考研数学-概率论讲义精华版

合集下载

考研数学概率统计讲义

考研数学概率统计讲义

设售出一台设备的净赢利为
a( X
)
100, 200,
X 1, 0 X 1.
河南理工大学精品课程
概率论与数理统计
故售出一台设备的净赢利的数学期望为
E[a(X )] a(x) f (x)dx
1
(200)
1 4
e
x 4
dx
100
1 4
e
x 4
dx
0
1
200e
x 4
|10
100e
x 4
|1
Z X 2 Y 2 的数学期望.
解 E(Z ) x2 y2 f (x, y)dxdy
x2 y2
1
x2 y2
e 2 dxdy
2
2
0
0
r
1
2
r2
e2
rdr d
2
例6 五个独立元件,寿命分别为X1, X 2, , X5,
都服从参数为 的指数分布,若将它们
(1) 串联; (2) 并联 成整机,求整机寿命的均值.
求E(X)。 0,
其它.
分段函
〖解〗这是连续型随机数变的量积。由数学期望定义得:

1500
3000
E(X ) xf (x)dx
x2 15002
dx
dx x (3000 x ) 15002
0
1500
1500 (分□)
河南理工大学精品课程
概率论与数理统计
例4 X ~ N ( , 2 ), 求 E ( X ) .
2
k pk .
k 0
这表明:随着试验次数增大,随机变量X的观察值的算
术平均 2 k ak 接近于
k0 N

3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页

3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页

张宇考研数学概率论与数理统计强化讲义
【注】
犉(狓)=△ 犘{犡 ≤狓}= 犘{- ∞ ≤ 犡 ≤狓}

∫ = 犳(狋)d狋(连) -∞
4犡~犉(狓)<狆犳犻(狓→)分→布概律率密度
= ∑狆犻.(离) 狓犻≤狓
烄① 单调不减;
(1)犉(狓)是某个狓 的分布函数 烅②犉(- ∞)=0,犉(+ ∞)=1;

烆犘(犃1犃2犃3)= 犘(犃1)犘(犃2)犘(犃3).④
【注】若只满足 ①②③,称犃1,犃2,犃3 两两独立.
【例】[取自《张宇概率论与数理统计9讲》P23,例1.33]
将一枚硬币独立地掷两次,引进事件:犃1 = {掷第一次出现正面},犃2 = {掷第二次出
现正面},犃3 = {正反面各出现一次},犃4 = {正面出现两次},则事件( ).
【例2】[取自《张宇考研数学闭关修炼一百题·习题分册》P42,81] 要验收一批乐器,共100件,从中随机地取3件来测试(设3件乐器的测试是相互独立 的),如果3件中任意一件经测试被认为音色不纯,这批乐器就被拒绝接收.设一件音色不 纯的乐器经测试被查出的概率为0.95,而 一 件 音 色 纯 的 乐 器 经 测 试 被 误 认 为 不 纯 的 概 率 为0.01.如 果 已 知 这100件 乐 器 中 有4件 是 音 色 不 纯 的 ,问 这 批 乐 器 被 接 收 的 概 率 是 多少? 【分析】
④(犡,犢)的犉(狓,狔),犳(狓,狔); ⑤犣 =犵(犡,犢)的犉犣(狕),犳犣(狕);
⑥犘{(犡,犢)∈犇}= 犳(狓,狔)dσ. 犇
(3)求数字特征. (4)狀→ ∞ 时的若干重要概率规律. (5)估计与评价.
—1—
张宇考研数学概率论与数理统计强化讲义

考研概率论讲义

考研概率论讲义
概率论与数理统计考研辅导讲义
白云霄
第一章 随机事件及其概率
1、随机事件、样本空间、概率的定义
例1. 写出下列试验的样本空间与事件A的样本点 1. 同时掷两颗骰子,记录其点数之和;A:点数之和为偶数 2. 相继掷两次硬币。A:第一次出现正面 3. 研究甲、乙两件产品的销售状况(畅销、滞销) 4. 经过三个十字路口遇到红灯的个数
例12 设随机变量X的概率密度为,若k使, 则k的取值范围是
例13 随机变量X的密度函数为,且,是X的分布函数。则对于任意实数
a,有( )
(A) (B)
(C)
(D)
例14已知随机变量的分布函数则_________,_________, 密度函 数为 例15设随机变量的概率密度为:。 试求:(1)系数,(2)求;(3)的分布函数。 例16使用了小时的电子元件在以后小时内损坏的概率等于球电子元件
(C) (D) 例11.设0<p(A)<1 ,0<p(B)<1, ,则有( )
(A) 事件A与B互不相容 (B) 事件A与B 相互对立 (C) 事件A与B 不独立 (D) 事件A与B 相互独立
3.条件概率 例1 一批产品共有10个正品和2个次品,任意抽取2个,每次抽取一个,抽
取后不再放回,则第一次为正品,第二次抽取的也是正品的概率。
例5设随机变量的概率密度为,求及 例6设,,且与相互独立。
求(1)的联合概率密度;
(2); (3)。
例7已知,的分布律如下,且与相互独立,
-1 0 1
1/4 1/2 1/4 -1 0 1
1/4 1/2 1/4
(1)求和的联合分布表; (2)EX,EY,COV(X,Y) 例8设二维随机变量的概率密度函数为, 求(1)常数;(2)判断是否独立,为什么?(3)。

2021年《概率论与数理统计》考研复习笔记与辅导讲义

2021年《概率论与数理统计》考研复习笔记与辅导讲义

2021年《概率论与数理统计》考研复习笔记与辅导讲义第1章随机事件和概率一、考研辅导讲义1.随机现象与样本空间(1)随机现象在一定的条件下,并不总是出现相同结果的现象称为随机现象.(2)样本空间随机现象的一切可能的基本结果,组成的集合,称是由基本结果构成的样本空间,记作,又称样本点.(3)随机事件样本空间的子集称为随机事件,简称事件,常用大写字母A,B,C等表示.注:①随机事件是由样本空间中的样本点组成,由一个样本点组成的子集是最简单件,称为基本事件.②随机事件既然由样本点组成,因此,随机事件是由基本事件组成.③如果一次试验的结果为某一基本事件出现,就称该基本事件出现或发生.如果组成事件A的一个基本事件出现或发生,也称事件A出现或发生.④把Ω看成一事件,则每次试验必有Ω中某一基本事件(即样本点)发生,也就是每次试验Ω必然发生,称Ω为必然事件.⑤把不包含任何样本点的空集看成一个事件,称为不可能事件.(4)随机变量表示随机现象结果的变量称为随机变量,常用大写字母X,Y,Z,或者ξ,η等表示.2.事件间的关系(1)包含关系如果事件A发生必然导致事件B发生,则称事件B包含事件A,或称事件A包含于事件B,记为或.(2)事件相等若与同时成立,则称事件A与事件B相等,记作A=B.(3)互斥事件(互不相容事件)若事件A与事件B满足关系,即A与B同时发生是不可能事件,则称事件A和事件B为互斥或互不相容,即两互斥事件没有公共样本点.注:事件的互斥可以推广到有限多个事件或可数无穷多个事件的情形:①若n个事件中任意两个事件均互斥,即,i≠j,i,j =1,2,…,n,则称这n个事件是两两互斥或两两互不相容.②如果可数无穷多个事件…中任意两个事件均互斥,即,i≠j,i,j=1,2,…,n,…,则称这可数无穷个事件是两两互斥或两两互不相容.【例】对任意两个互不相容的事件A与B,必有().A.如果P(A)=0,则P(B)=0B.如果P(A)=0,则P(B)=1C.如果P(A)=1,则P(B)=0D.如果P(A)=1,则P(B)=1【答案】C查看答案【解析】.(4)对立事件如果事件A与事件B有且仅有一个发生,则称事件A与事件B为对立事件或互逆事件,记为或.注:①如果A与B为对立事件,则A,B不能同时发生,且必有一个发生,即A、B满足A∪B=Ω且.②在样本空间中,集合是由所有不属于事件A的样本点构成的集合.【例】设随机事件A和B满足条件,则().A.B.C.D.【答案】A查看答案【解析】,所以即而,故,也就有即A∪B=Ω.3.事件间的运算(1)事件的交(积)如果事件A与事件B同时发生,则称这样的一个事件为事件A与事件B的交或积,记为A∩B或AB,即集合A∩B是由同时属于A与B的所有公共样本点构成.注:事件的交可以推广到有限多个事件或可数无穷多个事件的情形:(2)事件的并如果事件A与事件B至少有一个发生,则称这样一个事件为事件A与事件B的并或和,记为A∪B,即集合A ∪B是由属于A与B的所有样本点构成.注:事件的并可推广到有限多个事件或可数无穷多个事件的情形:(3)完备事件组如果有限个事件满,且,则称为Ω的一个完备事件组或完全事件组.注:可以推广完备事件组到可数无穷多个事件的情形:且.(4)事件的差事件A发生而事件B不发生的事件称为事件A与事件B的差,记为A-B.即在样本空间中集合A-B是由属于事件A而不属于事件B的所有样本点构成的集合.显然.(5)事件的运算规律交换律结合律分配律对偶律【例】A,B,C为任意三随机事件,则事件(A-B)∪(B-C)等于事件().A.A-CB.A∪(B-C)C.(A∪B)-CD.(A∪B)-BC【答案】D查看答案【解析】因,故.而图1-14.概率的概念及基本性质(1)概率的公理化定义设为一个样本空间,F为的某些子集组成的一个事件域.如果对任一事件F,定义在F上的一个实值函数满足:①非负性公理:若F,则,②正则性公理:③可列可加性公理:若互不相容,则,则称为事件A的概率,称三元素F为概率空间.(2)概率性质①;②若两两互斥,则有③;④,则P(A)≤P(B);⑤0≤P(A)≤1【例】若A,B为任意两个随机事件,则().【2015数一、数三】A.B.C.D.【答案】C查看答案【解析】由于,按概率的基本性质,有且,从而.(3)事件独立性设A,B两事件满足等式P(AB)=P(A)P(B),则称A与B相互独立.注:对n个事件,如果对任意k(1<k≤n),任意满足等式则称为相互独立的事件.事实上,n个事件相互独立需要个等式成立.(4)相互独立的性质①A与B相互独立A与或与B或与相互独立.将相互独立的n个事件中任何几个事件换成它们相应的对立事件,则新组成的n个事件也相互独立.【例】设,,为三个随机事件,且与相互独立,与相互独立,则与相互独立的充分必要条件是().[数三2017研]A.与相互独立B.与互不相容C.与相互独立 D.与互不相容【答案】C查看答案【考点】相互独立【解析】由,得.【例】已知随机事件A,B,C中,满足P(AB)=1.则事件().A.相互独立B.两两独立,但不一定相互独立C.不一定两两独立D.一定不两两独立【答案】A查看答案【解析】讨论事件的独立性,可等价的考虑A,B,C的独立性.因为P(AB)=1.可知P(A)=P(B)=1,而概率等于1的事件与所有的事件相互独立.所以成立:P(AB)=P(A)P(B);P(AC)=P(A)P(C);P (BC)=P(B)P(C).又因P(AB)=1.所以事件AB与C也相互独立,P(ABC)=P(AB)P(C)=P(A)P(B)P(C).总之A,B,C相互独立.②当0<P(A)<1时,A与B独立P(B|A)=P(B)或成立.③若相互独立,则必两两独立,反之,若两两独立,则不一定相互独立.④当相互独立时,它们的部分事件也是相互独立的.【例】设随机事件A与B相互独立,且,则().A.0.1B.0.2C.0.3D.0.4【答案】B查看答案【解析】因为事件A,B相互独立,则.故于是,则.(5)概率的运算公式①加法公式P(A∪B)=P(A)+P(B)-P(AB);P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P (ABC).②减法公式P(A-B)=P(A)-P(AB);③乘法公式当P(A)>0时,P(AB)=P(A)P(B|A);当>0时,有④全概率公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,有【例】甲袋中有2个白球3个黑球,乙袋中一半白球一半黑球.现从甲袋中任取2球与从乙袋中任取一球混合后,再从中任取一球为白球的概率为().A.B.C.D.【答案】C查看答案【解析】设事件A为最后取出的球为白球,事件B为球来自甲袋,显然,为球来自乙袋.且B,构成一个Ω的完备事件组,由全概率公式,因为最后三个球中二个球是从甲袋中来.所以取出的球来自甲袋概率为,当然.,这是因为已知取出的球来自甲袋的条件下,取出的为白球的概率,就相当于从甲中取出一白球的概率,甲中5个球2个为白,故,同理.因为乙中半白半黑,总之⑤贝叶斯公式设为Ω的概率均不为零的一个完备事件组,则对任意事件A,且P (A)>0有【例】设A、B为随机概率,若,则的充分必要条件是().[数一2017研]A.B.C.D.【答案】A查看答案【考点】概率公式计算【解析】因为,得,化简得.A项,,因为,所以.5.古典概型、几何概型、条件概率及伯努利试验(1)古典型概率当试验结果为有限n个样本点,且每个样本点的发生具有相等的可能性,称这种有限等可能试验为古典概型.此时如果事件A由个样本点组成,则事件A的概率称P(A)为事件A的古典型概率.【例】袋中有1个红球,2个黑球与3个白球,现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.求P{X =1︱Z=0};解:由于本题是有放回地取球,则基本事件总数为.(2)几何型概率当试验的样本空间是某区域(该区域可以是一维,二维或三维等等),以L(Ω)表示样本空间Ω的几何度量(长度、面积、体积等等).L(Ω)为有限,且试验结果出现在Ω中任何区域的可能性只与该区域几何度量成正比.称这种拓广至几何度量上有限等可能试验为几何概型.此时如果事件A的样本点表示的区域为,则事件A的概率称这种P(A)为事件A的几何型概率.【例】在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为______.【答案】【解析】本题是几何型概率.不妨假定随机地取出两个数分别为X和Y.显然X与Y是两个相互独立的随机变量.如果把(X,Y)看成平面上的一个点的坐标,则由于0<X<1,0<Y<1,所以(X,Y)为平面上正方形0<X<1,0<Y<1中的一个点.而X与Y两个数之差的绝对值小于的点(X,Y)对应于正方形中的区域.图1-2在区间(0,1)中随机选取的所有可能的两个数X和Y.这些(X,Y)点刚好是图1-3单位正方形中满足的点的区域,就是图中阴影标出的区域D.根据几何型概率(3)条件概率设A,B为两事件,且P(A)>0,称为在事件A发生的条件下事件B发生的条件概率.【例】设A、B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则().【2016数三】【答案】A查看答案【解析】根据条件得P(AB)=P(B),则【例】设A,B,C是随机事件,A与C互不相容,P(AB)=,P=,则P(AB|)=______.【答案】【解析】由条件概率的定义知,P(AB︱)=,其中P()=1-P (C)=1-=,P(AB)=P(AB)-P(ABC)=-P(ABC),由于A,C互不相容,即AC=Ø,ABC AC,得P(ABC)=0,代入得P(AB)=,故将P()=和P(AB)=,代入公式,得P(AB)==.(4)伯努利试验如果试验E只有两个可能的结果:A及,并且P(A)=p,(其中0<p<1),把E独立地重复n次的试验就构成了一个试验,这个试验称作n重伯努利试验,又称n次独立重复试验,并记作B.一个伯努利试验的结果可以记作ω=(ω1,ω2,…,ωn)其中的ωi(1≤i≤n)的全体就是这个伯努利试验的样本空间Ω,对于ω=(ω1,ω2,…,ωn)∈Ω,如果ωi(1≤i≤n)中有k个为A,则必有n-k个为,于是由独立性即得如果要求“n重伯努利试验中事件B出现k次”这一事件的概率为【例】设袋中有红、白、黑球各1个,从中有放回地取球,每次取1个,直到三种颜色的球都取到时停止,则取球次数恰好为4的概率为.【2016数三】【答案】【解析】根据题意,取球次数恰好为4,则前三次恰好取到三种颜色中的两种,第四次取到剩下一种颜色的球.故前三次中取到的两种颜色取到的次数分别为1次和2次.综上,取球次数恰好为4的概率为【例】在伯努利试验中,每次试验成功的概率为p,则在第n次成功之前恰失败了m次的概率为______.图1-3【答案】【解析】为了分析试验的结构,可以作图形分析:“第n次成功之前失败了m次”这事件意味着第n次成功前有(n-1)次成功和m次失败.总共做了(n +m)次试验.最后一次是成功,前n+m-1次试验中有m次失败和(n-1)次成功,故事件的概率应为。

历年考研数学概率论零基础讲义

历年考研数学概率论零基础讲义

2016考研数学概率论零基础入门讲目录第一讲随机事件与概率 (1)第二讲一维随机变量及其概率分布 (7)第三讲随机变量的数字特征 (12)【注】(1)数二的考生不需要学习这部分内容。

(2)老师没有完全按照讲义的顺序讲课,而是打乱了顺序,重新整合授课体系,但是老师所讲的内容多数是包含在讲义中的,讲义中没有的内容需要同学们自己做笔记.第一讲随机事件与概率一、从古典概型讲起1.随机试验与随机事件称一个试验为随机试验,如果满足:(1)同条件下可重复(2)所有试验结果明确可知且不止一个(3)试验前不知哪个结果会发生【注】①在一次试验中可能出现,也可能不出现的结果称为随机事件,简称为事件,并用大写字母A, B, C 等表示,为讨论需要,将每次试验一定发生的事件称为必然事件,记为Ω.每次试验一定不发生的事件称为不可能事件,记为φ.②随机试验每一最简单、最基本的结果称为基本事件或样本点,记为ωi .2.古典概率称随机试验(随机现象)的概率模型为古典概型,如果其基本事件空间(样本空间)满足:(1)只有有限个基本事件(样本点);(2)每个基本事件(样本点)发生的可能性都一样.【注】①等可能:对于可能结果: ω1,ω2 , ,ωn ,我们找不到任何理由认为其中某一结果ωi 更易发生,则只好(客观)认为所有结果在试验中发生的可能性一样.②如果古典概型的基本事件总数为n ,事件A 包含k 个基本事件,即有利于A 的基本事件k 个.则A 的概率定义为P( A) =k=事件A所含基本事件的个数n由上式计算的概率称为A 的古典概率.3.计数方法基本事件总数1n (1)穷举法:样本点总数不大时 (2)集合对方法:①加法原理:完成一件事,有n 类方法,第一类方法中有m 1 种方法,第二类方法中有m 2种方法,……,第n 类方法中有m n 种方法,则完成此事共有m 1 + m 2 + + m n 种办法.②乘法原理:完成一件事,有 n 个步骤,第一步中有 m 1 种方法,第二步中有 m 2 种方法,……,第n 步中有m n 种方法,则完成此事共有m 1 ⋅ m 2 m n 种办法.③排列:从 n 个不同元素中取出 m (m ≤ n ) 个元素,按照一定的顺序排成一列,叫排列.所有排列的个数叫做排列数,记作 P m= n (n -1) (n - m +1) =n !(n - m )!.当m = n 时,P m = P n = n !,称为全排列.nn④组合:从n 个不同元素中取出m(m ≤ n ) 个元素并成一组,叫组合.所有组合的个数mP m m m 叫做组合数,记作C n = n,也有 P n m != C n ⋅ m !.(3)用对立事件思想 4.例题分析【例 1】从 0 到 9 这十个数字中任取 3 个不同的数字,求 (1)三个数中不含 0 和 5 的概率 (2)三个数中不含 0 或 5 的概率 (3)三个数中含 0,但不含 5 的概率【例 2】假设袋中有 5 个球,3 白球 2 黑球,求 (1)先后有放回取 2 球,至少有一白球的概率; (2)先后无放回取 2 球,至少有一白球的概率; (3)任取 2 球,至少有一白球的概率.【例 3】假设袋中有 100 个球,40 个白球,60 个黑球(1)先后无放回取 20 个,求取到 15 个白球 5 个黑球的概率; (2)先后无放回取 20 个,求第 20 次取到白球的概率; (3)先后有放回取 20 个,求取到 15 个白球 5 个黑球的概率;2∑ ∏ (4)先后有放回取 20 个,求第 20 次取到白球的概率. 二、几何概型 1.引例 天上掉馅饼 2.几何概型的定义如果(1)样本空间(基本事件空间)Ω 是一个可度量的几何区域;(2)每个样本点(基本事件) 发生的可能性都一样,即样本点落入 Ω 的某一可度量的子区域 A 的可能性大小与 A 的几何度量成正比,而与 A 的位置及形状无关,我们就称这样的随机试验的概率模型为几何概型,在几何概型随机试验中,如果 S A 是样本空间 Ω 一个可度量的子区域,则事件 A =“样本点落入区域 S A ”的概率定义为P ( A ) =S A 的几何测度 Ω的几何测度由上式计算的概率称为 A 的几何概率【评注】 基本事件有限、等可能的随机试验为古典概型;基本事件无限、等可能的随机试验为几何概型. 3.例题分析【例 1】君子有约,上午 9:00-10:00 到新东方大厦门口见面,先到者等 20 分钟即离开,求甲、乙两人相遇的概率.【例 2】在区间(0,1) 中随机取两个数,则两数之和小于 6的概率为 .5三、重要公式求概率1.重要公式总结(1)求逆公式 P ( A ) = 1- P ( A ).(2)减法公式 P (A -B )=P (A ) -P (AB ). (3)加法公式 P (A ∪B )=P (A )+P (B )-P (AB )P (A ∪B ∪ C )=P (A )+P (B )+P (C )P (AB )P (AC )P (BC )+P (ABC ).【注】①设 A 1,A 2,…,A n 是两两互不相容的事件,则 P ( n nA i ) = P ( A i )i =1i =1②若 A 1,A 2,…,A n 相互独立,则 P ( n nA i ) = 1 - [1 - P ( A i )]i =1i =1(4)条件概率公式 设 A 、B 为任意两个事件,若 P (A )>0,我们称在已知事件 A 发生的条件下,事件 B 发生的概率为条件概率,记为 P (B |A ),并定义3nP (B | A ) = P ( AB )P ( A )(P (A )>0).【注】(1)条件概率 P (·|A )是概率,概率的一切性质和重要结果对条件概率都适用,例如:P (B | A ) = 1- P (B | A ),P (B - C | A ) = 1- P (B | A ) - P (BC | A ) > 0 ,等等.(2)条件概率就是附加一定的条件之下所计算的概率.当说到“条件概率”时,总是指另外附加的条件,其形式可归结为“已知某事件发生了”. (5)乘法公式如果 P (A )>0,则 P (AB )=P (A )P (B |A ).一般地,如果 P (A 1…A n -1)>0,则P (A 1A 2…A n )=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)…P (A n |A 1…A n -1) 【注】A i 先于 A i +1 发生时用此公式. (6)全概率公式(全集分解思想)n如果A i= Ω, A iAj= φ(i =/ i -1 j ), P ( A i ) > 0 ,则对任一事件 B ,有nnB =A iB , P (B ) = ∑P ( A i)P (B | A i).i -1i -1(7)贝叶斯(Bayes )公式(逆概公式)n如果A i= Ω, A iAj= φ(i =/ i =1j ), P ( A i ) > 0 ,则对任一件事 B ,只要 P (B )>0,有P ( A i | B ) =P ( A i )P (B | A i )(i = 1,2, , n )∑P ( A i)(B | A i)i =1【注】①要注意 P (AB )与 P (B |A )的区别:P (AB )是在样本空间为 Ω 时,A 与 B 同时发生的可能性,而 P (B |A )则是表示在 A 已经发生的条件下,B 发生的可能性,此时样本空间已由 Ω 缩减为 A ,只要题目中有前提条件: “在 A 发生的条件下”或“已知 A 发生”等等,均要考虑条件概率.②全概率公式是用于计算某个“结果”B 发生的可能性大小.如果一个结果 B 的发生总是与某些前提条件(或原因、因素或前一阶段结果)A i 相联系,那么在计算 P (B )时,我们总是将 B 对 A i 作分解:B =A iB ,应用全概率公式计算 P (B ).如果在 B 发生的条件下探求导致这i4一结果的各种“原因”A i发生的可能性大小P(A i|B),则要应用Bayes 公式.2.随机事件相互独立与独立试验序列概型(1)独立性定义描述性定义(直观性定义)设A、B 为两个事件,如果其中任何一个事件发生的概率不受另外一个事件发生与否的影响,则称事件A 与B 相互独立.设A1,A2,…,A n是n 个事件,如果其中任何一个或几个事件发生的概率都不受其余的某一个或某几个事件发生与否的影响,则称事件A1,A2,…,A n相互独立.数学定义设A、B 为事件,如果P(AB)=P(A)P(B),则称事件A 与B 相互独立,简称为A 与B 独立.设A1,A2,…,A n为n 个事件,如果对其中任意有限个事件A i1,A i2,…,A ik(k≥2),有P(A i1A i2…A ik)=P(A i1)P(A i2)…P(A ik),则称n 个事件A1,A2,…,A n相互独立.(2)独立性的判定1°直观性判定:若试验独立其结果必相互独立.例如:甲、乙各自试验结果相互独立;袋中有返回取球其结果相互独立等.2°充要条件.k k〈1〉A1…A n相互独立⇔任意k≥2;P( A ij ) =∏P( A ij ).j =1 j =1特别地A、B 独立⇔P(AB)=P(A)P(B).若0<P(A)<1,则A、B 独立⇔P(B | A) =P(B | A) =P(B).〈2〉n 个事件相互独立的充要条件是,它们中任意一部分事件换成各自的对立事件所得到的n 个事件相互独立.3°必要条件.〈1〉n 个事件相互独立必两两独立,反之不然.〈2〉n 个事件相互独立,则不含相同事件的事件组经某种运算后所得的事件是相互独立的.例如,A、B、C、D 相互独立,则AB 与C ∪D 相互独立,A 与BC- D 相互独立,等等.4°一定独立与一定不独立的判定.概率为1 或零的事件与任何事件都相互独立.如果0<P(A)<1,0<P(B)<1,A 与B 互5不相容或存在包含关系,则 A 与B 不相互独立.【评注】在现实生活中,难于想像两两独立而不相互独立的情况,可以这样想:独立性毕竟是一个数学概念,是现实世界中通常理解的那种“独立性”的一种数学抽象,它难免会有些不尽人意的地方.3.例题分析【例1】假设有10 份报名表,3 份女生报名表,7 份男生报名表。

2011考研数学概率论与数理统计强化课程讲义全

2011考研数学概率论与数理统计强化课程讲义全

2011考研强化班概率论与数理统计讲义第1讲随机事件和概率1.1 知识网络图1.2 重点考核点的分布(1)样本空间与随机事件.*(2)概率的定义与性质(含古典概型、几何概型、加法公式).*(3)条件概率与概率的乘法公式.**(4)事件之间的关系与运算(含事件的独立性).**(5)全概公式与贝叶斯(Bayes)公式.(6)伯努利(Bernoulli)概型.各个考核点前面加“**”表示重点考核点;“*”表示次重点考核点;括号前没有标注的表示一般考核点(下同).1.3 课上复习内容1.3.1 预备知识在复习“概率论”之前,我们需要掌握“二值集合”、“组合分析中的几个定理”、“随机现象及其统计规律”和“微积分”等内容,下面将有关内容作一简单介绍:1.3.1.1 二值集合集合是一个不能给出数学定义的概念,尽管如此,我们仍然可以给它一个定性描述.所谓集合就是按照某些规定能够识别的一些具体对象或事物的全体.构成集合的每一个对象或事物叫做集合的元素.集合通常用大写字母A,B,C表示,其元素用小写字母a,b,c表示.设A是一个集合,如果a是A的元素,记作a∈A,用“1”表示这一隶属关系;如果a 不是A的元素,记作a∈A(或a∉A),用“0”表示这一隶属关系.因此,我们称这种集合为“二值集合”,在初等概率论中,我们只研究这样的集合.有关二值集合的表示方法、基本性质在初等数学中已作过详细讨论,这里不再重复.下面仅就集合的“相等”与“等价”概念以及集合分类情况作一简单介绍.例1设A={2,4,8},则集合A的所有子集是,{2},{4},{8},{2,4},{2,8},{4,8},{2,4,8}.注意,在考虑集合A的所有子集时,不要把空集和它本身忘掉.设A,B是两个集合.如果A⊂B,B⊂A,那么称集合A与B相等,记作A=B.很明显,含有相同元素的两个集合相等.例2设A={0,2,3},B={x|x为方程x3-5x2+6x=0的解},则A=B.设A,B是两个集合.如果B的每一个元素对应于A的唯一的元素,反之A的每一个元素对应于B的唯一的元素,那么就说在A和B的元素之间建立了一一对应关系,并称A与B等价,记作A~B.与自然数集N等价的任何集合,称为可列集.显然,一切可列集彼此都是等价的.今后我们常称这类集合中元素的个数为可列个(或可数个),并把有限个或可列个统称为至多可列个(或至多可数个).例3设A={a|a=2n,n∈N},B={b|b=n2+1,n∈N},则A~B.由上面的讨论可以看出,集合的分类如下:1.3.1.2 组合分析中的几个定理1.加法原理定理1设完成一件事有n类方法,只要选择任何一类中的一种方法,这件事就可以完成.若第一类方法有m1种,第二类方法有m2种,……,第n类方法有m n种,并且这m1+m2+…+m n种方法里,任何两种方法都不相同,则完成这件事就有m1+m2+…+m n种方法.2.乘法原理定理2设完成一件事有n个步骤,第一步有m1种方法,第二步有m2种方法,……第n步有m n种方法,并且完成这件事必须经过每一步,则完成这件事共有m1m2…m n种方法.3.排列定义1 从n个不同元素中,每次取出m个元素,按照一定顺序排成一列,称为从n 个元素中每次取出m个元素的排列.定理3从n个不同元素中,有放回地逐一取出m个元素进行排列(简称为可重复排列),共有n m种不同的排列.例4 袋中有N个球,其中M个为白色,从中有放回地取出n个:①N=10,M=2,n=3;②N=10,M=4,n=3.考虑以下各事件的排列数:(Ⅰ)全不是白色的球.(Ⅱ)恰有两个白色的球.(Ⅲ)至少有两个白色的球.(Ⅳ)至多有两个白色的球.(Ⅴ)颜色相同.(Ⅵ)不考虑球的颜色.答案是:①当M=2时,(Ⅰ)83.(Ⅱ)3×22×8.(Ⅲ)3×22×8+23.(Ⅳ)3×22×8+3×2×83+83(或103-23).(Ⅴ)23+83.(Ⅵ)103.②当M=4时,将上面的2→4,8→6即可.分析这是一个可重复的排列问题.由定理3,可求出其排列数.问题恰有两个白色球的答案中为什么是3倍的22×8,而不是1倍或6倍的?提示根据加法原理.定理4 从n 个不同元素中,无放回地取出m 个(m ≤n )元素进行排列(简称为选排列)共有)!(!)1()1(m n n m n n n -=+--种不同的排列.选排列的种数用mn A (或mn P )表示,即)!(!m n n A m n -=特别地,当m =n 时的排列(简称为全排列)共有n ·(n -1)(n -2)·…·3·2·1=n ! 种不同排列.全排列的种数用P n (或nn A )表示,即P n =n !,并规定0!=1.4.组合定义2 从n 个不同元素中,每次取出m 个元素不考虑其先后顺序作为一组,称为从n 个元素中每次取出m 个元素的组合.定理5 从n 个不同元素中取出m 个元素的组合(简称为一般组合)共有(1)(1)!!!()!n n n m n m m n m --+=-种不同的组合.一般组合的组合种数用mn C (或⎪⎪⎭⎫⎝⎛m n )表示,即 ,)!(!!m n m n C m n -=并且规定.10=n C 不难看出m m nnm A C p =⋅例5 袋中有N 个球,其中M 个为白色,从中任取n 个: ①N =10,M =2,n =3;②N =10,M =4,n =3. 考虑以下各事件的组合数: (Ⅰ)全不是白色的球. (Ⅱ)恰有两个白色的球. (Ⅲ)至少有两个白色的球. (Ⅳ)至多有两个白色的球. (Ⅴ)颜色相同. (Ⅵ)不考虑球的颜色. 答案是:①当M =2时,(Ⅰ).0238C C (Ⅱ).1822C C (Ⅲ).1822C C(Ⅳ)211203328282810().C C C C C C C ++或 (Ⅴ).38C (Ⅵ)⋅310C②当M =4时,(Ⅰ).0436C C (Ⅱ).1624C C (Ⅲ).06341624C C C C +(Ⅳ))(34310360426141624C C C C C C C C -++或. (Ⅴ).3634C C +(Ⅵ)⋅310C分析(略)定理6 从不同的k 类元素中,取出m 个元素.从第1类n 1个不同元素中取出m 1个,从第2类n 2个不同的元素中取出m 2个,……,从第k 类n k 个不同的元素中取出m k 个,并且n i ≥m i >0(i =1,2,…,k )(简称为不同类元素的组合),共有iik k m n ki m n m n m n C CC C ∏==12211 种不同取法.例6 从3个电阻,4个电感,5个电容中,取出9个元件,问其中有2个电阻,3个电感,4个电容的取法有多少种?解 这是一个不同类元素的组合问题.由定理6知,共有60151413252423==C C C C C C即60种取法.例7 五双不同号的鞋,从中任取4只,取出的4只都不配对(即不成双),求(Ⅰ)排列数;(Ⅱ)组合数.答案是:(Ⅰ)141618110C C C C ;(Ⅱ).1212121245C C C C C分析(略)1.3.1.3 微积分概率论可以分为“高等概率论”与“初等概率论”.初等概率论是建立在排列组合和微积分等数学方法的基础上的.全国硕士研究生入学统一考试数学考试大纲中的“概率论”就是初等概率论.微积分作为初等概率论的基础知识,除了我们已经比较了解的“函数、极限、连续、可导、可积”等概念之外,还应了解下面的有关概念.1.可求积与不可求积在微积分中,求不定积分与求导数有很大不同,我们知道,任何初等函数的导数仍为初等函数,而许多初等函数的不定积分,例如x x x x x xx x x x x d 1,d sin ,d ln 1,d sin ,d e 322+⎰⎰⎰⎰⎰- 等,虽然它们的被积函数的表达式都很简单,但在初等函数的范围内却积不出来.这不是因为积分方法不够,而是由于被积函数的原函数不是初等函数的缘故.我们称这种函数是“不可求积”的.因此,我们可以将函数划分为:在初等概率论中,正态分布密度函数就是属于可积而不可求积的一类函数. 2.绝对收敛(1)任意项级数的绝对收敛所谓任意项级数是指级数的各项可以随意地取正数、负数或零.下面给出绝对收敛与条件收敛两个概念.定义3 若任意项级数nn u∑∞=1的各项取绝对值所成的级数||1nn u∑∞=收敛,则称级数nn u ∑∞=1是绝对收敛的;若||1nn u∑∞=发散,而级数n n u ∑∞=1收敛,则称级数n n u ∑∞=1是条件收敛的.例如,级数nn n 1)1(11+∞=-∑是收敛的,但各项取绝对值所成的级数 ++++=-+∞=∑nn n n 1...211|1)1(|11是发散的,因而级数n n n 1)1(11+∞=-∑是条件收敛.又如,级数2111)1(n n n +∞=-∑各项取绝对值所成级数++++=-+∞=∑222111211|1)1(|nnn n是收敛的,因而级数2111)1(n n n +∞=-∑是绝对收敛的. 定理7 若级数nn u∑∞=1绝对收敛,则nn u∑∞=1必定收敛.证明 令),2,1()0(0)0(|)|(21=⎩⎨⎧<≥=+=n u u u u u v n n n n n n ,,于是 )⋯=≥≥,2,1(0||n v u n n . 由||1nn u∑∞=收敛,根据正项级数的比较判别法,可知级数n n v ∑∞=1是收敛的.考虑到 ,||2n n n u v u -= 根据级数的基本性质,可知级数nn u∑∞=1也是收敛的.根据上面的定理,判断任意一个级数nn u∑∞=1的收敛性,可以先判断它是否绝对收敛.如果||1nn u∑∞=收敛,则n n u ∑∞=1也收敛.这样一来,我们可以借助于正项级数的判别法来判断任意项级数的敛散性了.但是,当级数||1nn u∑∞=发散时,不能由此推出级数n n u ∑∞=1也发散.在初等概率论中,我们将用绝对收敛这一概念来给出离散型随机变量均值的定义. (2)无穷积分的绝对收敛定义4 如果函数f (x )在任何有限区间[a ,b ](b >a )上可积,并且积分x x f ad |)(|⎰+∞收敛,那么,我们称积分x x f ad )(⎰+∞是绝对收敛的.此时,我们也称函数f (x )在无穷区间[a ,+∞)上绝对可积.定理8 若积分x x f ad )(⎰+∞绝对收敛,则x x f ad )(⎰+∞必定收敛.上面的定理的逆定理并不成立,也就是说,从x x f ad )(⎰+∞的收敛性,不能推出x x f ad |)(|⎰+∞也收敛,例如,积分⎰+∞-d sin x xx是收敛的,但是积分x xx d |sin |0⎰+∞却发散.这一点与定积分不同,对于定积分,从x x f bad )(⎰的存在性,必能推出xx f bad |)(|⎰存在.若积分x x f ad )(⎰+∞收敛,而积分x x f ad |)(|⎰+∞发散时,则称积分x x f ad )(⎰+∞为条件收敛的.例如积分x xxad sin ⎰+∞是条件收敛的. 在初等概率论中,我们将用绝对可积这一概念来给出连续型随机变量均值的定义. 1.3.2 样本空间与随机事件1.随机现象及其统计规律性在客观世界中存在着两类不同的现象:确定性现象和随机现象. 在一组不变的条件S 下,某种结果必定发生或必定不发生的现象称为确定性现象.这类现象的一个共同点是:事先可以断定其结果.在一组不变的条件S 下,具有多种可能发生的结果的现象称为随机现象.这类现象的一个共同点是:事先不能预言多种可能结果中究竟出现哪一种.一般来说,随机现象具有两重性:表面上的偶然性与内部蕴含着的必然规律性.随机现象的偶然性又称为它的随机性.在一次实验或观察中,结果的不确定性就是随机现象随机性的一面;在相同的条件下进行大量重复实验或观察时呈现出来的规律性是随机现象必然性的一面,称随机现象的必然性为统计规律性.2.随机试验与随机事件为了叙述方便,我们把对随机现象进行的一次观测或一次实验统称为它的一个试验.如果这个试验满足下面的三个条件:(1)在相同的条件下,试验可以重复地进行.(2)试验的结果不止一种,而且事先可以确知试验的所有结果.(3)在进行试验前不能确定出现哪一个结果.那么我们就称它是一个随机试验,以后简称为试验.一般用字母E表示.问题“一个具体的人,在一次乘车郊游时,因发生交通事故而受伤”,是否为随机试验?在随机试验中,每一个可能出现的不可分解的最简单的结果称为随机试验的基本事件或样本点,用ω表示;而由全体基本事件构成的集合称为基本事件空间或样本空间,记为Ω.例8设E1为在一定条件下抛掷一枚匀称的硬币,观察正、反面出现的情况.记ω1是出现正面,ω2是出现反面.于是Ω由两个基本事件ω1,ω2构成,即Ω={ω1,ω2}.例9 设E2为在一定条件下掷一粒骰子,观察出现的点数.记ωi为出现i个点(i=1,2,…,6).于是有Ω={ω1,ω2,…,ω6}.问题例8、例9中样本空间Ω的子集个数是多少?为什么?所谓随机事件是样本空间Ω的一个子集,随机事件简称为事件,用字母A,B,C等表示.因此,某个事件A发生当且仅当这个子集中的一个样本点ω发生,记为ω∈A.在例9中,Ω={ω1,ω2,…,ω6},而E2中的一个事件是具有某些特征的样本点组成的集合.例如,设事件A={出现偶数点},B={出现的点数大于4},C={出现3点},可见它们都是Ω的子集.显然,如果事件A发生,那么子集{ω2,ω4,ω6}中的一个样本点一定发生,反之亦然,故有A={ω2,ω4,ω6};类似地有B={ω5,ω6}和C={ω3}.一般而言,在例9中,任一由样本点组成的Ω的子集也都是随机事件.1.3.3 事件之间的关系与运算事件之间的关系有:“包含”、“等价(或相等)”、“互不相容(或互斥)”以及“独立”四种.事件之间的基本运算有:“并”、“交”以及“逆”.如果没有特别的说明,下面问题的讨论我们都假定是在同一样本空间Ω中进行的.1.事件的包含关系与等价关系设A,B为两个事件.如果A中的每一个样本点都属于B,那么称事件B包含事件A,或称事件A包含于事件B,记为A⊂B或B⊃A.如果A⊃B与B⊃A同时成立,那么称事件A与事件B等价或相等,记为A=B.在下面的讨论中,我们经常说“事件相同、对应概率相等”,这里的“相同”指的是两个事件“等价”.2.事件的并与交设A,B为两个事件.我们把至少属于A或B中一个的所有样本点构成的集合称为事件A与B的并或和,记为A∪B或A+B.设A ,B 为两个事件.我们把同时属于A 及B 的所有样本点构成的集合称为事件A 与B 的交或积,记为A ∩B 或A ·B ,有时也简记为AB .3.事件的互不相容关系与事件的逆设A ,B 为两个事件,如果A ·B =,那么称事件A 与B 是互不相容的(或互斥的). 对于事件A ,我们把不包含在A 中的所有样本点构成的集合称为事件A 的逆(或A 的对立事件),记为.A 我们规定它是事件的基本运算之一.在一次试验中,事件A 与A 不会同时发生(即A ·A =,称它们具有互斥性),而且A与A 至少有一个发生(即A +A =Ω,称它们具有完全性).这就是说,事件A 与A 满足:⎪⎩⎪⎨⎧=+∅=⋅.,ΩA A A A 问题 (1)事件的互不相容关系如何推广到多于两个事件的情形?(2)三个事件A ,B ,C ,ABC =与⎪⎩⎪⎨⎧∅=∅=∅=BC AC AB ,, 关系如何?根据事件的基本运算定义,这里给出事件之间运算的几个重要规律: (1)A (B +C )=AB +AC (分配律). (2)A +BC =(A +B )(A +C )(分配律).(3)B A B A ⋅=+ (德·摩根律).(4)B A B A +=⋅(德·摩根律).有了事件的三种基本运算我们就可以定义事件的其他一些运算.例如,我们称事件AB 为事件A 与B 的差,记为A -B .可见,事件A -B 是由包含于A 而不包含于B 的所有样本点构成的集合.例10 在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立? (3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立. 4.事件的独立性设A ,B 是某一随机试验的任意两个随机事件,称A 与B 是相互独立的,如果P (AB )=P (A )P (B ).可见事件A 与B 相互独立是建立在概率基础上事件之间的一种关系.所谓事件A 与B 相互独立就是指其中一个事件发生与否不影响另一个事件发生的可能性,即当P (B )≠0时,A 与B 相互独立也可以用)()|(A P B A P =来定义.由两个随机事件相互独立的定义,我们可以得到:若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立.如果事件A ,B ,C 满足⎪⎪⎩⎪⎪⎨⎧====),()()()(),()()(),()()(),()()(C P B P A P ABC P C P A P AC P C P B P BC P B P A P AB P 则称事件A ,B ,C 相互独立.注意,事件A ,B ,C 相互独立与事件A ,B ,C 两两独立不同,两两独立是指上述四个式子中前三个式子成立.因此,相互独立一定是两两独立,但反之不一定.例11 将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立?解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+===()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0, 而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?1.3.4 概率的定义与性质1.概率的公理化定义定义5 设E 是一个随机试验,Ω为它的样本空间,以E 中所有的随机事件组成的集合为定义域,定义一个函数P (A )(其中A 为任一随机事件),且P (A )满足以下三条公理,则称函数P (A )为事件A 的概率.公理1(非负性) 0≤P (A )≤1.公理2(规范性) P (Ω)=1.公理3(可列可加性) 若A 1,A 2,…,A n ,…两两互斥,则).()(11i i i i A P A P ∑∞=∞==由上面三条公理可以推导出概率的一些基本性质. 性质1(有限可加性) 设A 1,A 2,…,A n 两两互斥,则).()(11i ni i n i A P A P ∑===性质2(加法公式) 设A ,B 为任意两个随机事件,则P (A +B )=P (A )+P (B )-P (AB ).性质3 设A 为任意随机事件,则P (A )=1-P (A ).性质4 设A ,B 为两个任意的随机事件,若A ⊂B ,则P (B -A )=P (B )-P (A ).由于P (B -A )≥0,根据性质4可以推得,当A ⊂B 时,P (A )≤P (B ). 例12 设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0? 提示 利用事件的关系与运算导出.例13 设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===2.概率的统计定义定义6 在一组不变的条件S 下,独立地重复做n 次试验.设μ是n 次试验中事件A 发生的次数,当试验次数n 很大时,如果A 的频率f n (A )稳定地在某一数值p 附近摆动;而且一般说来随着试验次数的增多,这种摆动的幅度会越来越小,则称数值p 为事件A 在条件组S 下发生的概率,记作.)(p A P =问题 (1)试判断下式p n n =∞→μlim成立吗?为什么?(2)野生资源调查问题 池塘中有鱼若干(不妨假设为x 条),先捞上200条作记号,放回后再捞上200条,发现其中有4条带记号.用A 表示事件{任捞一条带记号},问下面两个数2004,200x 哪个是A 的频率?哪个是A 的概率?为什么?3.古典概型古典型试验:(Ⅰ)结果为有限个;(Ⅱ)每个结果出现的可能性是相同的.等概完备事件组:(Ⅰ)完全性;(Ⅱ)互斥性;(Ⅲ)等概性.(满足(Ⅰ),(Ⅱ)两条的事件组称为完备事件组)定义7 设古典概型随机试验的基本事件空间由n 个基本事件组成,即Ω={ω1,ω2,…,ωn }.如果事件A 是由上述n 个事件中的m 个组成,则称事件A 发生的概率为⋅=nm A P )( (1-1) 所谓古典概型就是利用式(1-1)来讨论事件发生的概率的数学模型.根据概率的古典定义可以计算古典型随机试验中事件的概率.在古典概型中确定事件A 的概率时,只需求出基本事件的总数n 以及事件A 包含的基本事件的个数m .为此弄清随机试验的全部基本事件是什么以及所讨论的事件A 包含了哪些基本事件是非常重要的.例14 掷两枚匀称的硬币,求它们都是正面的概率.解 设A ={出现正正},其基本事件空间可以有下面三种情况:(Ⅰ)Ω1={同面、异面},n 1=2.(Ⅱ)Ω2={正正、反反、一正一反},n 2=3.(Ⅲ)Ω3={正正、反反、反正、正反},n 3=4.于是,根据古典概型,对于(Ⅰ)来说,由于两个都出现正面,即同面出现,因此,m 1=1,于是有21)(=A P . 而对于(Ⅱ)来说,m 2=1,于是有31)(=A P . 而对于(Ⅲ)来说,m 3=1,于是有41)(=A P . 问题 以上讨论的三个结果哪个正确,为什么?例15 求1.3.1预备知识的例5中(Ⅰ)至(Ⅴ)问的概率.答案是:①当M =2时,(Ⅰ)⋅31038/C C (Ⅱ)⋅31018/C C (Ⅲ)⋅31018/C C (Ⅳ)1. (Ⅴ)⋅31038/C C②当M =4时,(Ⅰ)⋅31038/C C (Ⅱ)⋅3101624/C C C (Ⅲ)310341624/)(C C C C +.(Ⅳ)31034310/)(C C C -. (Ⅴ) 3103634/)(C C C +. 分析(略)问题 (1)例15中各问可否使用排列做,为什么?(2)用排列或组合完成例15时哪种方法较为简便?例16 求1.3.1预备知识的例4中(Ⅰ)至(Ⅴ)问的概率.答案是:①当M =2时,(Ⅰ)3310/8. (Ⅱ)3210/823⨯⨯. (Ⅲ)33210/)2823(+⨯⨯.(Ⅳ)33310/)210(-. (Ⅴ)33310/)82(+.②当M =4时,将上面的2→4,8→6即可.分析(略)问题 (1)例16中各问可否使用组合做,为什么?(2)用元素可重复的排列或组合完成例16时,哪种方法较为简便?(3)小结一下“古典概型”中“有放回地抽取”与“无放回地抽取”时分别应采用的方法.例17 求1.3.1预备知识的例7中“取出的4只都不配对”的概率.答案是:410141618110/P C C C C 或 4111145222210/C C C C C C . 分析(略)例18 从一副扑克牌的13张梅花中,有放回地取3次,求三张都不同号的概率. 解 这是一个古典概型问题.设A ={三张都不同号}.由题意,有n =133,m =313P ,则 ⋅==169132)(n m A P问题 如果我们进一步问三张都同号,三张中恰有两张同号如何求出?另外,本题可否使用二项概型计算?例19 在20枚硬币的背面分别写上5或10,两者各半,从中任意翻转10枚硬币,这10枚硬币背面的数字之和为100,95,90,…,55,50,共有十一种不同情况.问出现“70,75,80”与出现“100,95,90,85,65,60,55,50”的可能性哪个大,为什么?答案是:出现“70,75,80”可能性大,约为82%.分析 这是一个古典概型问题.设A ={出现“70,75,80”},由题意,有,2,6104105105101020C C C C m C n +==则 ⋅==184756151704)(n m A P 4.几何概型几何型试验:(Ⅰ)结果为无限不可数;(Ⅱ)每个结果出现的可能性是均匀的.定义4 设E 为几何型的随机试验,其基本事件空间中的所有基本事件可以用一个有界区域来描述,而其中一部分区域可以表示事件A 所包含的基本事件,则称事件A 发生的概率为,)()()(Ω=L A L A P (1-2) 其中L (Ω)与L (A )分别为Ω与A 的几何度量.所谓几何概型就是利用式(1-2)来讨论事件发生的概率的数学模型.注意,上述事件A 的概率P (A )只与L (A )有关,而与L (A )对应区域的位置及形状无关. 例20 候车问题 某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 问题 (1)例20可否使用一维均匀分布来计算?(2)举例说明:(Ⅰ)概率为0的事件不一定是不可能事件.(Ⅱ)概率为1的事件不一定是必然事件.例21 会面问题 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P 问题 例21可否使用二维均匀分布来计算?1.3.5 条件概率与概率的乘法公式1.条件概率前面我们所讨论的事件B 的概率P S (B ),都是指在一组不变条件S 下事件B 发生的概率(但是为了叙述简练,一般不再提及条件组S ,而把P S (B )简记为P (B )).在实际问题中,除了考虑概率P S (B )外,有时还需要考虑“在事件A 已发生”这一附加条件下,事件B 发生的概率.与前者相区别,称后者为条件概率,记作P (B |A ),读作在A 发生的条件下事件B 的概率.在一般情况下,如果A ,B 是条件S 下的两个随机事件,且P (A )≠0,则在A 发生的前提下B 发生的概率(即条件概率)为)()()|(A P AB P A B P =, (1-3) 并且满足下面三个性质:(1)(非负性)P (B |A )≥0;(2)(规范性)P (Ω|A )=1;(3)(可列可加性)如果事件B 1,B 2,…互不相容,那么).|()|(11A B P A B P i i i i ∑∞=∞==问题 (1)条件概率在原样本空间Ω中是某一个事件的概率吗?(2)如何判断一个问题中所求的是条件概率还是无条件概率?(3)在一个具体问题中条件概率如何获得?例22 设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 2.概率的乘法公式在条件概率公式(1-3)的两边同乘P (A ),即得P (AB )=P (A )P (B |A ). (1-4)例23 在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P问题 (1)例23中,问两件产品为一件正品,一件次品的概率是多少?(2)例23中,将“无放回地抽取”改为“有放回地抽取”,答案与上题一样吗?为什么?例24 抓阄问题 五个人抓一个有物之阄,求第二个人抓到的概率.分析 (1)什么是“抓阄”问题,如何判断它?(2)例24中“求第二个人抓到的概率”是指“在第一人没有抓到的条件下,第二个人抓到的概率”吗?解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P所以⋅=⨯=514154)(2A P 问题 (1)本题还有其他方法解决吗?(2)若改成n 个人抓m 个有物之阄(m <n ),下面的结论),,2,1()(n k nm A P k == 还成立吗?例25 设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}.试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.例26 加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).问题 本题使用加法公式还是乘法公式较为简便?例27 一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或.。

考研数学概率论浙大内部课件(盛骤)

考研数学概率论浙大内部课件(盛骤)

称这种试验为等可能概型(或古典概型)。 等可能概型(或古典概型) 等可能概型
22
例1:一袋中有8个球,编号为1-8,其中1-3 号为红球,4-8号为黄球,设摸到每一 球的可能性相等,从中随机摸一球, 记A={ 摸到红球 },求P(A). 解: S={1,2,…,8} A={1,2,3}
⇒ P ( A) = 3 8
i =1 i =1 k k
称P(A)为事件A的概率 概率。 概率
20
P( A) = 0不能 ⇒ A = ∅;
性质:
1 P ( A) = 1 − P ( A )
P( A) = 1不能 ⇒ A = S;
∵ A ∪ A = S ⇒ P( A) + P( A) = 1 ⇒ P(∅) = 0
2 若A ⊂ B,则有 P ( B − A) = P ( B ) − P ( A) ⇒ P ( B ) ≥ P ( A)
⇒B⊃ A
13
事件的运算
A与B的和事件,记为 A ∪ B
A ∪ B = { x | x ∈ A 或 x ∈ B }:A与B至少有一发生。
S A B
A与B的积事件,记为 A ∩ B , A ⋅ B , AB A ∩ B = { x | x ∈ A 且 x ∈ B }:A与B同时发生。
n
S A B

i =1 n
又 ∵ B ⊃ AB,由2。 知P ( B − AB ) = P ( B ) − P ( AB )
⇒ P ( A ∪ B) = P( A) + P( B) − P( AB)
#3 的推广:

P(∪ Ai ) = ∑ P( Ai ) −
i =1 i =1
n
n
1≤i < j ≤ n

(完整版)《概率论与数理统计》讲义

(完整版)《概率论与数理统计》讲义

第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。

)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。

例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。

(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。

例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。

例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

考研数学概率论辅导讲义

考研数学概率论辅导讲义

考研数学概率论辅导讲义主讲:马超第二章 随机变量及其分布第一节 基本概念1、概念网络图⎭⎬⎫⎩⎨⎧-→⎭⎬⎫⎩⎨⎧≤<→⎭⎬⎫⎩⎨⎧)()()()(a F b F A P b X a A X 随机事件随机变量基本事件ωω→≤=)()(x X P x F 分布函数: 函数分布正态分布指数分布均匀分布连续型几何分布超几何分布泊松分布二项分布分布离散型八大分布→⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-102、重要公式和结论例2.1:4黑球,2白球,每次取一个,不放回,直到取到黑为止,令X(ω)为“取白球的数”,求X 的分布律。

例2.2:给出随机变量X 的取值及其对应的概率如下:,31,,31,31,,,2,1|2k k PX , 判断它是否为随机变量X 的分布律。

例2.3:设离散随机变量X 的分布列为214181812,1,0,1,,,-P X ,求X 的分布函数,并求)21(≤X P ,)231(≤<X P ,)231(≤≤X P 。

例2.4: )()(21x f x f +是概率密度函数的充分条件是: (1))(),(21x f x f 均为概率密度函数 (2)1)()(021≤+≤x f x f例2.5:袋中装有α个白球及β个黑球,从袋中先后取a+b 个球(放回),试求其中含a 个白球,b 个黑球的概率(a ≤α,b ≤β)。

例2.6:某人进行射击,设每次射击的命中率为0.001,若独立地射击5000次,试求射中的次数不少于两次的概率,用泊松分布来近似计算。

例2.7:设某时间段内通过一路口的汽车流量服从泊松分布,已知该时段内没有汽车通过的概率为0.05,则这段时间内至少有两辆汽车通过的概率约为多少?例2.8:袋中装有α个白球及β个黑球,从袋中任取a+b 个球,试求其中含a 个白球,b 个黑球的概率(a ≤α,b ≤β)。

概率论基础讲义全

概率论基础讲义全

概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。

例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。

每次试验都不可能发生的事情称为不可能事件,记为①。

例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。

例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。

在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。

例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。

试验中所有样本点构成的集合称为样本空间。

记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。

[考研数学]概率论和数理统计第四章 随机变量的数字特征课件全面版

[考研数学]概率论和数理统计第四章 随机变量的数字特征课件全面版

为随机变量X的数学期望,简称期望,记为E(X),即
E(X) xk pk
k1
设 连 续 型 随 X具机 有变 概量 率 f(x), 密 度
若xf(x)d绝 x 对 收 ,则敛 称 积 x分 f(x)d为 xX的



望E(, X), 记即 E为 (X)
xf(x)dx
上一页 下一页 返回
E(X)是一个实数,形式上是X的可能值的加权 平均数,实质上它体现了X取值的真正平均。又称 E(X)为X的平均值,简称均值。它完全由X的分布 所决定,又称为分布的均值.
上一页 下一页 返回
例1: 某种产品即将投放市场,根据市场调查估计每件 产品有60%的把握按定价售出,20%的把握打折售出 及20%的可能性低价甩出。上述三种情况下每件产品 的利润分别为5元,2元和-4元。问厂家对每件产品可 期望获利多少?
解: 设X表示一件产品的利润(单位:元),X的分布
率为
X 5 2 -4
E (X ) k e ee 2 -4
k ! (k 1 )! 随机变量函数的数学期k 望 :0
k 1
k 0
设n维随机变量(X1,X2,···Xn) 的1+1阶混合中心矩
6第元四,E 章还(是随X 有机利变2可量)图的的 数。字E 特征[X(X1)X]E[X(X1)]E(X)
例7: 设圆的直径X~U(a,b),求圆的面积的期望。
P X k 2 -4
第四节 矩、协方差矩阵 随机变量数学期望的性质:
k !
k0 ,1 ,2 , ,0
若(X,Y)为二维离散型随机变量,其联合分布律为
设n维随机变量(X1,X2,·· ·Xn) 的1+1阶k 混合 中心矩

《概率论讲义》PPT课件

《概率论讲义》PPT课件
(2) 规范性 : Fn 1;
(3) 可加性:对互斥事件A, B,有 Fn (A B) Fn (A) Fn (B)
推广 有限可加性: 若A1,A2,, Ak 两两 互不相容, 则
k
F n( Ai ) Fn ( A1) Fn ( A2 ) Fn ( Ak ). i 1
E2:将一枚硬币抛三次,观察正反面出现的情况. 2={HHH, THH,
HTH, HHT,HTT,THT,TTH,TTT }
E3:掷一颗骰子,观察点数.则 3={1,2,3,4,5,6}
1=1 2=2 6=6
E4:电话交换台一分钟内接到的呼唤次数.
4={0,1,2, }
1=0, 2=1, 3=2
0.5069
皮尔逊 12000
6019
0.5016
皮尔逊 24000
12012
0.5005
(二) 概 率
1 统计定义: 频率的稳定值P(A)反映了事件A在一次试 验中发生的可能性大小,称P(A)为事件A 的概率。
2 公理化定义:设为样本空间,A为事件, 对每一事件A赋予一实数P(A),如果P(A)满 足如下三条公理:
故有
P(i )

1 n
(n 1,2,, n)
若A {i1,i2 ,,ik }, 则有
P( A)

P(i1 )

P(i2 )

P(ik
)

k n
于是,P
( A)

k n

A包含的样本点数 样本点总数
例1. 设一袋中有编号为1,2,…,9的球共9只,
现从中任取3只,试求:
n1
且Ai Aj . 由概率的可列可加性得

考研数学之概率讲义分析

考研数学之概率讲义分析

考研数学之概率讲义分析概率统计第一讲随机事件和概率考试要求:数学一、三、四要求一致。

了解:样本空间的概念理解:随机事件,概率,条件概率,事件独立性,独立重复试验掌握:事件的关系与运算,概率的基本性质,五大公式(加法、减法、乘法、全概率、贝叶斯),独立性计算,独立重复试验就算会计算:古典概率和几何型概率。

§1随机事件与样本空间一、随机试验:E(1)可重复(2)知道所有可能结果(3)无法预知二、样本空间试验的每一可能结果——样本点ω所有样本点全体——样本空间Ω三、随机事件样本空间的子集——随机事件A B C样本点——基本事件,随机事件由基本事件组成。

如果一次试验结果,某一基本事件ω出现——ω发生,ω出现如果组成事件A的基本事件出现——A发生,A出现Ω——必然事件Φ——不可能事件§2事件间的关系与运算一.事件间关系包含,相等,互斥,对立,完全事件组,独立 二.事件间的运算:并,交,差运算规律:交换律,结合律,分配律,对偶律 概率定义,集合定义,记号,称法,图 三.事件的文字叙述与符号表示例2 从一批产品中每次一件抽取三次,用(1,2,3)i A i =表示事件:“第i 次抽取到的是正品”试用文字叙述下列事件: (1)122313A A A A A A U U ; (2)123A A A ;(3)123A A A U U ; (4)123123123A A A A A A A A A U U ; 再用123,,A A A 表示下列事件:(5)都取到正品; (6)至少有一件次品; (7)只有一件次品; (8)取到次品不多于一件。

§3 概率、条件概率、事件独立性、五大公式一.公理化定义 ,,A P Ω(1)()0P A ≥ (2)()1P Ω=(3)1212()()()()n n P A A A P A P A P A =++++U UL U UL L L ,i j A A i j =∅≠ 二.性质(1)()0P ∅=(2)1212()()()()n n P A A A P A P A P A =++++U UL U UL L L ,i j A A i j =∅≠ (3)()1()P A P A =-(4),()()A B P A P B ⊂≤ (5)0()1P A ≤≤三.条件概率与事件独立性(1)()()0,(),()P AB P A P B A P A >=事件A 发生条件下事件B 发生的条件概率; (2)()()(),P AB P A P B =事件,A B 独立,,A B 独立,A B €独立,A B €独立,A B €独立;()0P A >时,,A B 独立()()P B A P B =€;(3)121212(,,,)()()()1kki i i i i i k P A A A P A P A P A i i i n =≤<<<≤L L L称12,,n A A A L 相互独立,(2321n n n n n C C C n +++=--L 个等式)相互独立⨯垐?噲?两两独立。

考研数学《概率统计》讲义第四讲

考研数学《概率统计》讲义第四讲

多维随机变量之间存在一定的关 联程度,通过相关系数进行度量。
描述多维随机变量之间相关性的 矩阵,其中元素为各分量之间的 协方差。
04
数字特征与特征函数
数学期望定义及性质
数学期望的定义
对于离散型随机变量,数学期望是所有可能 取值与其对应概率的乘积之和;对于连续型 随机变量,数学期望是概率密度函数与自变 量的乘积在全体实数范围内的积分。
通过多维随机变量的联合分布,计算函数的期望和方 差。
变换后的多维随机变量分布
通过变换得到新的多维随机变量,并求其分布情况。
卷积公式
求解两个独立随机变量之和的分布情况。
独立性、相关性和协方差矩阵
01
独立性
多维随机变量中各个分量相互独 立,即一个分量的取值不影响其 他分量的取值。
相关性
02
03
协方差矩阵
考研数学《概率统计》讲义第 四讲

CONTENCT

• 概率空间与事件概率 • 一维随机变量及其分布 • 多维随机变量及其分布 • 数字特征与特征函数 • 大数定律与中心极限定理 • 参数估计与假设检验
01
概率空间与事件概率
概率空间定义及性质
概率空间定义
由样本空间、事件域和概率测度三部分构成,用于描述随机试验 所有可能结果及其概率的数学模型。
依概率收敛和依分布收敛
依概率收敛
设随机变量序列 {Xn} 和随机变量 X 分布在同一概率空间 上,如果对于任意正数 ε,都有 lim(n→∞) P(|Xn - X| ≥ ε) = 0 成立,则称 {Xn} 依概率收敛于 X。
依分布收敛
设随机变量序列 {Xn} 和随机变量 X 的分布函数分别为 Fn(x) 和 F(x),如果对于 F(x) 的每一个连续点 x,都有 lim(n→∞) Fn(x) = F(x) 成立,则称 {Xn} 依分布收敛于 X。依分布收敛是描述随机变量序列分布函数收敛到某个 特定分布的一种弱收敛形式。

第12讲1研究生 概率论与数理统计 资料与讲义

第12讲1研究生 概率论与数理统计 资料与讲义

马氏链的马尔可夫性通常用条件概率分布 或条件分布律来刻画,即对任意的正整数 n, r 或条件分布律来刻画, 和 0≤t1<t2 < …<tr<m;m, n ∈ T1,有 ;
P{ X m + n = a j X t1 = a i1 , X t 2 = a i2 , L , X t r = a ir , X m = a i } = P{ X m + n = a j X m = a i }, (1.2)
若以X 表示时刻n时 的位置 的位置, 若以 n表示时刻 时Q的位置,不同的位置就 的不同状态,那么{ … 是一随机 是Xn的不同状态,那么 Xn , n=0,1,2…}是一随机 过程,状态空间就是I,而且X 为已知时, 过程,状态空间就是 ,而且 n=i, i ∈I为已知时, 为已知时 Xn+1所处的状态的概率分布只与 n= i 有关,而与 所处的状态的概率分布只与X 有关,而与Q 在时刻n以前如何达到 是完全无关的,所以{ 以前如何达到i是完全无关的 在时刻 以前如何达到 是完全无关的,所以 Xn , n=0,1,2…}是一马氏链,而且还是齐次的,它的一 是一马氏链, … 是一马氏链 而且还是齐次的, 步转移概率和一步转移概率矩阵分别为
设随机过程{X(t), t ∈T}的状态空间为 。如 的状态空间为I。 设随机过程 的状态空间为 任意n个 果对时间 t 的任意 个取值 t1<t2< …<tn, n≥3, ti ∈T,在条件 i)=xi, xi∈I, i=1,2, …, n-1下, ,在条件X(t - 下 X(tn)的条件分布函数等于在条件 n-1)=xn-1下 的条件分布函数等于在条件X(t 的条件分布函数等于在条件 X(tn)的条件分布函数,即 的条件分布函数, 的条件分布函数Leabharlann ∑Pj =1∞

考研数学李林概率讲义

考研数学李林概率讲义

出现的情况,则样本和反面次,观察正面)将一枚硬币抛掷:(例,)对偶律:)()()()()()()()()分配律:)()()()()结合律:,)交换律:合的运算律相似)、事件的运算律(与集的一个划分。

或为样本空间事件组(完全事件组)则称这个事件组为完备或(发生,即仅有一个事件且在每次试验中必有一个时,两个互不相容(即当,,,或可列无限多个事件,,限个事件、完备事件组:如果有。

,,即有的对立事件记作,为对立事件(或互逆)与发生,称事件一个必有一个发生,且仅有和事件,如果事件、对立:在每次试验中为互不相容事件。

、,称不能同时发生,即与若事件、互不相容(互斥):不发生。

发生而表示的差:与、事件同时发生,,表示一般:同时发生与表示事件或之交:与、事件至少有一个发生,,表示一般:至少有一个发生。

与表示事件之和(并):与、事件相等,记做与,称且、相等:若。

或的样本点,则有中至少有一个不属于且。

若或,记作包含发生,称发生必然导致事件、包含:若事件、、,随机事件为的样本空间为设随机试验算:二、事件的关系及其运的事件。

每次试验中一定不发生事件事件,不可能每次试验中一定发生的:必然事件事件。

两种特殊的事件单子集,称基本;由一个样本点组成的,,,记作事件,简称为事件,称为随机中满足某些条件的子集的样本空间、随机事件:随机试验记作素点样本空间的元素称为元作记的集合称为样本空间,的所有可能结果所组成、样本空间:随机试验。

有的结果是明确可知的一个结果会发生,但所)试验之前不能确定哪一个;)每次试验的结果不止复进行;)可在相同的条件下重机试验,记作三个条件的试验称为随、随机试验:满足以下件:一、随机试验与随机事内容提要及有关公式随机事件及其概率第一章概率论与数理统计T H A A A A BA B A B A B A A A A A C A B A C B A C A B A C B A C B A C B A C B A C B A C B A C B A AB B A A B B A A A j i A A A A A j i A A A A A A A B B A A A B A B A B A B A B A B A B A B A A A A A A A A B A AB B A B A A A A A A A A B A B A B A B A B A A B B A B A A B A B A B B A A B A B B A i A B A EC B A E E ii i i i i i i i i i i i i i ni j i i j i n n i i i i i i i i i 311,43219),),8765.)(4.3.21),2,1(.3.,,2321.11111111121211212112121∞=∞=∞=∞=∞=∞=∞==∞=∞==============ΩΩ=Ω=≠==≠===-===⊆⊆⊂⊃⊇⊆⊇=Ω--ΩΩΩφφφφω,则有是两两互不相容的事件,,,设特别地:有限可加性,(有,一般地:对任意事件)()()()()()()()()()()()(有、、件)加法公式:对任意事()()()且()()(时,特别:当)()()(,有和个事件)减法公式,对任意两()()()(、概率的性质:(,则为两两互不相容的事件,,、)可列可加性设()(,对于必然事件)规范性()(,对于任意事件)非负性()为概率:(事件集合上的函数,则称满足下列条件的的样本空间为试验、概率的定义:设随机质三、事件的概率及其性示事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档