最新(人教版)初二年平行四边形的性质与判定
平行四边形的性质与判定
平行四边形的性质与判定一、平行四边形的性质1.对边平行且相等:平行四边形的对边分别平行且相等。
2.对角相等:平行四边形的对角线互相平分,且对角线交点将平行四边形分为两个相等的三角形,这两个三角形的角相等。
3.对角线互相平分:平行四边形的对角线互相平分,即平行四边形的对角线交点是对角线中点的两倍。
4.相邻角互补:平行四边形的相邻角互补,即它们的和为180度。
5.对边角相等:平行四边形的对边角相等,即平行四边形的对边上的角相等。
6.对角线所在的平行线间的距离相等:平行四边形的对角线所在的平行线间的距离相等。
二、平行四边形的判定1.两组对边分别平行的四边形是平行四边形。
2.两组对边分别相等的四边形是平行四边形。
3.一组对边平行且相等的四边形是平行四边形。
4.对角线互相平分的四边形是平行四边形。
5.相邻角互补的四边形是平行四边形。
6.对边角相等的四边形是平行四边形。
7.对角线所在的平行线间的距离相等的四边形是平行四边形。
8.矩形:矩形是四个角都是直角的平行四边形。
9.菱形:菱形是四条边都相等的平行四边形。
10.正方形:正方形是四个角都是直角且四条边都相等的平行四边形。
四、平行四边形的应用1.计算平行四边形的面积:平行四边形的面积可以通过底边长乘以高得到。
2.证明平行四边形的性质:利用平行四边形的性质证明四边形的形状或关系。
3.解决实际问题:应用平行四边形的性质解决生活中的实际问题,如设计图形、计算面积等。
知识点:__________习题及方法:1.习题:已知ABCD是平行四边形,AB=6cm,AD=4cm,求BC和CD 的长度。
答案:BC和CD的长度分别为6cm和4cm。
解题思路:根据平行四边形的性质,对边相等,所以BC=AD=4cm,CD=AB=6cm。
2.习题:在平行四边形ABCD中,∠B=60°,求∠D的度数。
答案:∠D的度数为120°。
解题思路:根据平行四边形的性质,相邻角互补,所以∠D=180°-∠B=120°。
平行四边形的性质与判定
平行四边形的性质与判定平行四边形是一种特殊的四边形,它具有独特的性质和判定方法。
本文将介绍平行四边形的性质以及如何准确地判定一个四边形是否是平行四边形。
一、平行四边形的性质平行四边形有以下几个重要性质:1. 对边平行性质:平行四边形的对边是两两平行的。
也就是说,如果一个四边形的两对边分别平行,则该四边形就是平行四边形。
2. 对角线互相平分性质:平行四边形的对角线互相平分。
也就是说,平行四边形的两条对角线互相平分,并且交点是对角线的中点。
3. 对边长度相等性质:平行四边形的对边长度相等。
也就是说,平行四边形的相对边长是相等的。
4. 内角和性质:平行四边形的内角和为180度。
也就是说,平行四边形的四个内角之和是180度。
二、判定一个四边形是否为平行四边形如果我们给定一个四边形,如何准确判定它是否为平行四边形呢?以下是两种常用的判定方法:1. 使用内角性质:如果一个四边形的两组对边的内角互补(合为180度),那么这个四边形就是平行四边形。
也就是说,如果四边形的相邻内角互补,则这个四边形是平行四边形。
2. 使用对边比例性质:如果一个四边形的对边比例相等,那么这个四边形是平行四边形。
也就是说,如果四边形的对边长度比例相等,则这个四边形是平行四边形。
三、平行四边形的应用平行四边形在几何学中具有广泛的应用。
以下是一些常见的应用场景:1. 建筑设计:在建筑设计中,平行四边形的性质可以用来规划室内空间的布局,以确保房间的结构和面积满足需求。
2. 绘画与设计:在绘画和设计中,平行四边形的形状和性质可以用来创作各种艺术作品,如建筑图、装饰图案等。
3. 几何证明:平行四边形的性质在几何证明中扮演着重要的角色,可以用于解决各种几何问题,如角度计算、边长比较等。
4. 工程测量:平行四边形的特性可以应用于工程测量中的曲线与直线的判定,确保工程的准确度和稳定性。
总结:平行四边形具有对边平行、对角线互相平分、对边长度相等和内角和为180度的性质。
最新人教版初中数学八年级下册-第18章《平行四边形》复习课件-
第 1 题图
第 2 题图
2.(4分)如图,在四边形ABCD中,E是BC边的中点,
连接DE并延长,交AB的延长线于F点,AB=BF.添
加一个条件,使四边形ABCD是平行四边形.你认为
下面四个条件中可选择的是( D )
A.AD=BC;
B.CD=BF;
C.∠A=∠C;
D.∠F=∠CDE。
3.(8分)(2013·镇江)如图,AB∥CD,AB=CD,点
6.(5分)小玲的爸爸在钉制平行四边形框架时,采用了
一种方法:如图所示,将两根木条AC,BD的中点
重叠,并用钉子固定,则四边形ABCD就是平行四
边形,这种方法的依据是( )
A.对角线互相平分的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形 7.(8分)如图,在▱ABCD中,点E,F是对角线AC上两
四边形的个数为( ) A.4个; B.3个; C.2个; D.1个
9.已知三条线段的长分别为10 cm, 14 cm和8 cm, 如 果以其中的两条为对角线, 另一条为边, 那么可以 画出所有不同形状的平行四边形的个数为( ) A. 1个; B. 2个; C. 3个; D. 4个.
10.如图, 在▱ABCD中, 对角线AC, BD相交于点O, E,
∠CFD+∠DFE=180°,∴∠AEF=∠DFE.∴AE∥DF.∴四边形 AFDE 为平行四边形
4.(4分)如图,在▱ABCD中,点E,F分别在AD,BC
上,且BE∥DF,若∠EBF=45°,则∠EDF的度数
为 45 。
5.(A41第B分8C2.)1D如课.2为图时平,平行四行平四边边四行形形边四A,B形边C则D形的可中的判添,性定加AB的质∥条与C件D判,是定要的使四综边合形应用
人教版八年级数学下册教学内容:平行四边形的性质与识别
教学内容:平行四边形的性质与识别重点难点平行四边形的性质。
平行四边形的识别方法。
学习内容:一. 平行四边形的性质:1. 平行四边形的性质:(1)将上面的平行四边形ABCD绕着其对角线的交点O转动,当旋转180°后,发现旋转后的平行四边形和原来的平行四边形完全重合,由此可知平行四边形是中心对称图形,对角线的交点O就是对称中心。
由此可以得到:即平行四边形的对边相等,对角相等。
这样,我们就清楚了平行四边形的边和边、角和角之间关系。
其对边相等,邻边无关,对角相等,邻角互补。
例1. 如图2,在平行四边形ABCD中,已知∠A=40°,求其它各角的度数。
图2解:由于平行四边形的对角相等,所以∠C=∠A=40°因为AD//BC例2. 在平行四边形ABCD中,已知AB=8,周长等于24,求其余三条边的长。
图3解:由于平行四边形对边相等,所以AB=DC,AD=BC由已知AB=8AB+BC+CD+DA=24解得CD=8故AD=BC=4(2)在刚才旋转时发现,平行四边形ABCD是一个中心对称图形,对角线的交点O就是对称中心,所以(在图1中)OA=OC,OB=OD即平行四边形的对角线互相平分例3. 如图4,在平行四边形ABCD中,已知对角线AC和BD相交于点O,ΔAOB的周长为15,AB=6,那么对角线AC和BD的和是多少?解:已知AO+BO+AB=15又AB=6因为平行四边形对角线互相平分,所以(3)两条平行线之间的距离:作两条互相平行的直线,在其中一条上取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。
图5即过两条平行直线上其中一条直线上任一点作另一条直线的垂线段,这些垂线段的长度相等,如果将这些垂线段的长度称为平行线中一条直线到另外一直线的距离或称之为两条平行线间的距离,又可得到:平行线之间的距离处处相等。
例4. 如图7,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE=CF,连结CE和AF,请说明四边形AFCE是平行四边形。
人教版初中数学第十八章平行四边形知识点
第十八章平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示,读作“平行四边形”.平行四边形ABCD记作“□ABCD”.18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD求证:AD=BC,AB=DC;∠A=∠C,∠B=∠D.AD CD AD BC证明:连接AC,//,//∴∠=∠∠=∠12,34又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA,AD CB AB CD B D∴==∠=∠,,平行四边形性质1:平行四边形的两组对边分别相等.平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:四边形ABCD是平行四边形∴AD=BC,AD∥BC.∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴OA=OC,OB=OD.平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征1:平行线之间的距离处处相等.平行线之间的距离特征2:夹在两条平行线之间的平行线段相等.平行四边形性质3:平行四边形的两条对角线互相平分.例、如图,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.解:∵四边形ABCD 是平行四边形,∴AO=CO=21AC ,OB=OD . ∵BD ⊥AB ,∴在Rt △A BO 中,AB=12cm ,AO=13cm .∴BO=522=-AB AO .∴BD=2B0=10cm .∴在Rt △ABD 中,AB=12cm ,BD=10cm .∴AD=61222=+BD AB (cm).例、如图,在□ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB 的周长为25,AB=12,求对角线AC 与BD 的和.解:∵△AOB 的周长为25,∴OA+BO+AB=25,又AB=12,∴AO+OB=25-12=13,∵平行四边形的对角线互相平分,∴AC+BD=2OA+2OB=2(0A+OB)=2×13=2618.1.2 平行四边形的判定平行四边形判定1:两组对边分别平行的四边形是平行四边形.平行四边形判定2:两组对边分别相等的四边形是平行四边形.平行四边形判定3:两组对角分别相等的四边形是平行四边形.平行四边形判定4:两条对角线互相平分的四边形是平行四边形.平行四边形判定5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.例、 如图,在□ABCD 中,已知点E 和点F 分别在AD 和BC 上,且AE=CF ,连结CE 和AF ,试说明四边形AFCE 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AD//BC ,∵点E 在AD 上,点F 在BC 上,∴AE//CF ,又∵AE=CF ,∴四边形AFCE 是平行四边形.例、如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.解:(1)∵DF ∥BE , ∴∠AFD =∠CEB . 又∵AF=CE , DF=BE ,∴△AFD ≌△CEB .(2)由(1)△AFD ≌△CEB 知AD=BC ,∠DAF =∠BCE , ∴AD ∥BC ,∴四边形ABCD 是平行四边形.例、如图,平行四边形ABCD 中,E 、F 为边AD 、BC 上的点,且AE=CF ,连结AF 、EC 、BE 、DF 交于M 、N ,试说明:MFNE 是平行四边形.解:∵四边形ABCD 是平行四边形,∴AD ∥BC , AD ∥BC又∵AE=CF ,∴ED=FB ,四边形AFCE 是平行四边形∴AF ∥EC .同理:BE ∥FD .∴四边形MFNE 是平行四边形.18.2 特殊的平行四边形18.2.1 矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线. 矩形性质1:矩形的四个角都是直角.矩形性质2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定1:有一个角是直角的平行四边形是矩形.矩形判定2:有三个角是直角的四边形是矩形.矩形判定3:对角线相等的平行四边形是矩形.N M F E A B C D例、如图,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCED是矩形.证明:在△ABD和△ACE中,,,AB AC AD AE BAD CAE==∠=∠∴△ABD≌△ACE,∴BD=CE,又DE=BC,∴四边形BCED为平行四边形.在△ACD和△ABE中,∵AC=AB,AB=AE,∠=∠+∠=∠+∠=∠,CAD CAB BAD CAB CAE BAE∴△ADC≌△AEB∴CD=BE∴四边形BCED为矩形18.2.2 菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线.菱形性质1:菱形的四条边都相等.菱形性质2:菱形的对角线互相垂直平分.菱形性质3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定1:有一组邻边相等的平行四边形是菱形.菱形判定2:四条边都相等的四边形是菱形.菱形判定3:对角线互相垂直的平行四边形是菱形.菱形判定4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义1:有一组邻边相等的矩形叫做正方形.正方形定义2:有一个角是直角的菱形叫做正方形.正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质1:正方形的四个角都是直角.正方形性质2:正方形的四条边都相等.正方形性质3:正方形的两条对角线互相垂直平分且相等.正方形判定1:有一组邻边相等的矩形是正方形.正方形判定2:有一个角是直角的菱形是正方形.正方形判定3:有一组邻边相等并且有一个角是直角的平行四边形是正方形.正方形判定4:对角线垂直平分且相等的四边形是正方形.例、如图,四边形ABCD 是菱形,对角线AC =8 cm ,BD =6 cm , DH ⊥AB 于H ,求:DH 的长. ∵四边形ABCD 是菱形, 1AC BD OA OC AC 4cm OB OD 3cm 2∴⊥=====,,,∴AB=5cm ,ABCD S AC BD AB DH ∴=⋅=⋅菱形,4.82AC BDDH cm AB ⋅∴==.例、已知:如图,菱形ABCD 的周长为16 cm ,∠ABC =60°,对角线AC 和BD相交于点O ,求AC 和BD 的长.解:∵菱形ABCD 的周长为16cm ,060ABC ∠=∴AB=BC=4cm ,△ABC 是等边三角形,∴AC=4cm ,∵AC ,BD 互相垂直平分,∴OA=2224223OB cm ∴=-=43BD cm ∴=例、如图,在正方形ABCD 中,P 为对角线BD 上一点,PE ⊥BC ,垂足为E , PF ⊥CD ,垂足为F ,求证:EF =AP证明:连接PC ,∵PE ⊥BC ,PF ⊥CD ,四边形ABCD 是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF 是矩形,∴PC=EF ,∵P 是正方形ABCD 对角线上一点,∴AD=CD ,∠PDA=∠PDC ,在△PAD 和△PCD 中, AD =CD ,∠PDA =∠PDC ,PD =PD ,∴△PAD ≌△PCD ,∴PA=PC ,∴EF=AP ,例、在△ABC 中,AB=AC ,D 是BC 的中点,DE ⊥AB , DF ⊥AC ,垂足分别是E ,F. 试说明:DE=DF解:∵AB=AC ,∠B=∠C∵DE ⊥ AB ,DF ⊥ AC∴∠DEB ≌DFC= 90°∵D 是BC 的中点∴BD=DC∴△BDE ≌△CDF∴DE=DF.例、如图,ABCD 中,AE 平分∠BAD 交BC 于E ,EF ∥AB 交AD 于F , 试问:四边形ABEF 是什么图形吗?请说明理由.解:四边形ABEF 是菱形.理由:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵EF ∥AB ,∴四边形ABEF 是平行四边形,∵AE 平分∠BAD , A B C DE F∴∠BAE=∠FAE,∵AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴▱ABEF是菱形.。
初二数学平行四边形知识点归纳
初二数学平行四边形知识点归纳一、平行四边形的定义与性质。
1. 定义。
- 两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“▱”表示,例如平行四边形ABCD记作“▱ABCD”。
2. 性质。
- 边的性质。
- 平行四边形的两组对边分别平行且相等。
即AB∥CD,AD∥BC,AB = CD,AD = BC。
- 角的性质。
- 平行四边形的两组对角分别相等,邻角互补。
即∠A = ∠C,∠B = ∠D,∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即若AC、BD是▱ABCD的对角线,则AO = CO,BO = DO(O为AC、BD交点)。
二、平行四边形的判定。
1. 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
即若AB = CD,AD = BC,则四边形ABCD是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
例如AB∥CD且AB = CD,则四边形ABCD是平行四边形。
2. 角的判定。
- 两组对角分别相等的四边形是平行四边形。
即若∠A = ∠C,∠B = ∠D,则四边形ABCD是平行四边形。
3. 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
若AO = CO,BO = DO,则四边形ABCD 是平行四边形。
三、平行四边形的面积。
1. 面积公式。
- 平行四边形的面积 = 底×高,即S = ah(a为底边长,h为这条底边对应的高)。
例如在▱ABCD中,若以AB为底,AB边上的高为h,则S▱ABCD=AB×h。
2. 等底等高的平行四边形面积关系。
- 等底等高的平行四边形面积相等。
如果有▱ABCD和▱EFGH,AB = EF,且它们对应的高相等,那么S▱ABCD = S▱EFGH。
四、特殊的平行四边形(矩形、菱形、正方形)与平行四边形的关系。
平行四边形的判定与性质(教案)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是四边形的一种,具有两对对边分别平行且相等的性质。它在几何学中具有重要地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个实际图形,展示平行四边形判定与性质在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形的判定方法和性质的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平行四边形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-对角线互相平分的四边形是平行四边形;
-对角线互相垂直且相等的四边形是平行四边形。
b.平行四边形的性质:让学生理解并掌握平行四边形的性质,包括以下细节:
-对边平行且相等;
-对角线互相平分;
-对角线互相垂直;
-邻角互补,对角相等;
-对边相等,对角线相等。
2.教学难点
a.判定方法的灵活运用:学生在理解判定方法后,难点在于如何将这些方法灵活运用于解决实际问题。以下是一些具体的难点细节:
其次,关于平行四边形的性质,我发现大部分学生在理论学习上没有问题,但在解决实际问题时,却往往忽略了这些性质的应用。这说明我们在教学中不仅要重视知识的传授,还要关注学生运用知识解决问题的能力。
此外,在实践活动和小组讨论中,我发现学生们参与度很高,但部分学生在讨论过程中过于依赖同伴,缺乏独立思考。因此,我需要在接下来的教学中,引导学生培养独立思考和合作交流的能力。
人教版《平行四边形的性质》优秀课件_初中数学1
∴△BEO≌△DFO(SAS),∴BE=DF.
课 结堂
总
同学们,本节课你收获了什么?
课后作业 1.整理本节知识点 2.选做题: 同步检测题
∴ OA=OC,OB=OD.
EA
B
当四个孩子看到时,争论不休,都认为自己分的地少,同学们,你认为老人这样分合理吗?为什么?
∴S四边形ANMB=S△NAO+S△AOB+S△MOB=S△MCO+S△AOB+S△MOB
=S△AOB+S△COB=1 S ∴S四边形ANMB=S四边形CMND, 2
ABCD
.
即平行四边形ABCD被EF所分的两个四边形面积相等.
检测目标
2.如图,▱ABCD中,AC、BD相交于点O,若
AD=6,AC+BD=16,则△BOC的周长是( A )
A.14 B.15 C.16 D.17
检测目标
3.如图,在▱ABCD中,
全等三角形的对数共有( B
A.3对 B.4对 C.5对
) D.6对
检测目标
4.如图,▱ABCD的对角 线AC,BD相交于点O,已知AD=8, BD=12,AC=6,则△OBC的周长为(
∵在△BEO与△DFO中,OB=OD(∠BOE=∠DOF),∴△BEO≌△DFO(SAS),∴BE=DF.
∴ AB=CD,AB∥CD; 如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长是( )
4 ∵2(AB+BC)=26,∴AB+BC=13,可求得AB=8 cm,BC=5 cm
解:设AB=x,则BC=24-x. 根据平行四边形的面积公式可得5x=10(24-x), 解得x=16. 则平行四边形ABCD的面积为5×16=80.
人教版八年级数学平行四边形的判定和性质讲义(含解析)(2020年最新)
第18讲平行四边形的判定和性质知识定位讲解用时:3分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习平行四边形的判定和性质。
平行四边形是在学习了平行线和三角形之后,是平行线和三角形知识的应用和深化,同时也是为了后面学习矩形、菱形、正方形、圆甚至高中的立体几何打基础的,起着承上启下的桥梁作用。
知识梳理讲解用时:20分钟平行四边形的定义和性质1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形.表示方法:ABDC(按照字母的顺序)注意:ABCDA BOC D2.平行四边形的性质:(1)平行四边形的对边相等,即AB=CD,AC=BD(2)平行四边形的对角相等,即∠A=∠D,∠B=∠C(3)平行四边形的对角线互相平分,即OA=OD,OB=OC3.平行四边形的两条对角线把平行四边形分成面积相等的4个小三角形.平行四边形的判定平行四边形的判定:(1)定义法:两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)一组对边平行且相等的四边形是平行四边形.三角形的中位线:三角形的中位线平行于三角形的第三边,且等于第三边的一半课堂精讲精练【例题1】如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④【答案】D【解析】由四边形ABCD是平行四边形,即可得①和③正确,然后利用排除法即可求得答案.解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.讲解用时:3分钟解题思路:此题考查了平行四边形的性质.注意掌握平行四边形的对角线互相平分,对边平行是解此题的关键.教学建议:熟练掌握平行四边形的性质.难度: 3 适应场景:当堂例题例题来源:肇源县期末年份:2017【练习1.1】若平行四边形的两条对角线长为 6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是()A.5cm B.8cm C.12cm D.16cm【答案】B【解析】平行四边形的两条对角线互相平分,根据三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,进行判断.解:由题意可知,平行四边形边长的取值范围是:8﹣3<边长<8+3,即5<边长<11.只有选项B在此范围内,故选B.讲解用时:2分钟解题思路:本题主要考查了平行四边形对角线互相平分这一性质,此类求三角形第三边的范围的题目,解题的关键是根据三角形三边关系定理列出不等式,再求解.教学建议:熟练掌握平行四边形的性质以及三角形的三边关系.难度: 2 适应场景:当堂练习例题来源:方城县期中年份:2017【练习1.2】如图,?ABCD中,AB、BC长分别为12和24,边AD与BC之间的距离为5,则AB 与CD间的距离为.【答案】10【解析】根据平行四边形的面积=AE×BC=CD×AF,即可求出AD与BC之间的距离.解:如图,过点A作AE⊥BC于点E、AF⊥CD于点F.由题意得,S四边形ABCD=AE×BC=CD×AF,∴24×5=12×AF,∴AF=10,即AB与CD间的距离为10.故答案是:10.讲解用时:3分钟解题思路:本题考查了平行四边形的性质,解答本题的关键是熟练平行四边形的面积公式.教学建议:根据等面积法求出AB与CD之间的距离.难度: 3 适应场景:当堂练习例题来源:海珠区校级期中年份:2015【例题2】如图所示,在?ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有个平行四边形.【答案】4【解析】根据?ABCD及E,F分别为AB,DC的中点,可推出对边平行且相等的平行四边形有3个,加上?ABCD,共有4个.解:∵在?ABCD中,E,F分别为AB,DC的中点,AB∥CD∴DF=CD=AE=EB∴四边形AEFD,CFEB,DFBE是平行四边形,再加上?ABCD本身,共有4个平行四边形4.故答案为4.讲解用时:3分钟解题思路:本题利用了平行四边形的性质和判定及中点的性质.教学建议:熟练运用平行四边形的判定和性质.难度: 3 适应场景:当堂例题例题来源:江西期末年份:2014【练习2.1】如图在四边形ABCD中,已知AB=CD,AD=BC,AC,BD相交于O,若AC=6,则AO 的长度等于.【答案】3【解析】根据在四边形ABCD中,AB=CD,AD=BC,求证四边形ABCD是平行四边形,然后即可求解.解:∵在四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AC=6,∴AO=AC=×6=3.故答案为:3.讲解用时:3分钟解题思路:此题主要考查学生对平行四边形的判定与性质的理解和掌握,难度不大,属于基础题.教学建议:熟练运用平行四边形的判定和性质进行解题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】在?ABCD中,对角线AC,BD相交于点O,E,F分别是OB,OD的中点,四边形AECF 是.【答案】平行四边形【解析】证明四边形AECF的对角线互相平分即可.解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别是OB,OD的中点,∴EO=FO,∴四边形AECF是平行四边形.故答案是:平行四边形.讲解用时:3分钟解题思路:此题主要考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.教学建议:熟练运用平行四边形的判定和性质进行解题.难度: 3 适应场景:当堂例题例题来源:阳东县期中年份:2015【练习3.1】如图,E、F是?ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.【答案】BE=DF【解析】连接AC交BD于O,根据平行四边形性质推出OA=OC,OB=OD,求出OE=OF,根据平行四边形的判定推出即可.解:添加的条件是BE=DF,理由是:连接AC交BD于O,∵平行四边形ABCD,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形.故答案为:BE=DF.讲解用时:3分钟解题思路:本题考查了对平行四边形的性质和判定的应用,此题是一个开放性的题目,关键是添加一个适合的条件,能推出平行四边形AECF,答案不唯一,题型不错,难度也不大.教学建议:熟练运用平行四边形的判定和性质进行解题.难度: 3 适应场景:当堂练习例题来源:商水县期末年份:2016【例题4】如图,在四边形ABCD中,AD∥BC,∠B=70°,∠C=40°,DE∥AB交BC于点E.若AD=5cm,BC=12cm,则CD的长是cm.【答案】7【解析】由在四边形ABCD中,AD∥BC,DE∥AB,可判定四边形ABED是平行四边形,即可求得CE的长,又由∠B=70°,∠C=40°,易判定△CDE是等腰三角形,继而求得答案.解:∵在四边形ABCD中,AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴BE=AD=5cm,∴CE=BC﹣BE=12﹣5=7(cm),∵∠DEC=∠B=70°,∠C=40°,∴∠CDE=180°﹣∠DEC﹣∠C=70°,∴CD=CE=7cm.故答案为:7.讲解用时:3分钟解题思路:此题考查了平行四边形的性质与判定以及等腰三角形的判定与性质.注意证得四边形ABED是平行四边形,△CDE是等腰三角形是关键.教学建议:熟练运用平行四边形的判定和性质以及等腰三角形的判定和性质.难度: 3 适应场景:当堂例题例题来源:句容市校级期中年份:2014【练习4.1】如图,?ABCD中,点E在CD的延长线上,AE∥BD,EC=4,则AB的长是.【答案】2【解析】可根据“两组对边分别平行的四边形是平行四边形”证四边形ABDE 是平行四边形,则AB=ED=DC=EC=2.解:如图,在?ABCD中,AB∥CD,且AB=CD.∵点E在CD的延长线上,∴AB∥ED.又∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=ED,∴AB=ED=DC=EC=2.故答案为:2.讲解用时:3分钟解题思路:本题考查了平行四边形的判定与性质.平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.教学建议:熟练运用平行四边形的判定和性质.难度: 3 适应场景:当堂练习例题来源:襄州区期中年份:2018【例题5】已知在?ABCD中,∠BDA=90°,AC=10cm,BD=6cm,求AD的长.【答案】4cm【解析】在Rt△ADO中,求出OD、OA,再利用勾股定理即可解决问题;解:∵四边形ABCD是平行四边形∴OA=AC,OD=BD,∵AC=10cm,BD=6cm,∴OD=3cm,OA=5cm,∵∠BDA=90°,∴AD===4(cm).讲解用时:3分钟解题思路:本题考查平行四边形的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.教学建议:熟练运用平行四边形的性质以及勾股定理的应用.难度: 3 适应场景:当堂例题例题来源:内乡县期中年份:2018【练习5.1】如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.【答案】四边形BCEF是平行四边形【解析】可连接AE、DB、BE,BE交AD于点O,由线段之间的关系可得OF=OC,OB=OE,可证明其为平行四边形.证明:连接AE、DB、BE,BE交AD于点O,∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.讲解用时:3分钟解题思路:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.教学建议:熟练运用平行四边形的性质和判定.难度: 3 适应场景:当堂练习例题来源:庆云县期末年份:2017【例题6】如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【答案】(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形【解析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.讲解用时:3分钟解题思路:本题考查了全等三角形的判定与性质,平行四边形的判定.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.教学建议:熟练运用平行四边形的判定以及全等三角形的判定和性质.难度: 3 适应场景:当堂例题例题来源:淮安区期末年份:2017【练习6.1】如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB⊥AF,BC=12,EF=6,求CD的长.【答案】(1)△ADE≌△FCE;(2)12【解析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是?ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)∵△ADE≌△FCE,∴AE=EF=6,∵AB∥CD,∴∠AED=∠BAF=90°,在?ABCD中,AD=BC=12,∴DE===6,∴CD=2DE=12.讲解用时:4分钟解题思路:此题考查了平行四边形的性质、全等三角形的判定方法、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.教学建议:熟练运用平行四边形的性质以及全等三角形的判定和性质.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.【答案】EF=BD【解析】首先根据等腰三角形的性质可得F是AD中点,再根据三角形的中位线定理可得EF=BD.证明:∵CD=CA,CF平分∠ACB,∴F是AD中点,∵AE=EB,∴E是AB中点,∴EF是△ABD的中位线,∴EF=BD.讲解用时:3分钟解题思路:此题主要考查了三角形中位线定理,以及等腰三角形的性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.教学建议:掌握等腰三角形“三线合一”的性质以及三角形中位线定理.难度: 3 适应场景:当堂例题例题来源:邵阳县期中年份:2017【练习7.1】如图,DE是△ABC的中位线,求证:DE∥BC,且DE=BC.【答案】DE∥BC且DE=BC【解析】延长DE到Q,使DE=EQ,连接CQ,根据SAS证△ADE≌△CQE,推出AD=CQ,∠A=∠ACQ,推出平行四边形DQCB,得出DQ=BC,DQ∥BC,即可推出答案.证明:延长DE到Q,使DE=EQ,连接CQ,∵AE=EC,∠AED=∠CEQ,DE=EQ,∴△ADE≌△CQE,∴AD=CQ,∠A=∠ACQ,∴AB∥CQ,∵AD=BD,∴BD=CQ,∴四边形DBCQ是平行四边形,∴DQ=BC,DQ∥BC,∴DE∥BC,DE=BC.讲解用时:3分钟解题思路:本题主要考查对平行四边形的性质和判定,平行线的判定,全等三角形的性质和判定,三角形的中位线等知识点的理解和掌握,能证出四边形DQCB 是平行四边形是解此题的关键.教学建议:掌握证明三角形中位线的方法.难度: 3 适应场景:当堂练习例题来源:武安市期末年份:2016【练习7.2】如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM.【答案】∠PMN=∠PNM【解析】根据三角形的中位线平行于第三边并且等于第三边的一半可得PM= BC,PN=AD,然后求出PM=PN,再根据等边对等角证明即可.证明:∵P是对角线BD的中点,M是DC的中点,N是AB的中点,∴PM、PN分别是△BCD和△ABD的中位线,∴PM=BC,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM.讲解用时:3分钟解题思路:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等边对等角的性质,熟记定理与性质是解题的关键.教学建议:熟练地运用三角形中位线定理.难度: 3 适应场景:当堂练习例题来源:天水期末年份:2015课后作业【作业1】如图,在四边形ABCD中,AB=CD,BC=AD,若∠A=110°,则∠C= 度.【答案】110【解析】由AB=CD,BC=AD可以判定四边形ABCD是平行四边形,然后根据平行四边形的性质即可求出∠C.解:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴∠C=∠A=110°.故填空答案:110.难度: 3 适应场景:练习题例题来源:河北年份:2006【作业2】四边形ABCD的两条对角线相交于点O,AB∥CD,且AB=CD,S△AOB=5,则四边形ABCD 的面积为.【答案】20【解析】先证明四边形ABCD是平行四边形,得出对角线互相平分,然后得出四个小三角形的面积相等,即可求出四边形ABCD的面积.解:∵AB∥CD,且AB=CD,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△AOD=S△COD=S△BOC=S△AOB=5,∴四边形ABCD的面积=4×5=20;故答案为:20.难度: 3 适应场景:练习题例题来源:无年份:2017【作业3】已知如图所示,E、F是四边形ABCD对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.【答案】(1)△AFD≌△CEB;(2)是【解析】(1)首先根据平行线的性质可得∠DFA=∠BEC,再加上AF=CE,DF=BE 可利用SAS定理证明△AFD≌△CEB;(2)首先根据△AFD≌△CEB可得AD=BC,∠DAC=∠ECB,然后证明AD∥CB,根据一组对边平行且相等的四边形是平行四边形可得结论.(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)四边形ABCD是平行四边形,∵△AFD≌△CEB,∴AD=BC,∠DAC=∠ECB,∴AD∥BC,∴四边形ABCD是平行四边形.难度: 3 适应场景:练习题例题来源:李沧区一模年份:2017【作业4】如图,四边形ABCD是平行四边形,E、F是对角线BD上的两点,∠1=∠2.(1)求证:DE=BF;(2)求证:四边形AECF是平行四边形.【答案】(1)DE=BF;(2)四边形AECF是平行四边形【解析】(1)通过全等三角形△CDE≌△ABF的对应边相等证得DE=BF;(2)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.(1)证明:如图:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6在△CDE与△ABF中,,∴△CDE≌△ABF(ASA),∴DE=BF;(2)证明:∵∠1=∠2,∴CE∥AF.又∵由(1)知,△CDE≌△ABF,∴CE═AF,∴四边形AECF是平行四边形.难度: 3 适应场景:练习题例题来源:沈河区二模年份:2017 【作业5】如图,在△ABC中,点D在BC上,且DC=AC,CE⊥AD,垂足为E,点F是AB的中点.求证:EF∥BC.【答案】EF∥BC【解析】根据等腰三角形三线合一的性质求出AE=ED,然后求出EF为△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半证明.证明:∵AC=DC CE⊥AD,∴AE=ED,又∵F为AB中点,∴EF为△ABD中位线,∴EF∥BD,即EF∥BC.难度: 3 适应场景:练习题例题来源:简阳市模拟年份:2012。
人教版初二上数学平行四边形判定和性质的知识点
平行四边形判定和性质的知识点1.平行四边形的性质:边:平行四边形的对边平行且相等角:平行四边形的对角相等对角线:平行四边形的对角线互相平分2.平行四边形的判定:边:(1)两组对边分别平行的四边形(2)两组对边分别相等的四边形(3)一组对边平行且相等的四边形角:两组对角分别相等的四边形对角线:对角线互相平分的四边形注:可以借助全等三角形推出用边,角,对角线证明平行四边形。
3.平行四边形的两条平行线间的距离:(1)两条平行线之间的距离处处相等(2)夹在两条平行线间的平行线段相等4.平行四边形的面积:(1)底×高(2)两条对角线可以把平行四边形分成四个面积相等的三角形5.三角形中位线:(看到中点要想起中位线)三角形中位线的定理(性质):三角形的中位线平行且等于第三边的一半6.矩形的判定:角:(1)有一个角是直角的平行四边形是矩形(定义)(2)有三个角是直角的四边形是矩形对角线:(1)对角线相等的平行四边形是矩形(2)对角线互相平分且相等的四边形是矩形7.矩形的性质:角:矩形的四个角都是直角对角线:矩形的对角线相等注:矩形是特殊的平行四边形,还具有平行四边形所有的性质8.矩形面积:长 宽9.矩形的的两条对角线将矩形分成两对全等的等腰三角形,并且分成的四个等腰三角形面积相等。
10.直角三角形斜边中线的性质:直角三角形斜边中线等于斜边的一半,所以把直角三角形分成两个等腰三角形,且两个等腰三角形面积相等。
注:在直角三角形中,如果遇到斜边的中点,可以考虑构建斜边上的中线。
11.菱形的判定:边:(1)有一组邻边相等的平行四边形是菱形(定义)(2)四条边相等的四边形是菱形对角线:(1)对角线互相垂直的平行四边形是菱形(2)对角线互相平分且垂直的四边形是菱形12.菱形的性质:边:菱形的四条边都相等对角线:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角13.菱形的面积:(1)底⨯高(一般算法)1两条对角线的乘积(对角线互相垂直任意四边(2)⨯2形的面积都可以这样求,正方形的面积也可以这样求)(3)对角线分成的四个小直角三角形的面积之和14.正方形不仅是特殊的平行四边形,还是特殊的矩形,菱形,所以正方形具有平行四边形,矩形,菱形的一切性质。
初二数学平行四边形的性质与判定
初二数学平行四边形的性质与判定平行四边形是初中数学中的重要概念之一,它具有一系列特点和性质。
本文将介绍平行四边形的性质以及判定方法。
一、平行四边形的性质1. 对边平行性:平行四边形的对边是两两平行的。
即AB ∥ DC, AD ∥ BC。
2. 对角线重合性:平行四边形的对角线互相重合于中点。
即AC = BD,并且AC的中点和BD的中点重合。
3. 对角线相等性:平行四边形的对角线相等。
即AC = BD。
4. 对边相等性:平行四边形的对边相等。
即AB = DC, AD = BC。
5. 内角和性质:平行四边形的内角和为180度。
即∠A + ∠B + ∠C + ∠D = 180°。
6. 对边角性:平行四边形的对边对角是两个对立角,互相补角。
即∠A + ∠C = 180°, ∠B + ∠D = 180°。
二、平行四边形的判定方法根据平行四边形的性质,我们可以通过以下方法判定一个四边形是否为平行四边形。
1. 判定对边平行性:如果一个四边形的两对边分别平行,则该四边形为平行四边形。
2. 判定对边相等性:如果一个四边形的两对边分别相等,则该四边形为平行四边形。
3. 判定对角线重合性:如果一个四边形的对角线的中点重合,则该四边形为平行四边形。
4. 判定对角线相等性:如果一个四边形的对角线相等,则该四边形为平行四边形。
需要注意的是,以上判定方法是可以相互结合使用的,可以根据具体情况选择适当的判定条件。
三、平行四边形的应用平行四边形在几何学和实际生活中有着广泛的应用。
以下是几个常见的应用场景:1. 建筑设计:在建筑设计中,平行四边形的性质经常被应用于设计平行放置的房间、墙壁等。
2. 绘图与平行线:学习平行四边形有助于我们更好地理解平行线的性质和画法。
3. 地理测量:在地理测量中,利用平行四边形的性质可以计算地图上的距离和方位角。
4. 四边形面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算,这在实际应用中非常常见。
八年级下册数学人教版平行四边形的性质及判定方法
⼋年级下册数学⼈教版平⾏四边形的性质及判定⽅法平⾏四边形的性质及判定⽅法学⽣学校年级初⼆次数科⽬数学教师⽇期时段课题平⾏四边形应⽤教学重点1.平⾏四边形的定义;2.平⾏四边形的性质;平⾏四边形的判定⽅法.教学难点1.平⾏四边形的性质及其应⽤;2.利⽤平⾏四边形的判定⽅法解决具体问题。
教学⽬标掌握平⾏四边形的定义、性质及判别⽅法,会利⽤平⾏四边形的性质、判定⽅法解决实际问题。
教学内容⼀、课堂前准备⼆、内容讲解1、知识点掌握;2、习题练习与巩固。
三、课堂总结与反思四、作业布置1、安排具有代表性的题⽬学⽣回家后巩固练习。
【考点分析】平⾏四边形的性质和判定是中考的必考内容,通常与三⾓形、特殊四边形结合起来进⾏考查,要求学⽣不仅要掌握相关知识点,⽽且能灵活运⽤及学会运⽤数形结合思想去解题,综合性较⾼,难度中等,分值较稳定。
知识点⼀:平⾏四边形的性质平⾏四边形的定义:组对边分别的四边形叫做平⾏四边形,它⽤符号“□”表⽰,平⾏四边形ABCD记作________。
平⾏四边形是中⼼对称图形,两条对⾓线的交点是它的对称中⼼。
定理:平⾏四边形的对边相等。
定理:平⾏四边形的对⾓相等。
定理:平⾏四边形的对⾓线互相平分。
基础⼩测1.在ABCD中,∠A=,则∠B=度,∠C=度,∠D=度.2.平⾏四边形的⾯积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.5.在□ABCD中,AC、BD交于点O,已知AB=8cm,BC=6cm,△AOB的周长是18cm,那么△AOD的周长是_____________.例1:(1)在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=___,AB=______.(2)如图,□ABCD中,CE⊥AB,垂⾜为E,如果∠A=115°,则∠BCE=__________.(2)题图变式练习1图变式练习:如图,在□ABCD中,DB=DC,∠A=65°,CE⊥BD于E,则∠BCE=______.2.在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______.3.□ABCD的周长为60cm,对⾓线交于点O,△BOC的周长⽐△AOB的周长⼩8cm,则AB=______cm,BC=_______cm.4.□ABCD的对⾓线交于点O,,则S□ABCD=________.5.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的⾯积为______.6.如图□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为_______.7.如图,已知平⾏四边形,是延长线上⼀点,连结交于点,在不添加任何辅助线的情况下,请补充⼀个条件,使,这个条件是.(只要填⼀个)ABEFDC第3题例2:已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.变式练习:1.□ABCD中,E、F在AC上,四边形DEBF是平⾏四边形.求证:AE=CF.2.如图,平⾏四边形ABCD中,AC、BD相交于点O,AE⊥BD于E,CF⊥BD于F,求证:AE=CF.3.如图6所⽰,在ABCD中,AEBD,CFBD,垂⾜分别为E、F.点G、H分别为AD、BC的中点,连接GH交BD于点O,求证:EF和GH互相平分.知识点⼆:平⾏四边形的判别⽅法(1)从边上去判定:①两组对边分别平⾏的四边形是平⾏四边形(定义)②⼀组对边平⾏且相等的四边形是平⾏四边形(定理)③两组对边分别相等的四边形是平⾏四边形(定理)(2)从对⾓线上去判定:对⾓线互相平分的四边形是平⾏四边形(定理)(3)从⾓上去判定:两组对⾓分别相等的四边形是平⾏四边形例3:如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形是平⾏四边形,并予以证明.(写出⼀种即可)关系:①∥,②,③,④.ABCD已知:在四边形中,,;求证:四边形是平⾏四边形.变式练习:1如图,在□ABCD中,点E、F是对⾓线AC上两点,且AE=CF.CABDEFO求证:∠EBF=∠FDE.2.已知:如图,E,F分别是ABCD的边AD,BC的中点.求证:AF=CE.ADEFBC3.如图,已知:平⾏四边形ABCD中,的平分线交边于,的平分线交于,交于.求证:.ABCDEFG4.如图,分别以RtΔABC的直⾓边AC及斜边AB向外作等边ΔACD、等边ΔABE.已知∠BAC=,EF⊥AB,垂⾜为F,连结DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平⾏四边形.【作业布置】课后巩固练习1、已知□ABCD中,∠B=70°,则∠A=______,∠D=______。
平行四边形的判定与性质
平行四边形的判定与性质一、平行四边形的判定1.对边平行:如果一个四边形的对边分别平行,那么这个四边形是平行四边形。
2.对角相等:如果一个四边形的对角线相等,那么这个四边形是平行四边形。
3.对边相等:如果一个四边形的对边相等,那么这个四边形是平行四边形。
4.对角平行:如果一个四边形的对角线互相平行,那么这个四边形是平行四边形。
5.一组对边平行且相等:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
6.对角线互相平分:如果一个四边形的对角线互相平分,那么这个四边形是平行四边形。
二、平行四边形的性质1.对边平行且相等:平行四边形的对边平行且相等。
2.对角相等:平行四边形的对角相等。
3.对角线互相平分:平行四边形的对角线互相平分。
4.对边相等:平行四边形的对边相等。
5.对角平行:平行四边形的对角线互相平行。
6.一组对边平行且相等:平行四边形的一组对边平行且相等。
7.对边对角相等:平行四边形的对边和对角相等。
8.对角线垂直平分:平行四边形的对角线互相垂直平分。
9.对边对角相等:平行四边形的对边和对角相等。
10.对角线互相平分:平行四边形的对角线互相平分。
11.对角线互相垂直:平行四边形的对角线互相垂直。
12.对角线互相平分且垂直:平行四边形的对角线互相平分且垂直。
三、平行四边形的应用1.计算面积:平行四边形的面积可以通过底乘以高得到。
2.证明线段平行:利用平行四边形的性质证明线段平行。
3.证明四边形是平行四边形:利用平行四边形的判定证明四边形是平行四边形。
4.设计图形:利用平行四边形的性质设计图形,如平行四边形形的窗户、桌面等。
5.解几何题目:利用平行四边形的性质和判定解几何题目。
以上就是平行四边形的判定与性质的知识点,希望对你有所帮助。
习题及方法:1.习题:如果一个四边形的对边平行且相等,那么这个四边形是什么?答案:平行四边形。
解题思路:根据平行四边形的性质,对边平行且相等的四边形是平行四边形。
数学人教八年级下册课件平行四边的性质
A
D
证明: ∵四边形ABCD 是平行四边形
∴ AD//CB, AD=CB
∵ AD//CB
O
B
∴∠DAO=∠BCO, ∠ADO=∠CBO
∵ 在△ADO 和△CBO 中, ∠DAO=∠BCO,AD=CB
∠ADO=∠CBO
∴ △ADO ≌△CBO (ASA), OA=OC,OB=OD.
C
性质3 平行四边形的对角线互相平分.
∴△ADE≌△CBF (AAS),
∴ AE=CF.
探究
如图,在
ABCD中,连接AC、BD,并设它们相
交于点 O,OA与OC,OB与OD有什么关系?
A
猜想:在
ABCD中, OA=OC,OB=OD
O
B
你能试着证明一下吗?
D
C
如图,在
ABCD中,对角线AC、BD相交于点O. 求证:
OA=OC,OB=OD .
∴ BC=5,AB=7
∴
A
ABCD的周长为AB+BC+CD+AD=24.
B
1.如图,在
ABCD中,E,F是直线BD上的两点,且DE=BF,求证:
AE=CF.
E
D
证明: ∵四边形ABCD 是平行四边形
C
∴ ∠ADB= ∠CBD , AD=CB
∵ E,F是直线BD上的两点
A
∴ ∠ADE=180〫-∠ADB,∠CBF=180〫-∠CBD, ∴∠ADE= ∠CBF
B
C
例1 如图,在
ABCD中,DE⊥AB,BF⊥CD,垂足分别为
E,F. 求证:AE=CF.
证明: ∵四边形ABCD 是平行四边形 ∴ ∠A= ∠C , AD=CB
(人教版)初二年平行四边形的性质与判定
平行四边形的性质回忆:平行四边形具有哪些性质?1。
平行四边形的对边_______且________. 2. 平行四边形的对角_______。
3。
平行四边形的对角线___________。
1. 如图所示, 四边形ABCD 是平行四边形,∠D = 120°,∠CAD = 32°。
则∠ABC =______°,∠CAB=______°. 2。
在ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A. 1∶2∶3∶4B. 1∶2∶2∶1C. 1∶1∶2∶2D. 2∶1∶2∶13。
如图所示,在ABCD 中,∠B =132°,延长AD 至F ,CD 至E ,连接EF ,则 ∠E +∠F =4。
已知平行四边形一边AB = 12 cm , 是周长的61,则BC = ______ cm , CD = ______ cm , DA =______ cm 。
5. 平行四边形的周长为24 cm,相邻两边的差为2 cm,求这个平行四边形的各边长.6。
如图,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长.7。
如图所示,在ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F. 那么OE与OF是否相等?为什么?8. 如图,ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1。
3,求四边形BCEF的周长。
平行四边形 第一组1. □ABCD 中,∠B =100°,那么∠A 、∠D 的值分别是( ) (A )∠A =80°,∠D =100° (B)∠A =100°,∠D =80° (C )∠B =80°,∠D =80° (D )∠A =100°,∠D =100°2。
如图, 在ABCD 中,对角线AC 、BD 相交于点O ,若△AOB 的面积为1,则平行四边形的面积为______。
人教版八年级下册数学平行四边形的性质与判定
课题:平行四边形教学目标:了解平行四边形的概念,性质,并能运用它们进行简单的计算和证明.重点; 掌握平行四边形的性质,判定难点: 掌握平行四边形的性质,判定,并能运用它们进行简单的计算和证明.知识与技能:学生通过对平行四边形学习与探究握平行四边形的性质,判定,为后面特殊的四边形的学习铺垫。
一、课前预习(一)多边形1、由不在同一条直线上的四条线段首尾顺次相接形成的图形叫做四边形。
2、四边形的内角和等于。
3、四边形的外角和等于。
4、n边形的内角和为。
5、任何多边形的外角和为。
二、平行四边形1、平行四边形的定义______的四边形叫做平行四边形。
2、平行四边形的性质平行四边形的两组对边分别______;平行四边形的两组___分别___;平行四边形的____互相___。
平行四边形是______图形。
3、平行四边形的判定用边判定:⑴__________________。
⑵__________________。
⑶__________________。
用角判定:__________________。
用对角线判定:__________________。
4、中心对称:(1)如果一个图形绕着一个点旋转1800后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫对称中心。
如:平行四边形是中心对称图形,但等边三角形不是中心对称图形。
(2)对称中心平分连结两个对称点的线段。
(3)中心对称:把一个图形绕着某一点旋转180度,如果它能与另一个图形重合,那么,这两个图形成中心对称,该点叫做对称中心。
(4)中心对称图形:一个图形绕着某一点旋转180度后能与自身重合,这种图形叫做中心对称图形,该点叫做对称中心。
(5)性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心且被对称中心平分。
5、平形四边形的判定:(1)一组对边平行并且相等的四边形是平行四边形。
(2)两组对边分别相等的四边形是平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的性质
回忆:平行四边形具有哪些性质? 1. 平行四边形的对边_______且________. 2. 平行四边形的对角_______. 3. 平行四边形的对角线___________.
1. 如图所示, 四边形ABCD 是平行四边形,∠D = 120°,∠CAD = 32°. 则∠ABC =______°,∠CAB=______°.
2. 在
ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )
A. 1∶2∶3∶4
B. 1∶2∶2∶1
C. 1∶1∶2∶2
D. 2∶1∶2∶1
3. 如图所示,在
ABCD 中,∠B =132°,延长AD 至F ,
CD 至E ,连接EF ,则 ∠E +∠F =
4. 已知平行四边形一边AB = 12 cm, 是周长的6
1
,则BC = ______ cm, CD = ______ cm, DA =______ cm.
5. 平行四边形的周长为24 cm ,相邻两边的差为2 cm ,求这个平行四边形的各边长.
6. 如图,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.
7. 如图所示,在
ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,
垂足分别为E 、F . 那么OE 与OF 是否相等?为什么? 8. 如图,
ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,求四边
形BCEF 的周长.
平行四边形 第一组
1. □ABCD 中,∠B =100°,那么∠A 、∠D 的值分别是( ) (A )∠A =80°,∠D =100° (B )∠A =100°,∠D =80° (C )∠B =80°,∠D =80° (D )∠A =100°,∠D =100°
2. 如图, 在
ABCD 中,对角线AC 、BD 相交于点O ,
若△AOB 的面积为1,则平行四边形的面积为______. 图中全等三角形共有________对,
3. 若□ABCD 的周长为28 cm ,△ABC 的周长为17 cm ,则AC 的长为( ) (A )11cm (B ) 5.5cm (C )4cm (D )3cm
4. 如图, □ABCD 中, DB =DC , ∠C =70°, AE ⊥BD 于E , 则 ∠DAE =_____度.
5.
ABCD 中,若,6,10,30cm AB cm BC B ===∠
则ABCD 的面积是
______cm 2.
6. 如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为_____cm .
1.如图, △ABC中,D、E分别是AB、AC边的中点,且DE=6 cm,
则BC=_______cm.
2.如图, EF是△ABC的中位线, BD平分∠ABC交EF于点D,
DE=2, 则EB=_____.
3.如图,△ABC中,点D、E、F分别是AB、BC、CA边的中点,
则图中的平行四边形一共有______个,若△ABC的周长为20,
则△DEF的周长为.
第三组
1. 下列给出的条件中,能判定四边形ABCD是平行四边形的是().
(A) AB∥CD,AD=BC(B) AB=AD,CB=CD
(C) AB=CD,AD=BC(D) ∠B=∠C,∠A=∠D
2. 已知点A(2,0)、点B(-1
2
,0)、点C(0,1),以A、B、C三点为顶点
画平行四边形.则第四个顶点不可能在().
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
3. 满足下列条件的平行四边形是否存在?说说你的理由.
(1)以6 cm为一条对角线长,3 cm、10 cm为两条邻边长
(2)以10 cm、14 cm为两条对角线长,12 cm为一条边长
1. 如图, □ABCD中,BD⊥AB,AB=4 cm,AC=10 cm,求AD的长.
2. 如图,E、F是□ABCD对角线BD上的两点,请你添加一个适当的条件,使四边形AECF是平行四边形.
解:我添加的条件是___________.
证明如下:
3. 如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.求证:四边形ABCD是平行四边形.
第五组
1. 如图,在□ABCD中,∠ABC的平分线交AD于点E,交CD的延长线于点
F. 若AB=4 cm,AD=7 cm,求DF的长.
2. 如图,□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC 的长为_______.
3. 如图,在ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°.
(1) 求ABCD四个内角的度数.
(2) 求AB : AE的值.
(3) 若AE+AF=. 求ABCD的周长.。