4,c =5C .a =3,b =2,c =5D .a =3,b =4,c =65.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6 6.下列各组线段能构成直角三角形的一组是( )A .30,40,60B .7,12,13C .6,8,10D .3,4,67.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒8.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是()A.杨辉B.刘徽C.祖冲之D.赵爽9.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,B C'交AD于点E,则线段DE的长为()A.3 B.154C.5 D.15210.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为x,则210x x+=()A.12 B.16 C.20 D.24二、填空题11.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___.12.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).13.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.14.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.15.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.16.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.17.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD,则线段BD的长为_____.18.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____________ (填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=135°19.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB,且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD的长是____________.三、解答题21.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.22.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.23.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.【详解】设AB=c ,AC=b ,BC=a ,由题意得'A BC 的面积=11022a a ⋅⋅=,'AB C △的面积=142b ⋅=∴2a = 2b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2,∴c 2=a 2-b 2=∴'ABC △的面积=212c ⋅=6= 故此题选B【点睛】此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积2.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AC=BC=4,则AE=3=DE ,由勾股定理可得, ①正确;1>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确;△DCE 的周长,△BDF 的周长+4-4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.3.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、2222+≠,故错误;B 、22213+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.4.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A 、∵72+82≠102,∴△ABC 不是直角三角形;B 、∵52+42=)2,∴△ABC 是直角三角形;C 、∵2222,∴△ABC 不是直角三角形;D 、∵32+42≠62,∴△ABC 不是直角三角形;故选:B .【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.5.C解析:C【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .考点:勾股定理的证明.6.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.7.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.8.D解析:D【分析】3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.故选D .【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.9.B解析:B【分析】首先根据题意得到BE=DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】解:设ED=x ,则AE=6-x ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=154,∴ED=154.故选:B.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.10.D解析:D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.5【详解】解:如图,延长AE交BC于点F,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5.12.①③【分析】 ①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.13.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=1,OA 3=2,OA 4=3,…OA 2019=2018,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.【详解】∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=)2018,∴点A 2019的坐标为(2018,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 14.6或2.【分析】由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D 点在BC 上方时,如图1所示,把△ABD 绕点D 逆时针旋转90°,得到△DCE ,则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.15.232【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:23或2【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.16.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE是等腰直角三角形==所以20所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.17.7【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD故答案为:7【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.18.①②③【解析】【详解】解:∵△ABC是等边三角形,∴∠=,ABC60∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠=∠+∠=∠+∠=∠=,PBQ PBC CBQ PBC ABP ABC60∴△BPQ是等边三角形,①正确.∴PQ=BP=4,222222PQ QC PC+=+===,4325,525222∴+=,PQ QC PC∴∠=,即△PQC是直角三角形,②正确.PQC90∵△BPQ是等边三角形,∴∠=∠=,60PBQ BQP∵△BQC≌△BPA,∴∠APB=∠B QC,∴∠=∠=+=,③正确.BPA BQC6090150∴∠=---∠=-∠,APC QPC QPC36015060150,,∠=≠PQC PQ QC9045QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.19.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm 和50cm ,则所走的最短线段AB==10cm ;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm 和30cm ,所以走的最短线段AB==10cm ;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.20.3或3或15【分析】根据直角三角形的性质求出BC,勾股定理求出AB,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4,由勾股定理得,22228443AC BC-=-=43333AD∴==当点P在AC上时,∠A=30°,AP=2PD,∴∠ADP=90°,则AD2+PD2=AP2,即(32=(2PD)2-PD2,解得,PD=3,当点P在AB上时,AP=2PD,3∴3当点P在BC上时,AP=2PD,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(22223x x ∴-=-解得,故答案为:3【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°, ∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =3∴AC ()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC为等边三角形,过D作DG⊥AC于G,则∠ADG=160302⨯︒=︒,∴122AG AD==,22224223DG AD AG=-=-=,∴S△ADC=1423432⨯⨯=,S△ABC=12AB×BC=23,∴S四边形ABCD=S△ADC+S△ABC=63;②当CD=CB=BD=23时,如图所示:∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.23.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF ,CE=CE∴△ECF ≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(32BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH , ∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.26.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C 作CE ⊥AB 于点E ,则D′E=BE ,设D′E=BE=x ,在Rt △CEB 中,CE 2=CB 2-BE 2=102-x 2,在Rt △CEA 中,CE 2=AC 2-AE 2=172-(9+x )2.∴102-x 2=172-(9+x )2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B 不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.27.(1)①详见解析;(2)2222CD n =+-1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90° ∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+- 又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DFCD CF CD =+=又DF=BF-BD=AD-BD∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;。
八年级数学勾股定理30道必做题(含答案和解析)
八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。
勾股定理证明题试题及参考答案
勾股定理证明题试题及参考答案勾股定理是数学常见的定理,这些定理该怎么证明呢?证明的方法是怎样的呢?下面就是店铺给大家整理的勾股定理证明题内容,希望大家喜欢。
勾股定理证明题一已知△ABC中,∠ACB=90°,以△ABC的各边为长边在△ABC外作矩形,使每个矩形的宽为长的一半,S1、S2、S3分别表示这三个矩形的面积,则S1、S2、S3之间有什么关系?并证明你的结论。
(要详细解题过程)因为D是AB的中点,DE垂直于DF于D所以,∠EDF=90度,AC=2DF, BC=2DE又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC即,∠DFB=∠AED=90度根据勾股定理则有 AE^2=AD^2-DE^2-------(1)BF^2=BD^2-DF^2-------(2)又因为D是AB的中点,DE//BC,DF//AC。
所以EF//AB,且AD=BD=EF----------------(3)在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2) 即 EF^2=AE^2+BF^2因为D是AB的中点,DE垂直于DF于D所以,∠EDF=90度,AC=2DF, BC=2DE又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC即,∠DFB=∠AED=90度根据勾股定理则有 AE^2=AD^2-DE^2-------(1)BF^2=BD^2-DF^2-------(2)又因为D是AB的中点,DE//BC,DF//AC。
所以EF//AB,且AD=BD=EF----------------(3)在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2) 即 EF^2=AE^2+BF^2勾股定理证明题二设MD,ME,MF分别交AC,BC,AB于P,Q,R,连接MA.MB,MC由勾股定理MB^2=MP^2+BP^2=MR^2+BR^2 (1)BD^2=MP^2+PD^2=BF^2=BR^2+FR^2 (2)CM^2=CP^2++MP^2=CQ^2+MQ^2 (3)CD^2=PD^2+PC^2=CF^2=CQ^2+QF^2 (4)MA^2=MQ^2+AQ^2=AR^2+MR^2 (5)由(1)(2)(3)(4)(5)可得AQ^2+MQ^2=AR^2+FR^2即AE^2=AF^2AE=AF中学勾股定理课堂实录师:我们知道,数学是一门基础学科,它用概念、公式、定理演绎着数学的神奇和魅力,今天我们在一起继续学习一个古老而著名的数学定理。
(完整版)勾股定理经典例题(含答案)
经典例题透析种类一:勾股定理的直接用法1、在 Rt△ ABC 中,∠ C=90 °(1)已知 a=6, c=10,求 b, (2)已知 a=40, b=9 ,求 c; (3)已知 c=25, b=15,求 a.思路点拨 : 写解的过程中,必定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
分析: (1) 在△ ABC 中,∠ C=90 °, a=6, c=10,b=(2)在△ ABC 中,∠ C=90°, a=40, b=9,c=(3)在△ ABC 中,∠ C=90°, c=25, b=15,a=贯通融会【变式】 :如图∠ B=∠ ACD =90 ° , AD =13,CD=12, BC=3,则 AB 的长是多少 ?【答案】∵∠ ACD =90 °AD = 13, CD=12∴AC 2 =AD 2-CD2 =132- 122=25∴AC=5又∵∠ ABC=90 °且 BC=3∴由勾股定理可得AB 2= AC 2-BC2=52- 32=16∴AB= 4∴AB 的长是 4.种类二:勾股定理的结构应用2、如图,已知:在中,,,. 求: BC 的长 .思路点拨:由条件,想到结构含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD 、DC 的长,从而求出BC 的长 .分析:作于D,则因,∴(的两个锐角互余)∴(在中,假如一个锐角等于,那么它所对的直角边等于斜边的一半).依据勾股定理,在中,..∴.贯通融会【变式 1】如图,已知:,,于P.求证:.分析:连结 BM ,依据勾股定理,在中,.而在中,则依据勾股定理有.∴又∵(已知),∴.在中,依据勾股定理有,∴.【变式 2】已知:如图,∠B=∠ D=90 °,∠ A=60 °, AB=4 , CD=2 。
求:四边形ABCD 的面积。
剖析:怎样结构直角三角形是解本题的重点,能够连结 AC ,或延伸 AB 、DC 交于 F,或延伸 AD 、BC 交于点 E,依据本题给定的角应选后两种,进一步依据本题给定的边选第三种较为简单。
(完整word)用等积法证明勾股定理专题
用等积法证明勾股定理专题姓名:一、引入学会用拼图法验证勾股定理拼图法验证勾股定理的基本思想是:借助于图形的面积来验证,依据是对图形经过割补、拼接后面积不变的原理.如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形. 请读者证明.对应练习:1、如图所示为一种“羊头"形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )A .2B .4C .8D .16③'④'④③②'②①(图1)(2)(3)a bcl2、勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三、股四,则弦五"的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.90 B.100 C.110 D.1213、如图,直线l上有三个正方形a b c,,,若a c,的面积分别为5和11,则b的面积为()(A)4 (B)6(C)16 (D)554、在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______。
5、在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用四个完全相同的直角三角形拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向外作等边三角形,探究S′+ S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向外作半圆,探究S′+ S″与S的关系(如图3).6、如图,是用硬纸板做成的两种直角三角形各有若干个,图①中两直角边长分别为a和b,斜边长为c;图②中两直角边长为c.请你动脑,将它们拼成能够证明勾股定理的图形.(1)请你画出一种图形,并验证勾股定理.(2)你非常聪明,能再拼出另外一种能证明勾股定理的图形吗?请画出拼后的图形(无需证明).7、仔细观察图形,认真分析各式,然后解答问题。
多种方法证明勾股定理完整版
多种方法证明勾股定理 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】多种方法证明勾股定理【证法1】(课本上的证明方法)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形。
从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等。
即,整理得 222c b a =+。
【证法2】(中国古代数学家邹元治的证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 。
把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上。
∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF 。
∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o 。
∴ ∠HEF = 180o ―90o= 90o 。
∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c2。
∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA 。
∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o 。
又∵ ∠GHE = 90o,abc ab b a 214214222⨯+=⨯++ab 21∴ ∠DHA = 90o+ 90o= 180o 。
∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ 。
∴ 222c b a =+。
【证法3】(三国时期赵爽的证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 。
把这四个直角三角形拼成如图所示形状。
∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB 。
勾股定理解答证明题知识讲解
《勾股定理》证明解答题练习1、在ABC ∆中,AC AB =,D 为BC 边上任一点,求证:DC BD AD AB ⋅=-222、已知:如图,在ABC Rt ∆中,ο90=∠C ,D 是AC 的中点,AB ED ⊥于E求证:(1)22243BD BC AB =+(2)222BC AE BE =-3、如图,在ABC ∆中,ο90=∠C ,13=AB ,12=BC ,BC BD 21=(1)AD 的长.(2)ABD ∆的面积.4、求边长为a 的等边三角形的高和面积2 5、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,3 使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?BCACB BC6、若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.7、已知:如图, ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A。
求:BD的长。
(8分)8、甲、乙两船同时从港口A出发,甲船一12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行。
2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,问乙船的速度是每小时多少海里?9.如图所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,•求该四边形的面积.B CA D10.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.11.如图,某购物中心在会十.一间准备将高5 m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?5m13m8m12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?13.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足222244421c b c a c b a +=++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》证明解答题练习
1、在ABC ∆中,AC AB =,D 为BC 边上任一点,求证:DC BD AD AB ⋅=-2
2
2、已知:如图,在ABC Rt ∆中,
90=∠C ,D 是AC 的中点,AB ED ⊥于E
求证:(1)2
2
2
43BD BC AB =+
(2)2
2
2
BC AE BE =-
3、如图,在ABC ∆中,
90=∠C ,13=AB ,12=BC ,BC BD 2
1
=
(1)AD 的长.
(2)ABD ∆的面积.
4、求边长为a 的等边三角形的高和面积
2 5、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,
3 使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
B
C
A
C
B B
C
6、若△ABC的三边a、b、c满足条件a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.
7、已知:如图, ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A。
求:BD的长。
(8分)
8、甲、乙两船同时从港口A出发,甲船一12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行。
2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,问乙船的速度是每小时多少海里?9.如图所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,•求该四边形的面积.
B C
A D
10.如图,王大爷准备建一个蔬菜大棚,棚宽8m,高6m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.
11.如图,某购物中心在会十.一间准备将高5 m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?
5m
13m
8m 20m
12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?
13.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足22224
4
4
2
1c b c a c b a +=+
+。
试判断△ABC 的形状。
14.设P 是等边三角形ABC 内的一点,PA =3,PB =4,PC =5,求∠APB 的度数
15.已知,如图在△ABC 中,AB=AC ,∠BAC=90°,∠DAE=45°,求证:DE 2=BD 2+CE 2
.
16.如图,已知在△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:2
2
AC AB AB BC =+⋅
17、设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AF 为边作第三个正方形AEGH ,如此下去……(1)记正方形ABCD 的边长11a =,依上述方法所作的正方形的边长依次为234,,...n a a a a 求出234,,a a a 的值。
(2)根据上述规律写出第n 个正方形的边长n a 的表达式.
P C
B A E
D C B A B A
C D
A
B C
18、如图,P 是矩形ABCD 内一点,PA=1,PB=5,PC=7,求PD.
19、如图,是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以直角边为边,分别向外作正方形②和'
②,……,依此类推,若正方形①的边长为64,则正方形⑦的边长为______.
20、如图,ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与'
ACP ∆重合,如果AP =3,那么.______'
=PP
21、如图所示,△ABC 中,2,30,45=︒=∠︒=∠AB C B
求:AC 的长.
22、(12分)台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A 的正南方向240千米的B 处有一台风中心,其中心风力为12级,每远离台风中心25千米,风力就会减弱一级,该台风中心现正以20千米/时的速度沿此偏东30°的方向往C 移动,如图所示,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.
(1)该城市是否受台风的影响?请说明理由
(2)若会受到台风影响,那么台风影响城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?。