空间自相关

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间自相关在 OpenGeoda 中的实现
制作人: 学号: 专业:
空间自相关
全局空间自相关:检验空间邻接或空间邻近的区 域单元属性值空间相关性存在与否,空间统计学 上使用的统计量有Moran’s I、Geary’s C, Getis’G 等,其中常用的是Moran’s I。Moran指数I 的取值 一般在[-1,1],大于0表示各单元间存在空间正相 关,单元内的观察值有趋同趋势;小于0表示负相 关,单元内的观察值有不同的趋势;等于0表示不 相关,属于独立随机分布。
空间自相关
空间权重矩阵的选择:空间权重矩阵包含了区域 之间空间位置的依赖关系信息。可用相邻性指标 或距离指标来估计不同区域间的地理位置关系。 基于距离的空间权重矩阵需确定区域中心,因此 在目前我国ESDA应用领域最常见的是选择相邻权 重矩阵。
操作步骤
准备数据:福建省67个县市的shp图层; 2013年67县市人均GDP数据; 借助软件:Arcgis、Geoda等
空间自相关
局部空间自相关:同样具有Moran’s I、Geary’s C, Getis’G 等指标,但常用Local Moran’s I 来衡量, Anselin将其称为LISA。LISA被用来揭示空间地域 单元与其临近空间单元属性特征值之间的相似性 或相关性,也用于识别“热点区域”以及其数据 的异质检验。
自动生成的权重有错误,需在 arcgis里重新打开该图层,根 据poly_ID修改权重。
4、点击space,分别点 univariate Moran和 univariate LISA,输出 Moran散点图和LISA集聚 图
5、识别Moran散点图各象限散点所对应 的县域单元。选择象限内散点,所对应区 域单元在底图已显示出来。
Baidu Nhomakorabea
注意事项:文件夹及文件名必须是英文,否则 Geoda软件无法识别
操作步骤
1、打开arcgis,加载福建省县市图层,将2013年 人均GDP数据导入属性表
2、打开Geoda,点击file—open project,加载福建 省县市shp图层
3、创建权重。 点击toolsweights-creat.
相关文档
最新文档