电动机正反转控制电路图及其原理分析

合集下载

电机正反转控制原理电路图、电路分析及相关资料

电机正反转控制原理电路图、电路分析及相关资料

双重联锁(按钮、接触器)正反转控制电路原理图电机双重联锁正反转控制一、线路的运用场合Array正反转控制运用生产机械要求运动部件能向正反两个方向运动的场合。

如机床工作台电机的前进与后退控制;万能铣床主轴的正反转控制;圈板机的辊子的正反转;电梯、起重机的上升与下降控制等场所。

二、控制原理分析(1)、控制功能分析:怎样才能实现正反转控制?为什么要实现联锁?电机要实现正反转控制:将其电源的相序中任意两相对调即可(简称换相),通常是V相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。

由于将两相相序对调,故须确保2个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。

为安全起见,常采用按钮联锁(机械)和接触器联锁(电气)的双重联锁正反转控制线路(如原理图所示);使用了(机械)按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。

另外,由于应用的(电气)接触器间的联锁,所以只要其中一个接触器得电,其长闭触点(串接在对方线圈的控制线路中)就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护的电机,同时也避免在调相时相间短路造成事故,烧坏接触器。

(2)、工作原理分析:A、正转控制:按下SB1常闭触头先断开(对KM2实现联锁)SB1常开触头闭合KM1线圈得电KM1电机M启动连续正转工作KM1KM1联锁触头断开(对KM2实现联锁)B、反转控制:M失电,停止正转SB2按下线圈得电SB2KM2电机M启动连续反转工作KM2主触头闭合KM2联锁触头断开(对KM1实现联锁)C、停止控制:按下SB3,整个控制电路失电,接触器各触头复位,电机M失电停转;三、双重联锁正反转控制线路的优点接触器联锁正反转控制线路虽工作安全可靠但操作不方便;而按钮联锁正反转控制线路虽操作方便但容易产生电源两相短路故障。

三相异步电机正反转电路详解

三相异步电机正反转电路详解

三相异步电机正反转电路详解
一、正反转原理分析:
想要成功的接线,我们要先了解正反转的原理,三相电机和单相电机正反转原理不同,三相电机正反转是把三相电源中的两相对调实现的,因为三相电源中三根相线大小相等、频率相同、初相位相差120°,调换其中两相就可以改变磁场,从而导致转向不同。

二、元器件在电路中起到的作用:
QS-隔离开关:起到断开连接三相电源的作用FU-熔断器:在电路中起到短路、过流保护作用
KM-交流接触器:通断主回路,欠压保护FR-热继电器:电机过载保护
SB-按钮开关:启动按钮、停止按钮
原理图分析:根据原理图所示,合上QS隔离开关。

按下SB2启动按钮,交流接触器KM1得电,KM1辅助触点吸合,自锁线路接通,主回路KM1得电,电机转动,记为正转;
按下SB1停止按钮,线路失电,交流接触器KM1断开,电动机停止转动;
按下SB3启动按钮,交流接触器KM2得电,KM2辅助触点吸合,自锁线路接通,主回路KM2得电,电机转动,记为反转;
三、自锁以及互锁
主电路中换相,主电路上端进线不变,出线端KM2的U相换为W 相、W相换为U相、V相不变。

自锁:控制回路中并联在启动按钮上端的为自锁,在启动按钮松开的时候线路依旧得电;
联锁(互锁):控制回路中有两个联锁内容,第一个互锁是接触器互锁,也就是正转电路中KM2的常闭触点,反转电路中的KM1常闭
触点,在正转的状态下,接触器KM2无法吸合,在反转状态下,KM1无法吸合。

按钮互锁:控制回路中的虚线连接部分就是按钮的常闭,如果没有这个按钮互锁,电路是无法直接正反转切换,需要按下停止按钮才可以,但是加了这个按钮互锁,就可以在不按下停止按钮的情况下,直接使用启动按钮切换。

电动机正反转自循环运动控制电路图原理

电动机正反转自循环运动控制电路图原理

电动机正反转自循环运动控制电路图原理平面磨床工作台运动示意图中行程开关SQ1、SQ2安装在工作台运动部件的。

左右两个极限位置,工作台上还安装左右两个挡铁。

平面磨床工作台的来回自循环运动
起动后,工作台运动向右运动至右极限位置时,右挡铁压下SQ2行程开关按钮,电动机转变转向驱动工作台向左运动。

工作台运动至左极限位置时,左挡铁压下SQ1行程开关按钮,电动机又一次转变转向驱使工作台向右运动,形成左右往复循环运动。

安装在行程开关外侧还有两个行程开关SQ3、SQ4。

如因某种故障,工作台到达SQ1或SQ2位置时,未能触动SQ1或SQ2所掌握的触头,工作台将连续运动到行程开关SQ3或SQ4处压下SQ3或SQ4,从而切断主电路电源迫使电动机停机,避开工作台超出允许极限位置而造成事故,因此SQ3、SQ4是超程爱护开关。

实现工作台往复运动的电动机正-反自循环掌握线路中按下SB2,KM1线圈通电,并通过KM1动合帮助触头自锁,主电路中KM1主触头闭合、KM2主触头断开,电动机正转驱动工作台右移。

左右来回自循环运动掌握线路
a)主电路b)掌握线路
工作台移至右极限位置时,右挡铁压下SQ1行程开关,KM1线圈因所在支路中的SQ1动断帮助触头断开而断电,并使KM1动合帮助触头解除自锁;KM2线圈则通过支路中的SQ1动合帮助触头闭合形
成自锁并通电,主电路中KM1主触头断开、KM2主触头闭合,电动机反转驱动工作台左移。

当工作台运动到左极限位置时,左挡铁压下SQ2行程开关时,又使主电路中KM1主触头闭合、KM2主触头断开,电动机再次正转驱动工作台右移,如此循环。

按下SB1,KM1线圈和KM2线圈均断电,自循环停止。

案例十 三相异步电动机正反转控制电路图详解

案例十 三相异步电动机正反转控制电路图详解

案例十
(三相异步电动机正反转控制电路图详解)
这是三相异步电动机正反转控制的主电路和继电器控制电路图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器。

在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转起动按钮SB2,X0变为ON,其常开触点接通,Y0的线圈“得电”并自保持,使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变为ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

电机正反转电路图

电机正反转电路图

电机正反转电路图电机正反转电路图三相异步电动机接触器联锁的正反转控制的电气电子原理图如图3-4所示。

线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。

这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。

控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

220v单相电机正反原理单相电机不同于三相电机,三相电进入电机后,由于存在120°电角度,所以产生N S N S旋转磁场,推动转子旋转。

而单相电进入电机后,产生不了N S N S磁场,所以加了一个启动绕组,启动绕组在定子内与工作绕组错开90°电角度排列,外接离心开关和启动电容后与工作绕组并联接入电源,又因为电容有阻直通交的作用,交流电通过电容时又滞后一个电角度,这样就人为地把进入电机的单相电又分出来一相,产生旋转磁场,推动转子旋转。

反转时,只要把工作绕组或者启动绕组的两个接线对调一下就行,产生S N S N的磁场,电机就反转了。

网友完善的答案好评率:75%单相电机的接线方法,是在副绕组中串联(不是并联)电容,再与主绕组并联接入电源;只要调换一下主绕组与副绕组的头尾并联接线,电机即反转如果电机是3条出线的,其中一条是公共点!(分别与另外2条线的测电阻其值较小)接电源零线!然后把剩下的两条线并联电容,在电容的一端接220V电源相(火)线,就可以了!若要改变电机转向只要把220V电源相(火)线接在电容的另一端就可以了!笼型电动机正反转的控制线路(电路图)发布: | 作者: | 来源: jiasonghu | 查看:775次 | 用户关注:接通电源让KMF--线圈通电其主触点闭合三相电源ABC 分别通入电机三相绕组UVW,电动机正转。

KMF线圈断电,主触点打开,电机停。

电机正反转控制电路及实际接线图

电机正反转控制电路及实际接线图

在图1是三相异步电动机正反转控制的电路和继电器控制电路图,图2与3是功能与它相同的PLC控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的交流接触器.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转。

按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保。

使KM1的线圈通电,电机开始正转运行。

按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行。

在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”。

除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联。

设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转。

在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通。

由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障。

可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的电源短路事故。

如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相电源短路事故。

为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路(见图2),假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电。

电机正反转加时间继电器控制电路原理图解

电机正反转加时间继电器控制电路原理图解

电机正反转加时间继电器控制电路原理图解
如下图所示是一种由一台电动机在规定时间范围内作连续可逆的正反方向运转的自动控制电路。

图中用时间继电器KT1、KT2作时间控制元件,中间继电器KA1、KA2起中间控制作用。

合上电源开关Q和旋转开关S,这时时间继电器KT1得电,中间继电器KA1得电吸合。

接触器KM1得电并吸合,电动机作正向限时运转。

待延时时间到,时间继电器KT1常闭延时断开触点断开,使中间继电器KA1断电,其触点KA1断开,接触器KM1线圈断电,主触点KM1断开,电动机瞬时停止正转。

电动机正反转,限时自动往返(时间继电器)控制电路接线图
在时间继电器KT1常闭延时断开触点断开的同时,其常开延时闭合触点KT1闭合,反转中间继电器KA2暂时得电吸合,其常开触点闭合自锁,并使时间继电器KT2得电,反转接触器KM2得电并吸合,电动机作反向限时运转。

待延时时间到,时间继电器KT2的常闭延时断开触点断开,使中间继电器KA2断电,接触器KM2断电,电动机瞬时停止反转。

由于中间继电器KA2的断电,其常闭触点复位,时间继电器KT1得电,中间继电器KA1吸合,KM1得电吸合,电动机又处于正向限时运转状态。

这样周而复始重复前面工作过程,使电动机在规定时间内作连续可逆运转。

若需使电动机停止,可扳开旋转开关S,待KT2延时时间到,电动机停转。

本电路适用于在规定时间内作连续可逆运转的生产机械。

三相异步电动机正反转控制原理图

三相异步电动机正反转控制原理图

正向启动过程
按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。
停止过程
按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。
电气原理分析
电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V相不变,将U相与W相对调节器,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。为安全起见,常采用按钮联锁(机械)与接触器联锁(电气)的双重联锁正反转控制线路(如下图所示);使用了按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。另外,由于应用的接触器联锁,所以只要其中一个接触器得电,其长闭触点就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护了电机,同时也避免在调相时相间短路造成事故,烧坏接触器。
反向起动过线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。[1]
参考资料 1. 电机的正反转控制 .临清市顺发液压机械厂 .2012-10-20 [引用日期2012-10-20] .
3电气原理说明
图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两正向启动过程对辅助常闭触头就叫联锁或互锁触头。

电动机正反转控制电路图及其原理分析

电动机正反转控制电路图及其原理分析

电动机正反转控制电路图及其原理分析要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。

下面是接触器联锁的正反转控制线路,如图所示图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。

当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。

当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。

电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。

为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。

正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。

停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。

反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。

对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。

如果不先按SB1,而是直接按SB3,电动机是不会反转的。

接触器控制电机正反转电路原理图解

接触器控制电机正反转电路原理图解

接触器控制电机正反转电路原理图解
在三相笼型异步电动机的正反转控制线路中,可采用两只接触器KM1、KM2换接电动机三相电源的相序,来改变电动机的旋转方向。

但两个接触器不能同时吸合,如果同时吸合将造成电源的短路事故,如下图所示。

图1 电机正反转电机机正转工作时,KM1通电吸合,电动机这时的相序是L1、L2、L3,即正向运行。

电机机反转工作时,KM2通电吸合,KM2主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。

图2 三相笼型异步电动机正反转控制电路a)无互锁电路b)具有电气互锁电路c)具有双重互锁电路
1。

电机正反转电路图

电机正反转电路图

直流电机的简介是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机,由定子和转子两大部分组成。

是能实现直流电能和机械能互相转换的电机。

当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

直流电机分为直流发电机、直流电动机两类。

直流发电机是把机械能转化为直流电能的机器。

直流电动机,是将直流电能转换为机械能的转动装置。

电机正反转电路图用plc控制电动机正反转原理1、实验原理三相异步电动机定子三相绕组接入三相交流电,产生旋转磁场,旋转磁场切割转子绕组产生感应电流和电磁力,在感应电流和电磁力的共同作用下,转子随着旋转磁场的旋转方向转动。

因此转子的旋转方向是通过改变定子旋转磁场旋转的方向来实现的,而旋转磁场的旋转方向只需改变三相定子绕组任意两相的电源相序就可实现。

如图2.1所示为PLC控制异步电动机正反转的实验原理电路。

左边部分为三相异步电动机正反转控制的主回路。

由图2.1可知:如果KM5的主触头闭合时电动机正转,那么KM6 主触头闭合时电动机则反转,但KM5 和KM6 的主触头不能同时闭合,否则电源短路。

右边部分为采用PLC对三相异步电动机进行正反转控制的控制回路。

由图可知:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2;继电器 KA4、KA5 分别接于PLC 的输出口Y33、Y34,KA4、KA5 的触头又分别控制接触器KM5和KM6的线圈。

实验中所使用的PLC为三菱FX2N系列晶体管输出型的,由于晶体管输出型的输出电流比较小,不能直接驱动接触器的线圈,因此在电路中用继电器KA4、KA5 做中间转换电路。

在KM5和KM6线圈回路中互串常闭触头进行硬件互锁,保证软件错误后不致于主回路短路引起断路器自动断开。

电路基本工作原理为:合上QF1、QF5,给电路供电。

当按下正向按钮,控制程序要使Y33为1,继电器KA4线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序要使Y34 为1,继电器KA5 线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。

单相电动机结构、原理、正反转控制(图文详细)

单相电动机结构、原理、正反转控制(图文详细)

单相电机正反转控制
简易通过转换开关正反转控制: 如图是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值
是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗 衣机用得到这种电机。这种正反转控制方法单,不用复杂的转换开关。
图4 开关控制正反转接线
正反转控制:只需电容分别串入1-2线圈或3-4线线圈即可完成正逆转。 对 起动与运行绕组的判断:两个线圈的电阻是一样的。
类。
1. 电容启动后脱离式电动机
• 这种接法一般用在空气压缩机,切割机,木工机床等负载 大而不稳定的地方。 。
• 当电机一旦启动,转速上升至额定转速70%时,离心开 关脱开副绕组即断电,电机即可正常运转。
2. 罩极式电动机
• 罩极式单相交流电动机,它的结构简单,其电气性 能略差于其他单相电机,但由于制作成本低,运行噪 声较小,对电器设备干扰小,所以被广泛应用在电风 扇、电吹风、吸尘器等小型家用电器中。
3. 单电容单相电动机
• 单电容运转式:这种电机结构简单、启动快速、转速 稳定,被广泛应用在电风扇、排风扇、抽油烟机等家 用电器中。
• 其串接的电容器,当电机在通电启动或者正常运行时, 均与启动绕组串接。由于电机其启动的转矩较小,因 此很适于排风机、抽风机等要求启动力矩低的电器设 备中应用
• “电容运转式”,这种电容即有启动作用又有运转的 功能。这种型式一般用在300w以下的电机上。
• 在家用电器电机类中还有一种直流微型电动机。该电机在录音机、随身听、录 像机、打印机、传真机等家用电器中广泛应用。直流微型电机由于定子绕组和 转子绕组之间的串接形式不同,又可分为并激、串激、复激等几种类别。
• 并激式电机:应用在家用电器中的电机,其定子绕组和转子绕组,绕组之间的串 接一般采用并激形式,即电机的定子磁场线圈与电枢绕组线圈并联后接到电源 上。当通电后电机可保持磁场恒定,并利用电枢电路控制电机转速。这种直流 电机的最大特点是当负载产生波动变化时,电机的转速保持定速状态。 此外,在直流电动机中还有一种结构更为简单、用在玩具上的电机,这种电机 是用永久磁铁作固定磁场的电动机,在电子玩具、电动剃须刀、微型按摩器等 日用小电器中得以广泛应用。

三相异步电动机正反转控制电路图分析

三相异步电动机正反转控制电路图分析

这个三相异步电动机正反转控制电路图可以用来控制一个三相异步电
动机运行的方向。

整个电路的灵活性和稳定性都很强,通常用于机床
或叉车的驱动系统。

主要组件有接线端子TB1到TB3,K1接触器,T1模块,R1、R2电阻器和LED指示灯等组件。

电路图中K1和T1共同构成联结控制模块,它可以根据信号源的状态
来将电源引入被控目标(异步电动机),控制三相异步电动机的运行
方向。

当信号源给出预期的命令后,K1接触器将根据T1模块的输入
状态,来决定通电供应的电源线,从而控制三相异步电动机的正反转。

R1和R2作为负载电阻,保护电机,当T1开关控制器打开时,接线端子接入电源及负载,使电机顺时针转动;当T1开关控制器关闭时,接线端子接入电源及负载,使电机逆时针转动。

此外,电路图还配置了LED指示灯,这样就可以判断电机的运行方向,便于操作者直观地查看。

总而言之,本文分析了三相异步电动机正反转控制电路图的工作原理
以及相关组件的功能,得出的结论是,三相异步电动机正反转控制电
路图具有稳定性强、灵活性高、操作简单和性能稳定等优点,可作为
机床和叉车等设备的优质驱动系统。

正反转原理图及工作原理分析

正反转原理图及工作原理分析

正反转原理图及工作原理分析一、正反转原理图正反转电路是一种用于控制电动机正转和反转的电路。

其原理图如下所示:```+-----------+| |+--------| 开关S1 |--------+| | | || +-----------+ || || +-----------+ |+--------| |--------+| 开关S2 || |+-----------+```二、工作原理分析1. 正转工作原理分析当开关S1闭合,开关S2断开时,正转电路开始工作。

电流从电源正极经过开关S1进入电动机,然后从电动机出来,经过开关S2回到电源负极,形成一个闭合的电路。

电流通过电动机的线圈,产生磁场,使电动机转动。

2. 反转工作原理分析当开关S2闭合,开关S1断开时,反转电路开始工作。

电流从电源正极经过开关S2进入电动机,然后从电动机出来,经过开关S1回到电源负极,形成一个闭合的电路。

电流通过电动机的线圈,产生与正转时相反的磁场,使电动机反转。

3. 原理分析正反转电路的工作原理基于电动机的磁场产生和线圈的电流控制。

通过控制开关S1和S2的状态,可以改变电流的流向,从而改变电动机的旋转方向。

在正转工作状态下,开关S1闭合,S2断开,电流从电源正极进入电动机,产生一个磁场,使电动机正转。

在反转工作状态下,开关S2闭合,S1断开,电流从电源正极进入电动机,产生一个与正转时相反的磁场,使电动机反转。

通过控制开关的状态,可以实现电动机的正转和反转,从而满足不同的工作需求。

4. 应用场景正反转电路广泛应用于各种需要电动机正转和反转的设备和机器中,例如电动车、电动门、电动窗帘等。

通过控制电动机的旋转方向,可以实现设备的正常运行和操作。

总结:正反转电路是一种用于控制电动机正转和反转的电路。

通过控制开关的状态,可以改变电流的流向,从而改变电动机的旋转方向。

正反转电路的工作原理基于电动机的磁场产生和线圈的电流控制。

正反转电路广泛应用于各种需要电动机正转和反转的设备和机器中,实现设备的正常运行和操作。

正反转电动机控制原理图

正反转电动机控制原理图

正反转电动机控制原理图
1.正反转电动机掌握原理图(基本)
电动机正向转动的工作方式电动机反向转动的工作方式
电动机的正反转掌握线路的主电路
简洁过程:按下SBF→电机正转→按下SB1→电机停转→按下SBR→电机反转
此掌握方式缺点:必需先停转后才能由正转到反转或反转到正转。

SBF 和SBR不能同时按下,否则会造成短路。

2.正反转电动机掌握原理图(互锁)
说明:正转时,其接触器常闭接点切断反转掌握回路,SBR不起作用;反之亦然。

从而避开两接触器同时工作造成主回路短路,有效地解决了方案1掌握方式的问题
3.正反转电动机掌握原理图(双重互锁)
说明:此图和方案2(正反转电动机掌握原理图(互锁)的区分在于正反转启动按钮均采纳复合按钮,在正转掌握回路中再增加了反转启动掌握按钮的常闭接点,在反转掌握回路中再增加了正转启动掌
握按钮的常闭接点。

称之为双重互锁:机械互锁和电气互锁。

分析:
双重联锁的正反转掌握线路
线路的工作原理分析如下:
1.正转掌握:
2.反转掌握:
电动机的正转启动示意图(双重联锁的正反转掌握线路)
电动机的反转启动示意图(双重联锁的正反转掌握线路)。

正反转控制线路原理图

正反转控制线路原理图

正反转控制线路原理图
1、上图为电动机正反转控制线路。

其中,L1、L
2、L3为电源进
线,QS为隔离开关,FU1为主回路熔断器3个,FU2为控制回路熔断器2个。

KM1、KM2为控制负荷的主接触器,电机采用热继电器作为过负荷保护之用。

2、启动过程:合上隔离换向开关QS,按下SB1启动按钮→KM1
线圈得电→KM1自保接点闭合实现自保→KM1主触头闭合电动机正向运转→KM1联锁接点断开KM2线圈回路实现联锁。

反转时,在电动机停稳的情况下,以同样的方法启动SB2即可。

3、故障处理:无法启动时,首先检查FU1、FU2是否烧坏;其次
检查热继电器是否动作;再就是检查启动、停止按钮是否完好,主接触器线圈是否烧毁或断线等。

电动机自锁正转电气原理图
1、启动过程:合上QS→控制回路得电→按下SB2→KM线圈得电
→其主触头闭合→电动机得电运转→其辅助接点闭合自锁→电动机正常运转。

2、热继电器FR为保护电动机过负荷之用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如对您有帮助,请购买打赏,谢谢您!
正反转控制电路图及其原理分析
要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。

下面是接触器联锁的正反转控制线路,如图所示
图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。

当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。

当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。

电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。

为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。

正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。

停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。

反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。

对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。

如果不先按SB1,而是直接按SB3,电动机是不会反转的。

相关文档
最新文档