一次函数典型难题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C O y 2
y 1
x
y
P 一次函数压轴题专题
典型例题
题型一、A 卷压轴题
一、A 卷中涉及到的面积问题
例1、如图,在平面直角坐标系xOy 中,一次函数12
23
y x =-
+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO 分成两部分.
(1)求△ABO 的面积; (2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。
二、A 卷中涉及到的平移问题
例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-8
3
经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;
②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式, ③若直线1l 经过点F ⎪⎭
⎫
⎝⎛-
0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位
交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.
题型二、B 卷压轴题
一、一次函数与特殊四边形
例1、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A 是方程组⎩ ⎨⎧=+-=632y x y x 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上, OD=52 (1)求点C 的坐标; (2)求直线AD 的解析式; (3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由. 2、(2011•玉溪)如图,在Rt △OAB 中,∠A=90°,∠ABO=30°,OB= 83 3 ,边AB 的垂直平分线CD 分别与AB 、x 轴、y 轴交于点C 、G 、D . (1)求点G 的坐标; (2)求直线CD 的解析式; (3)在直线CD 上和平面内是否分别存在点Q 、P ,使得以O 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点Q 得坐标;若不存在,请说明理由. 例3 、已知如图,直线y =+与x 轴相交于点A ,与直线y =相交于点P . ①求点P 的坐标. ②请判断OPA ∆的形状并说明理由. ③动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求: S 与t 之间的函数关系式. 练习1、如图,已知直线1l :2+-=x y 与直线2l :82+=x y 相交于点F ,1l 、2l 分别交x 轴 于点E 、G ,矩形ABCD 顶点C 、D 分别在直线1l 、2l ,顶点A 、B 都在x 轴上,且点B 与点G 重合。 (1)、求点F 的坐标和∠GEF 的度数; (2)、求矩形ABCD 的边DC 与BC 的长; (3)、若矩形ABCD 从原地出发,沿x 轴正方向以每秒1个单位长度的速度平移,设移动时间为t ()60≤≤t 秒,矩形ABCD 与△GEF 重叠部分的面积为s ,求s 关于t 的函数关系式,并写出相应的t 的取值范围。 例4、如图,已知直线的解析式为,直线与x轴、y轴分别相交于A、B两点,直线经过B、 C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒(). (1)求直线的解析式. (2)设△PCQ的面积为S,请求出S关于t的函数关系式. 练习1、已知直线y=x+4与x轴、y轴分别交于A、B两点, ∠ABC=60°,BC与x轴交于点C. (1)试确定直线BC的解析式. (2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由. 练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :12 1 +=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。 (1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。 练习2、如图,在平面直角坐标系中,直线1l :x y 3 = 与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 2 1 =。 (1)试求直线2l 函数表达式。(6分) (2)若将直线1l 沿着x 轴向左平移3个单位,交 y 轴于点C ,交直线2l 于点D ;试求 △BCD 的面积。(4分)。 练习3、如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m (m>0)的图象,直线PB 是一次函数n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。 (1)用m 、n 分别表示点A 、B 、P 的坐标及∠PAB 的度数; (2)若四边形PQOB 的面积是 2 11 ,且CQ:AO=1:2,试求点P 的坐标,并求出直线PA 与PB 的函数表达式; (3)在(2)的条件下,是否存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由。