2020年全国中考数学分类汇编(压轴题)
2020年九年级数学中考一轮专题汇编 考点三角形和四边形 压轴题提高训练检测卷 含答案
2020年九年级数学中考一轮专题汇编考点三角形和四边形压轴题提高训练检测卷含答案1、如图,在△ABC中,∠ACB=90︒,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30︒时,求证:四边形ECBF是菱形.2、如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.3、如图,在▱ABCD中,AC为对角线,AC=BC=5,AB=6,AE是△ABC的中线.(1)用无刻度的直尺画出△ABC的高CH(保留画图痕迹);(2)求△ACE的面积.4、如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.5、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.6、四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.7、如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA的面积为y,用运动时刻t表示△QEA的面积y(不要求考t的取值范围).(提示:解答(2)(3)时可不分先后)8、已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.9、现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)10、如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.11、如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA 至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB 交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.12、如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN 的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.13、数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .14、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)15、如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE 相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.16、如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F 处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有①②⑤(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.17、如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x 的取值范围(不用说明理由).答案1、 (1) 证明:∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)证法一:∵∠ACB=90︒,∠A=30︒,E为AB的中点,∴12CB AB=,12CE AB=.∴CB CE=.又由(1)知,四边形ECBF是平行四边形,[来源:] ∴四边形ECBF是菱形.证法二:∵∠ACB=90︒,∠A=30︒,E为AB的中点,∴12BC AB BE==,∠ABC=60︒.∴△BCE是等边三角形. ∴CB CE=.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形. 证法三:∵E为AB的中点,∠ACB=90︒,∠A=30︒,∴12CE AB BE==, ∠ABC=60︒.∴△BCE是等边三角形.∴CB CE.又由(1)知,四边形ECBF是平行四边形,2、【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)解:如图1,当F与D重合时,CE取最小值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,∵∠ECD=90°,∴∠DEC=45°=∠CDE,∴CE=CD=DG,∵DG∥CE,∴四边形CEGD是矩形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.3、【解答】解:(1)如图,连接BD,BD与AE交于点F,连接CF并延长到AB,则它与AB的交点即为H.理由如下:∵BD、AC是▱ABCD的对角线,∴点O是AC的中点,∵AE、BO是等腰△ABC两腰上的中线,∴AE=BO,AO=BE,∵AO=BE,∴△ABO≌△BAE(SSS),∴∠ABO=∠BAE,△ABF中,∵∠FAB=∠FBA,∴FA=FB,∵∠BAC=∠ABC,∴∠EAC=∠OBC,由可得△AFC≌BFC(SAS)∴∠ACF=∠BCF,即CH是等腰△ABC顶角平分线,所以CH是△ABC的高;(2)∵AC=BC=5,AB=6,CH⊥AB,∴AH=AB=3,∴CH==4,∴S△ABC=AB•CH=×6×4=12,∵AE是△ABC的中线,∴S△ACE =S△ABC=6.4、【解答】解:(1)相等.理由:连接AC,在△ACD和△ACB中,,∴△ACD≌△ACB,∴∠B=∠D.(2)设AD=x,BC=y,当点C在点D右侧时,,解得,当点C在点D左侧时,解得,此时AC=17,CD=5,AD=8,5+8<17,∴不合题意,∴AD=13cm,BC=10cm.5、【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ6、【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.7、【解答】(1)证明:∵四边形ABCD为正方形;∴∠BAP+∠QAE=∠B=90°,∵QE⊥AP;∴∠QAE+∠EQA=∠AEQ=90°∴∠BAP=∠EQA,∠B=∠AEQ;∴△ABP∽△QEA(AA)(2)∵△ABP≌△QEA;∴AP=AQ(全等三角形的对应边相等);在RT△ABP与RT△QEA中根据勾股定理得AP2=32+t2,AQ2=(2t)2即32+t2=(2t)2解得t1=,t2=﹣(不符合题意,舍去)答:当t取时△ABP与△QEA全等.(3)由(1)知△ABP∽△QEA;∴=()2∴=()2整理得:y=.8、【解答】解:(1)∵AE⊥PB,CF⊥BP,∴∠AEO=∠CFO=90°,在△AEO和△CFO中,,∴△AOE≌△COF,∴OE=OF.(2)图2中的结论为:CF=OE+AE.图3中的结论为:CF=OE﹣AE.选图2中的结论证明如下:延长EO交CF于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠EAO=∠GCO,在△EOA和△GOC中,,∴△EOA≌△GOC,∴EO=GO,AE=CG,在RT△EFG中,∵EO=OG,∴OE=OF=GO,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=GF,∵OE=OF,∴OE=FG,∵CF=FG+CG,∴CF=OE+AE.选图3的结论证明如下:延长EO交FC的延长线于点G,∵AE⊥BP,CF⊥BP,∴AE∥CF,∴∠AEO=∠G,在△AOE和△COG中,,∴△AOE≌△COG,∴OE=OG,AE=CG,在RT△EFG中,∵OE=OG,∴OE=OF=OG,∵∠OFE=30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.9、(2)仍成立.证明:如图2,连接AC、BD,则由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°∵∠MON=90°∴∠BOM=∠CON在△BOM和△CON中∴△BOM≌△CON(ASA)∴OM=ON(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°又∵∠C=90°∴∠EOF=90°=∠MON∴∠MOE=∠NOF在△MOE和△NOF中∴△MOE≌△NOF(AAS)∴OE=OF又∵OE⊥BC,OF⊥CD∴点O在∠C的平分线上∴O在移动过程中可形成线段AC(4)O在移动过程中可形成直线AC.10、【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.11、【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABF=135°,∵∠BCD=90°,∴∠ABF=∠ACD,∵CB=CD,CB=BF,∴BF=CD,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS),∴AD=AF;(2)证明:由(1)知,AF=AD,△ABF≌△ACD,∴∠FAB=∠DAC,∴∠EAB=∠BAC=90°,∴∠EAF=∠BAD,在△AEF和△ABD中,,∴△AEF≌△ABD(SAS),∴BD=EF;(3)解:四边形ABNE是正方形;理由如下:∵CD=CB,∠BCD=90°,∴∠CBD=45°,由(2)知,∠EAB=90°,△AEF≌△ABD,∴∠AEF=∠ABD=90°,∴四边形ABNE是矩形,又∵AE=AB,∴四边形ABNE是正方形.12、【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.13、【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM= a,∴==.故答案为.14、【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.15、【解答】解:(1)在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴BD=AC,(2)①如图,在Rt△AHC中,∵tanC=3,∴=3,设CH=x,∴BH=AH=3x,∵BC=4,∴3x+x=4,∴x=1,∴AH=3,CH=1,由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,∴∠EHA=∠FHC,,∴△EHA≌△FHC,∴∠EAH=∠C,∴tan∠EAH=tanC=3,过点H作HP⊥AE,∴HP=3AP,AE=2AP,在Rt△AHP中,AP2+HP2=AH2,∴AP2+(3AP)2=9,∴AP=,∴AE=;②由①有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=90°,∴△AGQ∽△CHQ,∴,∴,∵∠AQC=∠GQE,∴△AQC∽△GQH,∴=sin30°=.16、【解答】解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴=,∴CM=x(4﹣x),∴S=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,四边形A M C B∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∵AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣1)2+3,∴x=1时,AG最小值=3,∴AM的最小值==5,故④错误.∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4故⑤正确.故答案为①②⑤.:当y=0时,2x+3=0,x=﹣17、【解答】解:(1)直线l1与x轴坐标为(﹣,0)则直线l1:当y=3时,2x﹣3=3,x=3直线l2与AB的交点坐标为(3,3);则直线l2(2)①若点A为直角顶点时,点M在第一象限,连结AC,如图1,∠APB>∠ACB>45°,∴△APM不可能是等腰直角三角形,∴点M不存在;②若点P为直角顶点时,点M在第一象限,如图2,过点M作MN⊥CB,交CB的延长线于点N,则Rt△ABP≌Rt△PNM,∴AB=PN=4,MN=BP,设M(x,2x﹣3),则MN=x﹣4,∴2x﹣3=4+3﹣(x﹣4),x=,∴M(,);③若点M为直角顶点时,点M在第一象限,如图3,设M(x,2x﹣3),1过点M1作M1G1⊥OA,交BC于点H1,则Rt△AM1G1≌Rt△PM1H1,∴AG1=M1H1=3﹣(2x﹣3),∴x+3﹣(2x﹣3)=4,x=2∴M1(2,1);设M2(x,2x﹣3),同理可得x+2x﹣3﹣3=4,∴x=,∴M2(,);综上所述,点M的坐标为(,),(2,1),(,);(3)x的取值范围为﹣≤x<0或0<x≤或≤x≤或≤x ≤2.。
2020全国各地中考数学压轴题精选汇编
2020 全国各地中考数学压轴题精选
43
2020 全国各地中考数学压轴题精选
44
2020 全国各地中考数学压轴题精选
45
2020 全国各地中考数学压轴题精选
46
2020 全国各地中考数学压轴题精选
47
2020 全国各地中考数学压轴题精选
48
2020 全国各地中考数学压轴题精选
49
2020 全国各地中考数学压轴题精选
10
2020 全国各地中考数学压轴题精选
11
2020 全国各地中考数学压轴题精选
12
2020 全国各地中考数学压轴题精选
13
2020 全国各地中考数学压轴题精选
14
2020 全国各地中考数学压轴题精选
15
2020 全国各地中考数学压轴题精选
16
2020 全国各地中考数学压轴题精选
17
2020 全国各地中考数学压轴题精选
18
2020 全国各地中考数学压轴题精选
19
2020 全国各地中考数学压轴题精选
20
2020 全国各地中考数学压轴题精选
21
2020 全国各地中考数学压轴题精选
22
2020 全国各地中考数学压轴题精选
23
2020 全国各地中考数学压轴题精选
24
2020 全国各地中考数学压轴题精选
25
2020 全国各地中考数学压轴题精选
2
2020 全国各地中考数学压轴题精选
3
2020 全国各地中考数学压轴题精选
4
2020 全国各地中考数学压轴题精选
5
2020 全国各地中考数学压轴题精选
6
2020年中考数学必考考点压轴题 专题24 相似三角形判定与性质(含答案)
专题24相似三角形判定与性质1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
2.三角形相似的判定方法:(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
3.直角三角形相似判定定理:①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
4.相似三角形的性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
【例题1】(2019•海南省)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()B.C.D.A.【答案】B.【解析】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=【例题2】(2019•四川省凉山州)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【答案】4:25或9:25.【解析】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,:S△CBF=()2=4:25;∴S△AEF②当AE:ED=3:2时,:S△CBF=()2=9:25。
2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)
专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
中考数学 压轴题汇编 二次函数综合题训练(含答案)
2020中考数学压轴题汇编二次函数综合题训练(含答案)1.抛物线y=ax2+bx+c(a≠0)的图象经过点A,B,C,已知点A的坐标为(-3,0),点B坐标为(1,0),点C在y轴的正半轴,且∠CAB=30°.(1)求抛物线的函数解析式;(2)若直线l∶y=3x+m从点C开始沿y轴向下平移,分别交x轴、y轴于点D,E.①当m>0时,在线段AC上是否存在点P,使得P,D,E构成等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;②以动直线l为对称轴,线段AC关于直线l的对称线段A′C′与该二次函数图象有交点,请直接写出m的取值范围.解:(1)在Rt△AOC中,∠CAB=30°,∵A(-3,0),即OA=3,∴OC=3,即C(0,3),可设抛物线的解析式为y=a(x+3)(x-1),将C(0,3)代入解析式得-3a=3,解得a=-3 3 .∴y=-33(x+3)(x-1)=-33x2-233x+3;(2)由题意可知,OE=m,OD=33m,∠DEO=30°,第1题解图①①(ⅰ)如解图①,当PD ⊥DE ,PD =DE 时,作PQ ⊥x 轴于点Q , ∴∠PQD =∠EOD =90°,∴∠PDQ +∠EDO =90°,∠EDO +∠DEO =90°, ∴∠DEO =∠PDQ =30°, ∴△DPQ ≌△EDO (AAS), ∴DQ =OE =m ,∵∠PAQ =∠PDQ =30°, ∴PA =PD ,∴AQ =DQ =m , ∴OA =2m +33 m =3,∴m =96+3=18-3311>0,∴x p =-(OE3+QD )=-15+3311,y p =PQ =AQ 3=63-311,∴P (-15+3311,63-311);(ii)如解图②,当PE ⊥DE ,PE =DE 时,作PQ ⊥y 轴于点Q ,第1题解图②同理可得OE =m ,CQ =EQ =OD =33m ,∴OC =m +233 m =3,∴m =6-33>0;设直线PE 的解析式为y 1=k 1x +b 1, ∵PE ⊥l ,∴k 1=-13=-33,代入E (0,6-33)得y 1=-33x +6-33,设直线AC 的解析式为y 2=k 2x +b 2, ∵过点A (-3,0)和点C (0,3),∴y 2=33x + 3. 联立⎩⎪⎨⎪⎧y 1=-33x +6-33y 2=33x +3,解得⎩⎪⎨⎪⎧x =33-6y =3-3,即点P (33-6,3-3);(iii)如解图③,当PD ⊥PE ,DP =PE 时,作DM ⊥AC ,EN ⊥AC ,第1题解图③可得AP =AD =9-3m 3,PN =DM =12AD =9-3m 6,CN =3-m2,∴AC =9-3m 3+9-3m 6+3-m2=23,∴m =9-333+1=63-9>0.过点P 作PK ⊥x 轴于点K , ∵AP =9-3m3,∠KAP =30°,∴KP =12×9-3m 3=33-32,∴AK =3KP =9-332,∴OK =AO -AK =33-32,即点P (3-332,33-32).综上所述,当m >0时,在线段AC 上存在点P ,使得P ,D ,E 构成等腰直角三角形, 点P 的坐标为(-15+3311,63-311)或(33-6,3-3)或(3-332,33-32);②m 的取值范围为-33≤m ≤ 3.2.如图,抛物线y =ax 2+bx +1经过点(2,6),且与直线y =12x +1相交于A ,B 两点,点A 在y 轴上,过点B 作BC ⊥x 轴,垂足为点C (4,0). (1)求抛物线的解析式;(2)若P 是直线AB 上方该抛物线上的一个动点,过点P 作PD ⊥x 轴于点D ,交AB 于点E ,求线段PE 的最大值;(3)在(2)的条件下,设PC 与AB 相交于点Q ,当线段PC 与BE 互相平分时,请求出点Q 的坐标.第2题图解:(1)∵BC ⊥x 轴,垂足为点C (4,0),且点B 在直线y =12x +1上,∴点B 的坐标为(4,3),∵抛物线y =ax 2+bx +1经过点(2,6)和点B (4,3),∴⎩⎨⎧4a +2b +1=616a +4b +1=3,解得⎩⎨⎧a =-1b =92,∴抛物线的解析式为y =-x 2+92x +1;(2)设动点P 的坐标为(x ,-x 2+92x +1)(0<x <4),则点E 的坐标为(x ,12x +1),∵PD ⊥x 轴于点D ,且点D 在x 轴上, ∴PE =PD -ED =(-x 2+92x +1)-(12x +1)=-x 2+4x=-(x -2)2+4,则当x =2时,线段PE 的值最大,最大值为4; (3)∵线段PC 与BE 互相平分, ∴△PEQ ≌△CBQ , ∴PE =BC ,∴-x 2+4x =3,即x 2-4x +3=0, 解得x 1=1,x 2=3,∵点Q 分别是PC ,BE 的中点,且点Q 在直线y =12x +1上,∴①当x =1时,点Q 的横坐标为1+42=52,则点Q 的坐标为(52,94);②当x =3时,点Q 的横坐标为3+42=72,则点Q 的坐标为(72,114).综上所述,点Q 的坐标为(52,94)或(72,114).3.如图,已知抛物线y =-12x 2+bx +c 与x 轴交于点B ,E 两点,与y 轴交于点A ,OB=8,tan ∠ABD =1,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C ,D 同时出发,当动点D 到达原点O 时,点C ,D 停止运动.(1)求抛物线的解析式;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,直接写出P 点的坐标;若不存在,请说明理由.第3题图解:(1)∵OB =8,tan ∠ABD =1, ∴OA =OB =8,∴A (0,8),B (8,0).把点A (0,8),B (8,0)代入y =-12x 2+bx +c ,得⎩⎨⎧c =8-12×82+8b +c =0,解得⎩⎨⎧b =3c =8,∴抛物线解析式为y =-12x 2+3x +8;(2)令y =0时,有-12x 2+3x +8=0,解得x 1=-2,x 2=8, ∴E (-2,0), ∴BE =10,∵S △CED =12DE ·OC ,∴S =12t (10-t )=-12t 2+5t ,∴S 与t 的函数解析式为S =-12t 2+5t =-12(t -5)2+252(0≤t ≤8),∴当t =5时,△CED 的面积最大,最大面积为252;(3)存在,P 点坐标为(8,0)或(43,1009)或(343,-2009).【解法提示】当△CED 的面积最大时,t =5,即BD =DE =5,此时要使S △PCD =S △CED ,CD 为公共边,只需求出过点B 、或点E 且平行于CD 的直线即可,如下:第3题解图设直线CD 的解析式为y =kx +b , 由(2)可知OC =5,OD =3, ∴C (0,5),D (3,0),把C (0,5)、D (3,0)代入,得⎩⎨⎧b =53k +b =0,解得⎩⎨⎧k =-53b =5, ∴直线CD 的解析式为y =-53x +5,∵DE =DB =5,∴过点B 且平行于CD 的直线为y =-53(x -5)+5,过点E 且平行于CD 的直线为y =-53(x +5)+5,与抛物线解析式联立得方程①:-12x 2+3x +8=-53(x -5)+5,解得x 1=8,x 2=43,方程②:-12x 2+3x +8=-53(x +5)+5,解得x 3=343,x 4=-2,分别将x 的值代入抛物线的解析式,得y 1=0,y 2=1009,y 3=-2009,y 4=0,又∵P 点不与E 点重合,∴满足题意的P 点坐标有3个,分别是P 1(8,0),P 2(43,1009),P 3(343,-2009).4.如图,抛物线y =ax 2+bx -3与x 轴交于点A (1,0)和点B ,与y 轴交于点C ,且其对称轴l 为直线x =-1,点P 是抛物线上B ,C 之间的一个动点(点P 不与点B ,C 重合).(1)直接写出抛物线的解析式;(2)小唐探究点P 的位置时发现:当动点N 在对称轴l 上时,存在PB ⊥NB ,且PB =NB 的关系,请求出点P 的坐标;(3)是否存在点P 使得四边形PBAC 的面积最大?若存在,请求出四边形PBAC 面积的最大值,若不存在,请说明理由.第4题图解:(1)y =x 2+2x -3;【解法提示】∵A (1,0),对称轴l 为直线x =-1, ∴B (-3,0),∴⎩⎨⎧a +b -3=09a -3b -3=0,解得⎩⎨⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3;(2)如解图①,过点P 作PM ⊥x 轴于点M ,连接BP ,过点B 作BN ⊥PB 交直线l 于点N ,设抛物线的对称轴与x 轴交于点Q , ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°. ∵∠PMB =90°,∴∠PBM +∠BPM =90°. ∴∠BPM =∠NBQ . 又∵PB =NB , ∴△BPM ≌△NBQ . ∴PM =BQ .由(1)得y =x 2+2x -3, ∵Q (-1,0),B (-3,0) ∴BQ =2, ∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点,且点P 的纵坐标为-2, 将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3,解得x1=-1-2,x2=-1+2(不合题意,舍去),∴点P 的坐标为(-1-2,-2);第4题解图①(3)存在.如解图②,连接AC ,BC ,CP ,PB ,过点P 作PD ∥y 轴交BC 于点D , ∵A (1,0),B (-3,0),C (0,-3), ∴S △ABC =12×3×4=6,直线BC 的解析式为y =-x -3.设P (t ,t 2+2t -3),则D (t ,-t -3),∴S △BPC =12×3×(-t -3-t 2-2t +3)=-32t 2-92t ,∴S 四边形PBAC =-32t 2-92t +6=-32(t +32)2+758,当t =-32时,S 四边形PBAC 存在最大值,最大值为758.此时点P 的坐标为(-32,-154).第4题解图②5.如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE.已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式;(2)分别求出点B和点E的坐标;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.第5题图解:(1)抛物线的函数表达式为y=12x2-3x-8;(2)点B的坐标为(8,0).点E的坐标为(3,-4);(3)需分两种情况进行讨论:①当OP=OQ时,△OPQ是等腰三角形,如解图①,第5题解图①∵点E 的坐标为(3,-4), ∴OE =32+42=5,过点E 作直线ME ∥PB ,交y 轴于点M ,交x 轴于点H ,则OM OP =OE OQ, ∴OM =OE =5,∴点M 的坐标为(0,-5),设直线ME 的函数表达式为y =k 1x -5, ∴3k 1-5=-4,解得k 1=13,∴直线ME 的函数表达式为y =13x -5,H 在直线ME 上, 令y =0,解得x =15, ∴点H 的坐标为(15,0). 又∵MH ∥PB ,∴OP OM =OB OH ,即-m 5=815, ∴m =-83;②当QO =QP 时,△OPQ 是等腰三角形,如解图②,∵当x =0时,y =12x 2-3x -8=-8,第5题解图②∴点C 的坐标为(0,-8), ∴CE =32+(8-4)2=5,∴OE =CE , ∴∠1=∠2, 又∵QO =QP , ∴∠1=∠3, ∴∠2=∠3, ∴CE ∥PB .设直线CE 交x 轴于点N ,其函数表达式为y =k 2x -8, ∴3k 2-8=-4,解得k 2=43,∴直线CE 的函数表达式为y =43x -8,令y =0,得43x -8=0,∴x =6,∴点N 的坐标为(6,0). ∵CN ∥PB .∴OP OC =OB ON,∴-m 8=86,解得m =-323.综上所述,当m 的值为-83或-323时,△OPQ 是等腰三角形.6.如图,点A (-2,0)、B (4,0)、C (3,3)均在抛物线y =ax 2+bx +c 上,点D 在y 轴上,且DC ⊥BC ,∠BCD 绕点C 顺时针旋转后两边与x 轴、y 轴分别相交于点E ,F . (1)求抛物线的解析式;(2)CF 能否经过抛物线的顶点?若能,求出此时点E 的坐标;若不能,说明理由; (3)若△FDC 是等腰三角形,求点F 的坐标.第6题图解:(1)∵抛物线与x 轴有两个交点A (-2,0)、B (4,0), ∴可设抛物线解析式为y =a (x +2)(x -4), 将C (3,3)代入得a (3+2)(3-4)=3, 解得a =-35,故抛物线的解析式是y =-35(x +2)(x -4)=-35x 2+65x +245;(2)能,理由如下:如解图①,过点C 作CH ⊥y 轴于点H ,CS ⊥x 轴于点S .第6题解图①由抛物线的解析式可以求得顶点M 的坐标为M (1,275),∴由C ,M 两点坐标可以求得CM 即CF 的直线方程为y =-65x +335,∴F 点坐标为(0,335).∵∠FCH +∠HCE =90°,∠ECS +∠HCE =90°, ∴∠ECS =∠HCF ,又∵CH =CS ,∠CHF =∠CSE =90°, ∴△FCH ≌△ECS (ASA), ∴FH =SE =335-3=185,∴EO =185-3=35,∴E (-35,0),即CF 能经过抛物线的顶点,此时点 E 的坐标为(-35,0)(3)如解图②,由C ,B 两点坐标利用待定系数法可以求得CB 直线方程为:y =-3x +12,过点C 作CH ⊥y 轴于点H ,CS ⊥x 轴于点S ,第6题解图②∵C(3,3),B(4,0),四边形HOSC是正方形,OS=3,∴BS=1,∵∠HCD+∠DCS=90°,∠BCS+∠DCS=90°,∴∠DCH=∠BCS,∴△DCH≌△BCS(ASA),∴DH=SB=1,OD=2,∴D(0,2),由C、D两点坐标可以求得CD=10,则△FDC是等腰三角形可以有三种情形:①FC=CD=10,则DH=1,FH=1,则F点坐标为(0,4);②FD=CD=10,则F点坐标为(0,2+10);③FD=FC,设F(0,m),∵FC2=FH2+HC2,∴FC2=(m-3)2+32,又∵FD=m-2,∴(m-3)2+32=(m-2)2,∴m=7,故F(0,7).综上所述,点F的坐标为(0,4)或(0,2+10)或(0,7).7.如图,在平面直角坐标系中,抛物线y=ax2+6x+c(a≠0)交y轴于点A,交x轴于B,C两点(点B在点C的左侧),已知点A的坐标为(0,-5),点B的坐标为(1,0).(1)求此抛物线的解析式及顶点坐标;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并说明理由;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.第7题图解:(1)抛物线解析式为y=-x2+6x-5,顶点坐标为(3,4);(2)抛物线的对称轴与⊙C相离.∵当y=0时,x=1或x=5,∴B(1,0),C(5,0),由(1)知抛物线的对称轴为x=3,如解图①所示,设切点为E,连接CE,第7题解图①由题意易证Rt△ABO∽Rt△BCE,∴ABBC=OBCE,即52+124=1CE, ∴CE =426=42626=22613; 而点C 到对称轴x =3的距离为2,∵2>22613, ∴抛物线的对称轴与⊙C 相离;(3)存在.当AC 为直角边时,有两种情况:①∠PCA =90°,②∠PAC =90°. ①当∠PCA =90°时,如解图②所示,点P 在x 轴上方.第7题解图②∵A (0,-5),C (5,0),∴△AOC 为等腰直角三角形,∠OCA =45°;∵PC ⊥AC ,∴∠PCO =45°.过点P 作PF ⊥x 轴于点F ,则△PCF 为等腰直角三角形.设点P 的的坐标为(m ,-m 2+6m -5),则PF =FC ,∴-m 2+6m -5=5-m ,解得:m =2或m =5.当m =5时,点P 与点C 重合,故舍去,∴点P 坐标为(2,3);②当∠PAC =90°时,如解图③所示,点P 在x 轴下方.∵A (0,-5),C (5,0),∴△AOC 为等腰直角三角形,∠OAC =45°;过点P 作PF ⊥y 轴于点F ,第7题解图③∵PA⊥AC,∴∠PAF=45°,即△PAF为等腰直角三角形.设点P的坐标为(t,-t2+6t-5),且AF=PF,∴-5-(-t2+6t-5) =t,解得:t=0或t=7,当t=0时,点P的与点A重合,故舍去,∴点P坐标为(7,-12).综上所述,存在点P使△ACP是以AC为直角边的直角三角形,点P的坐标为(2,3)或(7,-12).8.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F,使四边形ABFC的面积为17?若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.第8题图解:(1)∵点A (-2,0)与点B 关于直线x =1对称,∴B (4,0),将点A ,B ,C 的坐标代入函数解析式,得⎩⎨⎧4a -2b +c =016a +4b +c =0c =4,解得⎩⎪⎨⎪⎧a =-12b =1c =4,∴抛物线的解析式为y =-12x 2+x +4; (2)不存在点F ,使四边形ABFC 的面积为17,理由如下:第8题解图∵B (4,0),C (0,4),∴BC 的解析式为y =-x +4,如解图,过点F 作x 轴垂线,交BC 于G ,设F 点的坐标为(m ,-12m 2+m +4),则G (m ,-m +4), ∴FG =(-12m 2+m +4)-(-m +4)=-12m 2+2m , ∴S 四边形ABFC =S △ABC +S △BCF=12AB ·y C +12FG ·(x B -x C ) =12×6×4+12×4(-12m 2+2m )=17, 整理得m 2-4m +5=0,∵b 2-4ac =16-4×1×5=-4<0.∴方程无解,∴F 点不存在;(3)当x =1时,-12x 2+x +4=92,即D (1,92). 当x =1时,-x +4=3,即E (1,3),∴DE =92-3=32. 设Q 点坐标为(m ,-12m 2+m +4),则P (m ,-m +4). ∴|PQ |=|(-12m 2+m +4)-(-m +4)|=|-12m 2+2m |. 由PQ ∥DE ,PQ =DE 得|-12m 2+2m |=32, ∴-12m 2+2m =32或-12m 2+2m =-32, 解得m 1=1(PQ 与DE 重合,舍去),m 2=3,m 3=2+7,m 4=2-7.∴P 点坐标为(3,1)或(2+7,2-7)或(2-7,2+7).9.如图,直线y =-x +3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y =x 2+bx +c 与x 轴的另一个交点为A ,顶点为P ,点M 为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M 在x 轴的上方时,求四边形COAM 周长的最小值;(3)在平面坐标内是否存在点N ,使以C ,P ,M ,N 为顶点的四边形为菱形?若存在,请写出所符合条件的点M 的坐标;若不存在,请说明理由.第9题图 备用图解:(1)∵直线y =-x +3与x 轴,y 轴分别交于点B ,点C ,∴B (3,0),C (0,3),把B 、C 坐标代入抛物线解析式可得 ⎩⎨⎧9+3b +c =0c =3,解得⎩⎨⎧b =-4c =3, ∴抛物线的解析式为y =x 2-4x +3;(2)∵y =x 2-4x +3=(x -2)2-1,∴抛物线的对称轴为直线x =2,∵点A 与点B (3,0)关于直线x =2对称,∴点A 的坐标为(1,0),∴OC =3,OA =1,OB =3,∴BC =OC 2+OB 2=32,∵四边形COAM 的周长=OA +OC +MA +MC ,∴当点M 为线段BC 与抛物线的对称轴的交点时,MA +MC 的值最小,且线段BC 的长就是MA +MC 的最小值,∴四边形COAM 周长的最小值=OC +OA +BC =3+1+32=4+32;(3)存在,以C ,P ,M ,N 为顶点的四边形为菱形,即存在以C ,P ,M 为顶点的三角形是等腰三角形,点M 的坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25). 【解法提示】∵对称轴为x =2,P (2,-1),设M (2,t ),且C (0,3),∴MC =22+(t -3)2 =t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25,∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M (2,32); ②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M (2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M (2,-1+25)或(2,-1-25).10. 如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)在抛物线对称轴上是否存在点M ,使|MA -MC |最大?若存在,请求出点M 的坐标,若不存在,请说明理由.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴⎩⎨⎧9+3b +c =01+b +c =0,解得⎩⎨⎧b =-4c =3, ∴抛物线的解析式为y =x 2-4x +3;(2)令x =0,则y =3,∴C (0,3),则直线AC 的解析式为y =-x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x=-(x -32)2+94, ∵a =-1<0,∴当x =32时,线段PD 的长度有最大值,最大值为94; (3)存在.由抛物线的对称性得,对称轴垂直平分线段AB ,∴MA =MB ,当M 、B 、C 不在同一条直线上时,由三角形的三边关系得,|MA -MC |=|MB -MC |<BC ,当M 、B 、C 三点共线时,|MA -MC |=|MB -MC |=BC ,∴|MA -MC |≤BC ,即当点M 在BC 的延长线上时,|MA -MC |最大,最大值即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),∵B (1,0),C (0,3),∴⎩⎨⎧k +b =0b =3, 解得⎩⎨⎧k =-3b =3, ∴直线BC 的解析式为y =-3x +3,∴当x =2时,y =-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.。
2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)
中考数学专题几何函数压轴题专题1.如图,抛物线y=ax2-bx+3 交x 轴于B(1,0),C(3,0)两点,交y 轴于点A,连接AB,点P 为抛物线上一动点.(1)求抛物线的解析式;(2)当点P 到直线AB 的距离为7 10时,求点P 的横坐标;9(3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图2.如图1,在平面直角坐标系中,直线y=x+4 与抛物线y =-1x2 +bx +c (b,c 2是常数)交于A,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.(1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A,B 重合).①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D,求PD的最大值;OD②如图3,若点P 在x 轴上方,连接PC,以PC 为一边作正方形CPEF.随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.23. 如图,抛物线y=ax2+bx+4(a≠0)交x 轴于点A(4,0),B(-2,0),交y 轴于点C.(1)求抛物线的解析式.(2)点Q 是x 轴上位于点A,B 之间的一个动点,点E 为线段BC 上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE 的面积为S,点Q 的横坐标为m,求出S 关于m 的函数关系式,并求出当S 取最大值时点Q 的坐标.(3)点P 为抛物线上位于AC 上方的一个动点,过点P 作PF⊥y 轴,交直线AC 于点F,点D 的坐标为(2,0),若O,D,F 三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =-3x2 +bx +c 与x 轴交于A,B 两点,与y 轴交于点C,直4线y =3x + 3 经过点A,C.4(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM∥y 轴交直线AC 于点M,设点P 的横坐标为t.①若以点C,O,M,P 为顶点的四边形是平行四边形,求t 的值.②当射线MP,MC,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2 与x 轴交于A,B 两点,与y 轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH⊥EO,垂足为H.设PH 的长为a,点P 的横坐标为m,求a 关于m 的函数关系式(不必写出m 的取值范围),并求出a 的最大值.(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值.(2)点E 是直角三角形ABC 斜边AB 上一动点(点A,B 除外),过点E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E 的坐标.(3)在(2)的条件下:①求以点E,B,F,D 为顶点的四边形的面积;② 在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,直接写出所有点P 的坐标;若不存在,说明理由.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x 轴于A,C 两点,与直线y=x-1 交于A,B 两点,直线AB 与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P 在直线AB 上方的抛物线上运动,若△ABP 的面积最大,求此时点P 的坐标;(3)在平面直角坐标系中,以点B,E,C,D 为顶点的四边形是平行四边形,请直接写出符合条件点D 的坐标.8.如图,已知抛物线y =ax2 +3x + 4 的对称轴是直线x=3,且与x 轴相交于A,2B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A,B 两点的坐标.(2)若点P 是抛物线上B,C 两点之间的一个动点(不与B,C 重合),则是否存在一点P,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N,当MN=3 时,求点N 的坐标.9.如图,抛物线y=1x2 +bx +c 经过点A( 2 3(1)求该抛物线的解析式;,0)和点B(0,-2).(2)若△OAB 以每秒2 个单位长度的速度沿射线BA 方向运动,设运动时间为t,点O,A,B 的对应点分别为D,E,C,直线DE 交抛物线于点M.①当点M 为DE 的中点时,求t 的值;②连接AD,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图310.如图,抛物线y=ax2+bx-2 的对称轴是直线x=1,与x 轴交于A,B 两点,与y 轴交于点C,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD⊥x 轴于点D,交直线BC 于点E.(1)求抛物线解析式.(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N,使得以点B,D,M,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0),抛物线y=-x2+bx+c 经过A,B 两点.(1)求抛物线的解析式.(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D,交线段AB 于点E,使PE 1DE .2①求点P 的坐标和△PAB 的面积.②在直线PD 上是否存在点M,使△ABM 为直角三角形?若存在,直接写出符合条件的所有点M 的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+2 与直线y=-x 交第二象限于点E,与x 轴交于A(-3,0),B 两点,与y 轴交于点C,EC∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y=-x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.13. 如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4 交于B,D 两点.(1)求抛物线的解析式及点D 的坐标;(2)点P 为直线BD 下方抛物线上的一个动点,求△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B,D 的动点,过点Q 作QF⊥x 轴于点F,交抛物线于点G,当△QDG 为直角三角形时,直接写出点Q 的坐标.1314.如图,抛物线y=ax2+bx+c 交x 轴于点A(1,0)和点B(3,0),交y 轴于点C,抛物线上一点D 的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,PE∥x 轴,PF∥y 轴,求线段EF 的最大值;(3)如图2,点M 是线段CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M 的坐标.15.如图,已知抛物线y=ax2+4x+c 与x 轴交于点M,与y 轴交于点N,抛物线的对称轴与x 轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO 为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM 中有一边的长等于MP 时,请直接写出点 A 的坐标.16.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1 过A,B 两点,并与过点A 的直线y =-1x -1 交于点C.2(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C 为顶点的三角形与△AOC 相似?若存在,求出点N 的坐标;若不存在,请说明理由.17.如图,直线l:y =1x +m 与x 轴交于点A(4,0),与y 轴交于点B,抛物线2y=ax2+bx+c(a≠0)经过A,B 两点,且与x 轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P 是抛物线上一动点,当点P 在直线l 下方的抛物线上运动时,过点P 作PM∥x 轴交l 于点M,过点P 作PN∥y 轴交l 于点N,求PM+PN 的最大值;(3)在(2)的条件下,当PM+PN 的值最大时,将△PMN 绕点N 旋转,当点M 落在x 轴上时,直接写出此时点P 的坐标.18.如图,已知抛物线y=ax2+x+c 与y 轴交于点C(0,3),与x 轴交于点A 和点B(3,0),点P 是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P 是点B 与点C 之间的抛物线上的一个动点,过点P 向x 轴作垂线,交BC 于点D,求线段PD 长度的最大值;(3)当点P 移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.19.在平面直角坐标系内,直线y =1x + 2 分别与x 轴、y 轴交于点A,C.抛物2线y =-1x2 +bx +c 经过点A 与点C,且与x 轴的另一个交点为点B.点D2在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D 到直线AC 的最大距离以及此时△ADC 的面积;(3)过点D 作DF⊥AC,垂足为点F,连接CD.若△CFD 与△AOC 相似,求点D 的坐标.20.如图,抛物线y=ax2+bx-3 过A(1,0),B(-3,0),直线AD 交抛物线于点D,点D 的横坐标为-2,点P(m,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式.(2)过点P 的直线垂直于x 轴,交抛物线于点Q,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.21.如图,抛物线y=-x2+bx+c 交x 轴于A,B 两点,交y 轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上的一动点,求△BCP 面积S 的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M 的坐标.21参考答案:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。
2020年中考数学压轴题十大题型(含详细答案)
2020年中考数学压轴题十大题型(含详细答案)函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等,或探索两个三角形满足什么条件相似等,或探究线段之间的数量、位置关系等,或探索面积之间满足一定关系时求x的值等,或直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
中考压轴题它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。
因此,可把压轴题分离为相对独立而又单一的知识或方法组块去思考和探究。
2020年中考数学复习(通用)专题:几何压轴题型含答案
几何压轴题型类型一动点探究型在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图①,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是________,CE与AD的位置关系是________;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图②,图③中的一种情况予以证明或说理);(3)如图④,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.【分析】 (1)要求BP与CE的数量关系,连接AC,由菱形和等边三角形的性质根据SAS可证明△ABP≌△ACE,从而证得BP=CE,且∠ACE=30°,延长CE交AD于点F,可得∠AFC=90°,所以CE⊥AD;(2)无论选择图②还是图③,结论不变,思路和方法与(1)一致;(3)要求四边形ADPE的面积,观察发现不是特殊四边形,想到割补法,分成钝角△ADP和正△APE,分别求三角形的面积,相加即可.【自主解答】解:(1)BP=CE;CE⊥AD;(2)选图②,仍然成立,证明如下:如解图①,连接AC交BD于点O,设CE交AD于点H.在菱形ABCD中,∠ABC=60°,BA=BC,例1题解图①∴△ABC为等边三角形,∴BA=CA.∵△APE为等边三角形,∴AP=AE,∠PAE=∠BAC=60°,∴∠BAP=∠CAE.在△BAP和△CAE中,例1题解图②∴△BAP≌△CAE(SAS),∴BP=CE,∠ACE=∠ABP=30°.∵AC和BD为菱形的对角线,∴∠CA D=60°,∴∠AHC=90°,即CE⊥AD.选图③,仍然成立,证明如下:如解图②,连接AC交BD于点O,设CE交AD于点H,同理得△BAP≌△CAE(SAS),BP=CE,CE⊥AD.(3)如解图③,连接AC交BD于点O,连接CE交AD于点H,由(2)可知,CE⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,∴在Rt△BCE中,CE=(219)2-(23)2=8,例1题解图③∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, AO =12AB =3,∴DP=BP -BD =8-6=2, ∴OP=OD +DP =5.在Rt△AOP 中,AP =AO 2+OP 2=27, ∴S 四边形ADPE =S △ADP +S △APE =12DP·AO+34·AP 2 =12×2×3+34×(27)2 =8 3.【难点突破】 本题的难点:一是如何找到全等的三角形,根据含60°内角菱形的特点,连接AC 是解决问题的关键;二是点P 是动点,当它运动到菱形的外部时,在其运动过程中由“手拉手”模型找全等三角形;三是求不规则四边形的面积,要想到运用割补法,将四边形分解成两个三角形求解.点拔几何压轴题中的“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.1.已知,△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°,点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM.射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时:①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其他条件不变时,∠BDE的度数是____________________;(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.2.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长;第2题图②若DG=GF,求BC的长;(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.类型二新定义型我们定义:如图①,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知(1)在图②,图③中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图②,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD =________BC ; ②如图③,当∠BAC=90°,BC =8时,则AD 长为________. 猜想论证(2)在图①中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用(3)如图④,在四边形ABCD 中,∠C=90°,∠D=150°,BC =12,CD =23,DA =6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.【分析】 (1)①证明△ADB′是含有30°角的直角三角形,则可得AD =12AB′=12BC ;②先证明△BAC≌△B′AC′,根据直角三角形斜边上的中线等于斜边的一半即可;(2)结论:AD =12BC.如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M ,C′M,先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M ,即可解决问题; (3)存在.如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.先证明PA =PD ,PB =PC ,再证明∠APD+∠BPC =180°即可. 【自主解答】 解:(1)①12;【解法提示】 ∵△ABC 是等边三角形, ∴AB =BC =AB =AB′=AC′. ∵DB′=DC′, ∴AD⊥B′C′.∵α+β=180°,∴∠BAC+∠B′AC′=180°, ∵∠BAC=60°, ∴∠B′AC′=120°, ∴∠B′=∠C′=30°, ∴AD=12AB′=12BC.②4;【解法提示】 ∵α+β=180°, ∴∠BAC+∠B′AC′=180°. ∵∠BAC=90°,∴∠B′AC′=∠BAC=90°.∵AB=AB′,AC =AC′, ∴△BAC≌△B′AC′(SAS), ∴BC=B′C′. ∵B′D=DC′, ∴AD=12B′C′=12BC =4.(2)结论:AD =12BC.证明:如解图①中,延长AD 到点M ,使得AD =DM ,连接B′M,C′M.例2题解图①∵B′D=DC′,AD =DM ,∴四边形AC′MB′是平行四边形, ∴AC′=B′M=AC. ∵α+β=180°,∴∠BAC+∠B′AC′=180°. ∵∠B′AC′+∠AB′M=180°, ∴∠BAC=∠MB′A. ∵AB=AB′,∴△BAC≌△AB′M(SAS), ∴BC=AM ,∴AD=12BC.(3)存在.证明:如解图②中,延长AD 交BC 的延长线于点M ,作BE⊥AD 于点E ,作线段BC 的垂直平分线交BE 于点P ,交BC 于点F ,连接PA ,PD ,PC ,作△PCD 的中线PN ,连接DF 交PC 于点O.例2题解图②∵∠ADC=150°, ∴∠MDC=30°, 在Rt△DCM 中,∵CD=23,∠DCM=90°,∠MDC=30°, ∴CM=2,DM =4,∠M=60°. 在Rt△BEM 中,∵∠BEM=90°,BM =14,∠MBE=30°, ∴EM=12BM =7,∴DE=EM -DM =3. ∵AD=6,∴AE=DE. ∵BE⊥AD, ∴PA=PD. ∵PF 垂直平分BC ,∴PB=PC.在Rt△CDF中,∵CD=23,CF=6,∴tan∠CDF=3,∴∠CDF=60°=∠CPF.易证△FCP≌△CFD,∴CD=PF.∵CD∥PF,∴四边形CDPF是平行四边形.∵∠DCF=90°.∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC-∠CDP=60°,∴△ADP是等边三角形.∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”.在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=DN2+PD2=(3)2+62=39.【难点突破】第(3)问根据新定义判断点P的存在性是本题难点,但运用“直角三角形中30°的角所对的直角边是斜边的一半”的性质以及三角形全等添加合适辅助线即可求解.点拔解决这类问题,首先要理解新定义的含义及实质;其次要注意,在证明线段、角度相等或某个特殊图形时,主要应用全等,在计算线段的长或图形的周长、面积时,常注意运用相似、勾股定理及图形面积公式等.1.联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA =PB ,则点P 为△ABC 的准外心.求解:(1)如图②,CD 为等边△ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数;(2)已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,求PA 的长.2.如图①,在△ABC中,过顶点A作直线与对边BC相交于点D,两交点之间的线段把这个三角形分成两个图形.若其中有一个图形与原三角形相似,则把这条线段叫做这个三角形的“顶似线”.(1)等腰直角三角形的“顶似线”的条数为______;(2)如图②,在△ABC中,AB=AC,∠A=36°,BD是∠ABC的角平分线,求证:BD是△ABC的“顶似线”;(3)如图③,在△ABC中,AB=4,AC=3,BC=6,求△ABC的“顶似线”的长.3.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为这条边上的“奇特三角形”,这条边称为“奇特边”.(1)如图①,已知△ABC是“奇特三角形”,AC>BC,且∠C=90°.①△ABC的“奇特边”是________;②设BC=a,AC=b,AB=c,求a∶b∶c;(2)如图②,AM是△ABC的中线,若△ABC是BC边上的“奇特三角形”,找出BC2与AB2+AC2之间的关系;(3)如图③,在四边形ABCD中,∠B=90°(AB<BC),BC=27,对角线AC把它分成了两个“奇特三角形”,且△ACD是以AC为腰的等腰三角形,求等腰△ACD 的底边长.4.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=__________;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.类型三操作探究型【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=__________.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC =120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD =5,AD=kAB(k为常数),求BD的长(用含k的式子表示).【分析】【操作发现】(1)先找到点B,C的对应点B′,C′,再连接构成三角形即可;(2)求∠AB′B的度数可先判断△AB′B是等腰直角三角形,再求角度;【问题解决】根据两种不同的想法,选择其中一个进行证明;【灵活运用】需将△ABD绕点A旋转得到△ACG,再证明∠CDG=90°即可.【自主解答】解:【操作发现】(1)如解图①所示,△AB′C′即为所求;(2)45°.【解法提示】连接BB′.∵△AB′C′是由△ABC绕点A按顺时针方向旋转90°得到的,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°.【问题解决】如解图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C,∴△APP′是等边三角形,∠AP′C=∠APB=360°-90°-120°=150°,∴PP′=AP ,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°, ∴PP′=32PC ,即AP =32PC.∵∠APC=90°,∴AP 2+PC 2=AC 2,即(32PC)2+PC 2=72,∴PC=27,∴AP=21,∴S △APC =12AP·PC=73;【灵活运用】如解图③,连接AC.∵AE⊥BC,BE =EC ,∴AB=AC ,将△ABD 绕点A 逆时针旋转使得AB 与AC 重合,点D 的对应点为G ,连接DG.则BD =CG.例3题解图③∵∠BAD=∠CAG,∴∠BAC=∠DAG.∵AB=AC ,AD =AG ,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG.∴DG=kBC=4k.∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG=DG2+CD2=16k2+25.∴BD=CG=16k2+25.【难点突破】在【灵活运用】一问中,要确定BD与k的数量关系,关键在于旋转△ABD,使得AB与AC重合,从而证明∠CDG=90°,构造直角三角形是解决本题的难点,也是解决问题的突破口.点拔对于操作探究问题,首先掌握图形变换的性质,如图形的折叠:折痕为对称轴,有折痕就有角平分线,有折痕就有垂直平分等;图形的平移:有平移就有平行;图形的旋转:旋转前后图形全等,对应边相等,对应角相等;对应点与旋转中心的连线所成的角为旋转角,有旋转就有等腰三角形;其次注意运用全等证明线段相等,利用勾股定理或相似求线段的长.1.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF 的数量关系,并说明理由.(2)若四边形ABCD为矩形,BC=mAB,其他条件都不变.①如图③,猜想AE与DF的数量关系,并说明理由;②将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图④中画出草图,并直接写出AE′和DF′的数量关系.2.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是______________;位置关系是______________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其他条件不变,试判断△GMN的形状,并给予证明.3.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合),DE∥AB交AC于点F,CE∥AM,连接AE.(1)如图①,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图②,当点D不与点M重合时,(1)中的结论还成立吗?请说明理由.(3)如图③,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH=3,DM=4时,求DH的长.参考答案类型一1.解:(1)①∵CA=CB,BN=AM,∴CB-BN=CA-AM,∴CN=CM,∵∠ACB=∠ACB,BC=CA,∴△BCM≌△ACN.②解:∵△BCM≌△ACN,∴∠MBC=∠NAC.∵EA=ED,∴∠EAD=∠EDA.∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°-90°=90°;∴∠BDE=90°.(2)α或180°-α;(3)43或3 2.2.解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG=AE2+EG2=6 5.∵EG∥AC,∴△ACF∽△GEF,∴FGAF=EGAC=12,∴FG=13AG=2 5.第2题解图①②如解图①,在正方形ACDE中,AE=ED,∠AEF=∠DEF=45°.∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x.∵AE∥BC,∴∠B=∠1=x.∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC=ACtan 30°=12 3.(2)在Rt△ABC中,AB=AC2+BC2=122+92=15,如解图②,当点D在线段BC上时,此时只有GF=GD.第2题解图②∵DG∥AC,∴△BDG∽△BCA,∴BDDG=BCAC=34,∴设BD=3x,则DG=4x,BG=5x,AE=CD=9-3x,∴GF=GD=4x,则AF=15-9x.∵AE∥CB,∴△AEF∽△BCF,∴AEBC=AFBF,∴9-3x9=15-9x9x,整理得x2-6x+5=0,解得x=1或5(舍去),∴腰长GD为4.如解图③,当点D在线段BC的延长线上,且直线AB,CE的交点在AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,第2题解图③∴FG=DG =12+4x.∵AE∥BC,∴△AEF∽△BCF, ∴AE BC =AF BF , ∴3x 9=9x +129x +27, 解得x =2或-2(舍去), ∴腰长DG 为20.如解图④,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点在BD 下方时,此时只有DF =DG ,过点D 作DH⊥FG 于点H.第2题解图④设AE =3x ,则EG =4x ,AG =5x ,DG =4x +12, ∴FH=GH =DG·cos∠DGB=(4x +12)×45=16x +485,∴GF=2GH =32x +965,∴AF=GF -AG =7x +965.∵AC∥DG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =7x +96532x +965, 解得x =12147或-12147(舍去),∴腰长GD 为84+48147,如解图⑤,当点D 在线段CB 的延长线上时,此时只有DF =DG ,过点D 作DH⊥AG 于点H.设AE =3x ,则EG =4x ,AG =5x ,DG =4x -12, ∴FH=GH =DG·cos∠DGB=16x -485,第2题解图⑤∴FG=2FH =32x -965,∴AF=AG -FG =96-7x5.∵AC∥EG,∴△ACF∽△GEF, ∴AC EG =AF FG ,∴124x =96-7x 532x -965, 解得x =12147或-12147(舍去),∴腰长DG 为-84+48147.综上所述,等腰三角形△DFG 的腰长为4或20或84+48147或-84+48147.类型二1.解:(1)①如解图①,若PB =PC ,连接PB ,则∠PCB=∠PBC. ∵CD 为等边三角形的高,∴AD=BD ,∠PCB=30°, ∴∠PBD=∠PBC=30°,∴PD=33DB =36AB , 与已知PD =12AB 矛盾,∴PB≠PC;②若PA =PC ,连接PA ,同理可得PA≠PC; ③若PA =PB ,由PD =12AB ,得PD =AD ,∴∠APD=45°,故∠APB=90°. (2)∵BC=5,AB =3,∠BAC=90°, ∴AC=BC 2-AB 2=52-32=4.①若PB =PC ,设PA =x ,则PC =PB =4-x , ∴x 2+32=(4-x)2,∴x=78,即PA =78;②若PA =PC ,则PA =2;③若PA =PB ,由解图②知,在Rt△PAB 中,不可能存在. 综上所述,PA 的长为2或78.2.(1)解:1.(2)证明: ∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD 是∠ABC 的角平分线,∴∠ABD=∠DBC=36°,∴∠A=∠CBD. 又∵∠C=∠C,∴△ABC∽△BDC, ∴BD 是△ABC 的“顶似线”.(3)解:①如解图①,当△ADC∽△BAC 时,AD 为△ABC 的“顶似线”, 则AD AB =AC BC ,即AD 4=36,∴AD=2; ②如解图②,当△ADC∽△ACB 时,CD 为△ABC 的“顶似线”,则CD CB =AC AB ,即CD 6=34,∴CD=92; ③过顶点B 的“顶似线”不存在.综上所述,△ABC 的“顶似线”的长为2或92.3.解:(1)①AC;②如解图①,过点B 作AC 边上的中线BE ,则BE =AC =b ,CE =AE =12b.在Rt△ABC 中,a 2+b 2=c 2, 在Rt△BCE 中,a 2+(12b)2=b 2.解得a =32b ,c =72b.∴a∶b∶c=3∶2∶7.(2)如解图②,过点A 作AF⊥BC 于点F ,则∠AFB=∠AFC=90°. 设AM =BC =a ,AF =h ,MF =x ,则BM =CM =12a.在Rt△ABF 中,AB 2=BF 2+AF 2=(a2+x)2+h 2,在Rt△ACF 中,AC 2=CF 2+AF 2=(a2-x)2+h 2,∴AB 2+AC 2=a22+2x 2+2h 2.在Rt△AMF 中,AM 2=MF 2+AF 2,即a 2=x 2+h 2.∴AB 2+AC 2=5a 22=52BC 2.(3)∵∠B=90°,BC >AB ,∴BC 为△ABC 的“奇特边”. ∵BC=27,∴由(1)②知AB =32BC =21,AC =72BC =7.设等腰△ACD 的底边长为y ,由(2)中结论知:①当腰为“奇特边”时,有72+y 2=52×72,解得y =726(负值已舍去).②当底边为“奇特边”时,有72+72=52×y 2,解得y =1455(负值已舍去).∴等腰△ACD 的底边长为726或145 5.4.解:(1)∵∠C>90°,∠A=60°, ∴β=60°,α=15°,∴∠B=15°.(2)若存在一点E ,使得△ABE 也是“准互余三角形”, 则2∠EBA+∠EAB=90°.如解图①,作射线BF ,使得∠FBE=∠ABE ,延长AE 交BF 于点F ,则∠BFE=90°.即BE 为∠FBA 的角平分线,过点E 作EG⊥AB 于点G , 则EG =EF ,可得△BEF≌△BEG. 又∵△BEG∽△BAC,∴△BEF∽△BAC, ∴BF BC =EF AC ,∴BF 5=EF4①. 又∵△BEF∽△AEC,∴EF CE =BF AC ,∴EF 5-BE =BF 4②,由①②可得,BE =1.8.(3)如解图②,将△BCD 沿BC 翻折得△BCE,则CE =CD =12,∠ABD=2∠BC D =∠DCE,∠DCE+∠DBE=180°,即∠ABD+∠DBE=180°,∴点A ,B ,E 共线,易知2∠ACB+∠BAC=90°不成立,存在2∠BAC+∠ACB=90°,易证得△ECB∽△EAC,∴EC AE =BE EC ,即127+BE =BE 12,解得BE =9(负值已舍去),∴AE=16,在Rt△AEC 中,利用勾股定理得,AC =AE 2+CE 2=20.类型三1.解:(1)①DF=2AE ; ②DF=2AE ;理由:∵∠EBF=∠ABD=45°,∴∠ABE =∠FBD.∵BE BF =AB BD ,∴△ABE∽△DBF,∴AE DF =AB BD =22,∴DF=2AE.(2)①如解图①,过点F 作FG⊥AD 于点G ,则四边形AEFG 是矩形,∴GF=AE. ∵tan∠FDG=BAAD =GFDG ,AD =BC =mAB ,∴DG=mGF ,在Rt△DGF 中,由勾股定理得DF =GF 2+DG 2=1+m 2GF ,∴DF=1+m 2AE.②画出草图如解图②,DF′=1+m2AE′.2.解:(1)GM=GN;GM⊥GN.【解法提示】如解图①,连接BE,CD相交于点H.∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE.∵点M,G分别是BD,BC的中点,∴MG 12 CD.同理:NG 12BE,∴MG=NG,MG⊥NG.(2)小明发现的上述结论成立.理由:如解图②,连接CD ,BE 相交于点H. ∵∠DAB=∠CAE=90°,∴∠DAC=∠BAE.∵DA=BA ,CA =EA ,∴△DAC≌△BAE(SAS),∴∠FBH=∠ADF,DC =BE.∵M 是BD 的中点,G 是BC 的中点,∴MG=12DC , 同理NG =12BE ,∴MG=NG. 设CD 交AB 于点F ,则∠FHB=180°-(∠FBH+∠BFH)=180°-(∠ADF+∠AFD)=90°,∴CD⊥BE,∴MG⊥NG;(3)△GMN 为等腰直角三角形.证明:如解图③,连接EB ,DC ,延长线相交于点H ,同(1)的方法得,MG =NG ,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH +∠ECH =∠AEH -∠AEC +180°-∠ACD -∠ACE =∠ACD -45°+180°-∠ACD-45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.3.(1)证明: ∵DE∥AB,∴∠EDC=∠ABM.∵CE∥AM,∴∠ECD=∠ADB.∵AM 是△A BC 的中线,且点D 与点M 重合,∴BD=DC ,∴△ABD≌△EDC(ASA),∴AB=ED.∵AB∥ED,∴四边形ABDE 是平行四边形.(2)解:结论成立.理由如下:第3题解图①如解图①,过点M作MG∥DE交CE于点G.∵CE∥AM,∴四边形DMGE是平行四边形,∴ED=GM,且ED∥GM.∵AB∥DE,∴AB∥GM,∴∠ABM=∠GMC.∵AM∥CE,∴∠AMB=∠GCM.∵AM为△ABC的中线,∴BM=MC.∴△ABM≌△GMC(ASA),∴AB=GM,∴AB=DE.∵AB∥DE,∴四边形ABDE是平行四边形.(3)解:①如解图②,取线段HC的中点I,连接MI,第3题解图②∵BM=MC,∴MI 是△BHC 的中位线,∴MI∥BH,MI =12BH. ∵BH⊥AC,且BH =AM.∴MI=12AM ,MI⊥AC, ∴∠CAM=30°.②设DH =x ,则AH =3x ,AD =2x , ∴AM=4+2x ,∴BH=4+2x.∵四边形ABDE 是平行四边形,∴DF∥AB, ∴HF HA =HD HB ,∴33x =x 4+2x , 解得x =1+5或x =1-5(舍去), ∴DH=1+ 5.。
2020年九年级数学备战中考—中考真题计算压轴题(图形题)含解析
2020年九年级备战中考——中考题型计算压轴题(图形题)1.如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,点M是AB的中点,连接MC,点P是线段BC延长线上一点,且PC<BC,连接MP交AC于点H.将射线MP绕点M逆时针旋转60°交线段CA的延长线于点D.(1)找出与∠AMP相等的角,并说明理由.(2)如图2,CP=12BC,求ADBC的值.(3)在(2)的条件下,若MD=√133,求线段AB的长.2.如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH 交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.3.已知,在Rt△ABC中,∠ACB=90°,D是BC边上一点,连接AD,分别以CD和AD为直角边作Rt△CDE 和Rt△ADF,使∠DCE=∠ADF=90°,点E,F在BC下方,连接EF.(1)如图1,当BC=AC,CE=CD,DF=AD时,求证:①∠CAD=∠CDF,②BD=EF;(2)如图2,当BC=2AC,CE=2CD,DF=2AD时,猜想BD和EF之间的数量关系?并说明理由. 4.如图,△ABC是等腰直角三角形,∠ACB=90°,D是射线CB上一点(点D不与点B重合),以AD为斜边作等腰直角三角形ADE(点E和点C在AB的同侧),连接CE.(1)如图①,当点D与点C重合时,直接写出CE与AB的位置关系;(2)如图②,当点D与点C不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)当∠EAC=15°时,请直接写出CEAB 的值.5.如图,是具有公共边AB的两个直角三角形,其中,AC=BC,∠ACB=∠ADB=90°.(1)如图1,若延长DA到点E,使AE=BD,连接CD,CE.①求证:CD=CE,CD⊥CE;②求证:AD+BD= √2 CD;(2)若△ABC与△ABD位置如图2所示,请直接写出线段AD,BD,CD的数量关系.6.如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD 的垂线QH,垂足为点H,交射线BC于点Q .(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为________.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.7.如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4√2,请直接写出点O经过的路径长.8.如图,在四边形ABCD中,AB//CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE .(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.9.在Rt△ABC中,∠ACB=90°,D是△ABC内一点,连接AD,BD.在BD左侧作Rt△BDE,使∠BDE=90°,以AD和DE为邻边作▱ADEF,连接CD,DF.(1)若AC=BC,BD=DE.①如图1,当B,D,F三点共线时,CD与DF之间的数量关系为________.②如图2,当B,D,F三点不共线时,①中的结论是否仍然成立?请说明理由.________(2)若BC=2AC,BD=2DE,CDAC =45,且E,C,F三点共线,求AFCE的值.10.已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.求证:①△AEF≌△CGF;②四边形BGCE是平行四边形.(2)小明受到图1的启发做了进一步探究:如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出EDEF 的值及∠DEF的度数.(3)小颖受到启发也做了探究:如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出EDEF 的值,并用含α的代数式直接表示∠DEF的度数.11.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4 √2,则▱ABCD的面积是________.12.如图1,ΔABC(12AC<BC<AC)绕点C顺时针旋转得ΔDEC,射线AB交射线DE于点F .(1)∠AFD与∠BCE的关系是________;(2)如图2,当旋转角为60°时,点D,点B与线段AC的中点O恰好在同一直线上,延长DO 至点G,使OG=OD,连接GC .①写出∠AFD与∠GCD的关系,请说明理由;②如图3,连接AE,BE,若∠ACB=45∘,CE=4,求线段AE的长度.13.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,ΔABC中,∠BAC=90∘,点D,E在BC上,AD=AB,AB=kBD(其中√22<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出AH的值.”HC(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;的值(用含k的代数式表示).(3)直接写出AHHC答案解析部分1.【答案】 (1)解: ∠D =∠AMP . 理由如下:∵ ∠ACB =90° , ∠B =30° , ∴ ∠BAC =60° . ∴ ∠D +∠DMA =60° .由旋转的性质知, ∠DMA +∠AMP =60° . ∴ ∠D =∠AMP(2)解:如图,过点C 作 CG ∥BA 交MP 于点G.∴ ∠GCP =∠B =30° , ∠BCG =150° .∵ ∠ACB =90° ,点M 是AB 的中点, ∴ CM =12AB =BM =AM . ∴ ∠MCB =∠B =30° . ∴ ∠MCG =120° .∵ ∠MAD =180°−60°=120° . ∴ ∠MAD =∠MCG .∵ ∠DMG −∠AMG =∠AMC −∠AMG , ∴ ∠DMA =∠GMC . 在 △MDA 与 △MGC 中, {∠MAD =∠M CGAM =CM∠DMA =∠GMC∴ △MDA ≌△MGC(ASA) . ∴ AD =CG . ∵ CP =12BC . ∴ CP =13BP . ∵ CG ∥BM ,∴ △CGP ∽△BMP . ∴CG BM=CP BP =13 .设 CG =AD =t ,则 BM =3t , AB =6t . 在 Rt △ABC 中, cos B =BC AB=√32.∴ BC =3√3t .∴AD BC=3√3t=√39(3)解:如图,由(2)知 △CGP ∽△BMP .则 MD =MG =√133.∵ CG ∥MA .∴ ∠CGH =∠AMH . ∵ ∠GHC =∠MHA , ∴ △GHC ∽△MHA . ∴HG HH=CH AH =CG AM =13 .∴ HG =14MG =14×√133=√1312.∴ MH =√133−√1312=√134 .由(2)知, CG =AD =t ,则 BM =AM =CA =3t . ∴ CH =34t , AH =94t .∵ ∠MHA =∠DHM , ∠HMA =∠D . ∴ △MHA ∽△DMH . ∴MH DH=AHMH .∴ MH 2=AH ⋅DH ,即 (√134)2=94t ⋅134t . 解得 t 1=13, t 2=−13(舍去).∴ AB =6t =2 .2.【答案】 (1)解:①解:△AEG是等边三角形;理由如下: ∵四边形ABCD 是菱形,∠BAD=120°,∴AD∥BC,AB =BC =CD =AD ,AB∥CD,∠CAD= 12∠BAD=60°, ∴∠BAD+∠ADC=180°, ∴∠ADC=60°, ∵GH∥DC,∴∠AGE=∠ADC=60°,∴∠AGE=∠EAG=∠AEG=60°, ∴△AEG是等边三角形;②证明:∵△AEG是等边三角形, ∴AG=AE , ∵CF=AG , ∴AE=CF ,∵四边形ABCD 是菱形, ∴∠BCD=∠BAD=120°, ∴∠DCF=60°=∠CAD,在△AED和△CFD中, {AD =CD ∠EAD =∠FCD AE =CF,∴△AED≌△CFD(SAS ) ∴DE=DF ,∠ADE=∠CDF, ∵∠ADC=∠ADE+∠CDE=60°, ∴∠CDF+∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形(2)解:△DEF是等边三角形;理由如下:同(1)①得:△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∠CAD=12∠BAD=60°,∴∠FCD=60°=∠CAD,在△AED和△CFD中,{AD=CD∠EAD=∠FCDAE=CF,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE﹣∠CDE=60°,∴∠CDF﹣∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形.3.【答案】(1)证明:①∵∠ACB=90°,∴∠CAD+∠ADC=90°,∵∠CDF+∠ADC=90°,∴∠CAD=∠CDF;②作FH⊥BC交BC的延长线于H,则四边形FECH为矩形,∴CH=EF,在△ACD和△DHF中,{∠CAD=∠HDF∠ACD=∠DHF=90°AD=DF ,∴ΔACD≅ΔDHF(AAS)∴DH=AC,∵AC=CB,∴DH=CB,∴DH−CD=CB−CD,即HG=BD,∴BD=EF(2)解:BD=EF,理由如下:作FG⊥BC交BC的延长线于G,则四边形FECG为矩形,∴CG=EF,∵∠CAD=∠GDF,∠ACD=∠DGF=90°,∴ΔACD∽ΔDGF,∴DGAC =DFAD=2,即DG=2AC,GF=2CD,∵BC=2AC,CE=2CD,∴BC=DG,GF=CE,∴BD=CG,∵GF∥CE,GF=CE,∠G=90°,∴四边形FECG为矩形,∴CG=EF,∴BD=EF.4.【答案】(1)解:当点D与点C重合时,CE∥AB,理由如下:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵△ADE是等腰直角三角形,∴∠ADE=45°,∴∠CAB=∠ADE,∴CE∥AB(2)解:当点D与点C不重合时,(1)的结论仍然成立,理由如下:在AC上截取AF=CD,连接EF,∵∠AED=∠ACB=90°,∴∠EAF=∠EDC,在△EAF和△EDC中,{AE=ED∠EAF=∠EDC AF=DC ,∴△EAF≌△EDC(SAS),∴EF=EC,∠AEF=∠DEC,∵∠AED=90°,∴∠FEC=90°,∴∠ECA=45°,∴∠ECA=∠CAB,∴CE∥AB;(3)解:如图②,∠EAC=15°,∴∠CAD=30°,∴AD=2CD,AC=√3CD,∴ FC=(√3﹣1)CD,∵△CEF为等腰直角三角形,∴ EC=√22FC=√6−√22CD,∵△ABC是等腰直角三角形,∴ AB=√2AC=√6CD,∴ CEAB √6−√22√63−√36,如图③,∠EAC=15°,由(2)得,∠EDC=∠EAC=15°,∴∠ADC=30°,∴ CD=√3AC,AB=√2AC,延长AC至G,使AG=CD,∴CG=AG﹣AC=DC﹣AC=√3 AC﹣AC,在△EAG和△EDC中,{AG=DC∠EAG=∠EDC AC=DE ,∴△EAG≌△EDC(SAS),∴EG=EC,∠AEG=∠DEC,∴∠CEG=90°,∴△CEG为等腰直角三角形,∴ EC=√22CG=√6−√22AC,∴ CEAB √3−12,综上所述,当∠EAC=15°时,CEAB 的值为3−√36或√3−12.5.【答案】(1)证明:①在四边形ADBC中,∠DAC+∠DBC+∠ADB+∠ACB=360°,∵∠ADB+∠ACB=180°,∴∠DAC+∠DBC=180°,∵∠EAC+∠DAC=180°,∴∠DBC=∠EAC,∵BD=AE,BC=AC,∴△BCD≌△ACE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠BCD+∠DCA=90°,∴∠ACE+∠DCA=90°,∴∠DCE=90°,∴CD⊥CE;②∵CD=CE,CD⊥CE,∴△CDE是等腰直角三角形,∴DE= √2 CD,∵DE=AD+AE,AE=BD,∴DE=AD+BD,∴AD+BD= √2 CD(2)解:AD-BD= √2 CD;理由:如图2,在AD上截取AE=BD,连接CE,∵AC=BC,∠ACB=90°,∴∠BAC=∠ABC=45°,∵∠ADB=90°,∴∠CBD=90°-∠BAD-∠ABC=90°-∠BAD-45°=45°-∠BAD,∵∠CAE=∠BAC-∠BAD=45°-∠BAD,∴∠CBD=∠CAE,∵BD=AE,BC=AC,∴△CBD≌△CAE(SAS),∴CD=CE,∠BCD=∠ACE,∵∠ACE+∠BCE=∠ACB=90°,∴∠BCD+∠BCE=90°,即∠DCE=90°,∴DE= √CD2+CE2 = √2CD2 = √2 CD,∵DE=AD-AE=AD-BD,∴AD-BD= √2 CD.6.【答案】(1)BP+QC=EC(2)解:(1)中的结论仍然成立,理由如下:由题意得:∠PEG=90°,EG=EP,∴∠PEQ +∠GEH =90° ,∵QH ⊥GD ,∴∠H =90° , ∠G +∠GEH =90° ,∴∠PEQ =∠G ,∵ 四边形 ABCD 是正方形,∴∠DCB =90° , BC =DC ,∴∠EPQ +∠PEC =90° ,∵∠PEC +∠GED =90° ,∴∠GED =∠EPQ ,在 ΔPEQ 和 ΔEGD 中, {∠EPQ =∠GEDEP =EG ∠PEQ =∠G,∴ΔPEQ ≅ΔEGD(ASA) ,∴PQ =ED ,∴BP +QC =BC −PQ =CD −ED =EC ,即 BP +QC =EC(3)解:分两种情况:①当点 P 在线段 BF 上时,点 Q 在线段 BC 上,由(2)可知: BP =EC −QC ,∵AB =3DE =6 ,∴DE =2 , EC =4 ,∴BP =4−1=3 ;②当点 P 在射线 FC 上时,点 Q 在线段 BC 的延长线上,如图3所示:同(2)可得: ΔPEQ ≅ΔEGD(AAS) ,∴PQ =ED ,∵BC =DC , DC =EC +DE ,∴BP =BC +PC =DC +PC =EC +DE +PC =EC +PQ +PC =EC +QC ,∴BP =QC +EC =1+4=5 ;综上所述,线段 BP 的长为3或5.7.【答案】 (1)解: OE =OD , OE ⊥OD ;理由如下:由旋转的性质得: AF =AC , ∠AFE =∠ACB ,∵四边形ABCD 是正方形,∴ ∠ACB =∠ACD =∠FAC =45° ,∴ ∠ACF =∠AFC =12(180°−45°)=67.5° ,∴ ∠DCF =∠EFC =22.5° ,∵ ∠FEC =90° ,O 为CF 的中点,∴ OE =12CF =OC =OF ,同理: OD =12CF ,∴ OE =OD =OC =OF ,∴ ∠EOC =2∠EFO =45° , ∠DOF =2∠DCO =45° ,∴ ∠DOE =180°−45°−45°=90° ,∴ OE ⊥OD(2)解:当 45°<α<90° 时,(1)中的结论成立,理由如下:延长EO 到点M ,使 OM =EO ,连接DM 、CM 、DE ,如图2所示:∵O为CF 的中点,∴ OC =OF , 在 △COM 和 △FOE 中, {OM =OE∠COM =∠FOE OC =OF,∴ △COM ≌ △FOE (SAS ),∴ ∠MCF =∠EFC , CM =EF .∵四边形ABCD 是正方形,∴ AB =BC =CD , ∠BAC =∠BCA =45° ,∵ ΔABC 绕点A 逆时针旋转α得 ΔAEF ,∴ AB =AE =EF =CD , AC =AF ,∴ CD =CM , ∠ACF =∠AFC ,∵ ∠ACF =∠ACD +∠FCD , ∠AFC =∠AFE +∠CFE , ∠ACD =∠AFE =45° ,∴ ∠FCD =∠CFE =∠MCF ,∵ ∠EAC +∠DAE =45° , ∠FAD +∠DAE =45° ,∴ ∠EAC =∠FAD ,在 △ACF 中,∵ ∠ACF +∠AFC +∠CAF =180° ,∴ ∠DAE +2∠FAD +∠DCM +90°=180° ,∵ ∠FAD +∠DAE =45° ,∴ ∠FAD +∠DCM =45° ,∴ ∠DAE =∠DCM ,在 △ADE 和 △CDM 中, {AE =CM∠DAE =∠DCM AD =CD ,∴ △ADE ≌ △CDM (SAS ),∴ DE =DM ,∵ OE =OM ,∴ OE ⊥OD , 在 △COM 和 △COD 中, {CM =CD∠MCF =∠FCD OC =OC ,∴ △COM ≌ △COD (SAS ),∴ OM =OD .∴ OE =OD ,∴ OE =OD , OE ⊥OD(3)解:连接AO ,如图3所示:∵ AC=AF,CO=OF,∴ AO⊥CF,∴ ∠AOC=90°,∴点O在以AC为直径的圆上运动,∵ α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵ AC=√2AB=√2×4√2=8,∴点O经过的路径长为:πd=8π .8.【答案】(1)证明:∵AB//CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE//BC,且AB//CD∴四边形ABCE是平行四边形∴AE=BC(2)解:∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB−CD=2∴四边形ABCE的面积=3×2=69.【答案】(1)DF=√2 CD.;结论仍然成立.理由:如图2中,连接CF.延长BD交AF的延长线于H,设AC交BH于G.∵四边形AFED是平行四边形,∴AF=DE,DE∥AF,∵BD=DE,∴AF=BD,∵∠BDE=90°,∴∠DEH=∠DHA=90°=∠BCG,∵∠CGB=∠AGH,∴∠CBD=∠CAF,∵BC=AC,∴△BCD≌△ACF(SAS),∴∠BCD=∠ACF,CD=CF,∴∠BCA=∠DCF=90°,∴△CDF是等腰直角三角形,∴DF=√2 CD(2)解:如图3中,延长BD交AF于H.设BH交AC于G.∵四边形AFED是平行四边形,∴AF=DE,DE∥AF,∵∠BDE=90°,∴∠DEH=∠DHA=90°=∠BCG,∵∠CGB=∠AGH,∴∠CBD=∠CAF,∵ BDDE =BCAC=2,∴ BDAF =BCAC,∴△CBD∽△CAF,∴ CDCF =BCAC=2,∠BCD=∠ACF,∴∠BCA=∠DCF=90°,∵AD∥EF,∴∠ADC+∠DCF=180°,∴∠ADC=90°,∵CD:AC=4:5,设CD=4k,AC=5k,则AD=EF=3k,∴CF=12CD=2k,∴EC=EF﹣CF=k,∴DE=AF=√CD2+EC2=√(4k)2+k2=√17k,∴ AFCE =√17kk=√17 .10.【答案】(1)解:证明:①如图1中,∵△EFC与△AFC都是等腰直角三角形,∴FA=FC,FE=FG,∠AFC=∠EFG=90°,∴∠AFE=∠CFG,∴△AFE≌△CFG(SAS).②∵△AFE≌△CFG,∴AE=CG,∠AEF=∠CGF,∵△AEB是等腰直角三角形,∴AE=BE,∠BEA=90°,∴CG=BE,∵△EFG是等腰直角三角形,∴∠FEG=∠FGE=45°,∴∠AEF+∠BEG=45°,∵∠CGE+∠CGF=45°,∴∠BEG=∠CGE,∴BE∥CG,∴四边形BECG是平行四边形(2)解:如图2中,延长ED到G,使得DG=ED,连接CG,FG.∵点D是BC的中点,∴BD=CD,∵∠EDB=∠GDC,∴EB=GC,∠EBD=∠GCD,在Rt△AEB与Rt△AFC中,∵∠EAB=∠FAC=30°,∴ EBAE =√33,FCAF=√33,∴ CGAE =FCAF,∵∠EBD=∠2+60°,∴∠DCG=∠2+60°,∴∠GCF=360°﹣60°﹣(∠2+60°)﹣∠3=360°﹣120°﹣(∠2+∠3)=360°﹣120°﹣(180°﹣∠1)=60°+∠1,∵∠EAF=30°+∠1+30°=60°+∠1,∴∠GCF=∠EAF,∴△CGF∽△AEF,∴ FG FE =FC FA =√33 ,∠CFG=∠AFE,∴∠EFG=∠CFG+∠EFC=∠AFE+∠EFC=90°,∴tan∠DEF= FG FE =√33 ,∴∠DEF=30°,∴FG= 12 EG ,∵ED= 12 EG ,∴ED=FG ,∴ ED EF =√33(3)解:如图3中,延长ED 到G ,使得DG =ED ,连接CG ,FG.作EH⊥AB于H ,连接FD.∵BD=DC ,∠BDE=∠CDG,DE =DG ,∴△CDG≌△BDE(SAS ),∴CG=BE =AE ,∠DCG=∠DBE=α+∠ABC,∵∠GCF=360°﹣∠DCG﹣∠ACB﹣∠ACF=360°﹣(α+∠ABC)﹣∠ACB﹣(90°﹣α)=270°﹣(∠ABC+∠ACB)=270°﹣(180°﹣∠BAC)=90°+∠BAC=∠EAF,∴△EAF≌△GCF(SAS ),∴EF=GF ,∠AFE=∠CFG,∴∠AFC=∠EFC,∴∠DEF=∠CAF=90°﹣α,∵∠AEH=90°﹣α,∴∠AEH=∠DEF,∵AE=m ,AH = 12 AB = 12 n ,∴EH= √AE 2−AH 2=√m 2−14n 2=√4m 2−n 22 ,∵D E =DG ,EF =GF ,∴DF⊥EG,cos∠DEF=cos∠AEH=EHAE =√4m2−n22m=√4m2−n22m.11.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DFA=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)24.12.【答案】(1)∠AFD=∠BCE(2)解:① ∠AFD=12∠GCD或∠AFD+∠GCD=180°,理由:如图2,连接AD,由旋转知,∠CAB=∠CDE,CA=CD,∠ACD=60°,∴ ΔACD是等边三角形,∴ AD=CD,∵ ∠AMC=∠DMF,∴ ΔACM∽ ΔDFM,∴ ∠ACD=∠AFD,∵ O是AC的中点,∴ AO=CO,∵ OD=OG,∠AOD=∠COG,∴ ΔAOD≌ ΔCOG(SAS),∴ AD=CG,∴ CG=CD,∴ ∠GCD=2∠ACD=120°,∴ ∠AFD=12∠GCD或∠AFD+∠GCD=180°,故答案为:∠AFD=12∠GCD或∠AFD+∠GCD=180°;②由①知,∠GCD=120°,∠ACD=∠BCE=60°,∴ ∠GCA=∠GCD−∠ACD=60°,∴ ∠GCB=∠BCE,∵ ∠GCB=∠GCA+∠ACB,∠ACE=∠BCE+∠ACB,∴ ∠GCB=∠ACE,由①知,CG=CD,CD=CA,∴ CG=CA,∵ BC=EC=4,∴ △GCB≅△ACE(SAS),∴ BC=CE=4,∴ GB=AE,∵ CG=CD,OG=OD,∴ CO⊥GD,∴ ∠COG=∠COB=90°在RtΔBOC中,BO=BC⋅sin∠ACB=2√2,CO=BC⋅cos∠ACB=2√2,在RtΔGOC中,GO=CO•tan∠GCA=2√6,∴ GB=CO+BO=2√6+2√2,∴ AE=2√6+2√2 .13.【答案】(1)证明:∵ AB=AD∴ ∠ABD=∠ADB∵ ∠ADB=∠ACB+∠DAC , ∠ABD=∠ABC=∠ACB+∠BAE∴ ∠BAE=∠DAC(2)解:设∠DAC=α=∠BAE,∠C=β∴ ∠ABC=∠ADB=α+β∵ ∠ABC+∠C=α+β+β=α+2β=90∘,∠BAE+∠EAC=90∘=α+∠EAC ∴ ∠EAC=2β∵ AF平分∠EAC∴ ∠FAC=∠EAF=β∴ ∠FAC=∠C,∠ABE=∠BAF=α+β∴ ∠ABE=∠BAF=α+β∴ AF=12BC=BF∵ ∠ABE=∠BAF,∠BGA=∠BAC=90∘∴ ΔABG∽ ΔBCA∴ BGAC =ABBC∵ ∠ABE=∠BAF,∠ABE=∠AFB ∴ ΔAFB∽ ΔBAD∴ ABBD =BFAB,且AB=kBD,AF=12BC=BF∴ k=BC2AB ,即ABBC=12k∴ BGAC =12k(3)解:∵ ∠ABE=∠BAF,∠BAC=∠AGB=90∘∴ ∠ABH=∠C,且∠BAC=∠BAC∴ ΔABH∽ ΔACB∴ ABAC =AHAB∴ AB2=AC×AH设BD=m,AB=km,∵ ABBC =12k∴ BC=2k2m∴ AC=√BC2−AB2=km√4k2−1∴ AB2=AC×AH(km)2=km√4k2−1×AH∴ AH=√4k2−1∴ HC=AC−AH=km√4k2−1√4k2−1=2√4k2−1∴ AHCH =14k2−2。
2020年全国中考数学压轴题全析全解(2)
2020年全国中考数学压轴题全解全析11、(河北卷)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由. [解] (1)由题意知 CQ =4t ,PC =12-3t ,∴S △PCQ =t t CQ PC 246212+-=⋅. ∵△PCQ 与△PDQ 关于直线PQ 对称,∴y=2S △PCQ t t 48122+-=. (2)当CQCP CA CB=时,有PQ ∥AB ,而AP 与BQ 不平行,这时四边形PQBA 是梯形, ∵CA =12,CB =16,CQ =4t , CP =12-3t ,∴16412312tt =-,解得t =2. ∴当t =2秒时,四边形PQBA 是梯形.(3)设存在时刻t ,使得PD ∥AB ,延长PD 交BC 于点M ,如图2,若PD ∥AB ,则∠QMD =∠B ,又∵∠QDM =∠C =90°,∴Rt △QMD ∽Rt △ABC ,从而ACQD AB QM =, ∵QD =CQ =4t ,AC =12,AB=20,∴QM =203t . 若PD ∥AB ,则CP CMCA CB=,得20412331216t t t +-=, 解得t =1211. ∴当t =1211秒时,PD ∥AB .(4)存在时刻t ,使得PD ⊥AB .P图2图7D 时间段为:2<t ≤3.[点评]这是一道非常典型的动态几何问题,考查相似形、图形变换等知识,难度比起2005年河北非课改区的那道压轴题略有降低,但仍保留了足够的区分度,在解第3小题时应当先假设结论存在,再根据已知求解,若出现矛盾,则说明结论不存在,第4小题应该通过画图来判断时间段。
2020年中考数学选择填空压轴题汇编最值问题含解析
2020年中考数学选择填空压轴题汇编:最值问题1.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2 2 .【解答】解:如图,连接BE,BD.由题意BD2,∵∠MBN=90°,MN=4,EM=NE,∴BE MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为22.故答案为22.2.(2020•玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.3.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′2,的长l,∴阴影部分周长的最小值为2.故答案为:.4.(2020•鄂州)如图,已知直线y x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为2.【解答】解:如图,在直线y x+4上,x=0时,y=4,当y=0时,x,∴OB=4,OA,∴tan∠OBA,∴∠OBA=30°,由PQ切⊙O于Q点可知:OQ⊥PQ,∴PQ,由于OQ=1,因此当OP最小时PQ长取最小值,此时OP⊥AB,∴OP OB=2,此时PQ,BP2,∴OQ OP,即∠OPQ=30°,若使点P到直线a的距离最大,则最大值为PM,且M位于x轴下方,过点P作PE⊥y轴于点E,∴EP BP,∴BE3,∴OE=4﹣3=1,∵OE OP,∴∠OPE=30°,∴∠EPM=30°+30°=60°,即∠EMP=30°,∴PM=2EP=2.故答案为:2.5.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3【解答】解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD,∴要求AC+BD的最小值,相当于在x轴上找一点P(m,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,(PM+PN),如图1中,作点M关于原点O的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P′M+P′N的最小值=P′N+P′M=P′N+P′Q=NQ2,∴AC+BD的最小值为2.故选:B.6.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为2 .【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴,∴,∴MN,当点C与C′重合时,△C′DE的面积最小,最小值5×(1)=2,故答案为2.7.(2020•徐州)在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为99 .【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM AB3,∴OA3,∴CM=OC+OM=33,∴S△ABC AB•CM6×(33)=99.故答案为:99.8.(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为9.【解答】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴,∵DF DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.9.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A. 1 B.C.2 1 D.2【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B的圆上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=21,∴OM CD,即OM的最大值为;故选:B.11.(2020•乐山)如图,在平面直角坐标系中,直线y=﹣x与双曲线y交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.B.C.﹣2 D.【解答】解:点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2,∴k=m(﹣m),故选:A.12.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15 .【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB10,∵A′H⊥AB,∴AH=HB=5,∴A′H AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.13.(2020•新疆)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 6 .【解答】解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH,AA'=2,∠C=30°,∴Rt△CDE中,DE CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'23,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.。
2020年中考数学4.几何综合选择填空压轴题(含解析)
几何综合-填空选择压轴题41、如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.2、如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.√6cm C.2.5cm D.√5cm3、定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△An﹣1Bn﹣1Cn﹣1经γ(n,180°)变换后得△AnBnCn,则点A1的坐标是,点A2018的坐标是.4、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.5325、如图,直线y=﹣√33x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D 是AB上一点,四边形OEDC是菱形,则△OAE的面积为.6、小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为49√3cm2,则该圆的半径为cm.27、如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是.8、如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.√15 B.2√5 C.2√15 D.89、如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A.√24 B.14C.13D.√2310、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.8511、如图,在正方形ABCD中,AD=2√3,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.12、如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.9+25√34 B.9+25√32C.18+25√3 D.18+25√3213、如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .14、如图,已知∠POQ=30°,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的⊙A 与直线OP 相切,半径长为3的⊙B 与⊙A 相交,那么OB 的取值范围是( )A .5<OB <9 B .4<OB <9C .3<OB <7D .2<OB <715、如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=2,CE=3,则矩形的对角线AC 的长为 .16、如图,在菱形ABCD中,tanA=43,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,BNCN的值为.17、如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.318、如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=14AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则S△ADGS△BGH的值为()A.12B.23C.34D.119、如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2√3).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为.20、如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为.21、如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r 1:r2= .22、对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O 折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A.7 B.6 C.5 D.423、如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)24、如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=√3x于点B 1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则A2019B2018̂的长是.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP 的长为.26、如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.27、如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=.。
2020年中考数学专题训练:压轴题
2020年中考数学专题训练:压轴题一、选择题1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.6第1题第2题2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.63.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()A.B.2 C.2D.44.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()A.5:8 B.3:5 C.8:13 D.25:495.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()A.B.﹣C.﹣4 D.46.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1•S2二、填空题1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.第3题第4题2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.第3题第4题4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.第5题第6题6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.三、解答题1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.(1)求抛物线的解析式;(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形ABCD,使BD是对等线,C,D在格点上.(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.(1)求证:EC=ED.(2)当OE=OD,AB=4时,求OE的长.(3)设=x,tan B=y.①求y关于x的函数表达式;②若△COD的面积是△BOD的面积的3倍,求y的值.5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.参考答案一、选择题1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,∴G的运行轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长为×4=2.故选:B.3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则•=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.【解答】解:设A(t,),∵C(3,0),AD=CD,∴D点坐标为(,),∵点D在反比例函数y=(k>0)的图象上,∴•=k,解得t=1,∴A(1,k),∵AC⊥BC,∴∠ACB=90°,∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,∴点A与点B关于原点对称,即OA=OB,∴OC=OA=OB=3,∴12+k2=32,解得k=2.故选:C.4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,所以正方形ABCD的面积是(2 a)2=8a2;图2中ME=3a,EQ=2a,由勾股定理得:MQ==a,所以正方形MNPQ的面积为(a)2=13a2,所以图中正方形ABCD,MNPQ的面积比为,故选:C.5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.【解答】解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△AOB=S△OBP=4,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,∴S△ABC+S1=S2,∴S△ABC=S2﹣S1,∴直角三角形的面积可表示成S2﹣S1,故选:B.二、填空题1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,求出两个阴影部分的面积即可解决问题.【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,∴S1=m2,S2=••CG2=m2,∴==,故答案为4:9.2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为3,∴×(﹣)×2t﹣×5t(﹣)=3,∴k1=﹣9.故答案为﹣9.3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,∵矩形ABCD中,AD∥BC,∴∠EDH=∠DBC,∴∠FBE=∠DBC=∠EDH,∴BG=DG,∵GH=4HD,∴设HD=x,GH=4x,设BE=BC=y,则BG=DG=5x,∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,∴∠F=∠DHE,∵∠FHG=∠DHE,∴∠F=∠FHG,∴GF=GH=4x,∴BF=BD=9x,DE=9x﹣y,∵cos∠DBC=cos∠EDH,∴=,∴=,∴xy=81x2﹣9xy,∴10xy=81x2,∴10y=81x,∴=,即cos∠DBC=.故答案为:.4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=OB时利用同样方法求出BP的长.【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,在矩形ABCD中,AB=3,BC=4,∴BD==5,当OE=OB时,⊙O与AD相切,∵OE∥AB,∴=,即=,解得r=,此时BP=2r=;当OF=OB时,⊙O与DC相切,∵OF∥BC,∴=,即=,解得r=,此时BP=2r=;综上所述,BP的长为或.故答案为或.5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.【解答】解:∵菱形OABC的边长为2,∠AOC=60°,∴OA=2,∴A(1,),∵菱形OABC,∴AB=OC=2,AB∥OC,∴B(3,),设BF=x,则CF=2﹣x,在菱形OABC中,∠B=∠AOC=60°,∵DF⊥AB,∴D(3﹣x,),∴点A与点D的中点为(2﹣x,),∵抛物线经过O,A,D、E,∴点O与点E的中点为(2﹣x,0),∴E(4﹣x,0),∴CE=4﹣x﹣2=2﹣x,∵AB∥CE,∴=,∴=,∴x=4+2(舍)或x=4﹣2,∴CE=,故答案为.6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量即可解决问题.【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.三、解答题1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.【解答】解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DP A,∵PE⊥PD,∴∠DP A+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3(2)当直线CM上满足条件的G点有且只有一个时,①NG⊥CM,且NG=NA,如图1,作CH⊥MD于H,则有∠MGN=∠MHC=90°.设N(1,n),当x=0时,y=3,点C(0,3).∵M(1,4),∴CH=MH=1,∴∠CMH=∠MCH=45°,∴NG=MN=(4﹣n).在Rt△NAD中,∵AD=DB=2,DN=n,∴NA2=22+n2=4+n2.则(4﹣n)2=4+n2整理得:n2+8n﹣8=0,解得:n1=﹣4+2,n2=﹣4﹣2(舍负),∴N(1,﹣4+2).②A、N、G共线,且AN=GN,如图2.过点GT⊥x轴于T,则有DN∥GT,根据平行线分线段成比例可得AD=DT=2,∴OT=3.设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,∴直线CM的解析式为y=x+3.当x=3时,y=6,∴G(3,6),GT=6.∵AN=NG,AD=DT,∴ND=GT=3,∴点N的坐标为(1,3).综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],∵点Q的横坐标比点P的横坐标大1,∴Q(4﹣m,﹣m2+6m﹣5),∵A(﹣1,0).∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]∵PC=AQ,∴81PC2=25AQ2,∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],∵0<m<1,∴[(m﹣1)2+1]≠0,∴81(m﹣3)2=25(m﹣5)2,∴9(m﹣3)=±5(m﹣5),∴m=或m=(舍),∴P(,),Q(,﹣),∵C(0,3),∴直线CQ的解析式为y=﹣x+3,∵P(,),∴D(,﹣),∴PD=+=∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;(2)有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH•AD=y,S△BDE =BE•DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则,解方程组即可得出结果.【解答】(1)证明:∵∠C=∠BDC,∴BC=BD,∵E为AB的中点,DE⊥AB,∴BD=AD,∴BC=AD=BD,∴四边形ABCD是对等四边形;(2)解:有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;(3)解:过点E作EH⊥AD于H,如图3所示:则∠EHD=90°,∵EG∥AD,DG⊥EG,∴∠EGD=∠HDG=90°,∴四边形DGEH是矩形,∴EH=DG=2,∵E为AB的中点,AB=5,∴AE=BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,则S△ADE=EH•AD=×2×y=y,S△BDE=BE•DE=××x=x,∵在Rt△BDE中,∠BED=90°,∴BD2=BE2+DE2,即y2=()2+x2,∴,解得:,∴BD=.4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k•,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即可解决问题.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠OCD+∠ODC=90°,∵EC⊥AB,∴∠CEB=90°,∴∠B+∠ECB=90°,∵OC=OB,∴∠B=∠OCD,∴∠ODC=∠ECB,∴EC=EB.(2)解:∵OE=OD,OC⊥ED,∴CE=CE,∵EC=ED,∴EC=ED=CD,∴△ECD是等边三角形,∵∠E=60°,在Rt△EOC中,∵∠EOC=90°,OC=AB=2,∴OE==.(3)解:①连接AC.∵EC=ED,∠EOC=90°∴==sin∠ECO,∵∠OFC=90°,∴sin∠ECO=,∴x==,∵AB是直径,∴∠ACB=90°,∵CE⊥AB,∴∠AFC=90°,∴∠ACF+∠A=90°,∠B+∠A=90°,∴∠ACF=∠B,∴tan∠B=tan∠ACF==y,令OC=k,则OF=kx,CF===k•,∴AF=OA﹣OF=k﹣kx=k(1﹣x),∴y===(0<x<1).②作OH⊥BC于H.设BD=m,∵△COD的面积是△BOD的面积的3倍,∴CD=3BD=3m,CB=4m,∵OH⊥BC,∴CH=BH=2m,∴HD=m,∵∠OCH+∠COH=90°,∠COH+∠DOH=90°,∴∠OCH=∠DOH,∵∠OHC=∠OHD=90°,∴△OHC∽△DHO,∴=,∴OH2=2m2,∴OH=m,∴y=tan B===.5.【分析】(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B的坐标代入求出a的值即可得出答案;(2)过点P作PQ∥y轴交DB于点Q,求出直线BD的解析式,设P(m,﹣m2+2m+3),则Q(m,﹣m+3),可得出S△PBD=﹣m,解方程可求出m的值,则答案可求出;(3)设M(a,0),证明△AMN∽△ABD,可得,再由△DNM∽△BMD,可得,得出关于a的方程,解方程即可得出答案.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD=S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).6.【分析】(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出=,即可解决问题.②分三种情形分别求解即可:如图2﹣1中,当∠PCB′=90°时.如图2﹣2中,当∠PCB′=90°时.如图2﹣3中,当∠CPB′=90°时.(2)如图3﹣2中,首先证明四边形ABCD是正方形,如图3﹣2中,利用全等三角形的性质,翻折不变性即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB′=90°﹣x,∴∠DAB′=∠P AB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。
中考数学压轴题分类试题(2020江苏版)专题07 几何动点综合性问题
中考数学压轴题分类试题(2020江苏版)专题07 几何动点综合性问题【真题再现】1.(2019年南通中考第27题)如图,矩形ABCD 中,AB =2,AD =4.E ,F 分别在AD ,BC 上,点A 与点C 关于EF 所在的直线对称,P 是边DC 上的一动点.(1)连接AF ,CE ,求证四边形AFCE 是菱形;(2)当△PEF 的周长最小时,求DPCP 的值;(3)连接BP 交EF 于点M ,当∠EMP =45°时,求CP 的长.2.(2019年苏州中考第27题)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =2√5cm .如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示.(1)直接写出动点M 的运动速度为 cm /s ,BC 的长度为 cm ;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.3.(2019年扬州中考第27题)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.4.(2019年无锡中考第28题)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2√3.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.5.(2019年淮安中考第27题)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=°;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.6.(2018年苏州中考第28题)如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.【专项突破】【题组一】1.(2019•东台市模拟)如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE =DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD 的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)2.(2019•六合区二模)【初步认识】(1)如图①,将△ABO绕点O顺时针旋转90°得到△MNO,连接AM、BM,求证△AOM∽△BON.【知识应用】(2)如图②,在△ABC中,∠BAC=90°,AB=√2,AC=3√2,将△ABC绕着点A旋转得到△ADE,连接DB、EC,直线DB、EC相交于点F,线段AF的最大值为.【拓展延伸】(3)如图③,在等边△ABC中,点E在△ABC内部,且满足AE2=BE2+CE2,用直尺和圆规作出所有的点E(保留作图的痕迹,不写作法).3.(2019•建邺区校级二模)如图1,在四边形ABCD中,∠BAD=∠BDC=90°,AB=AD,∠DCB=60°,CD=8.(1)若P是BD上一点,且P A=CD,求∠P AB的度数.(2)①将图1中的△ABD绕点B顺时针旋转30°,点D落在边BC上的E处,AE交BD于点O,连接DE.如图2,求证:DE2=DO•DB;②将图1中△ABD绕点B旋转α得到△A'BD′(A与A',D与D′时对应点),若DD′=CD,则cosα的值为.4.(2020•常熟市校级模拟)如图,在矩形ABCD中,AB=6,P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C',连接BC'与AD交于点E,连接CE与BP交于点Q,若CE⊥BE.(1)求证:△ABE∽△DEC;(2)当AD=13时,AE<DE,求CE的长;(3)连接C'Q,直接写出四边形C'QCP的形状:.当CP=4时,并求CE•EQ的值.【题组二】5.(2019秋•沙坪坝区校级月考)如图①,在矩形ABCD中,AB=12cm,BC=6m,点P从A点出发,沿A →B→C→D路线运动,到D点停止:点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm),如图②是△APD的面积S1(cm2)与点P出发时间x(秒)之间的关系:图③是△AQD的面积S2(cm2)与Q点出发时间x(秒)之间的关系,根据图象回答下列问题:(1)则a=;b=;c=.(2)设点P出发x(秒)后离开点A的路程为y(cm),请写出y与x的关系式,并求出点P与Q相遇时x的值.6.(2019•常熟市二模)如图(1),在平面直角坐标系中,点A、C分别在y轴和x轴上,AB∥x轴,cos B=3 5.点P从B点出发,以1cm/s的速度沿边BA匀速运动,点Q从点A出发,沿线段AO﹣OC﹣CB匀速运动.点P与点Q同时出发,其中一点到达终点,另一点也随之停止运动.设点P运动的时间为t(s),△BPQ 的面积为S(cm2),已知S与t之间的函数关系如图(2)中的曲线段OE、线段EF与曲线段FG.(1)点Q的运动速度为cm/s,点B的坐标为;(2)求曲线FG段的函数解析式;(3)当t为何值时,△BPQ的面积是四边形OABC的面积的110?7.(2017秋•苏州期末)如图①,在四边形ABCD中,AB∥CD,∠B=90°,AB=2CD.动点P从点A出发,在四边形ABCD的边上沿A→B→C的方向以1cm/s的速度匀速移动,到达点C时停移动.已知△APD 的面积S(cm2)与点P运动的时间t(s)之间的函数图象如图②所示,根据题意解答下列问题(1)在图①中,AB=cm,BC=cm(2)如图③,设动点P用了t1(s)到达点P1处,用了t2(s)到达点P2处,分别过P1、P2作AD的垂线,垂足为H1、H2.当P1H1=P2H2=4时,求t2﹣t1的值8.(2019秋•海州区校级期末)如图甲,在△ABC中,∠ACB=90°,AC=8cm,BC=6cm,PH⊥AC,垂足为H.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<8),解答下列问题:(1)①AP=,PH=.(用含t的代数式表示)②设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)当t为何值时,△APQ是直角三角形?(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值.【题组三】9.(2020春•泰兴市校级月考)如图①,在四边形ABCD中,AB∥CD,∠B=90°,AB=2CD.动点P从点A出发,在四边形ABCD的边上沿A→B→C的方向以1cm/s的速度匀速移动,到达点C时停止移动.已知△APD的面积S(cm2)与点P运动的时间t(s)之间的函数图象如图②所示,根据题意解答下列问题.(1)在图①中,AB=cm,BC=cm.(2)求图2中线段MN的函数关系式(并写出t的取值范围).(3)如图③,设动点P用了t1(s)到达点P1处,用了t2(s)到达点P2处,分别过P1、P2作AD的垂线,垂足为H1、H2.当P1H1=P2H2=4时,连P1P2,求△BP1P2的面积.10.(2019•宜兴市一模)如图1,B、D分别是x轴和y轴的正半轴上的点,AD∥x轴,AB∥y轴(AD>AB),点P从C点出发,以3cm/s的速度沿C﹣D﹣A﹣B匀速运动,运动到B点时终止;点Q从B点出发,以2cm/s的速度,沿B﹣C﹣D匀速运动,运动到D点时终止.P、Q两点同时出发,设运动的时间为t(s),△PCQ的面积为S(cm2),S与t之间的函数关系由图2中的曲线段OE,线段EF、FG表示.(1)求A、D点的坐标;(2)求图2中线段FG的函数关系式;(3)是否存在这样的时间t,使得△PCQ为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.11.(2019•太仓市模拟)如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)当t=2.5时,PQ=;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形?若存在,求出此时t的值;若不存在,请说明理由.12.(2019•徐州二模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB 以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长:;(2)当t=时,点Q与点C重合时;(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【题组四】13.(2019•玄武区二模)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AB边上的动点,过点D作DE⊥AB交边AC于点E,过点E作EF⊥DE交BC于点F,连接DF.(1)当AD=4时,求EF的长度;(2)求△DEF的面积的最大值;(3)设O为DF的中点,随着点D的运动,则点O的运动路径的长度为.14.(2020春•玄武区校级期中)在矩形ABCD中,AB=3,BC=4,E、F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为每秒1个单位长度,运动时间为t秒,其中0≤t≤5.(1)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形(E、F相遇时除外).(2)在(1)条件下,若四边形EGFH为矩形,求t的值.(3)若G,H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,与E,F相同的速度同时出发,若四边形EGFH 为菱形,求t的值.15.(2020•张家港市模拟)如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.16.(2020•海门市一模)如图,边长为1的正方形ABCD中,点E、F分别在边CD、AD上,连接BE、BF、EF,且有AF+CE=EF.(1)求(AF+1)(CE+1)的值;(2)探究∠EBF的度数是否为定值,并说明理由;(3)将△EDF沿EF翻折,若点D的对应点恰好落在BF上,求EF的长.【题组五】17.(2020•稷山县校级一模)如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.18.(2019秋•张家港市期末)如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?19.(2019秋•江都区期末)如图,在矩形纸片ABCD中,已知AB=√2,BC=√6,点E在边CD上移动,连接AE,将多边形ABCE沿AE折叠,得到多边形AB'C'E,点B、C的对应点分别为点B',C'.(1)连接AC.则AC=,∠DAC=°;(2)当B'C'恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.20.(2019秋•滨海县期末)已知:矩形ABCD,AB=2,BC=5,动点P从点B开始向点C运动,动点P 速度为每秒1个单位,以AP为对称轴,把△ABP折叠,所得△AB'P与矩形ABCD重叠部分面积为y,运动时间为t 秒.(1)当运动到第几秒时点B '恰好落在AD 上; (2)求y 关于t 的关系式,以及t 的取值范围; (3)在第几秒时重叠部分面积是矩形ABCD 面积的14;(4)连接PD ,以PD 为对称轴,将△PCD 作轴对称变换,得到△PC 'D ,当t 为何值时,点P 、B '、C '在同一直线上?【题组六】21.(2019秋•金湖县期末)如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A →B →C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B →C →D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒. (1)当t = 时,两点停止运动; (2)设△BPQ 的面积面积为S (平方单位) ①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?22.(2019秋•清江浦区期末)已知:如图,长方形ABCD 中,∠A =∠B =∠B =∠D =90°,AB =CD =4米,AD =BC =8米,点M 是BC 边的中点,点P 从点A 出发,以1米/秒的速度沿AB 方向运动再过点B 沿BM 方向运动,到点M 停止运动,点O 以同样的速度同时从点D 出发沿着DA 方向运动,到点A 停止运动,设点P 运动的时间为x 秒.(1)当x =2秒时,线段AQ 的长是 米;(2)当点P 在线段AB 上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=13DQ?若存在,求出点P的运动时间x的值;若不存在,请说明理由.23.(2019秋•淮阴区期末)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D 运动,设点P运动的时间为t秒(0<t<13).(1)点D的坐标是;(2)当点P在AB上运动时,点P的坐标是(用t表示);(3)求△POD的面积S与t之间的函数表达式,并写出对应自变量t的取值范围.24.(2019•徐州一模)将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F =45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4√3cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.。
2020年中考数学选择填空压轴题汇编规律探索含解析
2020年中考数学选择填空压轴题汇编:规律探索1.(2020甘肃天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【解答】解:∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.故选:A.2.(2020贵州铜仁)观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=m(2m﹣1)(结果用含m的代数式表示).【解答】解:∵220=m,∴220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+221﹣2)=m(2m﹣1).故答案为:m(2m﹣1).3.(2020黑龙江鹤岗)如图,直线AM的解析式为y=x+1与x轴交于点M,与y轴交于点A,以OA为边作正方形ABCO,点B坐标为(1,1).过点B作EO1⊥MA交MA于点E,交x轴于点O1,过点O1作x轴的垂线交MA于点A1,以O1A1为边作正方形O1A1B1C1,点B1的坐标为(5,3).过点B1作E1O2⊥MA交MA于E1,交x轴于点O2,过点O2作x轴的垂线交MA于点A2.以O2A2为边作正方形O2A2B2C2.….则点B2020的坐标2×32020﹣1,32020.【解答】解:∵点B坐标为(1,1),∴OA=AB=BC=CO=CO1=1,∵A1(2,3),∴A1O1=A1B1=B1C1=C1O2=3,∴B1(5,3),∴A2(8,9),∴A2O2=A2B2=B2C2=C2O3=9,∴B2(17,9),同理可得B4(53,27),B5(161,81),…由上可知,Bn(2×3n﹣1,3n),∴当n=2020时,Bn(2×32020﹣1,32020).故答案为:(2×32020﹣1,32020).4.(2020黑龙江齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积2,∵A2(6,0),∴第2个等腰直角三角形的边长为2,∴第2个等腰直角三角形的面积4=22,∵A4(10,4),∴第3个等腰直角三角形的边长为10﹣6=4,∴第3个等腰直角三角形的面积8=23,…则第2020个等腰直角三角形的面积是22020;故答案为:22020(形式可以不同,正确即得分).5.(2020黑龙江绥化)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是119 .【解答】解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.6.(2020•湖北鄂州)如图,点A1,A2,A3…在反比例函数y(x>0)的图象上,点B1,B2,B3,…B n在y轴上,且∠B1OA1=∠B2B1A2=∠B3B2A3=…,直线y=x与双曲线y交于点A1,B1A1⊥OA1,B2A2⊥B1A2,B3A3⊥B2A3…,则B n(n为正整数)的坐标是()A.(2,0)B.(0,)C.(0,)D.(0,2)【解答】解:由题意,△OA1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,∵A1(1,1),∴OB1=2,设A2(m,2+m),则有m(2+m)=1,解得m1,∴OB2=2,设A3(a,2n),则有n=a(2a)=1,解得a,∴OB3=2,同法可得,OB4=2,∴OB n=2,∴B n(0,2).故选:D.7.(2020湖北恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C (1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C 的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).8.(2020湖北仙桃)如图,已知直线a:y=x,直线b:y x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y x上,∴1x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为221010,故答案为:21010.9.(2020湖南常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.10.(2020湖南衡阳)如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是(0,﹣22019).【解答】解:∵点P1的坐标为(,),将线段OP1绕点O按逆时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).11.(2020湖南怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2,0).【解答】解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C OC,设OC的长度为t,则B1的坐标为(t,t),把B1(t,t)代入y得t•t,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D m,则B2的坐标表示为(2+m,m),把B2(2+m,m)代入y得(2+m)m,解得m1或m1(舍去),∴A1D,A1A2,OA2,∴A2(,0)设A2E的长度为n,同理,B3E为n,B3的坐标表示为(2n,n),把B3(2n,n)代入y得(2n)•n,∴A2E,A2A3,OA3,∴A3(,0),综上可得:A n(,0),故答案为:.12.(2020湖南湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是A1N=A n M,∠NOA n.【解答】解:∵(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也有类似的结论是A1N=A n M,∠NOA n.故答案为:A1N=A n M,∠NOA n.13.(2020山东德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148 B.152 C.174 D.202【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.14.(2020山东菏泽)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.【解答】解:由题意知,第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是,故选:D.15.(2020山东威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A型地砖,则正整数m,n须满足的条件是m、n 同为奇数或m、n同为偶数.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若用(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n同为偶数.故答案为m、n同为奇数或m、n同为偶数.16.(2020山东潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是4039π.【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,AD n﹣1=AA n=4(n﹣1)+1,BA n=BB n=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长.故答案为:4039π.17.(2020四川达州)已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=(k+1)x+k+2都交于一个固定的点,这个点的坐标是(﹣1,1);记直线11和12与x轴围成的三角形面积为S k,则S1=,S1+S2+S3+…+S100的值为.【解答】解:∵直线11:y=kx+k+1=k(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1);∵直线12:y=(k+1)x+k+2=k(x+1)+(x+1)+1=(k+1)(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1).∴无论k取何值,直线l1与l2的交点均为定点(﹣1,1).∵直线11:y=kx+k+1与x轴的交点为(,0),直线12:y=(k+1)x+k+2与x轴的交点为(,0),∴S K||×1,∴S1;∴S1+S2+S3+…+S100[][(1)+()+…+()](1).故答案为(﹣1,1);;.18.(2020四川遂宁)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若.(n为正整数),则n的值为4039 .【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵,∴,∴2×(1),∴2×(1),1,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020四川自贡)如图,直线y x+b与y轴交于点A,与双曲线y在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4,前25个等边三角形的周长之和为60 .【解答】解:设直线y x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y x+b,∴当y=0时,x b,即点D的坐标为(b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD b.∵在Rt△AOD中,tan∠ADO,∴∠ADO=60°.∵直线y x+b与双曲线y在第三象限交于B、C两点,∴x+b,整理得,x2+bx﹣k=0,由韦达定理得:x1x2k,即EB•FC k,∵cos60°,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC k=16,解得:k=4.由题意可以假设D1(m,m),∴m2•4,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)•n=4,解得n=22,∴E1E2=44,即第二个三角形的周长为1212,设D3(4a,a),由题意(4a)•a=4,解得a=22,即第三个三角形的周长为1212,…,晨鸟教育∴第四个三角形的周长为1212,∴前25个等边三角形的周长之和12+1212+1212121212121260,故答案为4,60.Earlybird。
2020年中考数学压轴题线段和差最值问题汇总--将军饮马问题及其11种变形汇总
2020年中考数学压轴题线段和差最值问题汇总---------将军饮马专题古老的数学问题“将军饮马”,“费马点”,“胡不归问题”,“阿氏圆”等都运用了化折为直的数学思想这类问题也是中考试题当中比较难的一类题目,常常出现在填空题压轴题或解答题压轴题中,那么如何破解这类压轴题呢?【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:1.定起点的最短路径问题:即已知起始结点,求最短路径的问题.2.确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.3.定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径.4.全局最短路径问题:求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”。
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】直线、角、三角形、菱形、矩形、正方形、圆、坐标轴、抛物线等.【解题思路】“化曲为直”题型一:两定一动,偷过敌营。
题型二:两定一动,将军饮马。
例1:如图, AM ⊥EF ,BN ⊥EF ,垂足为M 、N ,MN =12m ,AM =5m ,BN =4m , P 是EF 上任意一点,则PA +PB 的最小值是______m .分析:这是最基本的将军饮马问题,A ,B 是定点,P 是动点,属于两定一动将军饮马型,根据常见的“定点定线作对称”,可作点A 关于EF 的对称点A ’,根据两点之间,线段最短,连接A ’B ,此时A ’P +PB 即为A ’B ,最短.而要求A ’B ,则需要构造直角三角形,利用勾股定理解决. 解答:作点A 关于EF 的对称点A ’,过点A ’作A ’C ⊥BN 的延长线于C .易知A ’M =AM =NC =5m ,BC =9m ,A ’C =MN =12m ,在Rt △A ’BC 中,A ’B =15m ,即PA +PB 的最小值是15m .例2:如图,在等边△ABC 中,AB = 6,AD ⊥BC ,E 是AC 上的一点,M 是AD 上的一点,且AE = 2,求EM+EC 的最小值解:点C 关于直线AD 的对称点是点B ,连接BE ,交AD 于点M ,则ME+MD 最小, 过点B 作BH ⊥AC 于点H ,则EH = AH – AE = 3 – 2 = 1,BH = BC 2 - CH 2 = 62 - 32 = 3 3在直角△BHE 中,BE = BH 2 + HE 2 = (33)2 + 12 = 27DB CD CBP E D C B A E D C B AA (3对应练习题1.如图,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 。
2020年部编人教版全国中考数学压轴题精析汇编(浙苏赣皖湘鄂省会)
【2020·杭州·22题】(1)先求解下列两题:① 如图①,点B 、D 在射线AM 上,点C 、E 在射线AN 上,且AB=BC=CD=DE ,已知∠EDM=84°,求∠A 的度数;② 如图②,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B 、C 的横坐标都是3,且BC=2,点D 在AC 上,且横坐标为1,若反比例函数y =kx(x >0)的图象经过点B 、D ,求k 的值。
(2)解题后,你发现以上两小题有什么共同点?请简单写出。
解:(1)① ∵在△ADE 中,∠EDM=∠A+∠AED∴∠AED=∠EDM -∠A ∵CD=DE ∴∠AED=∠DCE ∴∠DCE=∠EDM -∠A∵在△ACD 中,∠DCE=∠A+∠ADC ∴∠ADC=∠DCE -∠A=∠EDM -2∠A∵BC=CD ∴∠ADC=∠DBC ∴∠DBC=∠EDM -2∠A∵在△ABC 中,∠DBC=∠A+∠ACB ∴∠ACB=∠DBC -∠A=∠EDM -3∠A∵AB=BC ∴∠A=∠ACB ∴∠A=∠EDM -3∠A ∴∠A=14∠EDM ∵∠EDM=84° ∴∠A=21°A B D MCEN② ∵点B 在反比例函数图象上,且横坐标为3 ∴可设点B 的坐标为(3,3k) ∵C 的横坐标是3,且BC=2 ∴点C 的坐标为(3,23k+) ∵D 的横坐标为1,且AC ∥x 轴 ∴点D 的坐标为(1,23k+) ∵点D 在反比例函数图象上 ∴1·(23k+)=k ∴k=3(2)两小题的共同点是:用已知的量通过一定的等量关系去表示未知的量,建立方程解答问题【2020·杭州·23题】如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积为S 1. (1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=x ,y =12S S 。
冲刺2020年全国中考数学选择压轴题专题训练:圆(含答案解析)
冲刺2020年全国中考数学选择压轴题专题训练:圆一.选择题1.已知如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC =45°,给出以下结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍.其中正确结论的序号是()A.①②③B.①②④C.①③④D.②③④2.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16B.14C.12D.103.如图,⊙A,⊙B,⊙C的半径都是2cm,则图中三个扇形(即阴影部分)面积之和是()A.2πB.πC.D.6π4.如图,四边形ABCD内接于⊙O,∠DAB=130°,连结OC,P是半径OC上的一个动点,连结PD、P B,则么∠DPB的大小可能为()A.40°B.80°C.110°D.130°5.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D6.腰长为13cm,底长为1Ocm的等腰三角形,若以底边中点为圆心,6cm长为半径作圆,则顶角的顶点在()A.圆上B.圆内C.圆外D.无法确定7.如图,⊙O的半径为4,点P是⊙O外的一点,PO=10,点A是⊙O上的一个动点,连接P A,直线l垂直平分P A,当直线l与⊙O相切时,P A的长度为()A.10B.C.11D.8.如图,⊙O是△ABC的外接圆,弦BC的长为,∠A=45°,则⊙O的半径为()A.1B.2C.D.9.如图,在⊙O中,直径AB与弦MN相交于点P,∠NPB=45°,若AP=2,BP=6,则MN的长为()A.B.2C.2D.810.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,AE=2,则弦CD的长是()A.4B.6C.8D.1011.如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA=OB=OC =2,则这朵三叶花的面积为()A.3π﹣3B.3π﹣6C.6π﹣3D.6π﹣612.如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π13.如图,△ABC内接于⊙O,BD是⊙O的直径.若∠DBC=33°,则∠A等于()A.33°B.57°C.67°D.66°14.如图,将等边△ABC的边AC逐渐变成以B为圆心、BA为半径的,长度不变,AB、BC的长度也不变,则∠ABC的度数大小由60°变为()A.()°B.()°C.()°D.()°15.如图,P A,PB分别切⊙O于点A,B,OP交⊙O于点C,连接AB,下列结论中,错误的是()A.∠1=∠2B.P A=PB C.AB⊥OP D.OP=2OA16.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=6,则△PCD的周长为()A.8B.6C.12D.1017.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则P A的最小值为()A.3B.2C.D.18.如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.C.D.19.如图,已知△ABC的外接圆⊙O的半径为1,D、E分别是AB、AC上的点,BD=2AD,EC=2AE,则sin∠BAC的值等于线段()A.DE的长B.BC的长C.的长D.的长20.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N,P、Q分别是、上一点(不与端点重合).若∠MNP=∠MNQ,下面结论:①∠PNA=∠QNB;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.正确的结论有()A.2个B.3个C.4个D.5个参考答案一.选择题1.解:①∵∠A=45°,AB是直径,∴∠AEB=90°,∴∠ABE=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠EBC=67.5°﹣45°=22.5°,此选项正确;②连接AD,∵AB=AC,AB是直径,∴∠ADB=90°,∴BD=CD,此选项正确;③∵AB是直径,∴∠AEB=90°,由①知∠EBC=22.5°,∠C=67.5°,∴BE=tan67.5°•CE,∴BE≠2CE,在Rt△ABE中,∠AEB=90°,∠BAE=45°,∴∠ABE=45°,∴AE=BE,∴AE≠2CE,此选项错误;④∵∠ABE=45°,∠BAD=22.5°,∴劣弧AE=2劣弧BD,∵劣弧BD=劣弧DE,∴劣弧AE=2劣弧DE,此选项正确.正确的有①②④,故选:B.2.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.3.解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==2π.故选:A.4.解:连接OB、OD,∵四边形ABCD内接于⊙O,∠DAB=130°,∴∠DCB=180°﹣130°=50°,由圆周角定理得,∠DOB=2∠DCB=100°,∴∠DCB≤∠BPD∠DOB,即50°≤∠BPD≤100°,∴∠BPD可能为80°,故选:B.5.解:∵∠A与∠D都是所对的圆周角,∴∠D=∠A.6.解:如图:AB=AC=13cm,BC=10cm.△ABC中,AB=AC,AD⊥BC;∴BD=DC=BC=5cm;Rt△ABD中,AB=13cm,BD=5cm;由勾股定理,得:AD==12cm.所以底边中点到顶点的距离为12cm,因此顶角的顶点一定在圆的外部.故选:C.7.解:如图所示.连接OA、OC(C为切点),过点O作OB⊥AP.设AB的长为x,在Rt△AOB中,OB2=OA2﹣AB2=16﹣x2,∵l与圆相切,∴OC⊥l.∵∠OBD=∠OCD=∠CDB=90°,∴四边形BOCD为矩形.∴BD=OC=4.∵直线l垂直平分P A,∴PD=BD+AB=4+x.∴PB=8+x.在Rt△OBP中,OP2=OB2+PB2,即16﹣x2+(8+x)2=102,解得x=.P A=2AD=2×=.8.解:连接OB、OC,如图,∵∠BOC=2∠A=90°,∴△BOC为等腰直角三角形,∴OB=BC=×=1,即⊙O的半径为1.故选:A.9.解:过点O作OD⊥MN于点D,连接ON,则MN=2DN,∵AB是⊙O的直径,AP=2,BP=6,∴⊙O的半径=(2+6)=4,∴OP=4﹣AP=4﹣2=2,∵∠NPB=45゜,∴△OPD是等腰直角三角形,∴OD=,在Rt△ODN中,DN=,∴MN=2DN=2.故选:C.10.解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD,在Rt△OCE中,OC2=OE2+CE2,∵AE=2,AB=10,∴OC=5,OE=3,∴CE=4,∴CD=8,故选:C.11.解:如图所示:弧OA是⊙M上满足条件的一段弧,连接AM、MO,由题意知:∠AMO=90°,AM=OM∵AO=2,∴AM=.=×π×MA2=.∵S扇形AMOS=AM•MO=1,△AMO=﹣1,∴S弓形AO=6×(﹣1)∴S三叶花=3π﹣6.故选:B.12.解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.13.解:连结CD,如图,∵BD是⊙O的直径,∴∠BCD=90°,而∠DBC=33°,∴∠D=90°﹣33°=57°,∴∠A=∠D=57°.故选:B.14.设∠ABC的度数大小由60变为n,则AC=,由AC=AB,解得n=,故选:D.15.解:由切线长定理可得:∠1=∠2,P A=PB,从而AB⊥OP.因此A.B.C都正确.无法得出AB=P A=PB,可知:D是错误的.综上可知:只有D是错误的.故选:D.16.解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=P A+AC+PD+BD=P A+PB=6+6=12,即△PCD的周长为12,故选:C.17.解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵P A为⊙O的切线,∴OA⊥P A,∴P A==,当OP的值最小时,P A的值最小,而OP的最小值为OH的长,∴P A的最小值为=.故选:D.18.解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠AOC=60°,∠B OC=120°,∵AB为半圆的直径,∴∠ACB=90°,∴BC===2,∴△BOC的面积=×△ABC的面积=××2×2=,扇形BOC的面积==π,则阴影部分的面积=π﹣,故选:A.19.解:如图,作直径CF,连接BF,在Rt△CBF中,sin∠F==;∵BD=2AD,EC=2AE,∴AD:AB=AE:AC=1:3,又∵∠EAD=∠CAB,∴△EAD∽△CAB,∴BC=3DE,∴sin∠A=sin∠F===DE.故选:D.20.解:延长QN交圆O于C,延长MN交圆O于D,如图:∵MN⊥AB,∴∠MNA=∠MNB=90°,∵∠MNP=∠MNQ,∴∠PNA=∠QNB,故①对;∵∠P+∠PMN<180°,∴∠P+∠Q<180°,故②错;因为AB是⊙O的直径,MN⊥AB,=,∵∠PNA=∠QNB,∠ANC=∠QNB,∴∠PNA=∠ANC,∴P,C关于AB对称,∴=,∴=,∴∠Q=∠PMN,故③对;∵∠MNP=∠MNQ,∠Q=∠PMN,∴△PMN∽△MQN,∴MN2=PN•QN,PM不一定等于MQ,所以④错误,⑤对.故选:B.。
2020年中考数学二次函数压轴题专题训练(含答案)
2020年中考数学二次函数压轴题专题训练(名师精选全国真题,值得下载练习)1.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价的九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?设进价为x元,则标价是1.5x元,由题意得1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得x=1 000,1.5×1 000=1 500(元),答:进价为1 000元,标价为1 500元;×3)(1 500-1 000(2)设该型号自行车降价a元,利润为w元,由题意得w=(51+a20-a),(a-80)2+26 460,=-320∵-3<0,∴当a=80时,w最大=26 460,20答:该型号自行车降价80元出售每月获利最大,最大利润是26 460元.2.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.解(1)设AB=x m,则BC=(100-2x)m,根据题意得x(100-2x)=450,解得x1=5,x2=45,当x=5时,100-2x=90>20,不合题意舍去;当x=45时,100-2x=10,答:AD的长为10 m.(2)设AD=x m,∴S=12x(100-x)=-12(x-50)2+1 250,当a≥50时,则x=50时,S的最大值为1 250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a-12a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a-12a2.3.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,P C,并把△POC沿y轴翻折,得到四边形POP'C.若四边形POP'C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.将点B和点C的坐标代入函数解析式,得{9a+6+c=0,c=3,解得{a=-1,c=3,二次函数的解析是为y=-x2+2x+3.(2)若四边形POP'C为菱形,则点P在线段CO的垂直平分线上,图1如图1,连接PP',则PE⊥CO,垂足为E,∵C(0,3),∴E(0,32),∴点P的纵坐标32,当y=32时,即-x 2+2x+3=3, 解得x 1=2+√102,x 2=2-√102(不合题意,舍),∴点P 的坐标为(2+√102,32).图2(3)如图2,P 在抛物线上,设P (m ,-m 2+2m+3), 设直线BC 的解析式为y=kx+b ,将点B 和点C 的坐标代入函数解析式,得{3k +3=0,b =3,解得{k =-1,b =3.直线BC 的解析为y=-x+3,过点P 作x 轴的垂线,交BC 于点Q ,交x 轴于点F , 设点Q 的坐标为(m ,-m+3),PQ=-m 2+2m+3-(-m+3)=-m 2+3m. 当y=0时,-x 2+2x+3=0,解得x 1=-1,x 2=3,OA=1,AB=3-(-1)=4, S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ·OC+12PQ ·OF+12PQ ·FB =12×4×3+12(-m 2+3m )×3=-32(m -32)2+758,当m=3时,四边形ABPC的面积最大.当m=32时,-m2+2m+3=154,即P点的坐标为(32,154).当点P的坐标为(32,154)时,四边形ACPB的最大面积值为758.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.设抛物线解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴-2a=2,解得a=-1,∴抛物线解析式为y=-x2+2x+3;当x=0时,y=-x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A (-1,0),C (0,3)代入得{-p +q =0,q =3,解得{p =3,q =3,∴直线AC 的解析式为y=3x+3.(2)∵y=-x 2+2x+3=-(x -1)2+4,∴顶点D 的坐标为(1,4),作B 点关于y 轴的对称点B',连接DB'交y 轴于M ,如图1,则B'(-3,0),∵MB=MB',∴MB+MD=MB'+MD=DB',此时MB+MD 的值最小,而BD 的值不变, ∴此时△BDM 的周长最小, 易得直线DB'的解析式为y=x+3, 当x=0时,y=x+3=3,∴点M 的坐标为(0,3). (3)存在.过点C 作AC 的垂线交抛物线于另一点P ,如图2,∵直线AC 的解析式为y=3x+3, ∴直线PC 的解析式可设为y=-13x+b , 把C (0,3)代入得b=3,∴直线PC 的解析式为y=-13x+3,解方程组{y =-x 2+2x +3,y =-13x +3,解得{x =0,y =3或{x =73,y =209,则此时P 点坐标为(73,209); 过点A 作AC 的垂线交抛物线于另一点P ,直线PC 的解析式可设为y=-13x+b ,把A (-1,0)代入得13+b=0,解得b=-13,∴直线PC 的解析式为y=-13x -13,解方程组{y =-x 2+2x +3,y =-13x -13,解得{x =-1,y =0或{y =103,y =-139,则此时P 点坐标为(103,-139),综上所述,符合条件的点P 的坐标为(73,209)或(103,-139).5.在平面直角坐标系xOy 中(如图).已知抛物线y=-12x 2+bx+c 经过点A (-1,0)和点B (0,52),顶点为C ,点D 在其对称轴上且位于点C 下方,将线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处. (1)求这条抛物线的表达式; (2)求线段CD 的长;(3)将抛物线平移,使其顶点C 移到原点O 的位置,这时点P 落在点E 的位置,如果点M 在y 轴上,且以O ,D ,E ,M 为顶点的四边形面积为8,求点M 的坐标.把A (-1,0)和点B (0,52)代入y=-12x 2+bx+c 得{-12-b +c =0,c =5,解得{b =2,c =52,∴抛物线解析式为y=-12x2+2x+52.(2)∵y=-1(x-2)2+9,∴C(2,92),抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,92-t),∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处, ∴∠PDC=90°,DP=DC=t,∴P(2+t,92-t),把P(2+t,92-t)代入y=-12x2+2x+52得-12(2+t)2+2(2+t)+52=92-t,整理得t2-2t=0,解得t1=0(舍去),t2=2, ∴线段CD的长为2.(3)P点坐标为(4,92),D点坐标为(2,52),∵抛物线平移,使其顶点C(2,92)移到原点O的位置,∴抛物线向左平移2个单位,向下平移92个单位,而P点(4,92)向左平移2个单位,向下平移92个单位得到点E,∴E点坐标为(2,-2),设M(0,m),当m>0时,12·(m+52+2)·2=8,解得m=72,此时M点坐标为(0,72);当m<0时,12·(-m+52+2)·2=8,解得m=-72,此时M点坐标为(0,-72);综上所述,M点的坐标为(0,72)或(0,-72).6.如图,抛物线y=ax2-5ax+c与坐标轴分别交于点A,C,E三点,其中A(-3,0),C(0,4),点B 在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.把A(-3,0),C(0,4)代入y=ax2-5ax+c得{9a+15a+c=0,c=4,解得{a=-16,c=4,∴抛物线解析式为y=-16x2+56x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D, ∴D点的横坐标为3,当x=3时,y=-16×9+56×3+4=5,∴D点坐标为(3,5).(2)在Rt△OBC中,BC=√OB2+OC2=√32+42=5,设M(0,m),则BN=4-m,CN=5-(4-m)=m+1,∵∠MCN=∠OCB,∴当CMCO =CNCB时,△CMN∽△COB,则∠CMN=∠COB=90°,即4-m4=m+15,解得m=169,此时M点坐标为(0,169);当CMCB =CNCO时,△CMN∽△CBO,则∠CNM=∠COB=90°,即4-m5=m+14,解得m=119,此时M点坐标为(0,119);综上所述,M点的坐标为(0,169)或(0,119).(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD∥OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A,N,D共线时取等号), ∴DN+AN的最小值=√62+52=√61,∴AM+AN的最小值为√61.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国中考数学试题分类汇编————压轴题1.(2020年浙江杭州) 在平面直角坐标系xOy 中,抛物线的解析式是y =241x +1,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值.(第24题)2.(2020年浙江湖州)如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AB于E(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.B C第25题3.(2020年浙江嘉兴市)如图,已知抛物线y=-12x2+x+4交x轴的正半轴于点A,交y轴于点B.(1)求A、B两点的坐标,并求直线AB的解析式;(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.4.(2020年浙江金华)如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以2个单位每秒速度运动,运动时间为t。
求:Array(1)C的坐标为▲;(2)当t为何值时,△ANO与△DMR相似?(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的最大值。
5.(2020年浙江金华)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,.动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的速度分别为12 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA 运动一周时,直线l和动点P同时停止运动.请解答下列问题:(1)过A,B两点的直线解析式是▲;(2)当t﹦4时,点P的坐标为▲;当t ﹦▲,点P与点E重合;(3)①作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多少?②当t﹦2时,是否存在着点Q,使得△FEQ ∽△BEP ?若存在,求出点Q的坐标;若不存在,请说明理由.6.(2020年浙江宁波)如图1、在平面直角坐标系中,O是坐标原点,□ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,32),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x 轴交于点F ,与射线DC 交于点G 。
(1)求DCB ∠的度数;(2)连结OE ,以OE 所在直线为对称轴,△OEF 经轴对称变换后得到△F OE ',记直线F E '与射线DC 的交点为H 。
①如图2,当点G 在点H 的左侧时,求证:△DEG∽△DHE; ②若△EHG 的面积为33,请直接写出点F 的坐标。
7. (2020年浙江衢州)△ABC 中,∠A=∠B =30°,AB =.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转.(图1)(图2)(图3)(1) 当点B 在第一象限,纵坐标是62时,求点B 的横坐标; (2) 如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你 探究:① 当54a =,12b =-,355c =-时,A ,B 两点是否都 在这条抛物线上?并说明理由;② 设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.8.(2020年浙江绍兴)如图,设抛物线C 1:()512-+=x a y , C 2:()512+--=x a y ,C 1与C 2的交点为A , B ,点A 的坐标是)4,2(,点B 的横坐标是-2. (1)求a 的值及点B 的坐标;(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为l,且l与x轴交于点N.①若l过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;②若l与△DHG的边DG相交,求点N的横坐标的取值范围.9.(2020年浙江台州)如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A 运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?H(第24题)10.(2020年浙江温州)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB l∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连结DG.设点D运动的时间为t 秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG 与△AC B 相似时,求t 的值;(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后的图形为A ′C ′. ①当t>53时,连结C ′C ,设四边形ACC ′A ′的面积为S ,求S 关于t 的函数关系式; ②当线段A ′C ′与射线BB l ,有公共点时,求t 的取值范围(写出答案即可).11.(2020年浙江义乌)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示2x -1x ,并求出当S =36时点A 1的坐标;(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴...围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图212.(2020年浙江舟山)如图,在菱形ABCD 中,AB=2cm ,∠BAD=60°,E 为CD 边中点,点P 从点A 开始沿AC 方向以每秒的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P ,Q 同时停止运动,设运动的时间为x 秒 (1)当点P 在线段AO 上运动时. ①请用含x 的代数式表示OP 的长度;②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围);(2)显然,当x=0时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P ,B ,E ,Q 为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明理由.13.(2020年安徽省)如图,已知△ABC ∽△111C B A ,相似比为k (1 k ),且△ABC 的三边长分别为a 、b 、cC(c b a >>),△111C B A 的三边长分别为1a 、1b 、1c 。
⑴若1a c =,求证:kc a =;⑵若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 进都是正整数,并加以说明;⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k ?请说明理由。
14.(2020年安徽芜湖)如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C(-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-433,0)的直线EF 向右下方翻折,B 、C的对应点分别为B′、C′.(1)求折痕所在直线EF的解析式;(2)一抛物线经过B、E、B′三点,求此二次函数解析式;(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.解:15.(2020年北京市)问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA。
探究∠DBC与∠ABC度数的比值。
请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。
(1) 当∠BAC =90︒时,依问题中的条件补全右图。
观察图形,AB 与AC 的数量关系为 ;当推出∠DAC =15︒时,可进一步推出∠DBC 的度数为 ; 可得到∠DBC 与∠ABC 度数的比值为 ;(2) 当∠BAC ≠90︒时,请你画出图形,研究∠DBC 与∠ABC 度数的比值 是否与(1)中的结论相同,写出你的猜想并加以证明。
(2020年福建泉州) 如图所示,已知抛物线k x x y +-=241的图象与y 轴相交于点 )1,0(B ,点(,)C m n 在该抛物线图象上,且以BC 为直径的⊙M 恰好经过顶点A . (1)求k 的值; (2)求点C 的坐标;(3)若点P 的纵坐标为t ,且点P 在该抛物线的对称轴l 上运动,试探 索:①当12S S S <<时,求t 的取值范围(其中:S 为△PAB 的面积,1S 为△OAB 的面积,2S 为四边 形OACB 的面积);②当t 取何值时,点P 在⊙M 上.(写出t 的值即可)(2020年福建莆田市)如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =1,OC =2,点D 在边OC 上且54OD =. (1)求直线AC 的解析式;(2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直.接写出...所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O ′处?(2020年福建德化)如图1,已知抛物线经过坐标原点O 和x 轴上另一点E ,顶点M 的坐标为 (2,4);矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y 轴上,且AD=2,AB=3. (1)求该抛物线的函数关系式;(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度.....从点A 出发向B 匀速移动,设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示).第25题① 当t=25时,判断点P 是否在直线ME 上,并说明理由; ② 设以P 、N 、C 、D 为顶点的多边形面积为S ,试问S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.17.(2020年福建福州)如图1,在平面直角坐标系中,点B 在直线2y x =上,过点B 作x 轴的垂线,垂足为A ,OA=5。