人教版初中数学圆的知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学圆的知识点

一、选择题

1.如图,AB是⊙O的直径,点C是⊙O上一点,点D在BA的延长线上,CD与⊙O交于另一点E,DE=OB=2,∠D=20°,则弧BC的长度为()

A.2

3

πB.

1

3

πC.

4

3

πD.

4

9

π

【答案】A

【解析】

【分析】

连接OE、OC,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.

【详解】

解:连接OE、OC,如图,

∵DE=OB=OE,

∴∠D=∠EOD=20°,

∴∠CEO=∠D+∠EOD=40°,

∵OE=OC,

∴∠C=∠CEO=40°,

∴∠BOC=∠C+∠D=60°,

∴BC的长度=

2

60?2

360

π⨯

=

2

3

π,

故选A.【点睛】

本题考查了弧长公式:l=

••

180

n R

π

(弧长为l,圆心角度数为n,圆的半径为R),还考查

了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角

形外角性质是关键.

2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()

A.25°B.27.5°C.30°D.35°

【答案】D

【解析】

分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.

详解:∵∠A=60°,∠ADC=85°,

∴∠B=85°-60°=25°,∠CDO=95°,

∴∠AOC=2∠B=50°,

∴∠C=180°-95°-50°=35°

故选D.

点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.

3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()

A.3B.23C.3

2

D.

23

【答案】A 【解析】连接OC,

∵OA=OC,∠A=30°,

∴∠OCA=∠A=30°,

∴∠COB=∠A+∠ACO=60°,

∵PC是⊙O切线,

∴∠PCO=90°,∠P=30°,

∵PC=3,

∴OC=PC•tan30°=3,

故选A

4.如图,正方形ABCD内接于⊙O,AB=22,则AB的长是()

A.πB.3

2

πC.2πD.

1

2

π

【答案】A

【解析】

【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.

【详解】连接OA、OB,

∵正方形ABCD内接于⊙O,

∴AB=BC=DC=AD,

∴AB BC CD DA

===,

∴∠AOB=1

4

×360°=90°,

在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,

∴AB的长为902 180

π

=π,

故选A.

【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.

5.如图,在平面直角坐标系中,点P是以C(﹣2,7)为圆心,1为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

A.6 B.8 C.10 D.12

【答案】C

【解析】

【分析】

设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可.

【详解】

设P(x,y),

∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,

∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,

∵OP2=x2+y2,

∴PA2+PB2=2OP2+2,

当点P处于OC与圆的交点上时,OP取得最值,

∴OP的最小值为CO﹣CP=3﹣1=2,

∴PA2+PB2最小值为2×22+2=10.

故选:C.

【点睛】

本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP 的最小值,难度较大.

6.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()

A.20°B.35°C.40°D.55°

【答案】B

【解析】

【分析】

连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】

连接FB,

则∠FOB=180°-∠AOF=180°-40°=140°,

∴∠FEB=1

2

∠FOB=70°,

∵FO=BO,

∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,

∵EF=EB,

∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,

∴∠EFO=∠EBF-∠OFB=55°-20°=35°,

故选B.

【点睛】

本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

7.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()

A.

9

3

4

π-B.

99

42

π-C.

39

3

24

π-D.

39

22

π-

【答案】B

【解析】

【分析】

连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S 扇形-S△ODC即可求得.

【详解】

相关文档
最新文档