两种定位夹紧机构工作原理分析
第三章 工件的夹紧及夹紧装置(夹具设计)

速,但自锁能力较差,增力比小,(取决于L/ρ的 比值)。常用在切削平稳且切削力不大的场合。
机械学院
第二节 基本夹紧机构
2.偏心夹紧机构-适用范围
几种常见偏心夹紧机构
机械学院
第二节 基本夹紧机构
3.螺旋夹紧机构-分类
直接夹紧式螺旋夹紧机构:拉紧式和压紧式 移动压板式螺旋夹紧机构:支点式和内嵌式 铰链压板式螺旋夹紧机构:遮盖式、杠杆式、翻转式、联动式 可拆卸压板式螺旋夹紧机构:直拆式和旋拆式
机械学院
移动式压板端面偏心轮夹紧机构
移动式压板端面偏心轮夹紧机构:主要由两个端面凸轮在不同的旋 转角度上产生的轴向位移来实现夹紧动作。它的结构简单、紧凑, 占用空间小,操作方便,但自锁性能差一些,因此,其夹紧行程受 到一定限制。
机械学院
转动式压板端面偏心轮夹紧机构
转动式压板端面偏心轮夹紧机构:主要由端面凸轮和滑动杆在转动 一定角度时产生的位移来实现夹紧动作。它的结构也比较简单,操 作方便,由于是利用杠杆原理进行夹紧,其夹紧力比较大,但占用 的空间要大一些。
夹紧力作用点的选择
2)作用在工件刚度高的部位
机械学院
第一节 夹紧机构原理
3.确定夹紧力的基本原则
夹紧力的作用点与工件变形 a)工件底面产生夹紧变形 b)改进方案
机械学院
第一节 夹紧机构原理
3.确定夹紧力的基本原则
夹紧力作用点的选择
3)夹紧力的作用点和支承点尽可能靠近切削部位,以提高工件 切削部位的刚度和抗振性。
机械学院
第二节 基本夹紧机构
6.斜楔夹紧机构-适用范围
斜楔夹紧装置常用在尺寸公差较小的夹紧装置中,主要用 于机动夹紧,且毛坯质量较高的场合。
两种快速夹紧机构工作原理分析

两种快速夹紧机构工作原理分析快速夹紧机构是一种用于夹紧工件或零件的装置,可以快速实现夹紧和松开的功能。
在生产和制造过程中,快速夹紧机构广泛应用于机械加工、装配线、自动化生产线等领域。
本文将分析两种常见的快速夹紧机构的工作原理。
第一种机构是气动夹紧机构。
气动夹紧机构是利用气动动力实现夹紧和松开的过程。
它的工作原理如下:1.气源供应:通过连接气源管道,将气源供应到夹紧机构中。
常见的气源有压缩空气等。
2.气动元件:夹紧机构中的气动元件包括气缸和气压控制装置。
气缸是实现夹紧和松开动作的关键部件,通过控制气缸的进气和排气来实现夹紧和松开的过程。
3.夹紧和松开:当气缸接收到气源供应时,进气使气缸内部的活塞向外推动,从而实现夹紧工件的目的。
当气缸排气时,气缸内的活塞向内收缩,松开工件。
整个夹紧和松开的过程可以通过控制气源的供应和排气来实现。
4.控制装置:气压控制装置用于控制气源的供应和排气,可以通过手动或自动控制。
控制装置常用的操作方式有手动阀、电磁阀、传感器等。
气动夹紧机构的优点是操作方便、响应速度快,适用于需要快速夹紧和松开的场合。
然而,由于其依赖于气源供应,需要连接气管和压缩空气设备,所以需要有稳定的气源供应。
同时,气动夹紧机构的夹紧力较小,不适用于对工件施加较大压力的场合。
第二种机构是液压夹紧机构。
液压夹紧机构是利用液体压力实现夹紧和松开的过程。
它的工作原理如下:1.液源供应:通过连接液压系统,将液压油供应到夹紧机构中。
液压油通常是由液压泵、压力调节器等组成。
2.液压元件:夹紧机构中的液压元件包括油缸、活塞和液控阀等。
油缸是实现夹紧和松开动作的关键部件,活塞通过阀门控制液压油的流动来实现夹紧和松开的过程。
3.夹紧和松开:当液压油进入油缸时,液压油的压力使活塞向外推动,从而实现夹紧工件的目的。
当液压油排出时,活塞向内收缩,松开工件。
整个夹紧和松开的过程可以通过控制液控阀来实现。
4.控制装置:液控阀用于控制液压油的进出和流量,可以通过手动或自动控制。
夹具典型定位、夹紧原理-李军

完全定位与不完全定位
• 而图b所示为铣削一个通槽,需限制除了 外的其他5个自由度。
完全定位与不完全定位
• 图中c所示在同样的长方 体工件上铣削一个键槽, 在三个坐标轴的移动和转 动方向上均有尺寸及相互 位置的要求,因此,这种 情况必须限制全部的6个 自由度,即完全定位
欠定位与过定位
• 欠定位: 工件实际定位限制的自由度少于该工序加工 所需限制的自由度数目; • 过定位: 两个或两个以上支承点重复限制同一个自由 度,这样将是工件的位置不确定;
常见的定位方式和定位元件
4.工件以组合表面定位
实际加工过程中,工件往往是以几个表面 同时定位的,称为“组合表面定位”。
常见的定位方式和定位元件
• 1 . 一个孔和一个端面组合 • 一个孔与端面组合定位时,孔与销或心轴定位采 用间隙配合,此时应注意避免过定位,以免造成 工件和定位元件的弯曲变形, 如图 示。
常见的定位方式和定位元件
2.工件以圆孔定位
有些工件,如套筒、法兰盘、拨叉等以孔作为定 位基准.
(1)定位销
常见的定位方式和定位元件
• (2)锥销:工件圆孔与锥 销定位,圆孔与锥销 的接触线是一个圆, 限制工件 、 、 三个 位移自由度,图 a 用 于粗基准,图 b 用于 精基准。
常见的定位方式和定位元件
这里我们将主要介绍具的定位与夹紧
工件定位的基本原理
• 工件定位的实质是什么呢? 使工件在夹具中占有某个确定的位置 • 怎样获得工件的确定位置呢? 通过定位支撑限制相应的自由度来获得 • 工件在空间直角坐标系内有具有几个自由 度? • 6个,如下图
工件定位的基本原理
在空间直角坐标系中,刚体具有六个自由 度,即沿X、Y、Z轴移动的三个自由度和绕 此三轴旋转的三个自由度。
两种快速夹紧机构工作原理分析

两种定位夹紧机构工作原理分析摘要:在生产中,我们时常会遇到需要夹紧工件的情况,对于不同形状的工件,我们需要不同类型的夹紧机构。
本文主要介绍两类比较常用的快速夹紧机构,即斜楔式夹紧机构和偏心轮式夹紧机构的受力分析和自锁条件关键词:夹紧力、自锁、升角、偏心轮快速夹紧机构是指以快速简便的动作就能实现对物体施加某种形式的作用力,使之夹紧固定、夹持移位或夹紧制动的机构。
①根据其作用,分为定位夹紧机构、夹持位移机构和制动夹紧机构。
其中,定位夹紧机构是将工件定位夹紧后,能承受一定的外力作用而不松动的机构。
如机床加工夹具和各种测试夹具等。
本文介绍的两种快速夹紧机构即为定位夹紧机构。
一.斜块式斜楔夹紧机构(斜楔机构)1.受力分析斜楔夹紧机构的受力图如图1所示,作用力Q 推动楔块,顶块沿斜面向上的夹紧力为P ,法向力N 与沿接触面的摩擦力f 合成一个反力R 。
顶块在Q 、P 和R 的作用下处于平衡状态,由里的封闭三角形可知,顶块的夹紧力为tan()Q P =α+ϕ 式中α———楔块斜面升角φ———反力R 作用线与法向反力N 作用线之间的夹角,成为摩擦角。
αQ RN fPαφQ RPαφ图1αR f P αφN Q P Q RφαγL e h P O 1O 2工件AFα图2 图32.自锁条件夹紧后。
顶块保持在夹紧状态,楔块不会自动松脱的现象,成为自锁。
②如图2所示,若顶块沿斜面向下相对滑动时,楔块将被推出。
这时,P 为主动力,Q 为支持力,摩擦力f 向上。
F 和法向力N 合成反力R 。
可得tan()Q P =ϕ-α由上式可知,若α>ϕ,则Q<0,即力Q 的方向与图中所示相反。
这时,只要存在力Q 就能使楔块松脱。
若α<ϕ,则力Q 与图示相同。
这时,顶块对楔块无论多大的反力也不会使楔块自动退出。
可见。
斜楔夹紧机构的自锁条件是:楔块斜面升角α小于摩擦角ϕ,即α<ϕ。
二.偏心轮式夹紧机构偏心轮夹紧机构的夹紧原理如图3所示,O 1是偏心轮的几何中心;O 2是偏心轮的转动中心;偏心轮半径为R ;A 是偏心轮夹紧支点,e 为偏心距。
夹紧机构(刘旋)

《机械系统设计》课程期末考查课程设计说明书学科专业:机械设计制造及其自动化班级:1117441学号:111744125学生姓名:刘旋指导老师:徐刚2014年6月工件夹紧机构设计一、工件的夹紧将工件定位后的位置固定下来称为夹紧,夹紧的目的是保持工件在定位中所获得的正确位置,使其在外力(夹紧力、切削力、离心力等外力)作用下,不发生移动和振动。
图 9-33 液压夹紧的铣床夹具1 -压板2 -铰链臂3 -活塞杆4 -液压缸5 -活塞1.1 夹紧装置的组成夹紧装置由两个基本部分组成。
1.1.1动力装置夹紧力的来源于人力或者某种动力装置。
用人力对工件进行夹紧称为手动夹紧。
用各种动力装置产生夹紧作用力进行夹紧称为机动夹紧。
常用的动力装置有:液压、气动、电磁、电动和真空装置等。
1.1.2夹紧机构一般把夹紧元件和中间传递机构和成为夹紧机构。
1 )中间传递机构它是在动力装置与夹紧元件之间,传递夹紧力的机构。
其主要作用有:改变作用力的方向和大小;夹紧工件后的自锁性能,保证夹紧可靠,尤其在手动夹具中。
2 )夹紧元件是执行元件,它直接与工件接触,最终完成夹紧任务。
图 9-33 所示是液压夹紧的铣床夹具。
其中,液压缸 4 、活塞 5 、活塞杆 3 组成了液压动力装置,铰链臂 2 和压板 1 等组成了铰链压板夹紧机构,压板 1 是夹紧元件。
1.2对夹紧装置的基本要求( 1 )能保证工件定位后占据的正确位置。
( 2 )夹紧力的大小要适当、稳定。
既要保证工件在整个加工过程中的位置稳定不变,振动小,又要使工件不产生过大的夹紧变形。
夹紧力稳定可减少夹紧误差。
( 3 )夹紧装置的复杂程度与生产类型相适应。
工件的生产批量越大,允许设计越复杂、效率越高的夹紧装置。
( 4 )工艺性好,使用性好。
其结构应尽量简单,便于制造和维修;尽可能使用标准夹具零部件;操作方便、安全、省力。
二、夹紧力的确定设计夹具的夹紧机构时,所需夹紧力的确定包括夹紧力的作用点、方向、大小三要素。
夹紧原理与典型的夹

单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样会使逻辑框架相对清晰。
间隙配合刚性心轴
夹紧力的方向
夹紧力的方向应尽量与工件受到的切削力、重力等的方向一致,以减小夹紧力 。 图:夹紧力的方向对夹紧力大小的影响
夹紧力的方向
动画
夹紧力的方向应与工件刚度最大的方向一致,以减小工件变形 。由于工件在不同方向上刚性不同,因此对工件在不同方向施加夹紧力时所产生的变形也不同。
夹紧力的作用点
螺旋夹紧装置
螺旋夹紧装置是从楔块夹紧装置转化而来的,相当于把楔块绕在圆柱体上,转动螺旋时即可夹紧工件。 标准浮动压块 1--夹紧手柄;2--螺纹衬套;3--防转螺钉 4--夹具体;5--浮动压块;6--工件
螺旋夹紧装置
a.移动压板 b.转动压板 c.翻转压板
螺杆夹紧力计算
夹紧力的大小
式中: ――理论计算的夹紧力;
――安全系数,一般取 1.5~3.0
(粗加工时,K =2.5~3.0 ; 精加工时,K=1.5~2.0)
工件的定位与夹紧

工件装夹的方法
划线找正法
先根据工序简图划出位置线、加工线和找正线,装夹工件时, 先按找正线找正工件的位置,然后夹紧工件。
特点:
效率低������ 定位精度低(0.1mm) ������ 不需要其它专门设备,通用性好������ 适用于单件,批量小������ 形状复杂毛坯公差大,精度要求低������ 表面粗糙,大型工件的粗加工工序
三、定位误差的分析与计算
1)以下母线定位
定位基准与工序基准重合, 无定位误差
三、定位误差的分析与计算
工序尺寸:加工后所要保证的尺寸 调整尺寸:运用调整法,通过直接调整这个尺寸而能 间接获得所要加工的尺寸 定位尺寸:工序基准与定位基准之间的关联尺寸
三 个 尺 寸
三、定位误差的分析与计算
2)以内孔定位(不考虑定位副制造、装配误差) 基准不重合误差:由于定位基准与工序基准不重合引起 的,工序基准相对于定位基准在加工尺寸方向上的最大 位置变动量。 ΔB
B d
2
Y
OO1
d
2 s in
2
D Y
思考:分析定位元件所限制的自由度
组合限制
组合限制
一、工件定位的基本原理
思考:分析定位元件所限制的自由度
一、工件定位的基本原理
思考:分析定位元件所限制的自由度
二、定位基准的选择
1、基准
基准:用来确定生产对象上几何要素间的几何关系所
依据的那些点、线、面。
未经机械加工的定位基准
设计基准
粗基准 经机械加工的
定位 误差
ΔD
基准不重合误差 ΔB 基准位移误差 ΔY
三、定位误差的分析与计算
理解定位误差注意:
数控机床工件的定位和夹紧

3.2 工件的定位
2.六点定位原则 在机械加工中,要完全确定工件在夹具中的正确位置,必须 用六个相应的支承点来限制工件的六个自由图3-3 工件的6点定位
3.2 工件的定位
3.定位与夹紧的关系
定位与夹紧的任务是不同的,夹紧不能取代定位。若认为工 件被夹紧,位置不能动,工件的自由度都已限制,这种理解是错 误的。另一方面,若认为工件在夹紧前仍可在定位元件的反方向 有运动的可能,因而自由度并未限制,位置也不确定,这种理解 也是错误的。夹紧的作用是使工件不离开各个定位元件。
(2)可调支承。可调支承的顶端位置可以在一定的范围内调 整。如图3-10所示为几种常用的可调支承典型结构。
1-可调支承螺钉;2-螺母 图3-10 几种常见可调支承
3.3 工件方式及定位元件
(3)自位支承。自位支承是一种支承本身可随工件定位表面 位置的变化而自动与之相适应的一种定位支承。如图3-11所示是几 种常见的自位支承结构。
此外,按使用机床类型可分为车床夹具、铣床夹具、钻床夹 具、镗床夹具、磨床夹具、齿轮机床夹具和其他机床夹具等。按 驱动夹具工作的动力源可分为气动夹具、液压夹具、气液夹具、 电动夹具、磁力夹具和真空夹具等。
3.1 机床夹具概述
四、机床夹具的组成
机床夹具通常由定位元件、夹紧装置、安装连接元件、导向 元件、对刀元件和夹具体等几个部分组成,如图3-1所示。
1.夹紧力的方向 (1)夹紧力的方向应朝向主要定位基面。 如图3-24(a)所示。
图3-24夹紧力方向示意
3.4 工件的夹紧
(2) 夹紧力的方向应有利于减小夹紧力。如图3-25所示为工件 在夹具中加工时常见的几种受力情况。显然,图3-25(a)为最合理, 如图3-25(f)情况为最差。
夹紧机构设计

夹紧机构设计全文共四篇示例,供读者参考第一篇示例:夹紧机构设计是一种常见的机械设计方案,它一般用于夹紧或固定两个物体,保证它们之间的连接不松动。
夹紧机构设计可以用于各种领域,比如制造业、建筑业、汽车工业等等。
在不同的应用场景下,夹紧机构设计有不同的设计原则和要求,本文将重点介绍夹紧机构设计的基本原理、常见类型以及设计要点。
一、夹紧机构设计的基本原理夹紧机构设计的基本原理是利用一定的力学原理,通过外力使两个物体之间产生一定的摩擦力或压力,从而实现夹紧或固定的作用。
常见的夹紧机构设计原理包括:1. 摩擦原理:通过增加两个物体之间的摩擦力,实现夹紧或固定的作用。
这种原理适用于不需要精确夹紧的场合,比如木工制品的组装。
以上是夹紧机构设计的基本原理,不同实际应用场景中,设计人员可以根据具体情况选择合适的设计原理。
夹紧机构设计根据其结构和工作原理的不同,可以大致分为以下几种常见类型:1. 螺纹夹紧:通过旋转螺纹,使夹紧力产生,从而实现夹紧或固定的作用。
这种类型的夹紧机构设计在机械制造领域应用广泛。
在进行夹紧机构设计时,设计人员需要注意以下几个要点:1. 确定夹紧力:根据连接物体的重量和工作环境的要求,确定夹紧力的大小。
夹紧力过大容易损坏物体,过小则无法确保连接的牢固。
2. 选择合适的夹紧机构类型:根据连接物体的形状和工作环境的要求,选择合适的夹紧机构类型。
不同类型的夹紧机构有不同的工作原理和适用范围,需要根据具体情况进行选择。
3. 考虑安全性:在进行夹紧机构设计时,设计人员需要考虑工作中可能出现的安全隐患,并设计相应的安全保护措施,确保使用过程中不会发生意外事故。
4. 考虑便捷性:在进行夹紧机构设计时,设计人员需要考虑操作的便捷性,设计出易于使用和维护的夹紧机构,提高工作效率和使用便利性。
以上是夹紧机构设计的要点,设计人员在进行具体设计时,可以根据这些要点进行参考,确保设计出合理、实用的夹紧机构。
总结:第二篇示例:夹紧机构在机械领域中是非常重要的一种机构,它可以在零件加工、装配、运输等过程中确保零件的夹紧和固定,从而保证加工质量和生产效率。
夹紧机构

图3.37弹性夹头和弹性心轴 1夹具体;2弹性筒夹;3锥套;4螺母;5心轴
(5) 波纹套定心夹紧机构
图3.38 波纹套定心心轴 1螺母;2波纹套;3垫圈;4工件;5支承圈
(6) 液性塑料定心夹紧机构
图3.39液性塑料定心夹紧机构 1夹具体;2簿壁套筒;3液性塑料; 4滑柱;5螺钉;6限位螺钉
复习题
(1)多件平行联动夹紧机构图3.26
②多件连续夹紧机图3.27
③对称式多件联动夹紧机构 图3.28
④复合式多件联动夹紧机构图3.29
⑶与其它动作联动的夹紧机构
①先定位后夹紧的联动机构图3.30
(2)夹紧与移动压板联动机图 3.31
③夹紧与辅助支承联动机构
3.32
3.5 定心夹紧机构
目录
下一节
3.4 联动夹紧机构
联动夹紧机构:利用一个原始 作用力实现单件或多件的多点、 多向同时夹紧的机构。 联动夹紧机构的主要形式及其 特点:
⑴单件联动夹紧机构
图3.23单件同向联动夹紧机构
②单件对向联动夹紧机构图3.24
(3)单件互垂力或斜交力联动夹紧机构
图3.25互垂力或斜交力联动夹紧机构
2、多件联动夹紧机构
1、定心夹紧机构的工作原理
例 1:如 图 3.3 3a),工 件 以外圆定位加工内孔,保 证同轴度。若在套筒中动 配 合 定 位 : △ jb=0, △db≠0,△dw=△db; 若 在三爪自动卡盘中定位, 因三爪等速向中心的移动, 使定位基准没有位移, △db=0,△dw=0。
b)
例2:如图3.33b),在 工件上加工槽,保证对 工件中心面的对称度。 若采用固定双支承平面 定位:△jb≠0,△db=0, △dw=△jb; 若 左 右 侧 面采用等速内、外移定 位元件,使定位基准为 中 心 面 , △ jb=0, △dw=0。
定心夹紧机构

定心夹紧机构
1.1 定心夹紧机构的工作原理
例3.2: 如图,在工 件上加工槽, 保证对工件中 心面的对称度。
定心夹紧机构
1.1 定心夹紧机构的工作原理
解:若采用固定 双支承平面定位: △jb≠0,△db=0,
△dw=△jb; 若左右侧面采
用等速内、外移动 定位元件,使定位 基准为中心面,
△jb=0,△dw=0。
1.2 常见的定心夹紧机构
螺栓式定心 夹紧机构
定心夹紧机构
1.2 常见的定心夹紧机构
楔式定心 夹紧机构
定心夹紧机构
1.2 常见的定心夹紧机构
杠杆式定 心夹紧机构
定心夹紧机构
1.2 常见的定心夹紧机构
弹簧筒夹 式定心夹 紧机构
定心夹紧机构
1.2 常见的定心夹紧机构
波纹套定 心夹紧机构
定心夹紧机构
定心夹紧机构
1.1 定心夹紧机构的工作原理
例3.1: 如图,工件以
外圆定位加 工内孔,保 证同轴度。
定心夹紧机构
1.1 定心夹紧机构的工作原理
解:若在套筒中动配 合定位:△jb=0, △db≠0, △dw=△db; 若在三爪自动卡 盘中定位,因三爪 等速向中心的移动, 使定位基准没有位 移,△db=0, △dw=0。
1.2 常见的定心夹紧机构
液性塑料 定心夹紧机构
机床夹具设计
Hale Waihona Puke 机床夹具设计定心夹紧机构
1. 定心夹紧机构 定位和夹紧同时实现的夹紧机构。采用定
心夹紧机构可减少△dw。 2. 工作原理
利用“定位—夹紧”元件的等速移动或均 匀弹性变形来实现定心或对中。 3. 特点
(1) “定位—夹紧”元件合二为一; (2)始终有△db=0; (3)主要用在要求定心和对中的场合。
夹紧机构的介绍

薄壁套筒的设计
薄壁套筒直径D---取工件定位基准的直径 薄壁厚度h---按表中简化公式计算
滑柱的结构
塑料通道的布置
滑柱加压位置的选择
膜片卡盘
高精度弹性涨套
蝶形弹簧夹具
切削力自紧心轴 1、心轴体 2、隔离套 3、滚柱
离心力夹紧夹具 4
1、重块 2、销轴 3、滑块 4、凸缘 5、拉杆 6、弹簧夹头
将M QL M 2 Fr Wr tan2
M1
R s in(
1)
d0 2
W
tan(
1
)
d0 2
代入QL
W
tan(
1)
d0 2
Wr
tan 2
得:W
QL
(N)
d0 2
tan(
1)
r
tan 2
式中:
w-夹紧力;
Q-原始作用力;L-作用力臂;
斜楔升角必须小于两处摩擦角之和。
通常为自锁可靠取 6 8
增力特性:
W Q
iz
增力系数
iz
W Q
1
tan1 tan(
2 )
1
tan( 2)
螺钉夹紧
压块与压紧螺钉的连接方式
螺母夹紧
矩形螺纹螺旋夹紧受力分析
力矩平衡条件M M1 M 2
液压夹紧概述
• 利用液压油为传递动力的介质,工作原理与气动 夹紧相似,但有以下优点:
• 工作压力高,可达 50 105 65 105Pa ,因此在产生 同样夹紧力情况下,结构要比气动更为紧凑。
• 液压油不可压缩,夹紧的刚性大,工作平稳,更 为可靠。
大型机床双向作用增力夹紧装置原理

机床的定位夹紧装置是帮助机械运动部件克服外力,避免发生位移的辅助装置,是机械运动部件定位时必不可少的重要装置。
大型机床拥有先进的双向作用增力夹紧装置,在定位中能够起到很好的效果,下面我们就来介绍其工作原理和工作过程。
双向作用增力夹紧装置工作原理:双向作用增力夹紧装置是由一个凹型安装座以及分别对称安装在该安装座横向中心线两边的四组碟簧施力机构和两套矩形杠杆组件和两套球面浮动夹紧机构组成的。
这套装置利用并联碟簧组产生的较大机械力,再通过杠杆增力机构将这个力扩大,这样就能够保持一个恒定且不受外部因素影响的作用力,从而实现牢固可靠的夹紧效果。
夹紧装置的松开,是通过液压作用使碟簧组压缩来实现的。
为了防止因为夹紧力过大,对承载工件的刚度造成破坏,夹紧力的施力部分采用了双向对称式的布局,其传力部分采用了杠杆与球面浮动自适应结构。
这样一来,夹紧力越大,其与工件接触面的贴合就越好,使受力均匀分布在工件表面,不容易破坏工件刚度。
而且,领用碟簧和杠杆增力机构的设计,使加紧机构的整体结构更紧凑,调试和维护也更加方便。
夹紧装置的夹紧过程:需要夹紧时,被压缩的碟簧组产生的弹力会通过活塞杆的传递,作用在压力调节杆上。
压力调节杆再将其传递到用螺纹固定联接的矩形杠杆上。
接下来,矩形杠杆在支撑杆的球面浮动支点作用下,将夹紧力放大并传递到夹紧杆。
夹紧杆与夹紧板座之间的接触方式为球面浮动接触,这种接触方式可以确保夹紧板与工件接触面不受角度变化的影响,始终保持贴合紧密,受力均匀。
为了增加受力部位的摩擦系数,并且避免因夹紧力过大损坏工件表面,应该采用有色金属铜,作为夹紧板的材料。
夹紧装置的松开过程:需要松开加紧机构时,机床液压系统会产生压力油,通过进油口同时注入到由安装座和活塞杆组成的4个并联液压缸中。
在液压油的压力作用下,活塞杆移动并压缩碟簧,回位弹簧将夹紧杆复位,完成加紧机构的松开。
再次夹紧时,只需将液压油的压力泄除就可以了。
夹紧装置的增力原理:夹紧装置的增力原理既用到了力的合成,又用到了杠杆原理。
第3章 工件的定位和夹紧

3.3 工件方式及定位元件
(a)平顶支承钉;(b)圆顶支承钉 ; (c)网纹顶支承钉; (d)带衬套支承钉 图3-8 几种常用支承钉
3.3 工件方式及定位元件
(a) 为平板式支承板;(b)斜槽式支承板 图3-9 两种常用的支承板
3.3 工件方式及定位元件
(2)可调支承。可调支承的顶端位置可以在一定的范围内调 整。如图3-10所示为几种常用的可调支承典型结构。
图3-6 常见的几种过定位实例
3.2 工件的定位
( 复限制而出现过定位。此时可采取如下措施解决。
No Image
No Image
如图3-6(b)所示为孔与端面联合定位。由于大端面可以限制3个自由度 受到重 、 、 ),而长销可以限制 4 个自由度( x 、 z 、 、 ),因此,、 z z z
此外,按使用机床类型可分为车床夹具、铣床夹具、钻床夹 具、镗床夹具、磨床夹具、齿轮机床夹具和其他机床夹具等。按 驱动夹具工作的动力源可分为气动夹具、液压夹具、气液夹具、 电动夹具、磁力夹具和真空夹具等。
3.1 机床夹具概述
四、机床夹具的组成
机床夹具通常由定位元件、夹紧装置、安装连接元件、导向 元件、对刀元件和夹具体等几个部分组成,如图3-1所示。
3.2 工件的定位
三、定位的类型
1.完全定位与不完全定位
(1)完全定位。工件的6个自由度完全被限制的定位情况, 如图3-4(c)所示。
(2)不完全定位。工件的6个自由度不需完全被限制的定位 情况,如图3-4(a)和图3-4(b)所示。
完全定位和不完全定位,这两种定位类型都是正确可行的, 生产中被广泛采用。
3.4 工件的夹紧
二、夹紧装置的组成
夹紧装置的组成,如图3-23所示,由以下3部分组成。
工件在夹具中的定位与夹紧讲稿课件

用,降低夹具制造过程中的能耗和资源消耗。
THANKS 感谢观看
课程目标
01
02
03
04
掌握工件在夹具中的定位原理 和方法
理解夹紧力的作用和计算方法
学习常见定位与夹紧机构的组 成和工作原理
了解定位与夹紧误差的分析和 补偿方法
02 工件定位原理
定位要素
01
02
03
基准点
工件上的确定位置,用作 确定工件在夹具中的位置 。
定位元件
夹具中用于限制工件自由 度的元件。
按孔定位
根据工件上的孔的形状和位置, 选择相应的定位元件进行定位。
按外轮廓定位
根据工件的外轮廓形状和位置, 选择相应的定位元件进行定位。
03 夹具设计基础
夹具的组成
01
02
03
04
定位元件
用于确定工件在夹具中的位置 ,通常由导轨、挡块、定位销
等组成。
夹紧机构
用于将工件固定在夹具中的装 置,通常由气动或液压系统驱
定位系统
由基准点和定位元件组成 的系统,用于确定工件在 夹具中的位置。
定位原理
完全定位
工件的六个自由度都被限 制,可以确定工件在夹具 中的精确位置。
不完全定位
工件的自由度没有被全部 限制,部分自由度没有被 限制。
欠定位
工件的自由度没有被全部 限制,部分自由度被限制 。
定位方法
按加工面定位
根据工件加工面的位置和形状, 选择相应的定位元件进行定位。
02
柔性化与模块化设计
为了适应多品种、小批量的生产需求,工件定位与夹紧技术正朝着柔性
化和模块化方向发展。通过采用可重构的夹具系统,实现快速更换和调
通用定位组合夹具工作原理

通用定位组合夹具工作原理通用定位组合夹具是一种高效的夹具工具,广泛应用于汽车、机械制造、航空航天等行业中。
该夹具能够实现多种零件的夹持和处理,提高了生产效率和产品质量。
该工具的工作原理如下:一、定位原理通用定位组合夹具采用五面定位原理,即通过上、下、左、右、中五个面进行定位。
夹具的上表面由可调节的定位销构成,定位销与工件之间通过装配簧片连接,使工件与夹具上表面精确定位。
夹具下表面同样由定位销构成,它们与夹具支架上的定位孔相匹配,保证工件在平面上的准确定位。
夹具的左右面也有定位销,它们与工件的过孔配准,保证工件在平面内的准确定位。
夹具的中面是夹紧支撑面,用以夹持工件。
二、夹紧原理通用定位组合夹具的夹紧原理是通过拉杆动力实现。
拉杆与螺母、摆杆、弧齿轮等构成强大的机械传动系统。
当旋转摆杆时,螺母驱动拉杆运动,拉杆的末端与钩爪相连,将工件夹紧在夹持支撑面上。
当摆杆旋转到一定角度时,邻近的螺母与弧齿轮啮合,从而将摆杆锁定,使夹具稳定可靠地夹持工件。
三、操纵原理通用定位组合夹具的操纵原理是通过控制机构实现的。
夹具的控制机构主要包括手动、气动、液压等多种形式。
手动控制通过手柄、拉杆、钢珠等组成。
气动控制则通过压缩空气控制夹具的开合。
液压控制则通过液压油的传动,控制夹具的夹紧和松开。
四、使用原理通用定位组合夹具的使用原理是通过具体工件的特点和操作需求进行选择。
使用时首先根据工件的形状、尺寸和定位方式选择相应的夹具模板,并将夹具安装在机床上。
然后将工件置于定位销的位置上,逐步进行夹紧,直到夹紧力达到所需的工作力矩。
最后进行加工作业时,夹具不仅可以稳固地夹紧工件,还能保证工件在加工过程中的准确位置和安全。
一、适用范围广通用定位组合夹具具有极高的适应性,适用于多种不同形状、尺寸、材料的工件,从而降低了生产过程中夹具的选择和更换频率,节省了时间和成本。
二、精度高通用定位组合夹具通过五面定位的方式,使得工件的定位精度更高,从而达到更高的加工精度。
浮动夹紧双向定心夹紧机构

浮动夹紧双向定心夹紧机构摘要介绍了浮动夹紧双向定心夹紧机构的结构特点和工作原理,该机构在批量生产中具有重要的现实意义关键词:浮动夹紧双向定心夹紧机构1引言在进行批量生产的自动机床或组合机床生产线上,经常遇到一些以毛坯表面作定位基准的不规则的回转体类零件。
由于这类零件其本身存在着铸造误差,所以很难保证其对中和均匀夹紧的要求,这是工程技术人员都在努力探讨的问题。
我们经过大量的实践,设计了浮动夹紧双向定心夹紧机构,解决了以毛坯表面作定位基准时的浮动夹紧问题。
该机构在大批量生产中有着十分重要的现实意义。
2工作原理浮动夹紧双向定心夹紧机构的基本工作原理是:当被夹持工件的尺寸有误差时,它的两对卡爪可以在设计的范围内自动进行调节,通过钢球与锥面的补偿作用,使夹持的工件对中,并使夹紧力均匀作用在四个卡爪上。
其工作过程分析如下。
图1卡爪位置示意图为便于说明,将图1所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个卡爪按相互垂直方向分成两对。
以外夹为例,根据传动原理图(见图2),这时与Ⅰ、Ⅱ这一对卡爪相连的杠杆3 分别插入外锥套4的孔中,与Ⅲ、Ⅳ这一对卡爪相连的杠杆9分别插入内锥套6的孔中。
需要说明的是,图2所示的仅仅是两对卡爪中各自只有一个卡爪的杠杆分别插入内、外锥套时的工作情况。
当油缸拉杆7向左移动时,拉动拉杆套8,并压迫钢球5,通过锥面推动外锥套4和内锥套6同时向左运动。
外锥套4 推动杠杆3,内锥套6推动杠杆9,各自带动与之相连的卡爪1、滑块2和卡爪11、滑块1 0动作,如图2所示。
在夹紧过程中,假定工件存在着定位尺寸误差,标号为Ⅰ、Ⅱ的这一对卡爪先接触工件,标号为Ⅲ、Ⅳ的另一对卡爪距离工件还相差一个间隙Δl1(设两卡爪距工件间隙值相等,即ΔlⅢ=Δl Ⅳ),此时外锥套4尽管受到钢球5的作用力,但由于与其相连的Ⅰ、Ⅱ卡爪已夹住工件,行程受到限制s,所以外锥套4不能向左移动。
而内锥套6由于与其相连的Ⅲ、Ⅳ两卡爪各自与工件的间隙值相等,因此内锥套6在钢球5的作用下,可以产生与外锥套4的相对滑移,即向左移动,直到Ⅲ、Ⅳ这一对卡爪均移动同样距离夹紧工件后停止,其移动距离的大小即误差补偿值大小,是由设计的结构参数决定的。
夹紧机构

斜楔夹紧的特点:
(1)斜楔机构简单,有增力作用。一般扩力比(约为3) ,α愈 小增力作用愈大。
Ip=W/Q=1/[tg (α+φ1)+ tgφ2]
取 φ1 = φ2 =6º α=10º , 代入得ip=2.6 α越小,增力比越大 斜楔夹紧机构增力比小,效率低下,多用于机动夹紧机构中。
带滚子斜楔夹紧的夹紧力计算:
③ 夹紧力方面应使所需夹紧力尽可能小。
P:切削力、W:重力,Q:夹紧力 P、W相同时,哪一情况Q可最小? 由此可见,夹紧力大小与夹紧力方向直接有关,在考虑 夹紧方向时,只要满足夹紧条件,夹紧力越小越好。
2.夹紧力作用点的选择 ① 夹紧力应落在支承元件上或几个支承元件所形成的平面内
Q
Q
不合理
合理
偏心夹紧必须保证自锁,否则就不能应用。
斜楔夹紧一样,圆偏心的自锁条件相应为:斜楔夹紧一
样,圆偏心的自锁条件相应为:
D/e值反映了偏心轮的偏心特性,它可用来表示偏心轮工
作的可靠性;此值大,自锁性能好,但结构尺寸也大。
满足偏心轮D/e≥14~20的条件时,机构即能自锁。
4)、夹紧力计算:
如图所示,计算时 可把圆偏心工作情况 看成是一个塞于转轴 和 工 件 之间 升 角 为 aP 的假想斜楔。
sinaT=sinamax= 2e/D sinamin= 0
2)工作段的确定
一般取450-900所对应的圆弧段为工作段。 当2e/D很小时,可以取偏心线水平位置时的接触点P
为升角最大的夹紧点。
图示为
取相对P点左右对称的一段圆弧为工作段,即A到B 段。夹角r通常取300-450,夹紧行程大于e.
3)偏心夹紧必须保证自锁条件
螺母1,通过一
常用的夹紧机构

由于增力比、夹紧行程、自锁条件是相互制约, 在确定斜楔升角时,要兼顾三者的实际需要。单 一斜楔夹紧机构夹紧力小且操作不便,很少使用, 通常用于机动夹紧或组合夹紧机构中。
二、螺旋夹紧机构
本质:相当于斜楔绕在圆柱体上形成,所以夹紧 工件仍是楔紧作用。 结构简单,螺纹升角α ≤4°,夹紧可靠,耐振。 夹紧行程不受限制,但夹紧行程大时,操作时间 长。 缺点是夹紧动作较慢,机动夹紧较少用。
7、液性塑料定心夹紧机构
工作原理:液态塑料 压力下使薄壁部分在 径向产生均匀的弹性 变形,从而将工件定 心夹紧。 特点:定心精度高、 定位稳定,实用性强
主要结构形式:单个螺旋夹紧结构、螺旋压板夹 紧机构
1、单个螺旋夹紧机构
受力分析: MQ—原始力矩; M1—螺母阻止螺钉转动的力矩; M2—工件阻止螺钉转动的力矩; 仨作用下处于平衡:
螺纹的形成
2、螺栓压板夹紧机构
可根据杠杆原理改变力臂关系,使操作省力、 使用方便。 常见的五种典型组合结构: 减力但增加压板行程的组合结构 不增力但改变夹紧力方向的组合结构 铰链压板机构,增力但减小夹紧行程 钩形压板 自调节式压板
(二)各类典型机构特点及适用范围
按定心作用原理分类:
一种是依靠传动机构使定心夹紧元件同时作等速移动, 从而实现定心夹紧; 另一种是依靠定心元件本身作均匀的弹性变形,从而 实现定位夹紧。
1、螺旋式定心夹紧机构
结构简单、工作行程大、通用性 好。但定心精度 不高,主要适用于粗加工或半精加工中需要行程 大而定心精度要求不高的工件。
3、快速装卸机构
1)快卸垫圈螺母夹紧机构
2)快卸螺母结构 3)回转压板夹紧机构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两种定位夹紧机构工作原理分析
摘要:在生产中,我们时常会遇到需要夹紧工件的情况,对于不同形状的工件,我们需要不同类型的夹紧机构。
本文主要介绍两类比较常用的快速夹紧机构,即斜楔式夹紧机构和偏心轮式夹紧机构的受力分析和自锁条件。
关键词:夹紧力;自锁;升角;偏心轮
快速夹紧机构是指以快速简便的动作就能实现对物体施加某种形式的作用力,使之夹紧固定、夹持移位或夹紧制动的机构。
①根据其作用,分为定位夹紧机构、夹持位移机构和制动夹紧机构。
其中,定位夹紧机构是将工件定位夹紧后,能承受一定的外力作用而不松动的机构。
如机床加工夹具和各种测试夹具等。
本文介绍的两种快速夹紧机构即为定位夹紧机构。
1.斜块式斜楔夹紧机构(斜楔机构)
1.1受力分析
斜楔夹紧机构的受力图如图1所示,作用力Q推动楔块,顶块沿斜面向上的夹紧力为P,法向力N与沿接触面的摩擦力f合成一个反力R。
顶块在Q、P 和R的作用下处于平衡状态,由里的封闭三角形可知,顶块的夹紧力为
式中α———楔块斜面升角
φ———反力R作用线与法向反力N作用线之间的夹角,成为摩擦角。
图1
图2 图3
1.2自锁条件
夹紧后。
顶块保持在夹紧状态,楔块不会自动松脱的现象,成为自锁。
②
如图2所示,若顶块沿斜面向下相对滑动时,楔块将被推出。
这时,P为主动力,Q为支持力,摩擦力f向上。
F和法向力N合成反力R。
可得
由上式可知,若> ,则Q<0,即力Q的方向与图中所示相反。
这时,只要存在力Q就能使楔块松脱。
若< ,则力Q与图示相同。
这时,顶块对楔块无论多大的反力也不会使楔块自动退出。
可见。
斜楔夹紧机构的自锁条件是:楔块斜面升角小于摩擦角,即< 。
2.偏心轮式夹紧机构
偏心轮夹紧机构的夹紧原理如图3所示,O1是偏心轮的几何中心;O2是偏心轮的转动中心;偏心轮半径为R;A是偏心轮夹紧支点,e为偏心距。
当偏心轮绕O2转动时,O2点至工件表面间的距离h发生变化。
利用这个变化可对工件进行夹紧。
图中h值为
h=O1A-ecosγ=R- ecosγ
式中γ——O1A与O1O2之间的夹角。
偏心轮实际上相当于一个特殊的斜楔,区别是,斜楔的升角是个常数;而偏心轮的升角α与夹紧支点的位置有关,也即是与γ角有关的变量。
1.自锁条件
设计时,为使偏心轮夹紧时保证自锁,须满足如下条件:
α≤φ1+φ2
式中α———偏心轮工作圆弧段夹紧点的升角
φ1———偏心轮回转轴处的摩擦角
φ2———偏心轮与工件间的摩擦角。
由图3几何关系可得
为简化计算和自锁可靠,并以最大升角α为夹紧装置是,有
R/e称为偏心轮特性,它表征偏心轮工作的可靠性。
只要满足上式要求,偏心轮圆周上的夹紧点均有安全的自锁性能。
2.夹紧力计算
设F为对手柄的作用力,L为手柄有效长度,P为偏心轮在接触点A夹紧时的夹紧力,对O2取矩,可得
由此可算得夹紧力为
参考文献:
[1]陈国华.机械机构及应用[M]机械工业出版社,2008.1
[2]邱永成.机械基础[M]中国农业出版社,2004.6。