轴对称和轴对称图形(2)

合集下载

第2章轴对称知识点

第2章轴对称知识点

第2章《图形的轴对称》知识点总结知识点一:轴对称(一)轴对称和轴对称图形1、有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

画对称点的方法:先向对称轴作垂线段,再延长,使延长部分等于垂线段,即可得到对称点。

4、轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(2)类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(3)连接任意一对对应点的线段被对称轴垂直平分.(4)轴对称图形上对应线段相等、对应角相等。

5.画一图形关于某条直线的轴对称图形的步骤:(1)找到关键点(2)画出关键点的对应点(3)按照原图顺序依次连接各点。

(二)轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成一个图形那么他就是轴对称图形,反之亦然。

(三)用坐标表示轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

关于谁,谁相反;关于原点都相反(四)关于坐标轴夹角平分线对称点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)(五)关于平行于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);知识点二:线段的垂直平分线与角平分线的性质(一)线段的垂直平分线(1)线段的垂直平分线的定义:经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段垂直平分线的性质:线段的垂直平分线上的点与这条线段两个端点的距离相等。

专题5.1-4轴对称图形及其性质精讲(解析版)

专题5.1-4轴对称图形及其性质精讲(解析版)

B.角平分线的交点为三角形的内心,到各边距离相等,不符合题意;
C.高的交点为垂心,而到各顶点相等的只能是垂直平分线的交点,不符合题意;
D.△ABC 三边垂直平分线的交点上,符合题意.
故选 D.
2.(2020·湖北宜昌)如图,点 E,F,G,Q,H 在一条直线上,且 EF GH ,我们知道按如图所作的直
【答案】1:3 【解析】解:∵DE 垂直平分 AB, ∴AD=BD, ∴S△ADE=S△BDE, ∵∠1=∠2,∠C=∠BDE=90°,BE=BE, ∴△BDE≌△BCE(AAS), ∴S△BDE=S△BCE, ∴S△AED:S△ABC=1:3, 故答案为:1:3. 4.(2020·安徽砀山初二期末)如图,在△ABC 中,AC=5 cm,AB 的垂直平分线交 AC 于点 N,△BCN 的周长是 8 cm,则线段 BC 的长为________ cm.
二、考点点拨与训练
考点 1:轴对称图形的识别 典例:(2020·江苏新沂初三一模)剪纸艺术是我国古老的民间艺术之一,作为一种镂空艺术,它能给人以视 觉上的透空感觉和艺术享受.下列剪纸作品中,是轴对称图形的是( )
A.
B.
C.
D.
【答案】A 【解析】 解:A 选项能够关于一条直线对称,是轴对称图形,故 A 正确; B 选项不是轴对称图形,故 B 错误; C 选项不是轴对称图形,故 C 错误;
D.
【答案】C 【解析】解:A、B、D 中的图形不是轴对称图形, C 中的图形是轴对称图形, 故选:C. 6.(2020·全国初二课时练习)我们理应对我们所得的一切心怀感恩,这是我们强大的基础.少年强则国强, 中国强则中国少年更强,中国强就是因为少年强.为了庆祝祖国生日小强做了以下几幅剪纸作品,其中是轴 对称图形的是( )

对称图形知识点总结

对称图形知识点总结

一、对称图形的概念对称图形是指具有某种对称性的图形,即某个中心或轴对称线将图形分成两部分,两部分是完全一样的。

在数学中,对称性是研究图形的一个重要方面,对称图形由对称性的特点而形成,对称性是图形的一种性质,涉及到图形的划分、变换和结构等方面。

对称图形的研究对于理解图形的特点、性质和变换等方面具有重要意义。

二、对称图形的种类1. 中心对称图形中心对称图形是指具有中心对称性质的图形,即图形中心有一个点,以这个点为中心,对称于这个点的对应点,使得整个图形是对称的。

常见的中心对称图形有正方形、长方形等。

2. 轴对称图形轴对称图形是指具有轴对称性质的图形,即图形中有一条直线,使得图形在这条直线上的对称点是完全一样的。

常见的轴对称图形有心形、五角星等。

3. 多重对称图形多重对称图形是指具有多个对称性质的图形,即图形可以在不同的中心或轴上具有对称性质。

常见的多重对称图形有十字花、各种花纹图案等。

三、对称图形的性质1. 中心对称图形的性质(1)中心对称图形的任意两条对称轴相交于图形中心,对称轴上的任意一点到图形中心的距离等于该点的对称点到图形中心的距离。

(2)中心对称图形的任意点关于中心对称点的坐标之和等于中心坐标的两倍。

2. 轴对称图形的性质(1)轴对称图形的对称轴上的任意一点到图形的任意一点的距离等于这两点的对称点之间的距离。

(2)轴对称图形的对称轴也是它的轴对称中心。

3. 多重对称图形的性质多重对称图形具有多个对称轴或对称中心,同时具有多个对称性质,其特点是更加复杂和多样化。

1. 艺术设计对称图形常常被用于各种艺术设计中,例如各种花纹、图案等,对称性的特点可以使得作品更加美观、和谐。

2. 建筑设计建筑设计中的各种图形、装饰等常常利用对称性的特点,使得建筑更加稳定、美观。

3. 工艺制作各种工艺制品、礼品等常常利用对称图形的特点进行制作和加工,使得产品更加精致、美观。

4. 科学研究对称图形的研究也对科学研究有着重要的意义,例如在化学、生物学等领域中,对称性常常被用于研究物质的结构和性质等。

轴对称与轴对称图形的区别与联系

轴对称与轴对称图形的区别与联系

轴对称与轴对称图形的区别与联系说明”轴对称图形”和”轴对称”是两个不同的概念,它们的区别与联系如下:区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.下面是一些概念和定理,希望能帮到你。

【轴对称】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。

说明:(1)轴对称是指两个图形之间形状个位置的关系,包含两层意思:一是两个图形,能够完全重合,即形状大小都相同;二是对重合的方式有限制,也就是它们的位置关系必须满足一个条件,即把它们沿某一条直线对折后能够重合,因此,全等的图形不一定是轴对称的,而轴对称图形一定是全等的.(2)对称轴是指一条直线.【关于轴对称的定理】定理1 关于某条直线对称的两个图形是全等形.定理2 如果两个图形关于某直线对称.那么对称轴是对应点连线的垂直平分线.(逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.)定理3 两个图形关于某直线对称.如果它们的对应线段或延长线相交,那么交点在对称轴上. 说明(1)定理1实际上是轴对称定义的一部分.为了突出这一点,教材把它作为一个定理.(2)定理1,2,3都是轴对称的性质,而逆定理是轴对称的判定定理.由于定义是根据图形翻折后是否重合来判定两个图形是否对称,实际操作很困难,所以该逆定理就是判定轴对称的主要依据.(3)如果A,B两点的对称点是A‘,B‘,那么线段AB的对称图形必是线段A‘B‘,因此对于直线形,如线段,三角形,折线等等.要求它们的对称图形,只需把它们的顶点的对称点确定,然后只要将线段按相同关系连结即可,而不必去找图形上每个点的对称点.【轴对称图形】如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴.如果两个图形关于某条直线成轴对称,那么对称轴是(对称点的中点的连线,即垂直平分线)轴对称图形的对称轴是(对折重合的折痕线)。

初中数学知识点——轴对称与中心对称

初中数学知识点——轴对称与中心对称

初中数学知识点——轴对称与中心对称一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。

说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。

轴对称与轴对称图形

轴对称与轴对称图形

定 义示例剖析轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.如图,等腰三角形ABC △是轴对称图形.注:在理解轴对称图形时.应注意以下几点:(1)一个图形被对称轴分成两部分,对折后能重合(即全等),这样的图形是轴对称图形.常见的有线段、角、等腰三角形、长方形、圆等.(2)轴对称图形的对称轴是一条直线..,不是射线也不是线段,在叙述时应注意.(3)轴对称图形的对称轴条数至少有一条.否则不是轴对称图形.有的轴对称图形的对称轴条数是有限的.还有的有无限多条对称轴.知识互联网知识导航模块一 轴对称图形的认识与应用轴对称初步两个图形轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.如图,ABC△与'''A B C△关于直线l对称,l叫做对称轴.A和'A,B和'B,C和'C是对称点.注:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.轴对称的性质:1.关于一条直线轴对称的图形全等;2.对称点连成的线段被对称轴垂直平分.【例1】⑴在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A B C D⑵在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.A BCA BCA BCCBA⑶正六边形是轴对称图形,它有条对称轴.⑷下列图形中对称轴最多的是()A.圆B.正方形C.等腰三角形D.线段⑸判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴.⑹已知两条互不平行的线段AB和A′B′关于直线l对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线l上;③若A、A′是对应点,则直线l垂直平分线段AA′;④若B、B′是对应点,则PB=PB′,其中正确的是()夯实基础A .①③④B .③④C .①②D .①②③④【例2】 ⑴ 图1的长方形ABCD 中,E 点在AD 上,且∠ABE =30°.分别以BE 、CE 为折线,将A 、D 向BC 的方向折过去,图2为对折后A 、B 、C 、D 、E 五点均在同一平面上的位置图.若图2中,∠AED =15°,则∠BCE 的度数为( )A .30°B .32.5°C .35°D .37.5°⑵如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( ) A .① B .② C .③ D .④⑶ 已知30AOB ∠=°,点P 在AOB ∠内部,1P 与P 关于OB 对称,2P 与P 关于OA 对称,则1P ,O ,2P 三点确定的三角形是( )A .直角三角形B .钝角三角形C .腰底不等的等腰三角形D .等边三角形定 义示例剖析线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也称之为中垂线.EDC BA 如图,若AC BC =,AB CD ⊥,则直线DE 是线段AB 的垂直平分线.模块二 线段的垂直平分线知识导航能力提升图2图1ABCD EED④②线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.EDC BA如图,已知直线DE 是线段AB 的垂直平分线,则DA DB =.线段的垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.EDC BA如图,若DA DB =,则点D 在线段AB 的垂直平分线上.【例3】 ⑴ 如何用圆规与直尺作线段AB 的垂直平分线?⑵ 证明:线段的垂直平分线上的点与这条线段两个端点的距离相等(线段垂直平分线的性质).⑶ 证明:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上(线段垂直平分线的判定).【例4】 ⑴ 如下图1,在△ABC 中,DE 是AC 的中垂线,AE =3cm ,△ABD 得周长为13cm ,则△ABC 的周长是 .⑵ 如下图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是 .夯实基础⑶ 如下图3,在ABC △中,90A ∠=︒,:2:3ABD DBE ∠∠=,DE BC ⊥,E 是BC 的中点,求C ∠的度数.图3图2图1ED CBAPE DCBAED CBA【例5】 ABC △的两边AB 和AC 的垂直平分线分别交BC 于点D 、E ,⑴若BC =8,求△ADE 的周长;⑵若150BAC DAE ∠+∠=︒,求BAC ∠.定 义示例剖析角平分线的性质定理:在角的内部平分线上的点到这个角的两边的距离相等.DFEO CBA如图,若射线OC 是∠AOB 的角平分线,则DE=DF .角平分线的判定定理:在角的内部到一个角两边距离相等的点在这个角的平分线上.DFEOCB A能力提升知识导航模块三 角平分线性质及常见辅助线模型(一)H FEDCB A如图,若DE=DF ,则OC 是∠AOB 的角平分线.角平分线的两种基本模型1. 点垂线,垂两边,对称全等要记全A BCDO12E已知:12∠=∠,CD OA ⊥,作CE OB ⊥于E ,则OCD OCE △≌△.2.角平分线+平行线,等腰三角形必呈现321OD CBA已知:12∠=∠,CD OB ∥交OA 于D ,则ODC △为等腰三角形(即OD CD =).【教师铺垫】证明:⑴ 角平分线上的点到这个角的两边的距离相等(角平分线的性质定理).⑵ 在角的内部到一个角两边距离相等的点在这个角的平分线上(角平分线的判定定理).⑶ 三角形的三条内角平分线交于一点.(此点称之为三角形的内心).⑷ 三角形的内心到三边的距离相等.(三角形内心性质).夯实基础CPB ANM O CPBANMO【例6】 ⑴ 如图,已知ABC △的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC △的面积.⑵ 如图所示,2AB AC =,1∠2=∠,DA DB =. 求证:DC AC ⊥.【例7】 如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,求证:⑴∠EAD =∠EDA ;⑵DF ∥AC ;⑶∠EAC =∠B .训练1. D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F ,EG AC ⊥于G .求证:BF CG =.思维拓展训练(选讲)能力提升21ADCBA B C DE F O G ODCBAFAGEDCB训练2.已知:如图,ABC∠及两点M、N.求作:在平面内找一点P,使得PM PN=,且P点到ABC∠两边所在的直线的距离相等.NMBCA训练3.如图,在ABC△中,BD、CD分别平分ABC∠和ACB∠.DE AB FD AC∥,∥.如果6BC=,求DEF△的周长.训练4.已知:如图,在POQ∠内部有两点M、N,MOP NOQ∠=∠.⑴画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;⑵直接写出AM AN+与BM BN+的大小关系.知识模块一轴对称图形的认识与应用课后演练【演练1】⑴下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.实战演练FEDCBAMNQO④③②①答:图形__________;理由是__________.⑵ 画出下图所示的轴对称图形的对称轴:⑶ 如图是奥运会会旗上的五环图标,它有( )条对称轴.A .1B .2C .3D .4⑷ 下列图形中,不是轴对称图形的是( ).A .角B .等边三角形C .线段D .不等边三角形⑸ 如图,它们都是对称的图形,请观察并指出哪些是轴对称图形,哪些图形成轴对称.【演练2】 如图,把ABC △纸片沿DE 折叠,当点A 落在四边形BCED 的外部时,则A ∠与1∠和2∠之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ). A .12A ∠=∠-∠B .212A ∠=∠-∠C .3212A ∠=∠-∠D .()3212A ∠=∠-∠知识模块二 线段的垂直平分线 课后演练【演练3】 如图,已知40AOB ∠=︒,CD 为OA 的垂直平分线,求ACB ∠的度数.21E ADCBO DC BA知识模块三角平分线性质及常见辅助线模型(一)课后演练【演练4】如图,BD CD=,90ABD ACD∠=∠=°,点E、F分别在AB、AC 上,若ED平分BEF∠.①求证:FD平分EFC∠;②求证:EF BE CF=+.【演练5】证明:三角形一个内角的平分线与另外两个外角的平分线交于一点.FEDC BA。

轴对称与轴对称图形课件

轴对称与轴对称图形课件
否 和原图形相同。
对称轴标记法
在图形中标记可能的对称轴, 观察两侧是否完全一致。
如何绘制轴对称图形?
绘制轴对称图形可以通过以下步骤: 1. 确定图形的对称中心线。 2. 在一侧绘制图形的一部分。 3. 沿着对称中心线将图形的部分复制到另一侧。 4. 保持对称性,绘制图形的其他部分。
轴对称在日常生活中的应用
1
建筑设计
许多建筑物和室内设计都使用轴对称来创造美观和谐的效果。
2
艺术创作
许多绘画、雕塑和手工艺品都运用了轴对称的元素和设计。
3
品牌标志
许多知名品牌的标志设计都利用了轴对称图形来传达稳定和专业的形象。
总结
轴对称是指一个图形中存在一条直线,使图形在这条直线两侧完全相同。轴对称在美学、设计和日常生活中都 扮演着重要的角色,让我们以更欣赏和创造轴对称的美!
轴对称的特点
1 完全对称
轴对称的图形左右两侧完全相同,无论是形状还是大小。
2 中心线
轴对称图形中存在一条中心线,可将图形分为左右两侧。
3 可折叠
轴对称图形常常可以通过沿着中心线折叠实现左右两侧的重合。
常见的轴对称图形
蝴蝶
雪花
向日葵
如何判断一个图形是否轴对称?
折纸法
将图形沿着可能的中心线折 叠,观察两侧是否完全重合。
轴对称与轴对称图形
轴对称是指一个图形中存在一条直线,使图形在这条直线两侧完全相同。在 本课件中,我们将学习轴对称的定义、特点、判断方法以及日常生活中的应 用。
什么是轴对称?
轴对称是指一个图形中存在一条直线,使图形在这条直线两侧完全相同。轴 对称的图形往往具有对称美和简洁的形态,给人一种和谐与平衡的感觉。

轴对称图形及性质

轴对称图形及性质

文昌院教育学科教师辅导讲义课 题轴对称图形及性质教学内容轴对称图形及性质(1.1,1.2)第一节一、1. 轴对称定义:把一个图形沿一条直线这段,如果它能够和另一个图形重合,那么这两个图形关于这条直线对称,也称这两个图形轴对称。

这条直线称为对称轴(对称轴是一条直线,不是射线或线段),两个图形的对应点(即沿对称轴对折后,能够重合的点)叫做对称点。

2. 轴对称图形定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形3. 轴对称与轴对称图形的区别:(1) 轴对称是两个图形的位置关系,轴对称图形是一个具有特殊形状的图形 (2) 轴对称涉及两个图形,轴对称是一个图形轴对称与轴对称图形的联系:(1) 定义中都有一条直线,沿这条直线折叠重合。

(2) 轴对称图形一定成轴对称,成轴对称的不一定是轴对称图形。

注意:轴对称图形的对称轴有的只有一条,有的存在多条 例1. 下列图形中是轴对称图形的是( )轴对称与轴对称图形轴对称的性质轴对称图形线段角等腰三角形等腰梯形轴对称图①②③④A.①②B.③④C.②③D.①④例2、下列轴对称图形中,对称轴最多的是().A、等腰直角三角形B、有一角为60的等腰三角形C、正方形D、圆例3.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的轴对称图形是( )例4、如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个例5.剪纸是中国的民间艺术.剪纸方法很多,下面是一种剪纸方法的图示(先将纸折叠,然后再剪,展开即得到图案):下面四个图案中,不能用上述方法剪出的是( )二、轴对称的性质:(1.2)1. (1)线段垂直平分线:垂直并且平分一条线段的直线(线段垂直平分线是到线段两端距离相等的点的集合,即①经过线段的中点 ②垂直于线段,两者缺一不可。

)(2)作线段AB 的垂直平分线: ①分别以A 、B 为圆心,大于AB 21的长为半径画弧,两弧相交于点C 、D ②过C 、D 两点作直线③直线CD 就是线段AB 的垂直平分线 2.性质:①成中轴对称的两个图形全等;②如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

3年级数学北师大版下册教案第2单元《轴对称(二)》

3年级数学北师大版下册教案第2单元《轴对称(二)》

3、下面那两个图形可拼成轴对称图形,连一连。

4、星期日上午小刚到少年宫练习体操,到达时他从镜子里看了下时间(如下图),这时候的时
间是()。

A.3:00
B. 12:00
C. 9:00
5、下面哪组图形是根据对称轴所画的另一部分,()是正确的。

A.
B.
C. 学生独立完
成,全班反馈
交流。

及时练习巩固,
体现学以致用的
观念。

6、画出下面图形的另一半,使得他们是轴对
称图形。

三、拓展提高。

一个图形从镜子中看到的样子如右下图,你能猜出这个图形本来的样子吗?()
A B
C
镜子
课堂小结这节课你学到了什么知识点?
①用对折剪的方法,就能剪出两边形状、大小
完全相同的图形;
②剪轴对称图形的方法:把一张纸对折后,在
纸上画出轴对称图形的一半,然后沿着所画线条把
图形剪下来,展开就是完整的轴对称图形;
③根据轴对称图形的一半判断整个图形时要
牢记轴对称图形被对称轴平分的两部分完全相同,
且沿对称轴折叠后这两部分能够完全重合。

板书轴对称(二)
制作轴对称图形的方法:先对折,再画出要剪的图
形的一半,最后沿着所画线条把图案剪下来。

三年级下册数学教案-2.2轴对称(二)-北师大版

三年级下册数学教案-2.2轴对称(二)-北师大版

2.2轴对称(二)1、教学目标1、掌握轴对称图形特征,能在方格纸上画出图形的另一半。

2、让学生经历欣赏、观察、操作、合作探究等教学活动,提高空间想象能力。

3、体会轴对称图形的广泛存在性,感受数学的美学价值。

2、学情分析在原有基础上,继续学习轴对称的相关内容。

3、重点难点教学重点:掌握轴对称图形的特征。

教学难点:能识别轴对称图形,确定对称轴,并在方格纸上画出图形的另一半。

4、教学过程4.1 第一学时4.1.1教学目标4.1.2学时重点4.1.3学时难点4.1.4教学活动活动1【导入】一、情境导入1、欣赏、感受轴对称图形的特征。

师:同学们,今天让我们继续走进奇妙的数学王国,瞧,小精灵来欢迎我们了(PPT),它给我们带来一些图片,一起欣赏吧。

这是人民大会堂,是全国人民代表大会开会的地方……再来欣赏一些美丽的图案,有窗花纸、圣诞铃铛,咦?你认识这个标志吗?(生:奥运五环)2001年7月13日,北京申奥成功了,我们国家能取得08年奥运会的主办权,是一件很了不起的事情!2、揭题。

师:同学们,这些图片美吗?它们有什么共同特点?都是什么图形?生:左右两边完全一样,是轴对称图形。

师:是轴对称图形,大家同意吗?轴对称图形在生活中被广泛的应用,它蕴藏着许多奥秘,接来下让我们一起进入神奇的轴对称王国。

(PPT课题)活动2【讲授】二、轴对称图形的特征。

1、轴对称图形。

师:小精灵说:“王国里有很多关卡,想要到达终点,就要靠大家的努力了。

奔跑吧,同学们!大家有没有信心?让我们马上进入第一关,多边形的世界(PPT)。

你认识这些图形吗?生:(师指生说)长方形、正方形、三角形、六边形师:你能想办法证明它们是轴对称图形吗?选择你喜欢的图形来证明,动手试试吧。

谁想上来试试?把你验证的图形举起来给大家看看,谁来说说你是怎样验证的。

生:把图片对折,两边就完全重合在一起。

师:把图片对折,你会发现左右两边完全重合。

好的,一起来看看动画演示(PPT演示)。

第十三章 轴对称【复习课件】

第十三章 轴对称【复习课件】
轴对称章节复习
(人教版)
知识框架
知识清单详解
知识点一:轴对称图形和轴对称
1.轴对称图形:一个图形沿着某一条直线对折,直 线两旁的部分能够完全重合,有这样形状的图形叫 轴对称图形。 2.轴对称:有两个图形,如果沿着某条直线对折这 两个图形能够完全重合,那么这两个图形的位置关 系叫做轴对称。 3.对称轴:对折的直线为轴对称图形或轴对称的对 称轴。 4.轴对称图形和轴对称图形的性质:
ACBC. .行 义 换C. .∠ ∠.13线 得 后1700EA900° °的 到 有DCc0°CDm°∠性 角==或,∠∠,A质 相17OBB204BDD和 等CCc0°. .=DDm°∠角 ,, ,2400平 进E又 即° °DO分 行D∠,E线 等∥E即CD的 量DB.证=C∠定 代,在△E所9EDcOC以mD,或为,1等2c腰m之三间角形。 分 三 ∠ 解 ∴ 又 ∴ ∴ 故分 所 解 底 ( 1故D分 和 要 证 解 角 当 边 故解 理 ∵ ∴ ∴ ∴A析 角 E∠ ∠ 选: ∵0.解 又 ∴ ∴ 又 ∴ 答 所 DDD角析 以 : 选20进 关析 能 : 形 腰 选5: 由 DO∠△E⊥C: 形 AE:∵A) °7cEE=A∠ 以: ∵ △ ∵ :=DDD: 要 ( :,0m: 否 当 的 长 :行 系∥ =△ :EA3C∠根 的在BEC=A若 ,°,DOOc=E,∵ EADAC==A为因 分1D讨 ,题 组 腰 三 是B∵EODEDAmEECCA8∠E据 性△ ,) 44,而B=O为∥△由 的 ,EC=D,D0为 两700论 此目 成 长 边5∠DO+=2是CA题 质AA°° °若07没c为等DE∠cB长 即CEDBD-∠种4°0给 三 是 关m, 时E平等CmCCD意 可∠ 是CC角40;°有时D等腰=BD是 可平 , ,中 -B情°,0还 周出 角 系2∴分O2C是腰可 得∠ ∠AA为°或明c,腰三+分求DD5CD,况角7等 形 ,要 长m∠∠3Ec, 等三=判EAB∠底0角1确时 因三角=∠得=m4DA. D进没°0应 是腰 . 应5EA3即 腰角断EC为A0角为0腰, 为cDO角形cA。=D的 °行有;°三 排用1OBmmC三∠形出9EB,顶、2因5=形B, ;0=,角C讨明,三角 除c+∠角, E,∠A中 °则角m底为5C平D论确4角形 ;> .B形∴ ∴DA⊥-点另,0分2∴O=E分8.是°有形+2D∠∠,CDB,0外则别2,∠E=C°线顶的两<E=AC,8A两另是符ADDCE0,=B角条三5ODCE==根° 1个处多,合D=D, ,A0还边边=∠E据, °C角两少不三∠,,是长关B等所.为个,符角DC又底系为OD腰以角所合形B, A角验2E是以三三c=,m2cm,

轴对称图形-对称轴-对称点

轴对称图形-对称轴-对称点
(1) 定义中都有一条对称轴,都要沿着这 条直线折叠重合
(2) 如果把成轴对称的两个图形看成一个 整体,那么这个整体的图形就是轴对 称图形; 如果把一个轴对称图形沿着对称轴分 成的两部分看成两个图形,那么这两 个图形是轴对称的
1.
B册 P44
2. 一课一练 P65 一、填空题
二、选择题
练习:
一、判断 1. 轴对称图形必有对称轴

1条 一条底的中垂线
下列(1) (2)两个图形有什么区别?
(1)
(2)
两个图形 轴对称
一个图形 轴对称图形
二、轴对称和对称点的定义:
1. 平面上的两个图形,将其中一个图 形沿着某一条直线翻折过去,如果它能够 与另一个图形重合,那么就说这两个图形
关于这条直线对称, 简称轴对称,这条直线 叫对称轴
△ABC△ A ’ B ’ C ’关于直线l对称。 点A和点A ’,点B和点B ’ ,点C ’和点C ’分别是关于直线l的对称点
区别:
“轴对称图形”是指同一个图形的两部 分 沿某直线翻折时,两部分重合的图形。
“轴对称”是指两个图形分别位于某条 直 线的两侧,且沿这条直线翻折时,两个
图形重合 。
联系:
(D)一个图形沿某直线翻折,直线两旁的部分能够 互相重合
(1)
(2)
(1)
(2)
(3)
(4)
特征: 沿某一条直线翻折后,直线两旁的两个部分能完全重
一、 轴对称图形和对称轴的定义:
1. 把一个图形沿着某一条直线翻折, 如果直线两旁的部分能够互相重合,这个
图形就是轴对称图形
2. 这条直线是这个图形的对称轴
(1) 我们学过的线段和角是不是轴对称图形?
(a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档