第三章力矩和力偶理论
第三章 力偶与平面力偶理论)
M 0 F F h
力对点之矩(力矩)是一个代数量,它的绝 对值等于力的大小与力臂的乘积;
它的正负:力使物体绕矩心逆时针转向时为正,反之为负。 常用单位为 N· m 或 kN· m。 注意:力矩在下列几种情况下等于零 (1)力的大小等于零;
(2)力的作用线通过矩心,即力臂等于零;
(3) 互成平衡的二力对同一点之矩为零。
78.93N m
按合力矩定理 M O F M O Ft M O Fr
F cos θ r 78.93N m
例3-2 已知:q,l; 求: 合力及合力作用线位置. 解: 取微元如图
x q q l l x 1 P q dx ql 0 l 2
M Mi Mi
i 1 n
平面力偶系平衡的充要条件 M = 0,有如下平衡方程
Mi
0
平面力偶系平衡的必要和充分条件是:所有各力 偶矩的代数和等于零。
例3-1
已知: F=1400N, θ 20 , r 60mm
求: M O F .
解:直接按定义
MO
F F h F r cos θ
M1 F1 d M2 F2 d
M1 F1d
M 2 F2d
Mn Fn d
M n Fnd
=
=
FR F1 F2 Fn
F1 F2 Fn FR
=
=
=
M FRd F1d F2d Fnd M1 M 2 M n
定理:同平面内的两个力偶,如果力偶矩相等,则两力偶 彼此等效。 推论: 任一力偶可在它的作用面内任意转移,而不改变它对刚体 的作用。因此力偶对刚体的作用与力偶在其作用面内的位置无 关。 只要保持力偶矩不变,可以同时改变力偶中力的大小与 力偶臂的长短,对刚体的作用效果不变.
静力学第3章力矩平面力偶系
平面力偶由两个大小相等、方向相反、作用线重合的平行力组成,其合力矩等于两力与两力之间的距离的乘积。
平面力偶平衡方程的应用
平面力偶平衡方程的应用主要涉及确定物体在平面力偶作用下的平衡位置。 通过将物体的重力、支持力和已知力矩表示为未知数的函数,可以建立平面力偶平衡方程并求解未知数。 求解平面力偶平衡方程时,需要利用代数方法,如加减消元法、代入法等。
力矩具有方向性,遵循右手定则。
力矩的简化表示
力矩可以表示为代数和,即所有力和力臂的乘积相加。
1
力矩可以用矢量表示,包括大小和方向。
2
力矩可以用单位表示,例如牛顿·米(N·m)。
3
在某些情况下,力矩可以简化为更简单的形式,例如在某些坐标系中。
4
02
平面力偶系
平面力偶的定义
表示方法
定义
用实线表示主动力,用虚线表示反作用力,箭头指向表示力的方向。
平面力偶的性质
合成规则
合成结果
合成结果的应用
平面力偶系的合成
合成的力偶大小等于各分力偶大小之和,方向与各分力偶方向相同或相反,取决于各分力偶的方向是相同还是相反。
通过平面力偶系的合成,可以求出作用于刚体的总力偶,从而进一步分析刚体的平衡状态和运动状态。
当有多个平面力偶作用于同一刚体时,这些力偶可以按照平行四边形法则进行合成。合成结果是一个单一的力偶,其大小和方向由合成规则确定。
平面力偶是两个大小相等、方向相反、作用线重合的平行力,它们不在同一直线上。
力偶无合力
力偶无作用点
力偶无转动中心
平面力偶由两个大小相等、方向相反的力组成,它们在同一直线上但不在同一点上,因此无法合成一个合力。
第3章力矩与力偶
第3章力矩与平面力偶系教学提示:本章主要研究力矩、力偶和平面力偶系的理论。
这都是有关力的转动效应的基本知识,在理论研究和工程实际应用中都有重要的意义。
教学要求:本章让学生掌握力矩、力偶和平面力偶系的概念,掌握力对点之矩的两种求解方法,即直接作力臂的方法与利用合力矩定理求解的方法,掌握平面力偶的性质及平面力偶系的合成与平衡条件,会利用平衡条件求解约束反力。
力对点之矩1.力矩的概念力不仅可以改变物体的移动状态,而且还能改变物体的转动状态。
力使物体绕某点转动的力学效应,称为力对该点之矩。
以扳手旋转螺母为例,如图3-1所示,设螺母能绕点O转动。
由经验可知,螺母能否旋动,不仅取决于作用在扳手上的力F的大小,而且还与点O到F的作用线的垂直距离d有关。
因此,用F与d的乘积作为力F 使螺母绕点O转动效应的量度。
其中距离d称为F对O点的力臂,点O称为矩心。
由于转动有逆时针和顺时针两个转向,则力F对O点之矩定义为:力的大小F与力臂d 的乘积冠以适当的正负号,以符号m o(F)表示,记为m o(F)=±Fh(3-1)通常规定:力使物体绕矩心逆时针方向转动时,力矩为正,反之为负。
图由图3-1可见,力F对O点之矩的大小,也可以用三角形OAB的面积的两倍表示,即m o(F)=±2ΔABC(3-2)在国际单位制中,力矩的单位是牛顿•米(N•m)或千牛顿•米(kN•m)。
由上述分析可得力矩的性质:(1)力对点之矩,不仅取决于力的大小,还与矩心的位置有关。
力矩随矩心的位置变化而变化。
(2)力对任一点之矩,不因该力的作用点沿其作用线移动而改变,再次说明力是滑移矢量。
(3)力的大小等于零或其作用线通过矩心时,力矩等于零。
2.合力矩定理定理:平面汇交力系的合力对其平面内任一点的矩等于所有各分力对同一点之矩的代数和。
m o(F R)=m o(F1)+m o(F2)+…+m o(F n)即m o(F R)=Σm o(F)(3-3)上式称为合力矩定理。
工程力学第三章力矩与平面力偶系_图文
例题讲解
【解】作 AB 梁的受力图,如图( b )所示。AB梁上作用 有二个力偶组成的平面力偶系,在 A 、B 处的约束
反力也必须组成一个同平面的力偶 ( , ) 与之平衡。 由平衡方程
() RA 、RB为正值,说明图中所示RA 、RB 的指向正确。
力臂d
=
1m
×
sinα
=
1m
×
。 sin45 =
m
MB(F)=+F×d= +15kN×0.5 m = +7.5 kN ·m
注意:负号必须标注,正号可标也可不标。一般不标注。
§3-1力矩的概念和计算
(二)合力矩定理
表达式: 证明: 由图得
而 则
Fy
F
A
Fx
()
§3-1力矩的概念和计算
()
若作用在 A 点上的是一个汇交力系( 、 、 ),则可将每个力对 o 点之矩相加,有
2. 力偶的三要素 (2)力偶的方向; (3)力偶的作用面。
3. 力偶的性质 (1)力偶在任何坐标轴上的投影等于零;
(2)力偶不能合成为一力,或者说力 偶没有合 力,即它不能与一个力等效, y
因而也不能被一个力平衡;
(3)力偶对物体不产生移动效应,只 产生转动 效应,既它可以也只能改变物
体的转动状 态。
例题讲解
【例题5】在一钻床上水平放置工件,在工件上同时钻四个等 直径的孔,每个钻头的力偶矩为 求工件的总切削力偶矩和A 、B端水平反力?
解: 各力偶的合力偶距为
根据平面力偶系平衡方程有:
由力偶只能与力偶平衡的性质 ,力NA与力NB组成一力偶。
例题讲解
理论力学第三章力矩与平面力偶理论(H)
理论⼒学第三章⼒矩与平⾯⼒偶理论(H)第3章⼒矩与平⾯⼒偶理论※平⾯⼒对点之矩的概念及计算※⼒偶及其性质※平⾯⼒偶系的合成与平衡※结论与讨论§3-1 平⾯⼒对点之矩的概念及计算1.⼒对点之矩AFBhhF M O ?±=)(F h ——⼒臂O ——矩⼼OABM O Δ±=2)(F M O (F ) ——代数量(标量)“+”——使物体逆时针转时⼒矩为正;“-”——使物体顺时针转时⼒矩为负。
2. 合⼒之矩定理平⾯汇交⼒系合⼒对于平⾯内⼀点之矩等于所有各分⼒对于该点之矩的代数和。
3. ⼒矩与合⼒矩的解析表达式xA FF xF yOαyx yx y y O x O O yF xF M M M ?=+=)()()(F F F )()()()()(21i O n O O O R O M M M M M F F F F F ∑=+++=")()(ix i iy i R O F y F x M ?∑=FF nαOrF rF 已知:F n ,α,r求:⼒F n 块对轮⼼O 的⼒矩。
h解:(1)直接计算αcos )(r F h F M n n n O ==F (2)利⽤合⼒之矩定理计算αcos )()()()(r F M M M M n O O r O n O ==+=F F F F 例题1§3-2 ⼒偶及其性质1.⼒偶与⼒偶矩⼒偶——两个⼤⼩相等、⽅向相反且不共线的平⾏⼒组成的⼒系。
⼒偶臂——⼒偶的两⼒之间的垂直⼒偶的作⽤⾯——⼒偶所在的平⾯。
(1)⼒偶不能合成为⼀个⼒,也不能⽤⼀个⼒来平衡。
⼒和⼒偶是静⼒学的两个基本要素。
(2)⼒偶矩是度量⼒偶对刚体的转动效果;它有两个要素:⼒偶矩的⼤⼩和⼒偶矩的转向。
F′FABOdx FdFxxdFMMMOOO=+′=′+=′)()()(),(FFFF⼒偶矩±=FdM2.平⾯⼒偶的等效定理1F ′F ′2F ′0F ′F 00F ′F 0ABDCdF F 1F 2★在同平⾯内的两个⼒偶,如果⼒偶矩相等,则两⼒偶彼此等效。
工程力学(人民交通出版社)第3章 第2节力偶系
Fy
F
C
B D
b
Fx x
a
MA( F ) MA( Fx ) MA( Fy ) Fx b Fy a F cos b F sin a Fa sin Fb cos
F Fx Fy
Fx F cos Fy F sin
Mo (F , F ' ) Mo (F ) Mo (F ' ) F (d x ) F ' x F d
⑦正负规定:逆时针为正 ⑧单位量纲:N m 或 kN m
二、力偶与力偶矩
2、力偶的特点 ⑨力偶的三要素: 力偶矩的大小、力偶的转向、力偶的作用面 ⑩力偶矩矢 用一个矢量表达三要素:力偶矩矢。
§3-2
力矩与力偶理论
一、力对点之矩 二、力偶与力偶矩 三、力偶系的合成与平衡
一、力对点之矩
1、平面中力矩的概念
力对物体可产生运动效应,在一般情况下,既可能产生移动(平动)效应, 也可能产生转动效应,或者同时产生这两种运动效应。力的移动效应取决于 力的大小和方向,而力使物体绕某点的转动效应,则用力对该点的矩来度量, 简称力矩。
2)合力矩定理 将力Fn分解为切由合力矩定理得:
M o (Fn ) M o (Ft ) M o (Fr ) Fn r cos 0 Fn r cos
小结力偶和力偶矩
1. 力矩是力学中的一个基本概念。度量力对物体的转动 效应:
即有: Mx mx My my Mz mz 同理: M Mx 2 My 2 Mz 2
( Mx ) ( My ) ( Mz )
2 2 2
z
MZ
力矩力偶
力偶系的合成和平衡
空间力偶系的合成:
M Mi
M x M xi M y M yi M z M zi
合力偶矩的大小:
M ( M x )2 ( M y )2 ( M z )2
合力偶矩矢的方向:
cos(M , i )
M x
cos(M ,
MO (F) = MO (F cos)+MO(F sin )
例题 1
如 图 所 示 圆 柱 直 齿 轮 , 受 到 啮 合 力 Fn 的 作 用 。 设 Fn=1400N。压力角α=20o ,齿轮的节圆(啮合圆)的半径 r = 60
mm,试计算力 Fn 对于轴心O的力矩。
解: 计算力Fn对轴心O的矩,按力矩的定义得
其力偶矩矢为:
解得
FA
M1 r sin 30
再取摇杆BC为研究对象:
∑M = 0:
M 2 FA
r
sin
0
其中 FA FA
解得 M2 4M1 8 kN m
FO
FB
FA
M1 r sin 30
8
kN
例题 4
图示三角柱刚体是正方体的一半,其上作用着三个力偶。已知力 偶(F1,F1)的矩 M1= 20 N·m;力偶(F2, F2)的矩 M2= 20 N·m;力偶(F3,F3)的矩 M3= 20 N·m,试求合力偶矩矢 M。 又问若要使这个刚体平衡,还需要施加怎样一个力偶?
0
0l
3
力偶及其性质
力偶及其性质
1. 力偶与力偶矩 2. 力偶等效定理 3. 力偶系的合成和平衡
力偶的实例
第三章 力矩和力偶理论
o F’
B
m F
d
A
力偶没有合力,不能用一个力来代替,也不能用一个力 与之平衡。它是力学中的又一基本要素,其作用使物体 发生转动,以力偶矩表示。
m(F , F ) mo (F ) mo (F ) F OA F OB Fd
m + 逆时针 – 顺时针
理论力学
一、力矩和合力矩定理
(Theorem of Resultant Moment)
2. 力对轴之矩
力对轴之矩等于力在垂直于该轴 的平面上的投影对轴和平面的交 点之矩
m z ( F ) mo ( Fxy ) Fxy h 2 Aoab
F
z Fz a mz(F) o
Fxy
mx 0
my 0
mz 0
三个方程,解三个未知量。 一个方程,解一个未知量。
p.9
平面力偶系的平衡条件
m 0
理论力学
理论力学
本章主要内容
一、力矩和合力矩定理
1. 力对点之矩 2. 力对轴之矩
3. 力对点之矩和力对轴之矩的关系
4. 合力矩定理
二、力偶及其性质
1. 力偶与力偶矩 2. 力偶等效定理 3. 力偶系的合成和平衡
p.5
理论力学
理论力学
一、力矩和合力矩定理
(Theorem of Resultant Moment)
4. 合力矩定理
mo ( R) mo ( F1 ) mo ( F2 ) mo ( Fn ) mo ( F ) m z ( R) m z ( F1 ) m z ( F2 ) m z ( Fn ) mz (F )
第三章 力矩理论与 力偶理论
的代数和。
m
i
2、空间力偶系的合成
设作用于刚体上的两个力偶 M1 , M 2
F1
M1
' F1
' M 1 {F1 , F1 }
r F F2 M 2 F F ' 2
' ' ' F F1 F2 F F1 F2 ' M R {F,F } r ( F1 F2 ) M R r F r F1 r F2
二、力偶的等效条件
M1 B
rBA F1 M1 M2 rCD F2
M2
rBA
A
F1 F2’
C
rCD
D
F2
F1’
M1 rBA F1
M 2 rCD F2
力偶矩矢相等的两力偶等效
(对刚体的作用效应完全决定于力偶矩矢量) 1).任意搬动(水平、垂直) 2).可同时改变力的大小和力偶臂的长短 10 = F 5 10 大小、转向相同 M F’
静力学
第三章 力矩理论与力偶理论 §3-1 力矩理论
一般情况,作用在物体上 质心以外点的力将使物体产生 移动,同时也能使物体产生相 对于质心的转动。
一、力对点的矩 1、平面
平面问题中, 力对点的矩 是代数量。
d
0
F A
0:矩心,d:力臂 M 0 (F)= ±Fd
单位:kN· m
+ _
2、空间
空间问题中, 力对点的矩是矢量。 力F 对o点的矩 等于力作用点 A 对o点的 矢径 r 与该力F 的矢量积。
F Fz
Fxy o d
Fxy
z
第三章 力矩理论与力偶理论
M2
例3-3 已知:F,q,b及六面体的边长a,b,h。试求力F对轴x的矩。 解: 利用力矩关系定理 力F对点O的矩
x
zF
b
q M O bk F F Fx i Fy j Fz k O F cos q cos bi F cos q sin bj F sin qk M O bF cosq (sin bi cos bj )
ix iy iz
M
i
0
例3-3:结构如图所示,已知主动力偶 M,哪种情况铰链的 约束力小,并确定约束力的方向(不计构件自重)
解:
1、研究OA杆 A
2、研究AB杆 A
M
B
F
O
M
(A)
B
F F
O
(B)
F
例3-4:图示杆BC上固定销子可在杆AD的光滑直槽中滑动, 已知:L=0.2m,M1=200N· m,a300,求:平衡时M2。
第三章
一、力对点的矩 1、平面
力矩理论与力偶理论
§3-1 力矩理论
0:矩心,d:力臂
M 0 (F)= ±Fd
单位:kN· m
+ _
2、空间
定义:
z
Байду номын сангаас
2)方向按右手法则(r F)确定;
3)作用在点O。 解析表达式: r xi yj zk ,
1)其大小;M O ( F ) F d 2 AOAB
合力偶矩矢的方向余弦
cos M , i 0.6786 cos M , j 0.2811 cos M,k 0.6786
理论力学03力矩力偶与平面力偶系
本章讨论平面力偶系的合成与平衡问题
一、平面力偶系的合成 平面力偶系可合成为一个合力偶; 合力偶矩等于各分力偶矩的代数和,即
M1
M2 M3
M4
M Mi
二、平面力偶系的平衡方程
Mi 0
M
说明:根据平面力偶系的平衡方程,可解 一个未知量。
ቤተ መጻሕፍቲ ባይዱ
[例2] 已知梁长 l = 5 m,M = 100 kN·m ;若不计梁的自重,试求 铰支座 A 、B 处的约束力。
2. 力偶中的两个力对任一点的矩的代数和 恒等于力偶矩,与矩心位置无关。
dF F
3. 作用于刚体同一平面内两个力偶等效的充要条件为其力偶矩 相等。
结论:力偶矩唯一决定了力偶对刚体的作用效应。
◆ 通常用力偶矩符号来代表力偶:
F
d
M Fd
F
M 或M
第三节 平面力偶系
平面力偶系:由位于同一平面内的一群力偶所组成的力系
构平衡。试求作用于摆杆 BO1上的力偶矩 M2 (各构件的自重不计)
解: 1)首先研究曲柄 AO与套筒A 的组合 画受力图 列平衡方程
Mi 0, M1 FA r sin 30 0
解得
FA
FO
2M1 r
M1
O
FO
FA
FA
FO
2M1 r
2)再选取摆杆 BO1 为研究对象
画受力图
列平衡方程
Mi 0, M 2 FA AO1 0
的平行力称为一个力偶,记作 F, F。
dF F
二、力偶矩 定义
M Fd
为平面内力偶 F, F 的矩,简称力偶矩。
说明: 1)平面内力偶矩为代数量,其正负号表转向,一般规定 逆时针转向为正,反之为负。
力矩和平面力偶系
所以两个力偶等效,必须是该两个力偶旳力偶矩 大小相同,转向相同,作用面相同。(对刚体, 可作用面平行。)
例题:
F
1.习题3-2
a
b
Fx F cosa
a
Fy f sin a
M A (F ) -Fx b Fy 0 -Fb cosa
M B (F ) -Fx b Fy a F (a sin a - b cosa )
2.习题3-7
正三角形ABC
B F2
F1 F2 F3 F
X F1 cos 60 F2 cos 60 - F3 0
F1
Y F1 sin 60 - F2 sin 60 0
A
即合力FR=0
F1x
F
cos 60
第三章: 力矩与平面力偶系
本章研究力矩和力偶旳概念、力偶旳 性质、平面力偶系旳合成与平衡。本 章与第二章旳理论是研究平面一般力 系旳基础。
§3-1 力矩旳概念和计算
一般情况下,力对物体作用时能够产 生移动和转动两种外效应。力旳移动 效应取决于力旳大小和方向。为了度 量力旳转动效应,需要引入力矩旳概 念。
设物体上作用有一 力偶臂为d旳力偶 (F,F‘)
该力偶对作用面内任 一点O之矩为:
O x
F
F’ d
Mo(F)+Mo(F’)=F(x+d)-Fx=Fd
力偶对作用面内任一点旳矩之大小恒等于力偶中 一力旳大小和力偶臂旳乘积,而与矩心旳位置无关。
力偶对物体旳转动效应可用力与力偶臂旳乘积Fd 及转向来度量,该物理量称为力偶矩。
互成平衡旳二力对同一点旳力矩之和为 零
虽然力矩概念由力对物体上固定点旳 作用引出。实际上,作用于物体上旳力 能够对任意点取矩,即矩心可是空间中 旳任意点。
第三节力矩与力偶
效应的量度。用M或M(F,F′)表示。
Mo(F)=±Fh
M F d
力偶矩是代数量,一般规定:使物体逆时针转动的力 偶矩为正,反之为负。力偶矩的单位是N•m,读作“牛米”。
一般规定:逆时针转向力偶为正,顺时针转向力 偶为负。力偶矩的单位为N·m。
力偶的三要素:力偶的大小 转向 作用面
2.力偶的特性
【例2-4】圆柱直齿轮受啮合力F的作用。设F =1400N, 压力角α=20°,齿轮的节圆(啮合圆)半径r=60mm,试 计算力F对轴中心O的矩。
解题过程
3.力矩的平衡条件
(1)杠杆平衡应用实例
(2)绕定点转动物体平衡条件
各力对转动中心O点的矩的代数和等于零,即合力
矩为零。用公式表示为:
MO (F1) MO (F2 ) ... MO (Fn ) 0
M=M1+M2+…+Mn =∑M
三、平面力偶系的简化与平衡
1.平面力偶系的简化
平面力偶系——作用在物体上同一平面内由若干个力 偶所组成的力偶系。
平面力偶系的简化结果为一合力偶,合力偶矩等于各 分力偶矩的代数和,即
M M1 M2 Mn Mi
2.平面力偶系的平衡
必要和充分条件——所有力偶矩的代数和等于零。
Mi 0
半孔钻加工腰孔
1-工件 3-钻套
2-钻模板 4-半孔钻
【例2-5】多刀钻床在水平工件上钻孔,每个钻头的切削 刀刃作用于工件上的力在水平面内构成一力偶。已知切制三 个孔对工件的力偶矩分别为M1=M2=13.5N·m,M3=17N·m, 求工件受到的合力偶矩。如果工件在A、B两处用螺栓固定, A和B之间的距离 l=0.2m,试求两个螺栓在工件平面所受的 力。
工程力学第三章力矩力偶系
M ( F ) r F sin O
定理:如果力系存在合力,则合力对某一点的矩等于力 系中各分力对同一点的矩的矢量和。
即:若作用在刚体上 { F , F , , F } { F } 1 2 n R
则:
M ( F ) M ( F O R O i)
i 1
n
例 水平梁 AB 受按三角形分布的载荷作用。载荷的最 大值为 q ,梁长为 l 。试求合力作用线的位置。
0
将 Q 和 q(x) 的数值代入可得
xC
2 l 3
§3-2 力偶理论
一.力偶和力偶矩
1、力偶 · 力偶的作用 效果 ·力偶的第一性质
力偶的定义:由大小相等,方 向相反且不共线的两个平行力 所组成的力系,称为力偶。记 之为: ( F, F ' )
F
hபைடு நூலகம்
F
'
h——力偶臂
力与力偶的作用效果比较:
FA
第三章 力矩 力偶系理论
§3-1 力对点之矩(力矩) 力对刚体的移动效应用力矢量来度量 力对刚体的转动效应用力矩来度量 一、力对点之矩
B F O
定义:
r
h
A
M r F oF
矢量积形式
M r F oF
二、 合力矩定理
大小: r F F h 2 OAB 方向: 由右手定则判定
25 N 0.4 m
M=10 Nm
25 N
§3-3 力偶系的合成与平衡
力偶系合成的结果为一合力偶
{ M , M , , M } { M } 1 2 n R
n
即:
M R Mi
i 1
力偶平衡的充分必要条件:
同济版_理论力学_王斌耀(同济理力最好老师)_第3章 力矩理论与 力偶理论
z
Fz B β
y=180mm
F Fy
A
Fx α Fxy
y
z=200mm
0 x x=0, =0, y=180mm, =180mm, z=200mm. =200mm.
§3-2力偶的概念
一、力偶与力偶矩
大小相等、方向相反、作用线相互平行的两个力所 大小相等、方向相反、 组成的力系称为力偶。 组成的力系称为力偶。
M O ( FR ) = M O ( F1 ) + M O( F2 ) = ∑ M O ( Fi )
合力对点(或轴) 合力对点(或轴)之矩等于各分力对 同点(或同轴)之矩的矢量和(代数和) 同点(或同轴)之矩的矢量和(代数和)。
z A
F1 F2
y
FR
r × FR = ∑ r × Fi
i =1
O
n
r
x
1、平面力偶
F
F’
1、平面力偶
F’ F
F’ F
F
A
d
rBA
B
F′
+ _
M=±Fd (Nm) ±
力偶作用平面
d:力偶臂
2、空间力偶 力偶的矢量表示
M A = rBA × F = M B = rAB × F
'
M
右手法 则为正
B
F
rBA
A
F’
力偶矩矢量垂直于力偶所在平面,其大小和方向与取矩点无关 力偶矩矢量垂直于力偶所在平面 其大小和方向与取矩点无关. 其大小和方向与取矩点无关
P力作用点的矢径 力作用点的矢径
r = xi + yj + zk ,
x = 5cm, y = 6cm, z = 0
理论力学第三章力矩与力偶
M mi m1 m2 m3 m4
4(15) 60 N m
例 :工件如图所示,它的四个面上同时钻五个孔,每个孔所受的切 削力偶矩均为80 N·m。求工件所受合力偶的矩在x,y,z轴上的投影 Mx,My,Mz,并求合力偶矩矢的大小和方向。
所以合力偶矩矢的大小
M
M
2 x
M
2 y
M
2 z
284.6 N m
合力偶矩矢的方向余弦
cos M,i 0.6786, cos M,j 0.2811, cos M,k 0.6786
三、力偶系的平衡
空间力偶系的合成结果是合力偶
Fy= F cos450cos600=1000×0.707×0.500 N= 354 N
Fz= Fsin450=1000.0×0.707 N= 707 N
力F 对三个坐标轴的矩分别为
M x (F ) ( yFz zFy ) 0.06 707 42.4 N m
M y (F ) (zFx xFz ) (0.05) 707 35.4 N m
力偶矩矢与O点的选取无关,因 此力偶对空间任意一点的矩是一个常
A rAB
dB
mO
rmOAo(FF)omrOoB(FF)
rOA
(F
)
rOB
F
(rOB
rOA )
F
rAB F 力偶矩矢大小
mO
F d
矢量
结论:力偶矩矢为自由矢 量,力偶对刚体的转动效应完 全取决于力偶矩,与矩心无关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
PDcos
p.2
例题
例题
例2. 已知:线性(三角形)分布载荷(如水坝所受的水压力) 的最大载荷集度为q0 (N/cm)。求:线性分布载荷的合力 的作用线位置。(液面高为h)
解:取离水面深为y 处的微段水压力qdy 合力的大小为
Q
h
qdy
0
h
0
q0 ydy h
1 2
q0 h
y2
h 0
1 2 q0h
RA
RB
m l
100 5
20kN
p.9
例题
例题
例9.平行轴减速箱可以认为各力都作用在同一平面内。已知减
速箱的速比为2:1,若匀速转动时,在主动轴I上作用有矩
为m1=30Nm的顺时钟向力偶,而在输出轴II上作用有工作 机械施予的矩为m2的阻力偶,由于是减速,则 m2 > m1;求在A及B处螺栓和支撑台所受的力。已知AB间距 离l=18cm。
与平面BCD垂直。杆的D端为球铰,另一端受轴承支持,
如图所示。在曲杆的AB、BC和CD上作用三个力偶,力偶
所在平面分别垂直于AB、BC和CD三线段。若AB=a,
BC=b,CD=c,且已知力偶矩m2、m3,求使曲杆处于平衡
Hale Waihona Puke 的力偶矩m1和球铰D、轴承A的约束力。
解:对象:曲杆 作用力: m1 , m2 , m3 , YA , ZA , YD , ZD
T1
OD
T2
解: 胶带拉力沿轮切线方向,力臂d=D/2,与角无关,拉力对轮心O之
矩为:
mO T1
T1
D 2
1500
0.4 2
300Nm
mO T2 T2
D 2
750
0.4 2
150Nm
p.6
例题
例题
例6.作用于齿轮的啮合力Pn=1000N,节圆直径D=160mm,压
力角=20o;求啮合力Pn对于轮心O之矩。
p.7
例题
例题
例7.用多轴钻床在水平放置的工件上同时钻四个直径相同的孔,
每个钻头的主切削力在水平面内组成一力偶,各力偶矩的
大小为:m1=m2=m3=m4=15Nm,转向如图;求工件受到的 总切削力偶矩是多大?
m1 m2
A
MB
m3 m4
200mm
解: 根据平面力偶系的合成,求合力偶矩:
M m1 m2 m3 m4 4 15 60 Nm
负号表示合力偶的转向为顺时钟。
p.8
例题
例题
例8.在梁AB上作用一力偶,其力偶矩大小为m=100kNm,转向
如图所示;梁长l=5m, 不计自重;求支座A、B的约束反
力。
m
m
A
B
A
B
l
RA
RB
解: 研究AB梁,受外力偶作用,A、B的约束力必组成一个力偶;
画出受力图; 列出平面力偶系的平衡方程;
m 0, RAl m 0
解:对象:工件
分析力: m1, m2, m3, NA, NB 力偶系处于平衡,因此NA = NB 组成一力偶
根据平面力偶系的平衡条件:
NA m3 m1
L
m2 NB
m 0 N AL m1 m2 m3 0
NA
m1 m2 L
m3
10 10 20 0.2
200N
p.4
例题
例题
例4. 曲杆 ABCD有两个直角,ABC=BCD=90,且平面ABC
a A YA
m1
ZA z
选轴列空间力偶系的平衡方程
m2 C
B
mx m1 ZA b YA c 0 my m2 ZAa 0
b m3 D
c YD y
mz m3 YAa 0
x
ZD
解得:
YA
YD
m3 a
ZA
ZD
m2 a
bc
m1 a m2 a m3
p.5
例题
例题
例5.一带轮直径D=400mm,胶带拉力T1=1500N,T2=750N,与 水平线的夹角=15o;求胶带拉力T1、T2各对轮心O之矩。
m1
m2
m1 m2
A
B
A
B
l
l
RA
RB
解: 研究减速箱,受外力偶作用,A、B的约束力必组成一个力偶;画
出受力图;
由减速比得外力偶之间的关系; m2 2m1 60 Nm
列出平面力偶系的平衡方程;
m 0, RAl m1 m2 0
RA
RB
m1 m2 l
30 60 0.18
500N
p.10
例题
例题
例1. 已知:两齿轮齿面之间的啮合力为P,其作用线与齿轮节 圆切线方向的夹角为(压力角),节圆直径为D。求: 啮合力对轮心O点之矩。
解:将啮合力P沿齿轮节圆的切线 和法线分解为P , Pn
P P cos Pn P sin
P P
Pn Do
利用合力矩定理
mo (P)
mo (P
)
mo (Pn )
Pn Pr
P
O D
解: (1) 应用力矩计算公式,力臂d=Dcos/2;
mO
Pn
Pnd
1000
0.16 2
cos20o
75.2Nm
(2) 应用合力矩定理;将Pn沿周向和径向分解成P和Pr;
P Pn cos , Pr Pn sin
mO
Pn
mO
P
mO
Pr
Pn
c
os
D 2
0
1000cos20o 0.16 75.2Nm 2
微段水压力对o点之矩为
o
y
h yQ q
dy
Q
q0 y
q0 y dy y h
设合力作用线离水面的距离为yQ,利用合力矩定理
mo (q)
h
0
q0 y h
ydy
1 3
q0 y3 h
h 0
1 3
q0
h2
mo (Q)
q0h 2
yQ
q0h 2
yQ
1 3
q0
h2
yQ
2 3
h
p.3
例题
例题
例3. 多孔钻床加工工件,已知:m1 =m2 = 10 Nm, m3 = 20 Nm, L = 200 mm。求:挡块对工件的约束力。