高等土力学(李广信)2.6 土的剑桥模型教学内容
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卸载-弹性墙
弹性墙
图2-56 弹性墙
2. 能量方程
dEp'dvq'd (1)
变性能=弹性变性能+塑性变性能
dEdW edW p (2)
其中
dWepdveqde
(3)
dWppdvpqdp
(4)
塑性变性能的基本假设: 1)假设一切剪应变是不可恢复的,亦即:
d e 0 (5)
dV e 1dvee1edpp''
比体积:v1+e v=e
e
1
v-e/(1+e0)
图2-44 的几何意义
固结不排水试验的有效应力路径相似性
q
D3
U3
D2
U2
U1
D1
临界状态线
CSL: Critical State Line
p
C1
C2
C3
C-D:固结排水试验有效应力路径 图2-45 固结不排水试验
C-U:固结不排水试验有效应力路径
Leabharlann Baidu
的有效应力路径
临界状态线,物态面
图2-47 正常固结粘 土的物态边界面
三维空间的物态边 界面
(1)p,q,e三者一一对应 (2)有效应力路径的唯一性
图2-48正常固结粘土的物态边界面
图2-49 各向等 压的加载与卸载
v=N- lnp:初始加载 v=v- lnp:回弹曲线
2.6.2 超固结土及完全的物态边界面
(1)
5. “湿粘土”的应力应变关系表达式
q' p'
M Nvlnp'
(1) 微分此式
d v
dv 1 e
dv1 1eM ddpp'' (2) 代入下式
d E 1 ed p 'M 'd p p 'd v q 'd
d
1 eMp'
dq'
M
dp'
1 e
p'd Mdp'
Mp'M
(3) (4)
重超固结粘土: 0-pm -H-DH(UH) H-DH-RH: 排水试验-剪胀与 软化 H-UH: 不排水试验,负孔压, 强度超过临界状态线
pm
峰值强度(TS)与残余强度 (临界线上)
排水试验的应 力应变曲线
图2-51重超固结粘土的路径
完全的物态边界面: 0T:零应力线(无拉应力) TS:超固结土的强度线-Hvorslev面 CS:v=常数的Roscoe 面 包括了正常固结土、重超固结土的 可能的(极限)应力状态
dq' dp'
M2 2 2
0
(2)
对式(2)积分,带入边界条件,得到方程:
dq' M2 2
0
dp' 2
p
p
0
M2 M 2 2 (3)
p'
p 0 2
2M q' 2
p' 0 2
2
(3)
修正剑桥模型的屈服面方程
p'
p 0 2
2M q' 2
p' 0 2
2
(3)
屈服轨迹的形状:
(2)
椭圆(帽子)屈服面
NCL: normal consolidation line
CSL: critical state line
q=M p
v=N- lnp(NCL)
v=- lnp (CSL)
N
p=exp(-v)/
图2-46
正常固结粘土的排水与不排水应力路径
物态边界面与临界状态线
v=- lnp
p=exp((-v)/ ) q=Mp=M exp((-v)/ )
应力应变关系
dv 1 1eM ddpp''
(2)
d
1 eMp'
dq'
M
dp'
1 e
p'd Mdp'
Mp'M
(4)
2.6.4 修正的剑桥模型
1.屈服函数
塑性能能量方程: 假设:
dWppdV pqdp
dWpp dV p 2Mdp 2 (1)
代入流动规则: dp'dvpdq'dp0
2.6 土的剑桥模型
2.6.1 正常固结粘土的物态边界面 (state boundary surface)
2.6.2 超固结土及完全的物态边界面 2.6.3 弹性墙与剑桥模型的屈服函数 2.6.4 修正的剑桥模型
2.6.1 正常固结粘土的物态边界面
三轴应力状态:
偏应力: q= 平均主应力:p=(+2)/3
1.正常固结粘土 2.轻超固结粘土:OCR比较小,卸载范围不大 3.强超固结粘土:OCR很大, 卸载后的应力比先期
固结应力小很多
轻超固结粘土:
0- pm -L-D(U)
SL-回弹曲线,L位于
pm
NCL与CSL之间
LD:排水试验-体缩
LU:不排水-体积不变, 正孔压
强度线唯一,剪缩
图2-50 轻超固结粘土的路径
M
(13)
图2-58 正交性示意图
上式表示了流动规则:
M时,dpv=0 0时, dvp/dp =M
流
动
屈服函数:
规
d
p v
d p
d 则q dp
与曲线正交
dVp dp
q' M
p'
M
(13)
dq' dp'
q' p'
M
0
(14)
dq' dp'
q' p'
M
0
(14)
积分:
q' ln p' ln c Mp'
dV p
dv
1 1e
p'
dp'
(11)
p'dv pM p' q' d
(12)=(11) +(10)
d d p
dVp dp
Mqp''
M
(13)
3. 屈服轨迹与屈服方程
弹性墙上塑性体应变pv为 常数,如果以pv为硬化参数
则AF(A´F´)为屈服轨迹
图2-57 屈服轨迹
dVp dp
Mqp''
(15)
边界条件:p=p0, q=0: v=v0
f
q'
M ln
p' 0
p'
p
(16): 屈服函数
弹性墙在q-p平面上的 投影AF -
子弹头屈服轨迹
弹性墙上-v0p及pv唯一
图2-59 子弹头屈服轨迹
4. 物态边界面的方程
屈服轨迹沿NCL移动,得到三维变量表示的物态 边界面方程:
q' p'
M Nvlnp'
M
图2-60 修正剑桥模型的椭圆帽子屈服面
2.应力应变关系
dv1 1eM 2 2d 2dp p''(4)
d1 e M 2 2 2M 2 2d 2dp p'' (5)
(6)
dW epdv e
dp' (7)
1e
2) 假定塑性变性能可表示为:
dW pM pdpM pd
(8):这是一个重 要假设
dWppdV pqdp
(4)
d E d W e d W p 1 ed p ' M p d(((987)))=+
p'dv1edpp'' Mp' q' d
(10)=(1) +(9)
图2-52 完全的物态边界面
完全的物态边界面
包括超固结土的 完全的物态边界 面-(状态只能在 面内和面上)
Vi-Ti-Si-Ni
图2-53 完全的物态边界面
HS
超固结
CS
正常固结
图2-54 排水试验的应力体变曲线
图2-55 正常固结土与超固结土的应力路径
2.6.3 弹性墙与屈服轨迹
1. 弹性墙 正常固结粘土与轻超固结粘土(wet clay) 各向等压固结: 加载:NCL
弹性墙
图2-56 弹性墙
2. 能量方程
dEp'dvq'd (1)
变性能=弹性变性能+塑性变性能
dEdW edW p (2)
其中
dWepdveqde
(3)
dWppdvpqdp
(4)
塑性变性能的基本假设: 1)假设一切剪应变是不可恢复的,亦即:
d e 0 (5)
dV e 1dvee1edpp''
比体积:v1+e v=e
e
1
v-e/(1+e0)
图2-44 的几何意义
固结不排水试验的有效应力路径相似性
q
D3
U3
D2
U2
U1
D1
临界状态线
CSL: Critical State Line
p
C1
C2
C3
C-D:固结排水试验有效应力路径 图2-45 固结不排水试验
C-U:固结不排水试验有效应力路径
Leabharlann Baidu
的有效应力路径
临界状态线,物态面
图2-47 正常固结粘 土的物态边界面
三维空间的物态边 界面
(1)p,q,e三者一一对应 (2)有效应力路径的唯一性
图2-48正常固结粘土的物态边界面
图2-49 各向等 压的加载与卸载
v=N- lnp:初始加载 v=v- lnp:回弹曲线
2.6.2 超固结土及完全的物态边界面
(1)
5. “湿粘土”的应力应变关系表达式
q' p'
M Nvlnp'
(1) 微分此式
d v
dv 1 e
dv1 1eM ddpp'' (2) 代入下式
d E 1 ed p 'M 'd p p 'd v q 'd
d
1 eMp'
dq'
M
dp'
1 e
p'd Mdp'
Mp'M
(3) (4)
重超固结粘土: 0-pm -H-DH(UH) H-DH-RH: 排水试验-剪胀与 软化 H-UH: 不排水试验,负孔压, 强度超过临界状态线
pm
峰值强度(TS)与残余强度 (临界线上)
排水试验的应 力应变曲线
图2-51重超固结粘土的路径
完全的物态边界面: 0T:零应力线(无拉应力) TS:超固结土的强度线-Hvorslev面 CS:v=常数的Roscoe 面 包括了正常固结土、重超固结土的 可能的(极限)应力状态
dq' dp'
M2 2 2
0
(2)
对式(2)积分,带入边界条件,得到方程:
dq' M2 2
0
dp' 2
p
p
0
M2 M 2 2 (3)
p'
p 0 2
2M q' 2
p' 0 2
2
(3)
修正剑桥模型的屈服面方程
p'
p 0 2
2M q' 2
p' 0 2
2
(3)
屈服轨迹的形状:
(2)
椭圆(帽子)屈服面
NCL: normal consolidation line
CSL: critical state line
q=M p
v=N- lnp(NCL)
v=- lnp (CSL)
N
p=exp(-v)/
图2-46
正常固结粘土的排水与不排水应力路径
物态边界面与临界状态线
v=- lnp
p=exp((-v)/ ) q=Mp=M exp((-v)/ )
应力应变关系
dv 1 1eM ddpp''
(2)
d
1 eMp'
dq'
M
dp'
1 e
p'd Mdp'
Mp'M
(4)
2.6.4 修正的剑桥模型
1.屈服函数
塑性能能量方程: 假设:
dWppdV pqdp
dWpp dV p 2Mdp 2 (1)
代入流动规则: dp'dvpdq'dp0
2.6 土的剑桥模型
2.6.1 正常固结粘土的物态边界面 (state boundary surface)
2.6.2 超固结土及完全的物态边界面 2.6.3 弹性墙与剑桥模型的屈服函数 2.6.4 修正的剑桥模型
2.6.1 正常固结粘土的物态边界面
三轴应力状态:
偏应力: q= 平均主应力:p=(+2)/3
1.正常固结粘土 2.轻超固结粘土:OCR比较小,卸载范围不大 3.强超固结粘土:OCR很大, 卸载后的应力比先期
固结应力小很多
轻超固结粘土:
0- pm -L-D(U)
SL-回弹曲线,L位于
pm
NCL与CSL之间
LD:排水试验-体缩
LU:不排水-体积不变, 正孔压
强度线唯一,剪缩
图2-50 轻超固结粘土的路径
M
(13)
图2-58 正交性示意图
上式表示了流动规则:
M时,dpv=0 0时, dvp/dp =M
流
动
屈服函数:
规
d
p v
d p
d 则q dp
与曲线正交
dVp dp
q' M
p'
M
(13)
dq' dp'
q' p'
M
0
(14)
dq' dp'
q' p'
M
0
(14)
积分:
q' ln p' ln c Mp'
dV p
dv
1 1e
p'
dp'
(11)
p'dv pM p' q' d
(12)=(11) +(10)
d d p
dVp dp
Mqp''
M
(13)
3. 屈服轨迹与屈服方程
弹性墙上塑性体应变pv为 常数,如果以pv为硬化参数
则AF(A´F´)为屈服轨迹
图2-57 屈服轨迹
dVp dp
Mqp''
(15)
边界条件:p=p0, q=0: v=v0
f
q'
M ln
p' 0
p'
p
(16): 屈服函数
弹性墙在q-p平面上的 投影AF -
子弹头屈服轨迹
弹性墙上-v0p及pv唯一
图2-59 子弹头屈服轨迹
4. 物态边界面的方程
屈服轨迹沿NCL移动,得到三维变量表示的物态 边界面方程:
q' p'
M Nvlnp'
M
图2-60 修正剑桥模型的椭圆帽子屈服面
2.应力应变关系
dv1 1eM 2 2d 2dp p''(4)
d1 e M 2 2 2M 2 2d 2dp p'' (5)
(6)
dW epdv e
dp' (7)
1e
2) 假定塑性变性能可表示为:
dW pM pdpM pd
(8):这是一个重 要假设
dWppdV pqdp
(4)
d E d W e d W p 1 ed p ' M p d(((987)))=+
p'dv1edpp'' Mp' q' d
(10)=(1) +(9)
图2-52 完全的物态边界面
完全的物态边界面
包括超固结土的 完全的物态边界 面-(状态只能在 面内和面上)
Vi-Ti-Si-Ni
图2-53 完全的物态边界面
HS
超固结
CS
正常固结
图2-54 排水试验的应力体变曲线
图2-55 正常固结土与超固结土的应力路径
2.6.3 弹性墙与屈服轨迹
1. 弹性墙 正常固结粘土与轻超固结粘土(wet clay) 各向等压固结: 加载:NCL