武汉大学《数学分析》《高等代数》历年考研真题(2009-2018汇总)
武汉大学2006年数学分析考研试题
武汉大学2006年数学分析考研试题武汉大学2006年数学分析考研试题一、已知:21lim 31x x ax b x→++=-,求常数,.a b二、已知:2111()221n nn x x +∞=-+∑,求其收敛域。
三、f 在[]0,1上可导,且(1)2(0)f f =,求证:(0,1)ξ∃∈,使得(1)()()f f ξξξ'+=。
四、已知()f x 在[]0,1上可导,(0)0,0()1f f x '=<≤。
求证:11230(())()f x dx f x dx≥⎰⎰。
五、 已知f 在[,]a b 上单调递增,(),()f a a f b b ≥≤,求证:[,]a b ξ∃∈,使得()f ξξ=六、 在过(0,0),(,0)O A π的曲线:sin (0)L y a x a =>中,求出使得3(1)(2)Ly dx x y dy +++⎰的值最小的。
七、 求第二型曲面积分32222()Sxdydz ydzdx zdxdy I x y z ++=++⎰⎰,S为椭圆2222221x y z a b c ++=的外侧八、 求证0sin xyxedxx y+∞-+⎰在[]0,1上一致收敛。
九、 已知方程2cos()0xy xy +-=(1)研究上述方程并说明它在什么时候可以在点(0,1)附近确定函数()y y x =,且(0)1y =。
(2)研究函数()y y x =在点(0,1)附近的可微性。
(3)研究函数 ()y y x =在点(0,1)附近的单调性。
(4) 试问上述方程在点(0,1)的充分小邻域内可否确定函数(),(1)0x x y x ==?并说明理由。
武汉大学2006年数学分析考研试题解答一.解 由21lim 31x x ax b x→++=-,知()21lim 0x xax b →++=,10a b ++=,()21123lim lim 211x x x ax b x aa x →→+++===-+--,所以5a =-,4b =. 二.解 设()211221n n n x ux x -⎛⎫=⎪+⎝⎭,显然当1x =时,()11nn u∞=∑收敛,当1x ≠时,()()21111limlim221n n n n n u x x x u x ++→∞→∞-=+,当1121x x -<+时,()()1lim 0n n n u x u x +→∞=,此时,()1nn ux ∞=∑绝对收敛;当1121x x -=+时,()12n nu x ≤,此时,()1n n ux ∞=∑绝对收敛;当1121x x ->+时,()()1limn n n u x u x +→∞=+∞,此时,()1nn ux ∞=∑发散,所以级数的收敛域为1121x x -≤+,()()22121x x -≤+,()320x x +≥,x ≥或者2x ≤-,故收敛域为(][),20,-∞-+∞. 三.证明 设()()1f x F x x =+,则有()()00F f =,()()()()11002f F f F ===, ()()()()()211x f x f x F x x '+-'=+,由拉格朗日中值定理,存在()0,1ξ∈,使得()()()()1010F F F ξ'-=-,()()()100F F F ξ'=-=,即知有()()()10f f ξξξ'+-=,()()()1f f ξξξ'+=.四、假设()f x 在[]0,1上可导,且()0()1,0,1,(0)0f x x f '<<∀∈=,试证明 ()230()()>⎰⎰x xf t dtf t dt,()0,1∀∈x . 证明 令()230()()()=-⎰⎰xxF x f t dtf t dt,()320()2()()()()2()()'=-=-⎰⎰x xF x f x f t dt f x f x f t dt f x ,因()0()1,0,1,(0)0f x x f '<<∀∈=,所以()0>f x , 令20()2()()=-⎰x g x f t dt f x ,则[]()2()1()0''=->g x f x f x ,即得()(0)0>=g x g , 所以()0'>F x , 则()230()()()(0)0=->=⎰⎰x xF x f t dtf t dt F ,()0,1∀∈x ,于是 ()230()()xxf t dtf t dt>⎰⎰,()0,1∀∈x .五.证明 有题设条件,对a x b≤≤,有()()()a f a f x f b b≤≤≤≤,若()f a a =,则取a ξ=,即得结论.若()a f a <,则存在0δ>(充分小),当a x a δ≤≤+时,有()()x f a f x <≤,令[](){}:,,E x t a x t f t =∈<,则E 是非空有界集, 设sup E β=,则有a b β<≤,()f ββ≤,若b β=,则有()b f b b ≤≤,()b f b =, 若b β<,我们断言()f ββ=,假若()f ββ<,则存在0δ>,使得[],t a βδ∈+时, 有()t f t <,于是E βδ+∈,这与sup E β=矛盾,所以()f ββ=, 综合以上,结论得证.六.解()()()312LI a y dx x y dx =+++⎰()()331sin 2sin cos a x x a x a x dx π⎡⎤=+++⎣⎦⎰332000sin 2cos sin cos a xdx a x xdx a x xdx ππππ=+++⎰⎰⎰()3242203aa a π=+⋅+-+⋅3443a a π=-+,()()()244411I a a a a '=-=+-,1a =时,()0I a '=,当01a <<时,()0I a '<,()I a 在[]0,1上严格递减, 当1a <<+∞时,()0I a '>,()I a 在[)1,+∞上严格递增, 所以()I a 在1a =处达到最小值. 七.解 取0ε>充分小,2222:S x y z εε++=,由高斯公式,得()32222Sxdydz ydzdx zdxdyI xy z++=++⎰⎰SS S εε-=++⎰⎰⎰⎰⎰⎰()32222S xdydz ydzdx zdxdy xy zε++=++⎰⎰31S xdydz ydzdx zdxdy εε=++⎰⎰()31111V dxdydz εε=++⎰⎰⎰3314343πεπε=⋅⋅=.八.证明 设(),sin f x y x =,(),xye g x y x y-=+,显然()0,2A f x y dx ≤⎰,对每一个[]0,1y ∈,(),g x y 关于x 单调递减,()10,g x y x<≤,关于[]0,1y ∈一致的有()lim ,0x g x y →+∞=, 由狄利克雷判别法,知()()0,,f x y g x y dx+∞⎰关于[]0,1y ∈是一致收敛的, 即得0sin xyx e dx x y+∞-+⎰在[]0,1上一致收敛.九.解 设()()2,cos F x y xy xy =+-,显然,有()0,10F =,()(),1sin y F x y x xy =+,()0,110y F =≠,由隐函数存在定理,存在0δ>,存在[],δδ-上的连续可微的函数()y y x =,()01y =,满足()(),0F x y x ≡,[],x δδ∈-,()(),2sin x F x y x y xy =+,()()()()(),2sin ,1sin x y F x y x y xy y x F x y x xy +'=-=-+,当0x δ<<,(0δ>充分小)时,有()0y x '<,()y x 在[]0,δ上严格单调递减;当0x δ-<<时,有()0y x '>,()y x 在[],0δ-上严格单调递增, (4)()0,10xF =,由于每一充分接近1的y ,1y <, 存在x ,x -,使得(),0F x y =,(),0F x y -=,所以上述方程在点()0,1的充分小邻域内,不能确定函数()x x y =,()10x =. 对1y >,方程()2cos x y xy +=无解.。
武汉大学近二十年数学分析考研真题
其中 N > 0 为一常数,且逐点有 fn (x) → f (x) (当 n → +∞ )。证明: (1) f (x) 在[a,b] 上连续。
(2) fn (x)→ f (x) 。
6.设
f
(x,
y)
=
⎪⎪⎧ g ( x, ⎨
y ) sin
⎪0,
⎪⎩
1, x2 + y2
(x, y) ≠ (0,0)
,证明
+
1 32
−
1 4
+
1 52
+"+
1 (2n −1)2
−
1 2n
+ " 是否收敛?为什么?
∑ 3.求级数 ∞ ⎜⎛1 + 1 ⎟⎞n(n+1) x n 的收敛区域。
n=1 ⎝ n ⎠ 4.求函数 f (x, y, z) = xyz 在条件 x + y = 1 及 x − y + z 2 = 1下的极值。
∫+∞⎡
lim
n→+∞
−∞⎢⎣
f
⎜⎛ ⎝
y
+
1 n
⎟⎞ − ⎠
f
⎤ ( y)⎥⎦dy
=
0。
3.设 f (x, y) 为连续函数,且当 (x, y) ≠ (0,0) 时,f (x, y) > 0 ,及满足 f (cx,cy) = cf (x, y) ,
∀c > 0 。证明存在α , β > 0 ,使得α x2 + y 2 ≤ f (x, y) ≤ β x2 + y 2 。
其中
∆u
=
∂2u ∂x 2
+
985院校数学系2019年考研数学分析高等代数试题及部分解答
15 武汉大学
39
15.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16 华中科大 2012 年数学分析试题解析
40
17 武汉大学 2018 年数学分析试题解析
44
18 中南大学 2010 年数学分析试题解析
6 浙江大学
16
6.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 华中科技大学
18
7.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13 大连理工大学
35
13.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14 电子科技大学
37
14.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 天津大学
13
5.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2020年数学分析高等代数考研试题参考解答
安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。
数学分析与高等代数考研真题详解--武汉大学卷
−
n+1
n
−
x x x x l xl x xl x =
−
n+ p
n+ p−1 +…+
-
n+1
< 2[
n
2 n+ p
1
+ ... +
−
] 2
1
n +1
l x x l l l x x <
2( − 2 l −1
)
1
1
n
=M
−n
(M=
2− 2 l −1
1)
显然由柯西收敛准则知,对于 ∀ε > 0 , ∃N > 0 ,使得 n>N 时
wwwboss163com博士家园二零一零年二月博士家园系列内部资料数学分析与高等代数考研真题详解武汉大学考研数学专卷目录9501年数学分析试题解答电子版在随书附赠的光盘中2002年招收硕士研究生入学考试数学分析试题2002年招收硕士研究生入学考试数学分析试题解答2002年招收硕士研究生入学考试高等代数试题2002年招收硕士研究生入学考试高等代数试题解答2003年招收硕士研究生入学考试数学分析试题及解答2003年招收硕士研究生入学考试高等代数试题及解答2004年招收硕士研究生入学考试数学分析试题及解答2004年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试数学分析试题及解答2006年招收硕士研究生入学考试数学分析试题及解答2007基础数学复试题2008年招收硕士研究生入学考试数学分析试题及解答2008年招收硕士研究生入学考试线性代数试题及解答2009年数学分析试题及解答电子版在随书附赠的光盘中2009年高等代数试题及解答电子版在随书附赠的光盘中2009博士家园系列内部资料武汉大学博士家园系列内部资料2002年数学分析答案由归纳法知n123
2019武汉大学数学专业考研真题(回忆版)
2019武汉⼤学数学专业考研真题(回忆版)数学分析⼀,1)求极限$\lim\limits _{x\rightarrow 0}\left( 1+\sin x\right) ^{\dfrac {1}{x}}$.2)$f(x) =\ln \left(x - \sqrt{1+x^2}\right) $ ,求 $f(0)^{(2k+1)}$,$ k$为⾃然数.3)$f(x,y) = x^yy^x$,求$f(x,y)$的全微分.⼆,计算下⾯积分1)$\int_{-1}^{1} {\dfrac{1+x^2}{1+x^4}}dx$.2)$\iiint _{V} {\dfrac{dxdydz}{(1+x+y+z)^{3}}}$,V={${x+y+z\leq{1}}, x,y,z\geq0$}.3)$\oint_L{\dfrac{xdy-ydx}{x^2+y^2}}$,$L$是不过原点的简单封闭曲线.三,1)判断$\sum_{n=1}^{\infty}\left({\sqrt[n]{n}-1}\right)^2$的敛散.2)若$\sum_1^{\infty}a_n\sin^nx$在[0,$2\pi$]收敛,请问它是否⼀致收敛.四,1)$f(x)$连续可微,$f(0)$不为$0$,其Maclaurin级数(Cauchy余项):$f(x) = f(0)+f^{'}(0)x+\dfrac{f^{(2)}(0)}{2!}x^2+...+\dfrac{f^{(n)} (0)}{n!}x^n+\dfrac{f^{(n+1)}(\theta x)}{n!}\left(1-\theta\right)^nx^{n+1}$,证明:$$\lim_{x\rightarrow0}\theta = 1-\sqrt [n]{\dfrac{1}{n+1}}.$$2)$\{a_n\}$单调递减,$a_n\rightarrow0\left(当n\rightarrow0\right)$,证明:$$\sum_{n=1}^{\infty}a_n收敛\leftrightarrow\sum_{n=1}^{\infty}n\left(a_n-a_{n+1}\right)$$收敛。
武汉大学649数学分析2004年(回忆版)考研专业课真题试卷
x x f ( ) + (2 x − 3 y 2 ) f ( xy ) + xy (1 − y 2 ) f ' ( xy ) 2 y y
二、设 x1 > 0,x= n +1 证明:
3(1 + xn ) , (n 1, 2,3...) ,证明: lim xn 存在,并求出极限 = n →∞ 3 + xn
∑ arctan 2k
∞
1
2
5.
+ + + ... A(π ) 5 ! 9! 13! = 4 8 12 π π 1 π B(π ) + + + + ... 3! 7! 11! 15! eπ − e −π π A( x) − π 3 B( x) = sin x A(π ) −x ⇒ x = π 4π −π= π 2 − e e 3 B (π ) e − e π A( x) + π B ( x) = 2 4π 3
( x , y ) → (0,0)
lim
y y 1 + ( )2 x
≤
( x , y ) → (0,0)
lim = y 0
(2)可微性
∂f y3 = ∂x ( x 2 + y 2 ) x 2 + y 2 ∂f x3 = ∂y ( x 2 + y 2 ) x 2 + y 2 ( x, y ) = (ky, y ) 1 ∂f )3 显然不连续 =( 2 ∂x k +1 同样 ∂f 不连续。所以不可微 ∂y
6.
1+
π4
π8
π 12
= 设:F ( x , y) Fy' ( x, y ) =
2009-2018年考研数学真题解析及复习思路(数学二)
是该方程的解,λy1 - μy2 是该方程对应的齐次方程的解,则( )
( A) λ
=
1 2
,μ
=
1 2
.
( B) λ
=-
1 2
,
μ
=-
1 2
.
( C) λ
=
2 3
,
μ
=
1 3
.
( D) λ
=
2 3
,
μห้องสมุดไป่ตู้
=
2 3
.
(3) 曲线 y = x2 与曲线 y = aln x(a ≠ 0) 相切,则 a = ( )
.
(13) 已知一个长方形的长 l 以 2 cm / s 的速率增加,宽 w 以 3 cm / s 的速率增加,则当 l = 12 cm,w =
5 cm 时,它的对角线增加的速率为
.
(14) 设 A,B 为 3 阶矩阵,且 A = 3, B = 2, A -1 + B = 2,则 A + B -1 =
=
1 6
.
( C) a
= - 1,b
=-
1 6
.
( D) a
= - 1,b
=
1 6
.
(3) 设函数 z = f(x, y) 的全微分为 dz = xdx + ydy,则点(0, 0)( )
(A) 不是 f(x, y) 的连续点.
(B) 不是 f(x, y) 的极值点.
(C) 是 f(x, y) 的极大值点.
(19) ( 本题满分 10 分)
∬ 计算二重积分 ( x - y) dxdy,其中 D = { ( x, y) ( x - 1)2 + ( y - 1)2 ≤ 2, y ≥ x} . D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
8! ( K 14 ©) lim an = +∞, y²:
n→∞
Ô! ( K 14 ©) ¼ê
1n
lim n→∞ n
ak = +∞.
k=1
(x2 + y2) sin f (x, y) =
0,
1 , x2 + y2 = 0; x2 + y2
x2 + y2 = 0.
1. ¦ fx(0, 0), fy(0, 0); 2. y²: fx(0, 0), fy(0, 0) 3 (0, 0) ØëY; 3. y²: f (x, y) 3 (0, 0) Œ‡, ¿¦ df (0, 0).
l! ( K 15 ©) z(x, y) ëY
Œ‡, 釩•§
1
∂2z
∂2z ∂2z
1
∂z ∂z
(x2 + y2)2
∂x2
+
2 ∂x∂y
+
∂y2
− (x2 + y2)3
+ ∂x ∂y
= 0.
ŠCþ“† u = xy, v = x − y. 1. ¦“† •§; 2. •ÑCþ“†” :8, ¿`²”
4. OŽ F (α), Ù¥:
eα
x+3α
F (α) = dx
f (x, y)dδ.
D
¦ f (x, y).
Ê! ( K 14 ©) f (x) ´ {(x, y)|x2 + y2 1} þ gëYŒ‡¼ê, …÷v
∂2f ∂x2
+
∂2f ∂y2
= (x2 + y2)2,
Á¦È©
x2+y2 1
x ∂f
y ∂f
+
dxdy.
x2 + y2 ∂x
x2 + y2 ∂y
x1, x2 ∈ O;
n! ( K 12 ©) f (x) 3 (0, a) þŒ‡, … f (a − 0) = +∞, ¦y: f (x) 3 x = a mýÃþ..
o! ( K 14 ©) D : x2 + y2 y, x 0, f ëY,
f (x, y) = 1 − x2 − y2 − 8 π
nd, “†3” :8þ¬ )Ÿoy–.
Ê! ( K 15 ©)
un(x)
=
1 n3
ln(1
+ n3x),
n
=
1, 2, · · · ,
P
S(x)
=
∞
un(x).
n=1
∞
1. ¦y: un(x) 3k.«m [0, b] þ´˜—Âñ , 3 (0, +∞) þØ´˜—Âñ ;
n=1
2. ?Ø S(x) Œ‡5.
35
3
1. 2009年ÉÇŒÆ《数学分析》ïÄ)\Æ•ÁÁK
˜! OŽK( K 5 K, z K8 ©, 40 ©)
1.
1
1
1
lim
+
+···+
;
n→∞ 1 + 2 1 + 2 + 3
1+2+···+n
2.
lim
x→0
x 0
(x
x
− t) sin t2dt
x 0
sin
t2
dt
;
3.
1 x sin t
第2页
8¹
1 ÉÇŒÆ 2009 cïÄ)\Æ•ÁÁKêÆ©Û
4
2 ÉÇŒÆ 2010 cïÄ)\Æ•ÁÁKêÆ©Û
6
3 ÉÇŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û
8
4 ÉÇŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û
10
5 ÉÇŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û
12
6 ÉÇŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û
25
13 ÉÇŒÆ 2012 cïÄ)\Æ•ÁÁKp “ê
27
14 ÉÇŒÆ 2013 cïÄ)\Æ•ÁÁKp “ê
29
15 ÉÇŒÆ 2014 cïÄ)\Æ•ÁÁKp “ê
31
16 ÉÇŒÆ 2015 cïÄ)\Æ•ÁÁKp “ê
33
17 ÉÇŒÆ 2017 cïÄ)\Æ•ÁÁKp “ê
34
18 ÉÇŒÆ 2018 cïÄ)\Æ•ÁÁKp “ê
F (x) =
dt,
x0 t
¦ F (4)(0), F (9)(0);
4.
xyzex+y+z
= 1, ¦
∂z ,
∂x
பைடு நூலகம்∂z ,
∂y
∂2z ∂x2 ,
∂2z ;
∂x∂y
5. ¦È©
D
x3 ln dxdy,
y
Ù¥ D ´d y = x, y = 1, x = 2 Œ¤ n /.
! ( K 12 ©)
{Oα} ´k.4«m [a, b] ˜‡mCX. 1. y²: ∃δ > 0, ∀x1, x2 ∈ [a, b], •‡ |x1 − x2| < δ, Ò•3 O ∈ {Oα}, ¦ 2. Þ~`²: m«m mCXŒUvkù‡5Ÿ.
14
7 ÉÇŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û
16
8 ÉÇŒÆ 2017 cïÄ)\Æ•ÁÁKêÆ©Û
18
9 ÉÇŒÆ 2018 cïÄ)\Æ•ÁÁKêÆ©Û
19
10 ÉÇŒÆ 2009 cïÄ)\Æ•ÁÁKp “ê
21
11 ÉÇŒÆ 2010 cïÄ)\Æ•ÁÁKp “ê
23
12 ÉÇŒÆ 2011 cïÄ)\Æ•ÁÁKp “ê
考试复习重点资料(最新版)
资料见第三页
封
面
第1页
温馨提示
提示:本套资料经过精心编排,前 2 页是封面和提示部分,后面是资 料试题部分。资料涵盖了考试的重点知识和题型,可以很好的帮助你 复习备考。资料不在多而在精,一套系统的涵盖考试重点的资料,能 够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯 定能取得理想的成绩。 寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就 要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然 会得到回报。 1. 一份合理科学的学习计划是你备考的领航灯。要有总体的时间规划, 也要有精细到每天的计划,不打无准备的仗。 2. 资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复 刻意练习的结果。公众号:第七代师兄,学习也是一样的,手里的资料, 一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应 对。 3. 态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了, 才能平底起高楼,才能将各类知识点运用自如。 4. 坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。 切记心浮气躁,半途而废。 5. 希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。
5
2. 2010年ÉÇŒÆ《数学分析》ïÄ)\Æ•ÁÁK
˜! OŽK( K 5 K, z K 10 ©, 50 ©)
1. OŽ4•: 2. OŽ4•:
ln(1
+
x)
1 x
−
1
lim
;
x→0
x
21 n
22 n
2n n
lim
n→∞
n+
1 1
+
n+
1 2
+···+
n+
1 n
;
3. OŽØ½È©: ;
dx 1 + tan x