太原中考数学压轴题专题二次函数的经典综合题
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
2023年九年级中考数学:二次函数综合题压轴题(特殊四边形问题)(含答案)
(1)求该抛物线的解析式和顶点 的坐标;
(2)设点 的横坐标是 ,问当 取何值时,四边形 的面积最大;
(3)如图,若直线 的解析式是 ,点 和点 分别在抛物线上和直线 上,问:是否存在以点 为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点 的坐标
3.综合与探究
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,点 为抛物线顶点.
(1)求抛物线解析式;
(2)点 在此抛物线的对称轴上,当 最大时,点 的坐标为_____,此时 的面积为_____;
(3)点 在抛物线上,平面内存在点 使四边形 为菱形时,请直接写出点 的坐标.
4.如图,在平面直角坐标系中,抛物线 和直线 交于 、 两点,直线 交 轴于点 .
20.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上, , ,抛物线 经过点B,且与x轴交于点 和点E.
(1)求抛物线的表达式:
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)求点 的坐标与 的值;
(2)当点 恰好是 的中点时,求点 的坐标;
(3)连结 ,作点 关于直线 的对称点 ,当点 落在线段 上时,则点 的坐标为______ 直接写出答案
6.已知抛物线 与x轴有公共点.
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
2012-2019山西二次函数中考压轴
(2019年山西中考)
(2)△BCD的面积等于△AOC的面积的 时,求m的值; (3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在 这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点 M的坐标;若不存在,请说明理由.
谢谢聆听
(2017年山西中考)
(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简) ②在点P、Q运动的过程中,当PQ=PD时,求t的值; (3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在, 请直接写出此时t的值与点F的坐标;若不存在,请说明理由.
(2018年山西中考)
(2013年山西中考)
(2)当点P在线段OB上运动时,直线L 分别交BD、BC于点M、N。试探究m为 何值时,四边形CQMD是平行四边形, 此时,请判断四边形CQBM的形状,并 说明理由。 (3)当点P在线段EB上运动时,是否存 在点Q,使⊿BDQ为直角三角形,若存 在,请直接写出Q点坐标;若不存在, 请说明理由。
(2017年山西中考)
如图,抛物线y=﹣ x2+ x+3 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点 C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以 每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动, 连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设 点P的运动时间为t秒(t>0). (1)求直线BC的函数表达式;
二次函数中考压轴题
标系中, 抛物线y=﹣x2+2x+3与x轴交于A、 B两点,与y轴交于点C,点D是 该抛物线的顶点. (1)求直线AC的解析式及B、 D两点的坐标;
山西省太原市中考数学专题题型复习04:二次函数的综合
山西省太原市中考数学专题题型复习04:二次函数的综合姓名:________ 班级:________ 成绩:________一、解答题 (共2题;共15分)1. (10分)(在平面直角坐标系中,O为原点,点A(1,0),点B(0,),把△ABO绕点O顺时针旋转,得A′B′O,记旋转角为α.(1)如图①,当α=30°时,求点B′的坐标;(2)设直线AA′与直线BB′相交于点M.①如图②,当α=90°时,求点M的坐标;②点C(﹣1,0),求线段CM长度的最小值.(直接写出结果即可)【考点】2. (5分)(2017·枣庄) 如图,抛物线y=﹣ x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(Ⅰ)求抛物线的解析式及点D的坐标;(Ⅱ)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(Ⅲ)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【考点】二、综合题 (共20题;共310分)3. (15分)(2019·松北模拟) 如图①,直线y=﹣ x+8 与x轴交于点A,与直线y= x交于点B,点P为AB边的中点,作PC⊥OB与点C,PD⊥OA于点D.(1)填空:点A坐标为________,点B的坐标为________,∠CPD度数为________;(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.【考点】4. (15分) (2019九上·江山期中) 如图(1)如图1,已知抛物线经过坐标原点O和轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A 与点O重合,AD、AB分别在轴的负半轴、轴的正半轴上,且AD=2,AB=3.(1)求该抛物线的函数关系式;(2)如图1,将矩形ABCD以每秒1个单位长度的速度从所示的位置沿轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①直接写出P点坐标。
2023年九年级数学中考专题:二次函数综合压轴题(线段周长问题)(含简单答案)
(2)点P在直线 下方的抛物线上,连接 交 于点 ,过点 作 轴的垂线 ,垂线 交 于点 , 垂线 ,求证 ;当 最大时,求点P的坐标及 的最大值;
(3)在(2)的条件下,在 上是否存在点 ,使 是直角三角形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
4.如图,已知抛物线与 轴交于点 , ,与 轴交于点 .
(3)若直线 与线段 交于点 (不与点 , 重合),则是否存在这样的直线 ,使得以 , , 为顶点的三角形与 相似?若存在,求出该直线的函数表达式及点 的坐标;若不存在,请说明理由.
8.如图,抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求该抛物线的解析式及顶点坐标;
(2)若点 是抛物线的对称轴与直线 的交点,点 是抛物线的顶点,求 的长;
(3) 或
13.(1)二次函数的解析式为 ;
(3)点P的坐标为 或 .
14.(1)
(2) ,或
(3)
15.(1)抛物线的函数关系式为 ;直线 的函数关系式为 ;
(2) 面积的最大值为 ;
(3)点M的坐标为 .
16.(1) ,
(2)
(3)最大值为4,此时
17.(1) ,
(2)
(3) 或 或
18.(1)
11.已知:抛物线 经过 三点.
(1)求抛物线的解析式;
(2)如图1,点P为直线 上方抛物线上任意一点,连接 , 交直线 于点E,设 ,求当k取最大值时点P的坐标,并求此时k的值.
(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.求 的周长及 的值.
12.如图,抛物线 交 轴于 , 两点(点 在 的右边),与 轴交于点 ,连接 , .点 是第一象限内抛物线上的一个动点,点 的横坐标为 ,过点 作 轴,垂足为点 , 交 于点 .
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简单答案)
(1)点A的坐标为;
(2)若射线 平分 ,求二次函数的表达式;
(3)在(2)的条件下,如果点 是线段 (含A、B)上一个动点,过点D作x轴的垂线,分别交直线 和抛物线于E、F两点,当m为何值时, 为直角三角形?
②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.
14.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).
(1)求抛物线的解析式及tan∠OBC的值;
(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;
(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.
15.如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,已知抛物线的对称轴是直线 , . 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求直线 的解析式.
6.已知抛物线 经过 、 两点,O为坐标原点,抛物线交正方形 的边 于点E,点M为射线 上一动点,连接 ,交 于点F.
(1)求b和c的值及点C的坐标;
(2)求证∶
(3)是否存在点M,使 为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
(1)求 , 的长(结果均用含 的代数式表示).
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(含答案)
2024年中考数学高频压轴题训练——二次函数压轴题(角度问题)(1)求抛物线的解析式;(2)抛物线上是否存在点,使P存在,请说明理由.(1)求该抛物线的函数表达式;(2)在直线上是否存在点,使说明理由.(3)为第一象限内抛物线上的一个动点,且在直线,垂足为,以点为圆心,,且不经过点l C P PM l ⊥M M 2PAB PT S =V M e (4.如图,已知顶点为的抛物线与x 轴交于A ,B 两点,且.(1)求点B 的坐标;(2)求二次函数的解析式;(3)作直线,问抛物线上是否存在点M ,使得,若存在,求出点M 的坐标;若不存在,请说明理由.5.如图,抛物线与x 轴交于A 、B 两点,,,与y 轴交于点C ,连接.()0,6C -()20y ax b a =+≠OC OB =()20y ax b a =+≠CB ()20y ax b a =+≠15MCB ∠=︒24y ax bx =+-()2,0A -()8,0B AC BC 、(1)求抛物线的解析式;(2)求证:;(3)点P 在抛物线上,且,求点P的坐标.6.如图,在平面直角坐标系中,已知抛物线与x 轴交于、两点,与y 轴交于点C ,连接.(1)求抛物线的解析式;(2)在对称轴上是否存在一点M ,使,若存在,请求出点M 的坐标;若不存在,请说明理由;(3)若点P 是直线下方的抛物线上的一个动点,作于点D ,当的值最大时,求此时点P 的坐标及的最大值.∠=∠ACO ABC PCB ACO ∠=∠()230y ax bx a =+-≠()3,0A ()1,0B -AC MCA MAC ∠=∠AC PD AC ⊥PD PD(1)试求抛物线的解析式;(2)点P 是直线下方抛物线上一动点,当的面积最大时,求点P 的坐标;(3)若M 是抛物线上一点,且,请直接写出点M 的坐标.BC BCP V MCB ABC ∠=∠(1)求此抛物线的解析式;(2)点E 是AC 延长线上一点,的平分线CD 交⊙于点D ,连接BD ,求点D 的坐标;(3)在(2)的条件下,抛物线上是否存在点P ,使得?如果存在,请求出点P 的坐标;如果不存在,请说明理由.9.综合与实践:如图,抛物线与x 轴交于点和点,与y 轴交于点C ,连接,点D 在抛物线上.(1)求抛物线的解析式;(2)小明探究点D 位置时发现:如图1,点D 在第一象限内的抛物线上,连接,,面积存在最大值,请帮助小明求出面积的最大值;(3)小明进一步探究点D 位置时发现:点D 在抛物线上移动,连接,存在BCE ∠O 'PDB CBD ∠=∠22y ax bx =++()1,0A -()4,0B BC BD CD BCD △BCD △CD(1)求抛物线的解析式.(2)如图1,过点D 作轴,垂足为M ,点P 在直线P 作,,求的最大值,以及此时点(3)将原抛物线沿射线方向平移个单位长度,在平移后的抛物线上存在点得,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过DM x ⊥PE AD ⊥PF DM ⊥2PE PF +CA 5245CAG ∠=︒(1)填空:___________,___________;(2)点为直线上方抛物线上一动点.①连接、,设直线交线段于点,求的最大值;②过点作于点,连接,是否存在点,使得中的,若存在,求出点的坐标;若不存在,请说明理由.(1)求抛物线的解析式;b =c =D AC BC CD BD AC E DE EBD DF AC ⊥F CD D CDF V 2DCF BAC ∠=∠D(1)求抛物线的解析式;(2)抛物线上是否存在点D ,使得?若存在,求出所有点不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 动点,EF 与直线OB 交于点G .设和的面积分别为值.DOB OBC ∠=∠BFG V BEG V S14.如图,在平面直角坐标系中,点为坐标原点,抛物线与轴交于、两点且点,,与轴的负半轴交于点,.(1)求此抛物线的解析式;(2)在(1)的条件下,连接,点为直线下方的抛物线上的一点,过点作交于点,交直线于点,若,求点的坐标.(3)在(1)的条件下,点为该抛物线的顶点,过点作轴的平行线交抛物线于另一点,过点作于点,该抛物线对称轴右侧的抛物线上有一点,连接交于点,当时,求的度数.15.已知抛物线与轴相交于点,,与轴相交于点.O 2y x bx c =++x A B (3B 0)y C OB OC =AC P BC P PQ AC ∥AB Q BC D PD DQ =P D C x R R RH AB ⊥H M DM RH Q 2MQ RQ =MQH ∠24y ax bx =++x ()1,0A ()4,0B y C参考答案:的值最大时,此时,。
2024年中考数学二次函数压轴题归类(30个)
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题18:抛物线上找一点P, 作x轴, 交线段AC于点N, 使AC分∆ 的面积为2:1两
部分?
形
顶点坐标(h, k)
原始三角
形;重视
四点围成
的三角形
(边、角
关系)
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题2:判断∆ 的形状,并说明理由
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
二次函数压轴题归类(30个)
题号
针对变式题目
形定问题
1-解析式、2-三角形形状
线段问题
3-线段相等、4-线段成比例
最值问题
5-线段最值1 (直)、6-线段最值2 (斜) 、7-和最小8-差最大 、9-两村一路
面积问题
10-定点求面积 、11-斜三角形求面积 、12--(定+动) 求面积、13-同底等高 (直) 、14同底等高(斜) 、 15-面积平分1、16-面积平分 2 、 17-面积平分3 、18-面积分割
时M点坐标
已知抛物线 = 2 + + 与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题9:线段 MN=1,在对称轴上运动 (M点在N点上方),求四边形BMNC周长的最小值及此
时M点坐标
将军饮马解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,
对称。解题策略:对称、翻折→化同为异;化异为同;化折为直。
2023年九年级数学中考专题:二次函数综合压轴题(特殊四边形问题)(含简单答案)
(1)求抛物线的函数表达式.
(2)当 的面积等于 的面积的 时,求m的值.
(3)当 时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.
(3)点 的坐标为 , ,
5.(1) ,
(2)2
(3) 或 或
6.(1)
(2)
(3)矩形的周长
7.(1) , ;
(2)存在, 或 ;
(3) 或 或 或 .
8.(1) ,
(2)当 时,
(3)存在, 或 或
9.(1)
(2) 的面积最大值为4
(3)四边形 能构成菱形,点 的坐标为 或
10.(1)
(2)
(3)存在, 或 或
15.如图所示,在矩形 中,把点 沿 对折,使点 落在 上的 点.已知 .
(1)求 点的坐标;
(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过 ,且直线 是该抛物线的切线.求抛物线的解析式.并验证点 是否在该抛物线上.
(3)在(2)的条件下,若点 是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较 与 的大小(不必证明),并写出此时点 的横坐标 的取值范围.
11.(1) ;
(2) ;
(3) 、 、 .
12.(1)
(2)
(3)M的坐标为 或 或 或
13.(1)
(2)13.5
(3)存在, , 或
14.(1)
(2)点 的坐标为 或 或 或
2020-2021太原 备战中考数学(二次函数提高练习题)压轴题训练
2020-2021太原 备战中考数学(二次函数提高练习题)压轴题训练一、二次函数1.如图,在平面直角坐标系中有抛物线y =a (x ﹣2)2﹣2和y =a (x ﹣h )2,抛物线y =a (x ﹣2)2﹣2经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B ;点P 是抛物线y =a (x ﹣2)2﹣2上一动点,且点P 在x 轴下方,过点P 作x 轴的垂线交抛物线y =a (x ﹣h )2于点D ,过点D 作PD 的垂线交抛物线y =a (x ﹣h )2于点D ′(不与点D 重合),连接PD ′,设点P 的横坐标为m : (1)①直接写出a 的值;②直接写出抛物线y =a (x ﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y =a (x ﹣h )2经过原点时,设△PDD ′与△OAB 重叠部分图形周长为L : ①求PDDD '的值; ②直接写出L 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、D 、D ′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1;②L =2(22)(02)21(221)4(24)2m m m m π⎧+<⎪⎨-++<<⎪⎩…; (3)h =±3 【解析】 【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值.【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中, 得:0=a (0﹣2)2﹣2, 解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4 如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭,2222322m m 22,PG m 22m FH PH PF ===-+-=-+ ∵DD ′∥EGEG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG221224222m m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭ 221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)2L ⎧+<⎪∴=⎨+-+++<<⎪⎩…; (3)如图3,∵OADD ′为菱形 ∴AD =AO =DD ′=4, ∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.2.已知,抛物线y=x 2+2mx(m 为常数且m≠0). (1)判断该抛物线与x 轴的交点个数,并说明理由.(2)若点A (-n+5,0),B(n-1,0)在该抛物线上,点M 为抛物线的顶点,求△ABM 的面积.(3)若点(2,p),(3,g ),(4,r)均在该抛物线上,且p<g<r ,求m 的取值范围. 【答案】(1)抛物线与x 轴有2个交点,理由见解析;(2)△ABM 的面积为8;(3)m 的取值范围m>-2.5 【解析】 【分析】(1)首先算出根的判别式b 2-4ac 的值,根据偶数次幂的非负性,判断该值一定大于0,从而根据抛物线与x 轴交点个数与根的判别式的关系即可得出结论;(2)根据抛物线的对称性及A,B 两点的坐标特点求出抛物线的对称轴直线为x=2.从而再根据抛物线对称轴直线公式建立方程,求解算出m 的值,进而求出抛物线的解析式,得出A,B,M 三点的坐标,根据三角形的面积计算方法,即可算出答案;(3)方法一(图象法):根据抛物线的对称轴直线及开口方向判断出当对称轴在直线x=3的右边时,显然不符合题目条件;当对称轴在直线x=2的左边时,显然符合题目条件(如图2),从而列出不等式得出m 的取值范围;当对称轴在直线x=2和x=3之间时,满足3-(-m)>-m-2即可(如图3),再列出不等式得出m 的取值范围,综上所述,求出m 的取值范围;方法二(代数法):将三点的横坐标分贝代入抛物线的解析式,用含m 的式子表示出p,g,r ,再代入 p<g<r 即可列出关于m 的不等式组,求解即可。
【备考期末】太原市中考数学期末二次函数和几何综合汇编
【备考期末】太原市中考数学期末二次函数和几何综合汇编一、二次函数压轴题1.探究:已知二次函数y=ax2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P是抛物线上在第二象限内的一个动点,且点P的横坐标为t,连接AC,PA,PC.①求△ACP的面积S关于t的函数关系式;②求△ACP的面积的最大值,并求出此时点P的坐标.拓展:在平面直角坐标系中,点M的坐标为(﹣1,3),N的坐标为(3,1),若抛物线y=ax2﹣2x+3(a<0)与线段MN有两个不同的交点,请直接写出a的取值范围.2.如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=﹣83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB 上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.②△BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m 的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.3.在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345y/cm 6.0 4.8 4.5 6.07.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.4.在数学拓展课上,九(1)班同学根据学习函数的经验,对新函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下:(初步尝试)求二次函数y=x2﹣2x的顶点坐标及与x轴的交点坐标;(类比探究)当函数y=x2﹣2|x|时,自变量x的取值范围是全体实数,下表为y与x的几组对应值.x … ﹣3 ﹣52﹣2 ﹣1 0 1 252 3 …y (3)540 ﹣1 0 ﹣1 0 543 …①根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请你画出该函数图象的另一部分;②根据画出的函数图象,写出该函数的两条性质.(深入探究)若点M (m ,y 1)在图象上,且y 1≤0,若点N (m+k ,y 2)也在图象上,且满足y 2≥3恒成立,求k 的取值范围.5.已知抛物线2:23G y mx mx =--有最低点为F .(1)当抛物线经过点E (-1,3)时,①求抛物线的解析式;②点M 是直线EF 下方抛物线上的一动点,过点M 作平行于y 轴的直线,与直线EF 交于点N ,求线段MN 长度的最大值;(2)将抛物线G 向右平移m 个单位得到抛物线1G .经过探究发现,随着m 的变化,抛物线1G 顶点的纵坐标y 和横坐标x 之间存在一个函数,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的交点为P ,请结合图象求出点P 的纵坐标的取值范围. 6.综合与探究如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,()2,0A -,()4,0B ,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式:(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积;(3)在直线l 上有一点P ,连接AP ,CP ,则AP CP +的最小值为______;(4)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由. 7.综合与探究如图1,抛物线2y x bx c =-++与x 轴交于,A B 两点(点A 在点B 的左侧),其中(1,0),(3,0)A B -,与y 轴相交于点C ,抛物线的对称轴与x 轴交于点E .点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)如图1,P 是第一象限内抛物线上的一个动点,连接CE ,过点P 作PF ⊥直线CE 于点F ,求PF 的最大值;(3)如图2,连接,,AC BC PB ,抛物线上是否存在点P ,使CBP ACO ABC ∠+∠=∠?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 8.小明结合自己的学习经验,对新函数y =21b kx +的解析式、图象、性质及应用进行探究:已知当x =0时,y =2;当x =1时,y =1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为: . (2)函数图象探究:①根据解析式,补全如表,则m = ,n = .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象. x …… ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 0121 2 n 4 ……y……21715 25m85285 12515 217…… (3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质: .(4)综合应用:已知函数y =|715x ﹣815|的图象如图所示,结合你所画的函数图象,直接写出不等式|715x ﹣815|≤21bkx +.9.如果抛物线C 1:2y ax bx c =++与抛物线C 2:2y ax dx e =-++的开口方向相反,顶点相同,我们称抛物线C 2是C 1的“对顶”抛物线.(1)求抛物线247y x x =-+的“对顶”抛物线的表达式;(2)将抛物线247y x x =-+的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线247y x x =-+形成两个交点M 、N ,记平移前后两抛物线的顶点分别为A 、B ,当四边形AMBN 是正方形时,求正方形AMBN 的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C 1与C 2的顶点位于x 轴上,那么系数b 与d ,c 与e 之间的关系是确定的,请写出它们之间的关系.10.综合与探究如图,已知直线y mx n =+与抛物线2y x bx c =++分别相交于A 、B 两点,1,0A ,()0,3B -,点C 是抛物线与x 轴的另一个交点(与A 点不重合).(1)求抛物线的解析式及直线y mx n =+的解析式; (2)求ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使ABM 周长最短?若不存在,请说明理由;若存在,求出点M 的坐标.(4)如果对称轴上有一动点H ,在平面内是否存在点N ,使A 、B 、H 、N 四点构成矩形?若存在,直接写出N 点的坐标;若不存在,请说明理由二、中考几何压轴题11.问题情境:两张直角三角形纸片中,90BAC DAE ∠=∠=︒.连接BD ,CE ,过点A 作BD 的垂线,分别交线段BD ,CE 于点M ,N (ABC ∆与ADE ∆在直线MN 异侧).特例分析:(1)如图1,当AB AC AD AE ===时,求证:2BD AN =;(2)当12AB AD AC AE ==,探究下列问题: ①如图2,当AB AD =时,直接写出线段BD 与AN 之间的数量关系: ; ②如图3,当AB AD ≠时,猜想BD 与AN 之间的数量关系,并说明理由; 推广应用: (3)若图3中,AB ADk AC AE==,设ABD ∆的面积为S ,则ACE ∆的面积为 .(用含k ,s 的式子表示)12.如图(1),在矩形ABCD 中,8,6AB AD ==,点,E F 分别是边,DC DA 的中点,四边形DFGE 为矩形,连接BG .(1)问题发现 在图(1)中,CEBG=_________; (2)拓展探究将图(1)中的矩形DFGE 绕点D 旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图(2)的情形给出证明; (3)问题解决当矩形DFGE 旋转至,,B G E 三点共线时,请直接写出线段CE 的长.13.在△ABC 中,AC =BC ,∠ACB =α,点D 为直线BC 上一动点,过点D 作DF ∥AC 交直线AB 于点F ,将AD 绕点D 顺时针旋转α得到ED ,ED 交直线AB 于点O ,连接BE .(1)问题发现:如图1,α=90°,点D 在边BC 上,猜想: ①AF 与BE 的数量关系是 ; ②∠ABE = 度. (2)拓展探究:如图2,0°<α<90°,点D 在边BC 上,请判断AF 与BE 的数量关系及∠ABE 的度数,并给(3)解决问题如图3,90°<α<180°,点D 在射线BC 上,且BD =3CD ,若AB =8,请直接写出BE 的长.14.某数学学习小组在复习线段垂直平分线性质时,提出了以下几个问题,请你帮他们解决: [数学理解](1)点P 是线段AB 垂直平分线上的一点,则:PA PB 的值为 ; [拓展延伸](2)在平面直角坐标系xOy 中,点()6,0C , 点Q 在x 轴上,且:O 1:2QO C =, 则点Q 的坐标为 .(3)经小组探究发现,如图,延长线段DE 到点F ,使13EF DE =,以点F 为因心,2EF 长为半径作园,则对于OF 上任一点T ,都有2TD TE =,请你证明这个结论:[问题解决](4)如图,某人乘船以25千米/时的速度沿一笔直的河l 从码头G 到码头M ,再立即坐车沿一笔直公路以75千米/时的速度回到住处H ,已知乘船和坐车所用的时间相等请在河l 边上确定码头M 的位置.(请画出示意图并简要说明理由)15.综合与实践.特例感知.两块三角板△ADB 与△EFC 全等,∠ADB =∠EFC =90°,∠B =45°,AB =6.将直角边AD 和EF 重合摆放.点P 、Q 分别为BE 、AF 的中点,连接PQ ,如图1.则△APQ 的形状为 .操作探究(1)若将△EFC绕点C顺时针旋转45°,点P恰好落在AD上,BE与AC交于点G,连接PF,如图2.①FG:GA=;②PF与DC的位置关系为;③求PQ的长;开放拓展(2)若△EFC绕点C旋转一周,当AC⊥CF时,∠AEC为.16.(问题探究)(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系?并加以证明.②若AC=BC=10,DC=CE=2,求线段AD的长.(拓展延伸)(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=21,BC=7,CD=3,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD 的长.17.将抛物线y=ax2的图像(如图1)绕原点顺时针旋转90度后可得新的抛物线图像(如x.图2),记为C:y2=1a(概念与理解)将抛物线y1=4x2和y2=x2按上述方法操作后可得新的抛物线图像,记为:C1:_____________;C2:____________.(猜想与证明)在平面直角坐标系中,点M(x,0)在x轴正半轴上,过点M作平行于y轴的直线,分别交抛物线C1于点A、B,交抛物线C2于点C、D,如图3所示.(1)填空:当x=1时,ABCD=______;当x=2时,ABCD=_______;(2)猜想:对任意x(x>0)上述结论是否仍然成立?若成立,请证明你的猜想;若不成立,请说明理由.(探究与应用)①利用上面的结论,可得△AOB与△COD面积比为;②若△AOB和△COD中有一个是直角三角形时,求△COD与△AOB面积之差;(联想与拓展)若抛物线C3:y2=mx、C4:y2=nx(0<m<n),M(k,0)在x轴正半轴上,如图所示,过点M作平行于y轴的直线,分别交抛物线C3于点A、B,交抛物线C4于点C、D.过点A 作x轴的平行线交抛物线C4于点E,过点D作x轴的平行线交抛物线C3于点F.对于x轴上任取一点P,均有△PAE与△PDF面积的比值1:3,请直接写出m和n之间满足的等量关系是______.18.(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ AE⊥于点O,点G,F分别在边CD,AB上,GF AE⊥.求证:FG AE=;(2)类比探究:如图(2),在矩形ABCD中,23BCAB=将矩形ABCD沿GF折叠,使点A落在BC 边上的点E 处,得到四边形EFGP ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,若34BE BF =,210GF =,求CP 的长. 19.(发现问题)(1)如图1, 已知CAB ∆和CDE ∆均为等边三角形,D 在AC 上,E 在CB 上, 易得线段AD 和BE 的数量关系是 .(2)将图1中的CDE ∆绕点C 旋转到图2的位置, 直线AD 和直线BE 交于点F ①判断线段AD 和BE 的数量关系,并证明你的结论.②图2中AFB ∠的度数是 .(3)(探究拓展)如图3,若CAB ∆和CDE ∆均为等腰直角三角形,90ABC DEC ∠=∠=,AB BC =,DE EC =, 直线AD 和直线BE 交于点F , 分别写出AFB ∠的度数, 线段AD 、BE 之间的数量关系 .20.在ABC 中,AB AC =,点D 、E 分别是BC AC 、的中点,将CDE △绕点C 按顺时针方向旋转一定的角度,连接BD AE 、.观察猜想(1)如图①,当60BAC ∠=︒时,填空:①AE BD=______________; ②直线BD AE 、所夹锐角为____________;类比探究(2)如图②,当90BAC ∠=︒时,试判断AE BD的值及直线BD AE 、所夹锐角的度数,并说明理由;拓展应用(3)在(2)的条件下,若2DE =CDE △绕着点C 在平面内旋转,当点D 落在射线AC 上时,请直接写出2AE 的值.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.探究:(1)223y x x =--+;(2)①S =23922t t =--,②ACP ∆的面积的最大值是278,此时点P 的坐标为315(,)24-,拓展:2a ≤-. 【分析】(1)由待定系数法易求解析式;(2)过点P 作PN AO ⊥于点N ,交AC 于点Q .设点P 的坐标为()2,23t t t --+,由PQC PQA S S S ∆∆=+可得关于t 的二次函数,进而可求最大值.(3)根据抛物线与MN 的位置关系可知当抛物线经过M 点时,a 取最大值.【详解】探究:(1)∵抛物线223y ax x =-+经过点()3,0A -,∴()()203233a =--⨯-+,解得1a =-. ∴抛物线的表达式为223y x x =--+.(2)①过点P 作PN AO ⊥于点N ,交AC 于点Q .设直线AC 的解析式为()0y kx b k =+≠,将()3,0A -、()0,3C 代入y kx b =+,303k b b -+=⎧⎨=⎩,解得:13k b =⎧⎨=⎩, ∴直线AC 的解析式为3y x =+.∵点P 在抛物线223y x x =--+上,点Q 在直线AC 上,∴点P 的坐标为()2,23t t t --+,点Q 的坐标为(),3t t +, ∴()2233P Q PQ y y t t t =-=--+-+ 23t t =--, ∴()21332PQC PQA S S S t t ∆∆=+=--⋅ 23922t t =--. ②∵23922S t t =--, ∴当9323222t =-=-⎛⎫⨯- ⎪⎝⎭时,2max 33932722228S ⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭, 当32t =-时,2331523224p y ⎛⎫⎛⎫=---⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴ACP ∆的面积的最大值是278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭. [拓展]:抛物线y=ax 2−2x+3(a<0),当x=1时,y=a-2+3=a+1<3,故抛物线右边一定与MN 有交点,当x=-1,y=a+2+3=a+5,在M点或下方时,抛物线左边边一定与MN有交点,即a+5≤3;∴2a≤-;【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算,极值的确定,关键是确定出抛物线解析式,难点是数形结合确定a点的求值范围.2.F解析:(1)连线见解析,二次函数;(2)22;(3)m=0或m=4 3【分析】(1)根据描点法画图即可;(2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK (AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;(3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.【详解】解:(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.(2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,则∠FGK=∠DHK=90°,记FD交y轴于点K,∵D 点与F 点关于y 轴上的K 点成中心对称,∴KF =KD ,∵∠FKG =∠DKH ,∴Rt △FGK ≌Rt △DHK (AAS ),∴FG =DH ,∵直线AC 的解析式为y =﹣83x +4, ∴x =0时,y =4,∴A (0,4),又∵B (﹣2,0),设直线AB 的解析式为y =kx +b ,∴204k b b ⎧-+=⎨=⎩, 解得24kb , ∴直线AB 的解析式为y =2x +4,过点F 作FR ⊥x 轴于点R ,∵D 点的横坐标为m ,∴F (﹣m ,﹣2m +4),∴ER =2m ,FR =﹣2m +4,∵EF 2=FR 2+ER 2,∴l =EF 2=8m 2﹣16m +16=8(m ﹣1)2+8,令﹣83x +4=0,得x =32, ∴0≤m ≤32. ∴当m =1时,l 的最小值为8,∴EF 的最小值为22.(3)①∠FBE 为定角,不可能为直角.②∠BEF =90°时,E 点与O 点重合,D 点与A 点,F 点重合,此时m =0.③如图3,∠BFE =90°时,有BF 2+EF 2=BE 2.由(2)得EF 2=8m 2﹣16m +16,又∵BR =﹣m +2,FR =﹣2m +4,∴BF 2=BR 2+FR 2=(﹣m +2)2+(﹣2m +4)2=5m 2﹣20m +20,又∵BE 2=(m +2)2,∴(5m 2﹣20m +8)+(8m 2﹣16m +16)2=(m +2)2,化简得,3m 2﹣10m +8=0,解得m 1=43,m 2=2(不合题意,舍去), ∴m =43. 综合以上可得,当△BEF 为直角三角形时,m =0或m =43. 【点睛】本题考查了二次函数的综合应用,考查了描点法画函数图象,待定系数法,全等三角形的判定与性质,坐标与图形的性质,二次函数的性质,勾股定理,中心对称的性质,直角三角形的性质等知识.准确分析给出的条件,结合一次函数的图象进行求解,熟练掌握方程思想及分类讨论思想是解题的关键..3.H解析:(1)5.0;(2)见解析;(3)x =2时,函数有最小值y =4.5【分析】(1)通过作辅助线,应用三角函数可求得HM +HN 的值即为x =2时,y 的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值.【详解】(1)当点P 运动到点H 时,AH =3,作HN ⊥AB 于点N .∵在正方形ABCD 中,AB =4cm ,AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,∴∠HAN =45°,∴AN =HN =AH •sin45°=323222⨯=,∴HM 22()HN AN AM =+-,HB 22()HN AB AN =+-,∴HM +HN =222232323232()(2)()(4)2222+-++-=136225122-+-≈4.5168.032+≈2.125+2.834≈5.0.故答案为:5.0;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.5.故答案为:4.5.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4.【初步尝试】(0,0),(2,0);【类比探究】①如图所示:②函数图象的性质:1.图象关于y轴对称;2.当x取1或﹣1时,函数有最小值﹣1;【深入探究】k≤﹣5或k≥5.【详解】【分析】【初步尝试】利用配方法将y=x2﹣2x化为顶点式,可得顶点坐标,令y=0,解方程x2﹣2x=0,求出x的值,即可得到抛物线与x轴的交点坐标;【类比探究】①根据表中数据描点连线,即可得到该函数图象的另一部分;②根据画出的图象,结合二次函数的性质即可写出该函数的两条性质;【深入探究】根据图象可知y1≤0时,﹣2≤m≤2;y2≥3时,m+k≤﹣3或m+k≥3,根据不等式的性质即可求出k的取值范围.【详解】【初步尝试】∵y=x2﹣2x=(x﹣1)2﹣1,∴此抛物线的顶点坐标为(1,﹣1);令y=0,则x2﹣2x=0,解得x1=0,x2=2,∴此抛物线与x轴的交点坐标为(0,0),(2,0);【类比探究】①如图所示:②函数图象的性质:图象关于y轴对称;当x取1或﹣1时,函数有最小值﹣1;【深入探究】根据图象可知,当y1≤0时,﹣2≤m≤2,当y2≥3时,m+k≤﹣3或m+k≥3,则k≤﹣5或k≥5,故k 的取值范围是k≤﹣5或k≥5.【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征,利用数形结合思想解题是关键.5.E解析:(1)①2243y x x =--;②2;(2)2(1)y x x =-->;(3)43P y -<<-【分析】(1)①把点E (-1,3)代入223y mx mx =--求出m 的值即可;②先求出直线EF 的解析式,设出点M 的坐标,得到MN 的二次函数关系式,根据二次函数的性质求解即可; (2)写出抛物线G 的顶点式,根据平移规律即可得到1G 的顶点式,进而得到1G 的顶点坐标(1,3)m m +--,即1,3x m y m =+=--,消去m ,得到y 与x 的函数关系式,再由0m >即可求得x 的取值范围;(3)求出抛物线怛过点A (2,-3),函数H 的图象恒过点B (2,-4),从图象可知两函数图象的交点P 应在A ,B 之间,即点P 的纵坐标在A ,B 点的纵坐标之间,从而可得结论.【详解】解:(1)①∵抛物线2:23G y mx mx =--经过点E (-1,3)∴233m+m =-∴2m =∴抛物线的解析式为:2243y x x =--②如图,∵点F 为抛物线的最低点,∴22243=2(1)5y x x x =----∴(1,5)F -设直线EF 的解析式为:y kx b =+把E (-1,3),F (1,-5)代入得,35k b k b -+=⎧⎨+=-⎩ 解得,41k b =-⎧⎨=-⎩∴直线EF 的解析式为:41y x =--设2(,243)M a a a --,则(,41)N a a --∴22(41)243)=(22M a N a a a ------+=∵20-<∴当0a =时,MN 有最大值,最大值为2;(2)∵抛物线2:(1)3G y m x m =---∴平移后的抛物线21:(1)3G y m x m m =----∴抛物线1G 的顶点坐标为(1,3)m m +--∴1,3x m y m =+=--∴132x y m +=+-=-∴2y x =--∵0,1m m x >=-∴10x ->∴1x >∴y 与x 的函数关系式为:2(1)y x x =-->(3)如图,函数:2(1)H y x x =-->的图象为射线,1x =时,123y =--=-;2x =时,224y =--=-∴函数H 的图象恒过点(2,-4)∵抛物线2:(1)3G y m x m =---,当1x =时,3y m =--;当2x =时,33y m m =--=-;∴抛物线G 恒过点A (2,-3)由图象可知,若抛物线G 与函数H 的图象有交点P ,则有B P A y y y <<∴点P 纵坐标的取值范围为:43P y -<<-【点睛】本题考查了二次函数综合题,涉及到待定系数法求解析式、二次函数的性质和数形结合思想等知识,熟练运用二次函数的性质解决问题是本题的关键.6.A解析:(1)233642y x x =--;(2)454;(3)134)存在,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭ 【分析】(1)把A 、B 两点坐标代入26y ax bx =+-可得关于a 、b 的二元一次方程组,解方程组求出a 、b 的值即可得答案;(2)过D 作DG x ⊥轴于G ,交BC 于H ,根据抛物线解析式可得点C 坐标,利用待定系数法可得直线BC 的解析式,设233,642D x x x ⎛⎫-- ⎪⎝⎭,根据BC 解析式可表示出点H 坐标,即可表示出DH 的长,根据△BCD 的面积列方程可求出x 的值,即可得点D 坐标,利用三角形面积公式即可得答案;(3)根据二次函数的对称性可得点A 与点B 关于直线l 对称,可得BC 为AP +CP 的最小值,根据两点间距离公式计算即可得答案;(4)根据平行四边形的性质得到MB //ND ,MB =ND ,分MB 为边和MB 为对角线两种情况,结合点D 坐标即可得点N 的坐标.【详解】(1)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,()2,0A -,()4,0B ,∴426016460a b a b --=⎧⎨+-=⎩, 解得:3432a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为:233642y x x =--. (2)如图,过D 作DG x ⊥轴于G ,交BC 于H ,当0x =时,6y =-,∴()0,6C -,设BC 的解析式为y kx b =+,则640b k b =-⎧⎨+=⎩, 解得326k b ⎧=⎪⎨⎪=-⎩, ∴BC 的解析式为:362y x =-, 设233,642D x x x ⎛⎫-- ⎪⎝⎭,则3,62H x x ⎛⎫- ⎪⎝⎭, ∴2233336632424DH x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵BCD △的面积是92, ∴1922DH OB ⨯=, ∴213943242x x ⎛⎫⨯⨯-+= ⎪⎝⎭, 解得:1x =或3,∵点D 在直线l 右侧的抛物线上, ∴153,4D ⎛⎫- ⎪⎝⎭, ∴ABD △的面积11154562244AB DG ⨯=⨯⨯=;(3)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,∴点A 与点B 关于直线l 对称,∴BC 为AP +CP 的最小值,∵B (4,0),C (0,-6),∴AP +CP 的最小值=BC 2246+213 故答案为:213(4)①当MB 为对角线时,MN //BD ,MN =BD ,过点N 作NE ⊥x 轴于E ,过当D 作DF ⊥x 轴于F ,∵点D (3,154-), ∴DF =154, 在△MNE 和△BDF 中,NEM DFB NMB DBF MN BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MNE ≌△BDF ,∴DF =NE =154, ∵点D 在x 轴下方,MB 为对角线,∴点N 在x 轴上方,∴点N 纵坐标为154, 把y =154代入抛物线解析式得:215336442x x =--, 解得:1114x =2114x = ∴1N (114154),2N (114154)如图,当BM 为边时,MB //ND ,MB =ND ,∵点D (3,154-), ∴点N 纵坐标为154-, ∴233156424x x --=-, 解得:11x =-,23x =(与点D 重合,舍去), ∴3N (1-,154-),综上所述:存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题. 7.F解析:(1)抛物线的表达式为2y x 2x 3=-++;(2) 510PF =最大;(3)存在,点P 的坐标为:(2,3)或211,39⎛⎫- ⎪⎝⎭ 【分析】(1)把点的坐标分别代入解析式,转化为方程组求解即可;(2)设点P 的横坐标为m ,用含有m 的代数式表示PF ,转化为二次函数最值问题求解即可;(3)利用构造平行线法,三角形全等法,构造出符合题意的角,后利用交点思想求解即可.【详解】解:(1)抛物线2y x bx c =-++与x 轴交于(1,0),(3,0)A B -两点,10,930.b c b c --+=⎧∴⎨-++=⎩解得2,3.b c =⎧⎨=⎩ ∴抛物线的表达式为2y x 2x 3=-++.(2)∵抛物线的表达式为2y x 2x 3=-++.∴对称轴为直线12b x a==-, ∴点E 的坐标为(1,0),1OE =.令0x =,代入抛物线的表达式2y x 2x 3=-++,得3y =,∴点C 的坐标为(0,3),3OC =.在Rt OCE 中,3,1OC OE ==,CE ∴sinOCE ∴∠= 设直线CE 的表达式为y kx n =+,由经过(0,3),(1,0)C E ,3,0.n k n =⎧∴⎨+=⎩ 解得3,3.k n =-⎧⎨=⎩∴直线CE 的表达式为33y x =-+.如答图,过点P 作//PG y 轴,交CE 于点G .设点P 的横坐标为m ,则()2,23,(,33)P m m m G m m -++-+2223(33)5PG m m m m m ∴=-++--+=-+.//PG y 轴,PGC OCE ∴∠=∠,sin sin PGC OCE ∴∠=∠.1010PF PG ∴=. ()221010105510510101028PF PG m m m ⎛⎫∴==⨯-+=-⨯-+ ⎪⎝⎭. 10010a =-<. ∴当52m =时,5108PF =最大. (3)存在,理由如下:①在x 轴的正半轴上取一点E ,使得OA =OE =1,则点E (1,0), ∵OA =OE ,∠AOC =∠EOC =90°,CO =CO ,∴△AOC ≌△EOC ,∴∠ACO =∠ECO ,过点B 作BP ∥CE ,交抛物线y =223x x -++于点P ,∴∠PBC =∠ECB ,∵C (0,3),B (3,0),∴OB =OC ,∴∠OCB =∠ABC ,∵∠OCB =∠ECB +∠ECO =∠PBC +∠ACO ,∴∠ABC =∠PBC +∠ACO ,设直线CE 的解析式为y =kx +3,把点E (1,0)代入解析式,得k +3=0,解得k =-3,∴直线CE 的解析式为y =-3x +3,∵BP ∥CE ,∴设直线BP 的解析式为y =-3x +b ,把点B (3,0)代入解析式,得-9+b =0,解得b =9,∴直线BP 的解析式为y =-3x +9,∴-3x +9=223x x -++,解得x =2,或x =3(与B 重合,舍去)当x =2时,y =-3x +9=3,∴点P 的坐标为(2,3);②在y 轴的正半轴上取一点Q ,使得OA =OQ =1,则点Q (0,1),∵OA =OQ ,∠AOC =∠QOB =90°,CO =BO ,∴△AOC ≌△QOB ,∴∠ACO =∠QBO ,延长BQ 交抛物线y =223x x -++于点P ,∵∠ABC =∠PBC +∠QBO ,∴∠ABC =∠PBC +∠ACO ,设直线BQ 的解析式为y =mx +1,把点B (3,0)代入解析式,得3m +1=0,解得m =-13, ∴直线BQ 的解析式为y =-13x +1, ∴-13x +1=223x x -++, 解得x =23-,或x =3(与B 重合,舍去) 当x =23-时,y =-13x +1=119, ∴点P 的坐标为211,39⎛⎫- ⎪⎝⎭; 综上所述,存在这样的点P ,且点P 的坐标为:(2,3)或211,39⎛⎫- ⎪⎝⎭. 【点睛】本题考查了待定系数法确定二次函数,一次函数的解析式,二次函数的最值,平行线的性质,全等三角形的判定与性质,准确表示PF ,利用构造平行线,三角形全等,确定满足条件的P 点位置是解题的关键.8.(1) y=221x +;(2)m=1,n=3;(3) 函数存在最大值,当x=0是,y 取得最大值2.(4)-1≤x≤2 【分析】(1)待定系数法求解函数解析式(2)分别将m,n 代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得20111b b k ⎧=⎪⎪+⎨⎪=⎪+⎩ 解得:12k b =⎧⎨=⎩ ∴函数的解析式为y =221x + (2) ①令x =-1,则y=1,∴m =1 令y =15,则x =±3, ∵2<n <4,∴n =3②(3)函数存在最大值,当x =0是,y 取得最大值2.(4)直接观察图象可知,当|715x ﹣815|≤时,-1≤x ≤2 【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.9.C解析:(1)241y x x =-+-;(2)2;(3)b d c e =-⎧⎨=-⎩【分析】(1)先求出抛物线C 1的顶点坐标,进而得出抛物线C 2的顶点坐标,即可得出结论; (2)设正方形AMBN 的对角线长为2k ,得出B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ),再用点M (2+k ,3+k )在抛物线y =(x −2)2+3上,建立方程求出k 的值,即可得出结论;(3)先根据抛物线C 1,C 2的顶点相同,得出b ,d 的关系式,再由两抛物线的顶点在x 轴,求出c ,e 的关系,即可得出结论.【详解】解:(1)解:(1)∵y =x 2−4x +7=(x −2)2+3,∴顶点为(2,3),∴其“对顶”抛物线的解析式为y =−(x −2)2+3,即y =−x 2+4x −1;(2)如图,由(1)知,A (2,3),设正方形AMBN 的对角线长为2k ,则点B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ),∵M (2+k ,3+k )在抛物线y =(x −2)2+3上,∴3+k =(2+k −2)2+3,解得k =1或k =0(舍);∴正方形AMBN 的面积为12×(2k )2=2;(3)根据抛物线的顶点坐标公式得,抛物线C 1:y =ax 2+bx +c 的顶点为(2b a -,244ac b a -),抛物线C 2:y =−ax 2+dx +e 的顶点为(2d a ,244ae d a---), ∵抛物线C 2是C 1的“对顶”抛物线, ∴22b d a a-=, ∴=-b d ,∵抛物线C 1与C 2的顶点位于x 轴上, ∴224444ac b ae d a a---=-, ∴c e =-,即b d c e =-⎧⎨=-⎩. 【点睛】此题主要考查了抛物线的顶点坐标公式,正方形的性质,理解新定义式解本题的关键. 10.A解析:(1)33y x =-,223y x x =+-;(2)6;(3)存在点M 使ABM 周长最短,其坐标为()1,2--;(4)存在,10,3⎛⎫ ⎪⎝⎭,72,3⎛⎫-- ⎪⎝⎭,()2,1-,()2,2- 【分析】(1)把A 、B 两点的坐标分别代入抛物线2y x bx c =++和直线y mx n =+中,解之即可; (2)由图可知,12ABC S AC OB =⋅,所以只需求出AC ,OB 的长即可,因为C 点为抛物线与x 轴的一个交点,令y=0即可求出C 点坐标,根据已知可得A 点坐标,从而得到AC 的长,根据已知得到B 点坐标,可得OB 的长,从而求出ABC 的面积;(3)由题意知,A 、C 关于对称轴对称,则可知MA MC =,故当B 、M 、C 三点在同一条直线上时MB MC +最小,此时ABM 的周长最小,连接BC 交对称轴于点M ,则M 即为满足条件的点,设直线BC 的解析式为y kx m =+,将B ,C 的坐标代入即可求出该解析式,令x=-1,即可求出点M 的坐标;(4)在平面内是否存在点N ,使A 、B 、H 、N 四点构成矩形,求N 点坐标时,需分情况讨论,当HB ⊥AB 时,根据互相垂直的两直线的斜率之积为-1,互相平行的两直线的斜率相等求出直线HB ,直线HN ,直线AN 的解析式,根据N 点为直线HN 和直线AN 的交点,联立方程组解之即可;同理可得当HA ⊥AB 时,N 点的坐标;而当AB 为对角线时,可得HA ⊥AB ,从而可求出直线AH 的解析式,设H 点坐标为()1,y -,根据△AHB 为直角三角形,利用勾股定理求出H 点的坐标,然后在利用互相垂直的两直线的斜率之积为-1,互相平行的两直线的斜率相等求出N 点的坐标.【详解】解:(1)把A 、B 两点的坐标分别代入2y x bx c =++得103b c c ++=⎧⎨=-⎩, 解得23b c =⎧⎨=⎩, ∴抛物线解析式为223y x x =+-.把A 、B 两点的坐标分别代入y mx n =+得03m n n +=⎧⎨=-⎩, 解得33m n =⎧⎨=-⎩, ∴直线y mx n =+的解析式为33y x =-.(2)由(1)得,抛物线解析式为223y x x =+-,令0y =得2023x x =+-,解得11x =,23x =-,()3,0C ∴-,∵1,0A ,∴4AC =,∵()0,3B -,∴OB=3,1143622ABC S AC OB ∴=⋅=⨯⨯=; (3)()222314y x x x =+-=+-,∴抛物线的对称轴为1x =-,A 、C 关于对称轴对称,MA MC ∴=,MB MA MB MC ∴+=+,∴当B 、M 、C 三点在同一条直线上时MB MC +最小,此时ABM 的周长最小∴连接BC 交对称轴于点M ,则M 即为满足条件的点,设直线BC 的解析式为y kx m =+, 直线BC 过点()0,3B -,()3,0C -,303k m m -+=⎧∴⎨=-⎩,解得13k m =-⎧⎨=-⎩, ∴直线BC 的解析式3y x =--,当1x =-时,2y =-,()1,2M ∴--,∴存在点M 使ABM 周长最短,其坐标为()1,2--.(4)存在,①当HB ⊥AB 时,如图所示由(1)得直线AB 的解析式为33y x =-, ∵HB ⊥AB ,∴设直线HB 的解析式为13y x b =-+,将B(0,-3)代入得3b =-,∴直线HB 的解析式为133y x =--,当x=-1时,y=13-×(-1)-3=83-,∴H 点的坐标为81,3⎛⎫-- ⎪⎝⎭,∵四边形ABHN 为矩形, ∴HN ∥AB ,AN ∥HB ,∴设直线HN 的解析式为y=3x+m ,把H 点坐标代入,得3×(-1)+m=83-,解得m=13,∴直线HN 的解析式为y=3x+13,∴设直线AN 的解析式为13y x n =-+,把A 点坐标代入,得103n -+=,解得n=13,∴设直线AN 的解析式为1133y x =-+,∵N 点为直线HN 和直线AN 的交点,∴1331133y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩解得013x y =⎧⎪⎨=⎪⎩,∴N 点坐标为10,3⎛⎫ ⎪⎝⎭.②当HA ⊥AB 时,如图由(1)得直线AB 的解析式为33y x =-, ∵HA ⊥AB ,∴设直线HA 的解析式为13y x b =-+,将A(1,0)代入得13-+b=0,解得b=13,∴直线HA 的解析式为1133y x =-+,当x=-1时,()1121333y =-⨯-+=,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钱数÷10;
(2)已知每天定价增加为 x 元,则每天要(200+x)元.则宾馆每天的房间收费=每天的实
际定价×房间每天的入住量;
(3)支出费用为 20×(60﹣ x ),则利润 w=(200+x)(60﹣ x )﹣20×(60﹣ x ),
10
10
10
利用配方法化简可求最大值.
试题解析:解:(1)由题意得:
(2)①先解方程-x2+6x-5=0 得 A(1,0),再判断△ OCB 为等腰直角三角形得到
∠ OBC=∠ OCB=45°,则△ AMB 为等腰直角三角形,所以 AM=2 2 ,接着根据平行四边形的
性质得到 PQ=AM=2 2 ,PQ⊥BC,作 PD⊥x 轴交直线 BC 于 D,如图 1,利用∠ PDQ=45°得
系式;(2)利用三角形的面积公式找出 S△ APC=﹣ 3 x2﹣ 3 x+3 的最值;(3)利用二次函 22
数图象的对称性结合两点之间线段最短找出点 M 的位置.
3.某宾馆客房部有 60 个房间供游客居住,当每个房间的定价为每天 200 元时,房间可以
住满.当每个房间每天的定价每增加 10 元时,就会有一个房间空闲.对有游客入住的房
【答案】(1)y=60- x ;(2)z=- 1 x2+40x+12000;(3)w=- 1 x2+42x+10800,当每个房
10
10
10
间的定价为每天 410 元时,w 有最大值,且最大值是 15210 元.
【解析】
试题分析:(1)根据题意可得房间每天的入住量=60 个房间﹣每个房间每天的定价增加的
点的坐标;作直线
BC
上作点
M1
关于
N
点的对称点
M2,
如图 2,利用对称性得到∠ AM2C=∠ AM1B=2∠ ACB,设 M2(x,x-5),根据中点坐标公式
∴ S△ APC= 1 AQ•PF=﹣ 3 x2﹣ 3 x+3=﹣ 3 (x+ 1 )2+ 27 .
2பைடு நூலகம்
22
22 8
∵ ﹣ 3 <0, 2
∴ 当 x=﹣ 1 时,△ APC 的面积取最大值,最大值为 27 ,此时点 P 的坐标为(﹣ 1 ,
2
8
2
15 ). 4 (3)当 x=0 时,y=﹣x2﹣2x+3=3, ∴ 点 N 的坐标为(0,3). ∵ y=﹣x2﹣2x+3=﹣(x+1)2+4, ∴ 抛物线的对称轴为直线 x=﹣1. ∵ 点 C 的坐标为(﹣2,3), ∴ 点 C,N 关于抛物线的对称轴对称. 令直线 AC 与抛物线的对称轴的交点为点 M,如图 2 所示. ∵ 点 C,N 关于抛物线的对称轴对称, ∴ MN=CM, ∴ AM+MN=AM+MC=AC, ∴ 此时△ ANM 周长取最小值. 当 x=﹣1 时,y=﹣x+1=2, ∴ 此时点 M 的坐标为(﹣1,2). ∵ 点 A 的坐标为(1,0),点 C 的坐标为(﹣2,3),点 N 的坐标为(0,3),
y=60﹣ x 10
(2)p=(200+x)(60﹣ x )=﹣ 1 x2 +40x+12000 10 10
(3)w=(200+x)(60﹣ x )﹣20×(60﹣ x )
10
10
=﹣ 1 x2 +42x+10800 10
=﹣ 1 (x﹣210)2+15210 10
当 x=210 时,w 有最大值.
若 x x2 3x ,解得 x="2" 或 x=0(舍去)。
当 x=2 时,x2﹣3x=﹣2。 ∴ 点 P 的坐标为(2,﹣2)。
∴ OP 22 22 2 2 。
∵
∠
POB=90°,∴
△
POB
的面积为:
1 2
PO•BO=
1 2
×4
2 ×2
2 =8。
2.如图,已知抛物线 y=﹣x2+bx+c 与一直线相交于 A(1,0)、C(﹣2,3)两点,与 y 轴交于点 N,其顶点为 D. (1)求抛物线及直线 AC 的函数关系式; (2)若 P 是抛物线上位于直线 AC 上方的一个动点,求△ APC 的面积的最大值及此时点 P 的坐标; (3)在对称轴上是否存在一点 M,使△ ANM 的周长最小.若存在,请求出 M 点的坐标和 △ ANM 周长的最小值;若不存在,请说明理由.
出 AQ 的值,利用三角形的面积公式可得出 S△ APC=﹣ 3 x2﹣ 3 x+3,再利用二次函数的性 22
质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点 N 的坐标,利 用配方法可找出抛物线的对称轴,由点 C,N 的坐标可得出点 C,N 关于抛物线的对称轴对
称,令直线 AC 与抛物线的对称轴的交点为点 M,则此时△ ANM 周长取最小值,再利用一
【分析】
(1)根据点 A,C 的坐标,利用待定系数法即可求出抛物线及直线 AC 的函数关系式;
(2)过点 P 作 PE∥ y 轴交 x 轴于点 E,交直线 AC 于点 F,过点 C 作 CQ∥ y 轴交 x 轴于点 Q,设点 P 的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点 E 的坐标为(x,0),点 F 的 坐标为(x,﹣x+1),进而可得出 PF 的值,由点 C 的坐标可得出点 Q 的坐标,进而可得
次函数图象上点的坐标特征求出点 M 的坐标,以及利用两点间的距离公式结合三角形的周
长公式求出△ ANM 周长的最小值即可得出结论.
【详解】
(1)将 A(1,0),C(﹣2,3)代入 y=﹣x2+bx+c,得:
1 b c 0
b 2
4 2b c 3,解得: c 3 ,
∴ 抛物线的函数关系式为 y=﹣x2﹣2x+3;
此时,x+200=410,就是说,当每个房间的定价为每天 410 元时,w 有最大值,且最大值是
15210 元.
点睛:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方
法,第三种是公式法.本题主要考查的是二次函数的应用,难度一般.
4.如图,抛物线 y=ax2+6x+c 交 x 轴于 A,B 两点,交 y 轴于点 C.直线 y=x﹣5 经过点 B, C. (1)求抛物线的解析式; (2)过点 A 的直线交直线 BC 于点 M. ①当 AM⊥BC 时,过抛物线上一动点 P(不与点 B,C 重合),作直线 AM 的平行线交直 线 BC 于点 Q,若以点 A,M,P,Q 为顶点的四边形是平行四边形,求点 P 的横坐标; ②连接 AC,当直线 AM 与直线 BC 的夹角等于∠ ACB 的 2 倍时,请直接写出点 M 的坐标.
AC 的解析式为 y=5x-5,E 点坐标为( 1 ,- 5 ),利用两直线垂直的问题可设直线 EM1 的 22
解析式为 y=- 1 x+b,把 E( 1 ,- 5 )代入求出 b 得到直线 EM1 的解析式为 y=- 1 x- 12 ,则
5
22
55
y=x 5
解方程组
y=
1 5
x
12 5
得
M1
∴ AC= 32 32 =3 2 ,AN= 32 12 = 10 ,
∴ C△ ANM=AM+MN+AN=AC+AN=3 2 + 10 .
∴ 在对称轴上存在一点 M(﹣1,2),使△ ANM 的周长最小,△ ANM 周长的最小值为
3 2 + 10 .
【点睛】 本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上 点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周 长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线 AC 的函数关
一、二次函数 真题与模拟题分类汇编(难题易错题)
1.如图,在直角坐标系 xOy 中,二次函数 y=x2+(2k﹣1)x+k+1 的图象与 x 轴相交于 O、 A 两点.
(1)求这个二次函数的解析式; (2)在这条抛物线的对称轴右边的图象上有一点 B,使△ AOB 的面积等于 6,求点 B 的坐 标; (3)对于(2)中的点 B,在此抛物线上是否存在点 P,使∠ POB=90°?若存在,求出点 P 的坐标,并求出△ POB 的面积;若不存在,请说明理由. 【答案】(1)y=x2﹣3x。 (2)点 B 的坐标为:(4,4)。 (3)存在;理由见解析; 【解析】 【分析】 (1)将原点坐标代入抛物线中即可求出 k 的值,从而求得抛物线的解析式。 (2)根据(1)得出的抛物线的解析式可得出 A 点的坐标,也就求出了 OA 的长,根据 △ OAB 的面积可求出 B 点纵坐标的绝对值,然后将符合题意的 B 点纵坐标代入抛物线的解 析式中即可求出 B 点的坐标,然后根据 B 点在抛物线对称轴的右边来判断得出的 B 点是否 符合要求即可。 (3)根据 B 点坐标可求出直线 OB 的解析式,由于 OB⊥OP,由此可求出 P 点的坐标特 点,代入二次函数解析式可得出 P 点的坐标.求△ POB 的面积时,求出 OB,OP 的长度即 可求出△ BOP 的面积。 【详解】 解:(1)∵ 函数的图象与 x 轴相交于 O,∴ 0=k+1,∴ k=﹣1。 ∴ 这个二次函数的解析式为 y=x2﹣3x。 (2)如图,过点 B 做 BD⊥x 轴于点 D,
到 PD= 2 PQ=4,设 P(m,-m2+6m-5),则 D(m,m-5),讨论:当 P 点在直线 BC 上方
时,PD=-m2+6m-5-(m-5)=4;当 P 点在直线 BC 下方时,PD=m-5-(-m2+6m-5),然后分 别解方程即可得到 P 点的横坐标; ②作 AN⊥BC 于 N,NH⊥x 轴于 H,作 AC 的垂直平分线交 BC 于 M1,交 AC 于 E,如图 2,利用等腰三角形的性质和三角形外角性质得到∠ AM1B=2∠ ACB,再确定 N(3,-2),