基于SH366000的智能电池管理系统

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于SH366000的智能电池管理系统

中颖电子股份有限公司高级工程师张朋翔

摘要:本文结合中颖电子的智能电池管理芯片SH366000,围绕着锂离子电池安全和有效利用的目标,对信息采集、充电方式、SOC估算、安全保护、电芯均衡、人机接口、低功耗设计等方面的实现策略进行了比较与分析,总结了现有智能电池管理系统的不足,对未来的发展方向进行了展望。

关键词:锂离子电池、智能电池管理系统、SH366000、充电管理、电池平衡、电池保护

中图分类号:TM912.6 文献标识码:A

Smart Battery System Based on SH366000

Abstract:On the basis of the Li-ion battery of safety and effective use, We analyzed t he existing solution of Signal sample、Charge mode、SOC estimate、Safety protection、Cell balance、Man-machine interface、Low power design etc,summarized its disadvant age, and predicted the develop direction of the future.

Key Word:Li-ion Battery、Smart Battery System、SH366000、Charge Management、Ce ll Balance、 Battery Protection

概述

锂离子电池研究始于20世纪80年代,1991年由索尼公司首先推出了民用产品。由于具备能量密度高、体积小、无记忆效应、循环寿命高、自放电率低等诸多优点,锂离子电池目前广泛应用于手机、MP3、笔记本电脑、相机等各种便携式设备。尤其在笔记本供电方面,其优异的高能量优势更是发挥得淋漓尽致。

但是由于能量密度高及特有的化学特性,锂离子电池的安全性和稳定性方面亦存在隐患,如过高温和过充可能会燃烧甚至导致爆炸,过放电可能造成电池本身的损坏。近年来,连续出现的笔记本电脑电池爆炸燃烧事故,导致了全球性的大批量电池召回现象,给生产厂家带来了巨大的经济损失。

为保证电池使用的安全性,在提高电池本身材料性能及加强工艺控制的同时,智能电池管理系统也成为锂离子电池应用研究的重中之重。

本文将结合中颖电子股份有限公司的锂离子电池管理与保护芯片SH366000,对智能电池管理系统中的关键技术进行阐述。

智能电池管理系统

锂离子电池发展初期,电池管理系统一般只具有检测电池组电压、温度、电流及简单保护等功能。随着锂离子电池应用范围越来越广,应用方式越来越多,对锂离子电池管理系统的要求也越来越高。

智能电池管理系统一般具有如下几个功能:电池组参数采集、剩余电量计算、电池组故障保护、电芯均衡、通信等。

●电池组参数采集

电池组参数采集主要包括电池组中单体电池电压、系统电流、系统温度的采集,用于判定电池的剩余电量、故障保护等。

锂离子电池的电压最能体现电池的性能状态,既可以用于过充、过放等故障保护,也可以用于初步估计锂离子电池的剩余电量。系统电流可用于判断是否出现过放或过流,还可以通过对电流与时间的积分,估计电池的剩余电量等。系统温度主要用于防止电池组温度过高,发生安全事故,并对剩余容量计算进行补偿。

SH366000采用高精度的16位∆-Σ ADC,电压、电流的采集误差不超过±3mV、±2mA,最大限度的满足了锂离子电池容量统计和保护的需要。

●充电管理

锂离子电池的化学特性,决定了其必须采用恒流/恒压(CC/CV)模式对电池组进行充电管理,而在低温或低压情况下,又必须使用小电流充电的方式。

SH366000提供恒流/恒压(CC/CV)模式对电池组进行充电管理,并基于当前的充电电压、充电电流判断当前电池组是否已经满充,即在电池组总电压接近于满充电压,充电电流接近于0电流时,SH366000判定电池组处于满充状态,切断充电回路。

SH366000具有预充电模式,在电池电压比较低,或者系统温度比较低时,只允许小电流充电,以防电池组受到冲击,发生损坏。

●剩余电量预测

剩余电量是反映电池性能的重要参数,也是主机进行充电、放电的判断依据。剩余电量的准确估算可以保护电池,防止过充、过放的发生,便于客户做出合理的时间安排。当前,剩余电量的检测方式主要有开路电压法、库仑积分法、内阻法、卡尔曼滤波法、混合法等。

开路电压法是目前最简单的方法,根据电池的特性得知,在电池容量与开路电压之间存在一定的函数关系,当得知开路电压时,可以初步估算电池的剩余电量。该方法精度不高,且只适用于静态检测,无法直接用于真实应用。

内阻法利用电池内阻和剩余电量的对应关系,来判定系统的剩余电量。由于锂离子电池组的内阻随工作状态变化明显,不同特性的电芯之间也有差异,该方法的重点是如何能够快速得到当前应用条件下电芯的内阻。如果可以快速进行内阻的自我测量,则可以得到相对准确的剩余容量。

库仑积分法是通过计算电池组电流与时间的积分,计算锂离子电池组充入和放出的电量,再与电池的额定电量比较,从而得出当前的剩余电量。该方法简单、稳定,但必须对电流测量非常准确,否则会出现积累误差。另外,锂离子电池的自放电以及在低温和大电流下其放电效率会变低,都会进一步降低了剩余电量的检测精度。库仑积分法必须定期进行校正。

卡尔曼滤波法是指采用卡尔曼滤波算法,综合考虑电池组循环变化、电池老化、温度等影响,进而得到精准的剩余电量。该算法相对而言最精准,但是算法复杂,又需要足够的实验数据,暂未得到具体的应用。

混合法是指通过内阻法/开路电压法与库仑积分法相结合的方式,通过开路电压法/内阻法的定期校正,使用库仑积分法得到精准的剩余电量。该方法是目前使用最广泛的方式。

SH366000通过采用库仑积分法与改进型的开路电压法相结合的方式,根据系统负载大小、电芯温度、使用寿命,动态调整放电截止电压,从而最大可能的逼近电芯真实容量。

以4串1并(4S1P)容量2200mAh的锂离子电池为例,采用充电条件为恒流1100mA、恒压16800mV、充电终止条件为电流小于240mA,放点条件为恒流1100mA、动态放电终止电压约12600mV时,SH366000所统计电池满充容量与实际容量误差小于1%,保证电池运行时间。

相关文档
最新文档