四川绵阳二诊文科数学答案
2023届四川省绵阳市高三上学期12月二诊模拟数学(文)试题(含答案)
绵阳市2022-2023学年高三上学期12月二诊模拟数学试题(文史类)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有-项是符合题目要求的.1.集合{}2340A x x x =--≥,{}15B x x =<<,则集合等于()A B ⋃R()A .[)1,5-B .()1,5-C .(]1,4D .()1,42.下列函数中为偶函数的是() A .2sin y x x =B .2cos y x x =C .ln y x =D .2xy -=3.下表是关于某设备的使用年限x (单位:年)和所支出的维修费用y (单位:万元)的统计表.万元,该设备必须报废.据此模型预测,该设备使用年限的最大值约为() A .7B .8C .9D .104.若P ,Q 分别为直线34120x y +-=与6850x y ++=上任意一点,则PQ 的最小值为() A .95B .185C .2910D .2955.若直线()0,0ax by ab a b +=>>过点()1,1,则该直线在x 轴与y 轴上的截距之和的最小值为() A .1B .2C .3D .46.设0.2log 0.3a =,2log 0.3b =,则() A .0a b ab +<<B .0ab a b <+<、C .0a b ab +<<D .0ab a b <<+7.在区间()0,1与()1,2中各随机取一个数,则两数之和大于74的概率为() A .2332B .932C .79D .298.设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫ ⎪⎝⎭等于() A .13B .53C .53-D .13-9.已知圆C 的方程为()()22112x y -+-=,点P 在直线3y x =+上,线段AB 为圆C 的直径,则PA PB +的最小值为()A .2B .C .D .310.在平面直角坐标系xOy 中,点P 在曲线()10y x x x=+>上,则点P 到直线3420x y --=的距离的最小值为()A .45B .1C .65D .7511.已知抛物线C :()220y px p =>的焦点为()2,0F 过点F 的直线交C 于A ,B 两点,OAB △的重心为点G ,则点G 到直线3310x y -+=的距离的最小值为()A .2BC .2D .12.已知函数()()2e xf x ax a =-∈R 有三个不同的零点,则实数a 的取值范围是()A .e ,4⎛⎫+∞ ⎪⎝⎭B .e ,2⎛⎫+∞ ⎪⎝⎭C .2e ,4⎛⎫+∞ ⎪⎝⎭D .2e ,2⎛⎫+∞ ⎪⎝⎭二、填空题:本题共4小题,每小题5分.13.复数()()3i 14i z =+-,则复数z 的实部与虚部之和是______. 14.函数()()sin f x A x b ωϕ=++的图象如右图,则()()()()()()()0122020202120222023S f f f f f f f =+++⋅⋅⋅++++的值为______.15.在平面直角坐标系xOy 中,双曲线1C :()222210,0x y a b a b-=>>的渐近线与抛物线2C :()220x py p =>交于点O ,A ,B ,若OAB △的垂心为2C 的焦点,则1C 的离心率为______. 16.第24届冬奥会,是中国历史上第一次举办的冬季奥运会,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD ,且两切线斜率之积等于916-,则椭圆的离心率为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)设{}n a 是各项都为正数的单调递增数列,已知14a =,且n a 满足关系式:14n n a a n *++=+∈N . (1)求数列{}n a 的通项公式; (2)若11n n b a =-,求数列{}n b 的前n 项和n S . 18.(本题满分12分)某中学高三共有男生800人,女生1 200人.现学校某兴趣小组为研究学生日均消费水平是否与性别有关,采用分层抽样的方式从高三年级抽取男女生若干人.记录其日均消费,得到如图所示男生日均消费的茎叶图和女生日均消费的频率分布直方图.将所抽取的女生的日均消费分为以下五组:(]15,20,(]20,25,(]25,30,(]30,35,(]35,40,规定日均消费不超过25元的人为“节俭之星”.(1)请完成下面22⨯的列联表;根据以上的列联表,能否有90%的把握认为学生是否为“节俭之星”与性别有关? (2)现已知学校某小组有6名“节俭之星”,其中男生2人,女生4人.现从中选取2人在学校做勤俭节约宣讲活动报告,求选取的2人中至少有一名男生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.(1)若2sin 3sin C A =,求ABC △的的面积;(2)是否存在正整数a ,使得ABC △为为钝角三角形?若存在,求出a 的值;若不存在,说明理由.20.(本题满分12分)在平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的两焦点与短轴的一个端点的连线构成等边三角形,直线10x y ++=与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切. (1)求椭圆C 的方程;(2)BMN △是椭圆C 的内接三角形,若坐标原点O 为BMN △的重心,求点B 到直线MN 的距离的取值范围.21.(本题满分12分)已知函数()21ln 2f x x x mx x =--,m ∈R . (1)若()()g x f x '=(()f x '为()f x 的导函数),求函数()g x 在区间[]1,e 上的最大值;(2)若函数()f x 有两个极值点1x ,2x ,求证:212e x x >.二选一:第22~23题为选考题,只选一题作答,计入总分。
四川省绵阳市2024届高考补习年级二诊模拟数学试题(四)含解析
南山实验2024届补习年级文科数学二诊模拟四(答案在最后)一、单选题1.已知集合{}Z 33U x x =∈-<<,{}2,1A =-,{}2,2B =-,则()UB A ⋃=ð()A.{}2,1,2-B.{}2,0,2-C.{}2,1,0,2-- D.{}2,1,2--【答案】C 【解析】【分析】先化简U ,再求出U A ð,进而求出()U A B ð即可.【详解】解:因为{}{}Z 332,1,0,1,2U x x =∈-<<=--,{}2,1A =-,所以{}1,0,2U A =-ð,所以(){}2102U A B ,,,=-- ð.故选:C2.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,则渐近线方程是()A.12y x =±B.2y x=± C.y = D.3y x =±【答案】C 【解析】【分析】根据条件得出ba=.【详解】由双曲线方程22221x y a b-=,知渐近线方程为b y x a =±,又因为2c e a ==,222c a b =+,所以222224c a b a a+==,得到b a =所以双曲线渐近线方程为y =,故选:C.3.“sin tan αα<”是“α为第一象限角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】【分析】判断sin tan αα<,即判断()sin tan tan cos 10αααα-=-<,根据cos 10α-<在象限中恒成立即可判断出α所在象限,最后根据充分条件和必要条件定义即可得出答案.【详解】()sin tan tan cos 1αααα-=-,若α为第一象限角或第三象限角,则()tan cos 10αα-<,即sin tan αα<;若α为第二象限角或第四象限角,则()tan cos 10αα->,即sin tan αα>.故“sin tan αα<”是“α为第一象限角”的必要不充分条件.故选:B.4.已知0,0x y >>,且211x y+=,若222x y m m +>-恒成立,则实数m 的取值范围是()A.(2,4)B.(1,2)C.(2,1)- D.(2,4)-【答案】D 【解析】【分析】先把2x y +转化为()212x y x y ⎛⎫++ ⎪⎝⎭,利用基本不等式即可求2x y +的最小值,然后根据222x y m m +>-恒成立,求得22m m -小于2x y +的最小值,解不等式即可.【详解】因为211x y+=,所以()()2444412248y x x y x y x y x y ⎛⎫==++≥+=+= ⎪⎝++⎭+,当且仅当4,2x y ==等号成立若222x y m m +>-恒成立,则()2min 228m m x y -<+=,解得:24m -<<,故选:D【点睛】本题主要考查了基本不等式在最值问题中的应用,属于中档题.5.在ABC 中,3,0BQ QC AP BP =+=,则()A.1344PQ AC AB=+ B.2133PQ AB AC=+C.3144PQ AC AB=- D.1344PQ AC AB=- 【答案】C 【解析】【分析】根据3,0BQ QC AP BP =+=,利用平面向量的线性运算求解.【详解】因为3BQ QC =,所以34BQ BC = ,所以()31334444AQ AB BQ AB BC AB AC AB AB AC +=+-++===,因为0AP BP +=,所以P 为AB 的中点,12AP AB= 则3131244441PQ AQ AP AB AC AB AC AB ---+=== ,所以3144PQ AC AB =- ,故选:C6.下列命题中,真命题的是()A.若回归方程ˆ04506yx =-+..,则变量y 与x 正相关B.线性回归分析中相关指数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好C.若样本数据1210,,,x x x 的方差为2,则数据121021,21,,21x x x --- 的标准差为4D.一个人连续射击三次,若事件“至少击中两次”的概率为0.7,则事件“至多击中一次”的概率为0.3【答案】D 【解析】【分析】利用正负相关的意义判断A ;利用相关指数的意义判断B ;求出标准差判断C ;利用对立事件求出概率判断D.【详解】对于A ,回归方程ˆ04506yx =-+..,由0.450-<,得变量y 与x 负相关,A 错误;对于B ,2R 值越接近于1,模型的拟合效果越好,越接近于0,模型的拟合效果越差,B 错误;对于C ,数据121021,21,,21x x x --- 的方差为2228⨯=,标准差为,C 错误;对于D ,“至多击中一次”的事件是“至少击中两次”的事件的对立事件,则事件“至多击中一次”的概率为0.3,D 正确.故选:D7.已知函数()12x f x -=,若1a b <<,且2a c +>,则()A.()()()f a f b f c <<B.()()()f c f b f a <<C.()()()f b f a f c <<D.()()()f a f c f b <<【答案】C 【解析】【分析】函数()f x 是关于直线x =1对称的,在1x >和1x ≤是单调性是相反的,利用以上特点,不难判断.【详解】由题可知()112,12,1x x x f x x --⎧≤=⎨>⎩,当1x ≤时是减函数,当1x >时是增函数;由于()()211222x x f x f x ----===,直线x =1是()f x 的对称轴;1a b << ,()()f a f b ∴>,由2a c +>可知,21c a >->,由对称性可知()()()2f c f a f a >-=,()()()f c f a f b ∴>>;故选:C.8.在各项均为正数的数列{}n a 中,12a =,2211230n n n n a a a a ++--=,n S 为{}n a 的前n 项和,若242n S =,则n =()A.5B.6C.7D.8【答案】A 【解析】【分析】由2211230n n n n a a a a ++--=,化简可得()()1130n n n n a a a a ++-+=,得13n n a a +=或1n n a a +=-,因为各项均为正数,故13n n a a +=符合题意,1n n a a +=-不符题意舍去,所以数列{}n a 为首项为2,公比为3的等比数列,根据等比数列前n 项和公式即可求得答案.【详解】 2211230n n n n a a a a ++--=,得()()1130n n n n a a a a ++-+=,∴13n n a a +=或1n n a a +=-,又 各项均为正数,故13n n a a +=符合题意,1n n a a +=-不符题意舍去.12a =,13n n a a +=,所以数列{}n a 为首项为2,公比为3的等比数列则()21324213n n S -==-,解得5n =,故选:A.【点睛】本题主要考查等比数列的通项公式,等比数列的前n 项和公式的应用.解题关键是掌握等比数列前n 项和公式,考查了计算能力,属于中档题9.在直角坐标平面内,点()1,1A -到直线l 的距离为3,点()4,3B 到直线l 的距离为2,则满足条件的直线l 的条数为()A.1B.2C.3D.4【答案】C 【解析】【分析】将问题转化为求以点(1,1)A -为圆心,以3为半径的圆和以点()4,3B 为圆心,以2为半径的圆的公切线的条数求解.,【详解】到点(1,1)A -距离为3的直线可看作以A 为圆心3为半径的圆的切线,同理到点()4,3B 距离为2的直线可看作以B 为圆心2为半径的圆的切线,故所求直线为两圆的公切线,又||523AB ===+,故两圆外切,所以公切线有3条,故选:C10.在某病毒疫苗的研发过程中,需要利用基因编辑小鼠进行动物实验.现随机抽取100只基因编辑小鼠对该病毒疫苗进行实验,得到如下2×2列联表(部分数据缺失):被某病毒感染未被某病毒感染合计注射疫苗1050未注射疫苗3050合计30100计算可知,根据小概率值α=________的独立性检验,分析“给基因编辑小鼠注射该种疫苗能起到预防该病毒感染的效果”()附:()()()()()22n ad bca b c d a c b dχ-=++++,n=a+b+c+d.α0.10.050.010.0050.001xα 2.706 3.841 6.6357.87910.828A.0.001B.0.05C.0.01D.0.005【答案】B【解析】【分析】计算卡方,再根据独立性检验的概念判断即可.【详解】完善2×2列联表如下:被某病毒感染未被某病毒感染合计注射疫苗104050未注射疫苗203050合计3070100零假设为H0:“给基因编辑小鼠注射该种疫苗不能起到预防该病毒感染的效果”.因为χ2=()2100103020402 4.762,3.841 4.762 6.63530705050χ⨯-⨯=≈<<⨯⨯⨯,所以根据小概率值0.05α=的独立性检验,推断H0不成立,即认为“给基因编辑小鼠注射该种疫苗能起到预防该病毒感染的效果”.故选:B.11.已知函数π()4sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,(0)(4)2f f ==-,函数()f x 在(0,4)上有且仅有一个极大值但没有极小值,则ω的最小值为()A.π6B.π3 C.5π6D.4π3【答案】B 【解析】【分析】先由(0)2f =-求出ϕ,再由题意知2x =时,函数()f x 取得最大值,从而求出ω,得到答案.【详解】∵4sin 2(0)f ϕ==-,∴1sin 2ϕ=-.又||2ϕπ<,∴π6ϕ=-,所以π()4sin 6f x x ω⎛⎫=- ⎪⎝⎭,因为(0)(4)f f =,且函数()f x 在(0,4)上有且仅有一个极大值但没有极小值,所以当0422x +==时,函数()f x 取到最大值(也是极大值),此时π122ππ62k ω-=+,k ∈Z .解得ππ3k ω=+,k ∈Z .所以当0k =时,π3ω=,此时()ππ4sin 36f x x ⎛⎫=- ⎪⎝⎭,令ππ3π2π,362x m m -=+∈Z ,则65x m =+,所以函数图象在y 轴右侧的第一个最小值点的横坐标为5,因45<,故π3ω=符合题设,故选:B .12.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2xg x e x =+-的零点为2x ,函数()ln 2x h x x =的最大值为3x ,则A.123x x x >> B.213x x x >> C.312x x x >> D.321x x x >>【答案】A 【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅<⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系.【详解】()1xf x e x x'=+-在()0,∞+上单调递增且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭111,42x ⎛⎫∴∈ ⎪⎝⎭且11110xe x x +-= 函数()2x gx e x =+-在()0,∞+上单调递增且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭211,42x ⎛⎫∴∈ ⎪⎝⎭又()()11111211112220xg x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭且()g x 单调递增12x x ∴>由()21ln 2x h x x -'=可得:()()max12h x h e e ==,即31124x e =<123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.二、填空题13.若复数i 1iaz =++为实数,则实数=a _________.【答案】2【解析】【分析】根据复数的除法运算化简,即可根据复数的分类求解.【详解】()()()()1i 1i i=i=i=1i 1i 1i 1i 222a a a a a z --⎛⎫=++++- ⎪++-⎝⎭,由于i 1ia z =++为实数,则102a-=,得2a =,故答案为:214.已知函数()22,12,1x x f x x x x +≤-⎧=⎨-+>-⎩,则不等式()3f x >-的解集是______.【答案】()5,3-【解析】【分析】分1x ≤-、1x >-两种情况解不等式()3f x >-,综合可得出原不等式的解集.【详解】当1x ≤-时,由()3f x >-得23x +>-,解得5x >-,此时,51x -<≤-;当1x >-时,由()3f x >-得223x x -+>-,即2230x x --<,解得13x -<<,此时,13x -<<.综上所述,不等式()3f x >-的解集是()5,3-.故答案为:()5,3-.15.在圆224x y +=内随机地取一点(),P x y ,则该点坐标满足()()2210y x x y -++≤的概率为________.【答案】12##0.5【解析】【分析】根据条件得到20210y x x y -≤⎧⎨++≤⎩或20210y x x y -≥⎧⎨++≥⎩,结合224x y +=画出符合要求的可行域,根据圆的性质及直线20y x -=,210x y ++=的位置关系确定可行域与圆面积的比例,即可求得概率.【详解】要满足()()2210y x x y -++≤,则20210y x x y -≤⎧⎨++≤⎩①或20210y x x y -≥⎧⎨++≥⎩②,在平面直角坐标系中分别作出不等式组①、②和圆224x y +=,则满足要求的可行域如下图阴影部分所示:由图知:在圆224x y +=内随机取(),P x y 在阴影部分,而直线20y x -=过圆心()0,0,且直线20y x -=与直线210x y ++=相互垂直,所以图中阴影部分的面积为圆面积的12,故点(),P x y 满足()()2210y x x y -++≤的概率为12,故答案为:12.16.抛物线有一条重要性质:从焦点出发的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.过抛物线C :24x y =上的点P (不为原点)作C 的切线l ,过坐标原点O 作OQ l ⊥,垂足为Q ,直线PF (F 为抛物线的焦点)与直线OQ 交于点T ,点(2,0)A ,则TA 的取值范围是______.【答案】1⎤-+⎦【解析】【分析】设点()2,04t P t t ⎛⎫≠ ⎪⎝⎭,切线l 的方程为()24t y k x t -=-,可求得切线的斜率,由OQ l ⊥可求得OQ 的方程,与直线PF 联立可求得点T 的坐标,消参可求得点T 的轨迹方程,结合图形可求得TA 的范围.【详解】因为点P 为抛物线C :24x y =上的点(不为原点),所以可设点()2,04t P t t ⎛⎫≠ ⎪⎝⎭,且()0,1F ,当切线l 的斜率不存在时,不合题意;当切线l 的斜率存在时,可设为()24t y k x t -=-,联立()2244t y k x t x y ⎧-=-⎪⎨⎪=⎩,消去y 可得()224x t k x t -=-,化简可得22440x kx kt t -+-=,令Δ0=,可得()2216440k kt t --=,化简可得()220k t -=,即2t k =,又OQ l ⊥,所以OQ 的斜率2OQ k t=-,所以OQ 的方程2y tx =-,因为点()2,04t P t t ⎛⎫≠ ⎪⎝⎭,()0,1F ,所以PF 的斜率为2214404PF t t k t t--==-,则PF 的方程为2414t y x t-=+,联立22414y x t t y x t ⎧=-⎪⎪⎨-⎪=+⎪⎩,解得224484t x t y t ⎧=-⎪⎪+⎨⎪=⎪+⎩,即2248,44t T t t ⎛⎫- ⎪++⎝⎭,由224484t x t y t ⎧=-⎪⎪+⎨⎪=⎪+⎩两式相除可得2x t y =-,即2x t y =-,由0t ≠,可得0x ≠,再代入284x t =+,可得22844y x y=+,化简可得2220x y y +-=,可得()2211x y +-=()0x ≠,可知点T 轨迹为半径为1的圆,圆心为()0,1F,结合图形可知AF r TA AF r -≤≤+,又1r =,AF ==,则1TA ⎤∈⎦.故答案为:1⎤-⎦.【点睛】关键点睛:本题难点在于如何求出T 点的轨迹方程,可借助参数得出两直线的方程,联立后用参数表示该交点坐标,借助交点坐标消去参数,即可求得该点的轨迹方程.三、解答题17.“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购消费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照[)0.1,0.2,[)0.2,0.3,....,[]0.9,1分组,得到如下频率分布直方图根据调查,该电子商务公司制定了发放电子优惠券的办法如下:购物金额(单位:万元)分组[)0.3,0.6[)0.6,0.8[]0.8,1发放金额(单位:万元)50100200(1)求购物者获得电子优惠券金额的平均数;(2)从这100名购物金额不少于0.8万元的人中任取2人,求这两人的购物金额在0.8~0.9万元的概率.【答案】(1)64万元(2)1021【解析】【分析】(1)根据平均数的求法求得平均数.(2)利用列举法,结合古典概型概率计算公式求得正确答案.【小问1详解】购物金额在[)0.3,0.6的频率为()1.52 2.50.10.6++⨯=,购物金额在[)0.6,0.8的频率为()1.50.50.10.2+⨯=,购物金额在[]0.8,1的频率为()0.50.20.10.07+⨯=,所以购物者获得电子优惠券金额的平均数为:500.61000.22000.0730201464⨯+⨯+⨯=++=万元.【小问2详解】购物金额在[)0.8,0.9的频率为0.50.10.05⨯=,购物金额在[]0.9,1的频率为0.20.10.02⨯=,所以购物金额在[)0.8,0.9的有5人,记为1,2,3,4,5,购物金额在[]0.9,1的有2人,记为6,7,从中任取2人,基本事件有{}{}{}{}{}{}1,2,1,3,1,4,1,5,1,6,1,7,{}{}{}{}{}2,3,2,4,2,5,2,6,2,7,{}{}{}{}3,4,3,5,3,6,3,7,{}{}{}{}{}{}4,5,4,6,4,7,5,6,5,7,6,7,共21种,其中两人都在[)0.8,0.9的有:{}{}{}{}{}{}{}{}{}{}1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5,所以这两人的购物金额在0.8~0.9万元的概率为1021.18.已知数列{}n a 满足211233333n n n a a a a -++++=L ,数列{}n b 首项为2,且满足()11n n nb n b +=+.(1)求{}n a 和{}n b 的通项公式(2)记集合()141,N n n n n M nb b b n a λ*+⎧⎫⎪⎪=≤+∈⎨⎬⎪⎪⎩⎭,若集合M 的元素个数为2,求实数λ的取值范围.【答案】(1)13n n a =,*2,N n b n n =∈(2)2028(,99【解析】【分析】(1)根据题意,当2n ≥时,22123113333n n n a a a a ---++++= ,求得13n n a =,再由101n n b b n n +-=+,结合等差数列的定义,求得2n b n =,得到{}n b 的通项公式.(2)根据题意,转化为()()*121|,N 3n n n n M n n λ⎧⎫++=≤∈⎨⎬⎩⎭,记()()1213n n n n n P ++=,化简()()21112173n n n n n P P ++⎡⎤-+--⎣⎦-=,得出数列的单调性,结合题意,即可求解.【小问1详解】解:由211233333n n n a a a a -++++=L ,当2n ≥时,22123113333n n n a a a a ---++++= ,相减可得1113333n n n n a --=-=,故13n n a =,当1n =时,113a =也符合上式,所以*1,N 3n n a n =∈,又由()11n n nb n b +=+,可得101n n b b n n +-=+,所以数列n b n ⎧⎫⎨⎬⎩⎭为公差为0的等差数列,且首项为2,所以2n b n=,则*2,N n b n n =∈.【小问2详解】解:由*2,N n b n n =∈和()*141,n n n n M n b b b n a λ+⎧⎫⎪⎪=≤+∈⎨⎬⎪⎪⎩⎭N ,可得()()*121|,N 3nn n n M n n λ⎧⎫++=≤∈⎨⎬⎩⎭,记()()1213n n n n n P ++=,则()()()1112233n n n n n P +++++=,所以()()21112173n n n n n P P ++⎡⎤-+--⎣⎦-=,当1n =时,210P P ->,当2n ≥时,234P P P >>> ,此时{}n P 单调递减,而()()()()3028202,12,3,4999P P P P ====,由于集合M 的元素个数为2,所以{}2,3M =,所以202899λ<≤,即实数λ的取值范围为2028(,99.19.在ABC 中,角,,A B C 的对边分别为,,a b c ,2b =,4c =.(1)若D 是边BC 的中点,且AD =cos B 的值;(2)若π3C B -=,求ABC 的面积.【答案】(1)78(2)【解析】【分析】(1)根据三角形的余弦定理结合已知条件即可;(2)利用三角形的正弦定理以及两角和的正弦公式和三角形面积公式即可.【小问1详解】如图所示:因为πADB ADC ∠+∠=,所以πADB ADC ∠=-∠,所以()cos cos πcos ADB ADC ADC ∠=-∠=-∠,所以cos cos 0ADB ADC ∠+∠=,在ABD △中,由余弦定理的推论得:222cos 2AD BD AB ADB AD BD+-∠=⋅⋅,在ACD 中,由余弦定理的推论得:222cos 2AD CD AC ADC AD CD+-∠=⋅⋅,所以222222022AD BD AB AD CD AC AD BD AD CD+-+-+=⋅⋅⋅⋅因为D 是边BC 的中点,所以BD CD =,代入上式整理得:2222220AD BD AB AC +--=,因为4,2,A A AB c C b D =====,所以222222420BD +--=,解得:2BD =或2BD =-(舍去),所以24a BC BD ===,在ABC 中,由余弦定理的推论得:2222224427cos 22448a cb B ac +-+-===⨯⨯.【小问2详解】由π3C B -=,则π3C B =+,在ABC 中,由正弦定理得:sin sin b c B C=,因为2,4b c ==,所以24πsin sin 3B B =⎛⎫+ ⎪⎝⎭,所以πsin 2sin 3B B ⎛⎫+= ⎪⎝⎭,即13sin 2sin 22B B B +=,则cos B B =,若cos 0sin 0B B =⇒=,与22cos sin 1B B +=矛盾,所以cos 0B ≠,所以3tan 3B =,因为0πB <<且π2B ≠,所以π6B =,所以πππ632C =+=,所以ππ3A B C =--=,所以ABC 的面积为:11sin 24222ABC S bc A ==⨯⨯⨯=20.已知函数()ln f x ax x =-.(1)求函数()f x 的单调区间;(2)若存在0a >,使得()22a f xb ≥+对任意()0,x ∈+∞成立,求实数b 的取值范围.【答案】(1)答案见解析(2)1,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求导后分类讨论即可(2)承接第一问用导数求最值【小问1详解】由题()1,0f x a x x'=->.当0a ≤时,()()0,f x f x '<在()0,∞+上单调递减;当0a >时,由()0f x '=解得1x a =.所以,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>;所以,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;【小问2详解】由(1)知:当0a >时,min 1()1ln f x f a a ⎛⎫==+ ⎪⎝⎭所以,存在0a >,使21ln 2a a b +≥+成立,即存在0a >,使21ln 2a ab +-≥成立令()21ln 2a g a a =+-,则()211a g a a a a-=-='所以,()g a 在()0,1上单调递增,在()1,+∞上单调递减,所以()()112g a g ≤=.所以b 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦21.已知椭圆2222:1(0)x y a b a b Γ+=>>的左、右焦点分别为12,F F ,过点()0,B b 且与直线2BF 垂直的直线交x 轴负半轴于D ,且12220F F F D += .(1)若过B 、D 、2F 三点的圆恰好与直线:60l x --=相切,求椭圆Γ的方程;(2)设2a =.过椭圆Γ右焦点2F 且不与坐标轴垂直的直线l 与椭圆Γ交于P 、Q 两点,点M 是点P 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得M 、Q 、N 三点共线?若存在,求出点N 的坐标;若不存在,说明理由.【答案】(1)2211612x y +=;(2)存在,(4,0)N .【解析】【分析】(1)设出焦点12,F F ,表示出点D ,再由垂直关系及切线方程求出,,a b c 即得.(2)由(1)中信息求出椭圆方程,设出直线l 的方程并与椭圆方程联立,求出直线MQ 的方程,结合韦达定理计算即得.【小问1详解】依题意,设12(,0),(,0)F c F c -,由12220F F F D += ,得1F 是线段2F D 的中点,则()3,0D c -,由直线BD 与2BF 垂直,得1212BF DF =,则1||2a BF c ===显然过B 、D 、2F 三点的圆的圆心为1(,0)F c -,半径为2r c =,由过B 、D 、2F 三点的圆恰好与直线:60l x -=相切,得2c =,解得2c =,有24a c ==,212b =,所以椭圆Γ的方程为2211612x y +=.【小问2详解】由(1)及2a =,得1,c b ==2(1,0)F ,椭圆Γ的方程为22143x y +=,设直线l 方程为1x ty =+,1122(,),(,)P x y Q x y ,则11(,)M x y -,由221431x y x ty ⎧+=⎪⎨⎪=+⎩消去x 并整理得22(43)690t y ty ++-=,223636(43)0t t ∆=++>,12122269,4343t y y y y t t --+==++,直线MQ 的方程为211112()x x x x y y y y --=++,令0y =得211112()x x y x x y y -=++2111111212x y x y x y x y y y -++=+211212x y x y y y +=+211212(1)(1)ty y ty y y y +++=+1212121212221ty y y y ty y y y y y ++==+++2(9)146t t⨯-=+=-,所以在x 轴上存在一个定点(4,0)N ,使得M 、Q 、N 三点共线.22.在直角坐标系xOy 中,曲线C 的参数方程为22x t y t⎧=⎨=⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin cos 203ρθρθ++=.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过点)P 作直线l 的平行线交曲线C 于M ,N 两点(M 在x 轴上方),求11PM PN -的值.【答案】(1)24y x =,203++=x y ;(2)12【解析】【分析】(1)根据参数方程与普通方程的关系以及极坐标方程与直角坐标方程的互化关系求解;(2)利用直线参数方程的几何意义求解.【小问1详解】将22x t y t⎧=⎨=⎩中的参数t 消去,得曲线C 的普通方程为24y x =.将cos sin x y ρθρθ=⎧⎨=⎩代入sin cos 203ρθρθ++=,得直线l 的直角坐标方程为3203++=x y .【小问2详解】易知直线l的参数方程为212x y m ⎧=⎪⎪⎨⎪=⎪⎩(m 为参数),代入24y x =,得20m +-,设M 对应的参数为1m ,N 对应的参数为2m ,则12m m +=-,12m m =-10m >,20m <,所以1212121211111112m m PM PN m m m m m m +-=-=+==.23.设函数()4f x x x a =+-,其中R a ∈.(1)当6a =时,求曲线()y f x =与直线480x y -+=围成的三角形的面积;(2)若a<0,且不等式()2f x <的解集是(,3)-∞-,求a 的值.【答案】(1)64(2)17-【解析】【分析】(1)由题知()56,636,6x x f x x x -≥⎧=⎨+<⎩,进而分别求解相应的交点,计算距离,再计算面积即可;(2)分x a ≥和x a <两种情况求解得()2f x <的解集为2{|}5a x x +<,进而结合题意求解即可.【小问1详解】解:根据题意,当6a =时,()56,64636,6x x f x x x x x -≥⎧=+-=⎨+<⎩,所以,()624f =,设(6,24)C ;直线480x y -+=与36y x =+交于点(2,0)A -,与直线56y x =-交于点(14,64)B ,且AB =点(6,24)C 到直线480x y -+=的距离d =,所以,要求图形的面积1642S AB d =⨯⨯=;【小问2详解】解:当x a ≥时,()5f x x a =-,()2f x <,即52x a -<,解可得25a x +<,此时有25a a x +≤<,当x a <时,()3f x x a =+,()2f x <,即32x a +<,解可得23a x -<,又由a<0,则23a a ->,此时有x a <,综合可得:不等式的解集为2{|}5a x x +<,因为不等式()2f x <的解集是(,3)-∞-所以,235a +=-,解可得17a =-;。
2021届四川省绵阳市高考数学二诊试卷(文科)(解析版)
2021年四川省绵阳市高考数学二诊试卷(文科)一、选择题(共12小题).1.设集合A={x∈N|﹣1≤x≤1},B={x|log2x<1},则A∩B=()A.[﹣1,1)B.(0,1)C.{﹣1,1} D.{1}2.已知直线l1:ax+2y+1=0,直线l2:2x+ay+1=0,若l1⊥l2,则a=()A.0 B.2 C.±2 D.43.已知平面向量=(1,),=(2,λ),其中λ>0,若|﹣|=2,则=()A.2 B.C.D.84.已知函数f(x)=x3+sin x+2,若f(m)=3,则f(﹣m)=()A.2 B.1 C.0 D.﹣15.已知cosα+sin(α﹣)=0,则tanα=()A.﹣B.C.﹣D.6.已知曲线y=e x(e为自然对数的底数)与x轴、y轴及直线x=a(a>0)围成的封闭图形的面积为e a﹣1.现采用随机模拟的方法向右图中矩形OABC内随机投入400个点,其中恰有255个点落在图中阴影部分内,若OA=1,则由此次模拟实验可以估计出e的值约为()A.2.718 B.2.737 C.2.759 D.2.7857.已知命题p:若数列{a n}和{b n}都是等差数列,则{ra n+sb n}(r,s∈R)也是等差数列;命题q:∀x∈(2kπ,2kπ+)(k∈Z),都有sin x<cos x.则下列命题是真命题的是()A.¬p∧q B.p∧q C.p∨q D.¬p∨q8.对全班45名同学的数学成绩进行统计,得到平均数为80,方差为25,现发现数据收集时有两个错误,其中一个95分记录成了75分,另一个60分记录成了80分.纠正数据后重新计算,得到平均数为,方差为s2,则()A.=80,s2<25 B.=80,s2=25 C.=80,s2>25 D.<80,s2>259.已知圆x2+y2﹣4x﹣2y+1=0上,有且仅有三个点到直线ax﹣3y+3=0(a∈R)的距离为1,则a=()A.±B.±C.±1 D.±10.若函数+2ax+3在x=2处取得极小值,则实数a的取值范围是()A.(﹣∞,﹣6)B.(﹣∞,6)C.(6,+∞)D.(﹣6,+∞)11.已知正实数x,y满足ln>lg,则()A.2x>2y B.sin x>sin y C.lnx<lny D.tan x<tan y12.已知点F1,F2是双曲线E:的左、右焦点,点P为E左支上一点,△PF1F2的内切圆与x轴相切于点M,且,则a=()A.1 B.C.D.2二、填空题(共4小题).13.复数z满足(1+i)•z=1﹣i,则z=.14.为加速推进科技城新区建设,需了解某科技公司的科研实力,现拟采用分层抽样的方式从A,B,C三个部门中抽取16名员工进行科研能力访谈.已知这三个部门共有64人,其中B部门24人,C部门32人,则从A部门中抽取的访谈人数.15.已知椭圆E:的左、右焦点分别为F1,F2,若E上存在一点P使=0,且|PF|=|F1F2|,则E的离心率为.116.关于x的方程sin2x+2cos2x=m在区间[0,π)上有两个实根x1,x2,若x1﹣x≥,则实数m的取值范围是.2三、解答题:共70分。
2020届绵阳二诊 文科数学试题(解析版)
2020届绵阳二诊 文科数学试题一、选择题:本大题共12小题,每小题5分,共60分. 1.设全集{}|0U x x =>,{}2|1xM x e e=<<,则UCM =( )A. ()1,2B. ()2,+∞C. (][)0,12,+∞D. [)2,+∞【答案】D 【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥. 故选:D .2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( ) A. 2i - B. 2i + C. 12i - D. 2i - 【答案】A 【详解】由题意122iz i i+==-. 故选:A .3.已知高一(1)班有学生45人,高一(2)班有50人,高一(3)班有55人,现在要用分层抽样的方法从这三个班中抽30人参加学校“遵纪守法好公民”知识测评,则高一(2)班被抽出的人数为( ) A. 10B. 12C. 13D. 15【答案】A 【详解】设高一(2)被抽取x 人,则5030455055x =++,解得10x =. 故选:A .4.已知向量()1,2a =,()1,b x =-,若//a b ,则b =( )B.52D. 5【答案】C【详解】∵//a b ,∴12(1)0x ⨯-⨯-=,2x =-,∴2(1)b =-=. 故选:C .5.已知α为任意角,则“1cos 23α=”是“sin α=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要【答案】B【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin α=”的必要不充分条件. 故选:B .6.已知()2,0M ,P 是圆N :224320x x y ++-=上一动点,线段MP 的垂直平分线交NP 于点Q ,则动点Q 的轨迹方程为( )A. 22195x y +=B. 22159x y -=C. ,? a c ==D. 22195x y -=【答案】A【详解】由题意圆标准方程为22(2)36x y ++=,圆心为(2,0)N -,半径为6, ∵线段MP 的垂直平分线交NP 于点Q ,∴QP QM =, ∴6QM QN QP QN PN +=+==4MN >=, ∴Q 点轨迹是以,M N 为焦点,长轴长为6的椭圆,∴3,2a c ==,b = ∴其轨迹方程为22195x y +=.故选:A .7.已知某产品的销售额y 与广告费用x 之间的关系如下表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y x =+,则下列说法中错误的是( ) A. 产品的销售额与广告费用成正相关 B. 该回归直线过点()2,22C. 当广告费用为10万元时,销售额一定为74万元D. m值是20【答案】C【详解】因为回归直线方程中x 系数为6.5>0,因此,产品的销售额与广告费用成正相关,A 正确; 又0123425x ++++==,∴ 6.52922y =⨯+=,回归直线一定过点(2,22),B 正确;10x =时, 6.510974y =⨯+=,说明广告费用为10万元时,销售额估计为74万元,不是一定为74万元,C 错误; 由10153035225m y ++++==,得20m =,D 正确.故选:C .8.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A .18B.14C. 38D.12【答案】B【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P ==. 故选:B .9.双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( )B. 2D. 3【答案】B【详解】由题意(c,0)F ,渐近线方程为by x a =±,不妨设AF 方程为()b y x c a=--, 由()b y x c a b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即(,)22c bc A a ,同理(,)22c bc B a -,∴21(2)222OAFBbc bc S c a a =⨯⨯⨯=,由题意22bc bc a=,∴2c a =.故选:B .10.已知圆C :22280x y x +--=,直线l 经过点()2,2M,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A. 220x y B. 260x y +-= C. 220x y --= D. 260x y +-=【答案】D【详解】圆C 标准方程为22(1)9x y -+=,圆心为(1,0)C ,半径为3r =,直线l 交圆于,A B 两点,设AOB θ∠=(0)θπ<≤,如图,则直线l 分圆所成两部分中较小部分面积为22111sin 22S r r θθ=-,较大部分面积为22211(2)sin 22S r r πθθ=-+,∴这两部分面积之差的绝对值为22221sin 9(sin )S S S r r r πθθπθθ=-=-+=-+,'9(1cos )0S θ=-+≤,∴9(sin )S πθθ=-+是减函数,θ最小时,S 最大.在CAB ∆中,2222218cos 218r AB AB rθ--==,∴AB 最小时,cos θ最大,从而θ最小.∵AB 经过点M ,∴由圆的性质知当CM AB ⊥时,AB 取得最小值.此时112AB CMk k =-=-,∴直线l 方程为12(2)2y x -=--,即260x y +-=. 故选:D .11.已知()f x 为偶函数,且当0x ≥时,()31cos sin 3x x x f x x =-+,则满足不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭的实数m 的取值范围为( )A. 1,22⎛⎫ ⎪⎝⎭B. ()0,2C. ()10,1,22⎛⎫ ⎪⎝⎭D. ()2,+∞【答案】A【详解】∵()f x 是偶函数,∴12222(log )(log )(log )(log )f m f m f m f m =-==,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为22(log )2(1)f m f <,即2(log )(1)f m f <,0x ≥时,31()cos sin 3f x x x x x =-+,2'()cos sin cos (sin )f x x x x x x x x x =--+=-, 令()sin g x x x =-,则'()1cos 0g x x =-≥,∴()g x 是R 上的增函数,∴当0x >时,()(0)0g x g >=, ∴0x ≥时,'()0f x ≥,∴()f x 在[0,)+∞上是增函数, ∴由2(log )(1)f m f <得2log 1m <,即21log 1m -<<,122m <<. 故选:A .12.函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数a 的取值范围是( )A. 11,32⎛⎫⎪⎝⎭B. (][)1,23,+∞C. ()[)1,23,+∞D. [)2,3【答案】D【详解】(1)若由1(0)()0f f a<得(1log 2)(1log 3)0a a--<,lg 2lg 3(1)(1)0lg lg a a --<, (lg lg 2)(lg lg3)0a a --<,lg 2lg lg3a <<,∴23a <<.设2()(21)g x ax =-,()log (2)a h x ax =+,∵23a <<,∴()h x 在定义域内是增函数, 作出()g x ,()h x 的示意图,如图.1(0)()1g g a ==,(0)log 21a h =<,1()log 31a h a =>,∴()g x 与()h x 的图象在1[0,]a 上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(2)若(0)0f =,则1log 20a -=,2a =.如(1)中示意图,2()log (22)h x x =+是增函数,只是(0)(0)1h g ==,而11()(0)1()h h g a a >==,∴()g x 与()h x 的图象在1[0,]a上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意. (3)若1()0f a=,则1log 30a -=,3a =,如(1)中示意图,3()log (32)h x x =+是增函数,此时11()()1h g a a==,但(0)1g =,而3(0)log 21(0)h g =<=,因此在1(0,)2a 上()g x 与()h x 的图象还有一个交点,即()f x 在1[0,]a上有两个零点,不合题意.综上,a 的取值范围是[2,3). 故选:D .二、填空题:本大题共4小题,每小题5分,共20分.13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______. 【答案】2. 【详解】由题意(1)1463a a -+-=≠-,解得2a =. 故答案为:2.14.某同学在最近的五次模拟考试中,其数学成绩的茎叶图如图所示,则该同学这五次数学成绩的方差是______.【答案】30.8.【详解】五个数据分别是:110,114,119,121,126,其平均值为1101141191211261185x ++++==,方差为2222221[(110118)(114118)(119118)(121118)(126118)]5s =-+-+-+-+-30.8= 故答案为:30.815.函数()sin 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则()f x 在区间[],ππ-上的零点之和为______.【答案】23π. 【详解】由题意411()3126T πππ=⨯-=,∴22πωπ==,又sin(2)16πϕ⨯+=且2πϕ<,∴6π=ϕ,∴()sin(2)6f x x π=+.由sin(2)06x π+=得26x k ππ+=,212k x ππ=-,k Z ∈, 在[,]-ππ内有:7511,,,12121212ππππ--,它们的和为23π.16.过点()1,0M -的直线l 与抛物线C :24y x =交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,若4MBF MAF S S ∆∆=,则ABF ∆的面积为______. 【答案】3.【详解】不妨设,A B 在第一象限,如图,设1122(,),(,)A x y B x y ,由题意(1,0)F ,∵4MBF MAF S S ∆∆=,∴2111422MF y MF y =⨯,∴214y y =. 又,,M A B 共线,∴121211y yx x =++,即122212111144y y y y =++,把214y y =代入得: 112211414114y yy y =++,显然10y ≠,解得11y =,∴24y =, ∴12112MAF S ∆=⨯⨯=,4MBF S ∆=,∴413FAB MBF MAF S S S ∆∆∆=-=-=.故答案为:3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t 的中位数m .(2)已知样本中阅读时间低于m 的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.22⨯列联表附表:其中:()()()()()22n ad bcKa b c d a c b d-=++++.【答案】(1)10;(2)不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关. 【详解】(1)由题意得,直方图中第一组,第二组的频率之和为0.0450.0650.5⨯+⨯=.所以阅读时间的中位数10m=.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m的人数为1000.550⨯=人,故列联表补充如下:2K的观测值()2100253025201005050455599k ⨯⨯-⨯==⨯⨯⨯ 1.01 2.706≈<,所以不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关.18.已知等差数列{}n a 的公差2d =,30a >,且-4a 与7a 的等比中项.数列{}n b 的通项公式为32n a n b +=.(1)求数列{}n b 的通项公式;(2)记)*n n c a n N=∈,求数列{}nc 的前n 项和nS.【详解】(1)由题意得41136a a d a =+=+,711612a a d a =+=+.∴(()()211612a a -=+⋅+,解得13a =-或115a =-.又31220a a =+⨯>,得14a >-,故13a =-. ∴()32125n a n n =-+⋅-=-. ∴32222n a n n b +-==.(2)由(1)可知,1252n n n c a n -==-+.12n n S c c c =+++()123112512n n -=--+++-+⎡⎤⎣⎦-()325212n n n -+-=+-2241n n n =+--.19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+. (1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B . 【详解】(1)ABC ∆中,由正弦定理得()()()a b a b c c b +-=+,即222a b c bc =++. 由余弦定理得2221cos 22b c a A bc +-==-, 结合0A π<<,可知23A π=.(2)在ABC ∆中,11sin 22ABC S AB AC BAC BC AD ∆=⋅∠=⋅,即2bc a AD =⋅.由已知BC =,可得AD =.在ABC ∆中,由余弦定理得2222cos120a b c bc =+-︒,即223bc b c bc =++,整理得()20b c -=,即b c =, ∴6A B π==. ∴1sin sin62B π==. 20.已知椭圆C :2212x y +=,动直线l 过定点()2,0且交椭圆C 于A ,B 两点(A ,B 不在x 轴上). (1)若线段AB 中点Q 的纵坐标是23-,求直线l 的方程; (2)记A 点关于x 轴的对称点为M ,若点(),0N n 满足MN NB λ=,求n 的值.【详解】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+. 由22222x ty x y =+⎧⎨+=⎩消去x 得()222420t y ty +++=.220t ∆=->,解得t >t <. 由韦达定理得12242t y y t -+=+,12222y y t =+.① ∵AB 中点Q 的纵坐标是23-, ∴1243y y +=-,代入①解得1t =或2t =.又t >t <2t =.∴直线l 的方程为220x y --=.(2)由题意得()11,M x y -,由MN NB λ=,知M ,N ,B 三点共线,即MN MB k k =.∴()()1211210y y y n x x x ----=--, 即121121y y y n x x x +=--,解得()121121y x x n x y y -=++. 将112x ty =+,222x ty =+,代入得121222ty y n y y =++.② 由①有12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =.21.已知函数()212ln 2x f x ax x =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),求()()21f x f x -的最大值.【详解】(1)()()2'220x ax x a x x xf x -+=+-=>. 令()22g x x ax =-+,则28a ∆=-. ①当0a ≤或0∆≤,即a ≤时,得()'0f x ≥恒成立,∴()f x 在()0,∞+上单调递增.②当00a >⎧⎨∆>⎩,即a > 由()'0f x >,得0x <<或x >由()'0f x <x <<∴函数()f x在0,2a ⎛ ⎪⎝⎭和2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在22a a ⎛+ ⎪⎝⎭上单调递减.综上所述,当a ≤()f x 在()0,∞+上单调递增;当a >()f x在0,2a ⎛ ⎪⎝⎭和,2a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在⎝⎭上单调递减. (2)由(1)得,当a >()f x 有两极值点1x ,2x (其中21x x >).则1x ,2x 为()220x a g x x =-+=的两根, ∴12x x a +=,122x x =.()()()()222212121112ln2x f x f x x x a x x x -=+--- 222222122111122ln 2ln 2x x x x x x x x x x --=-=- 2211122ln x x x x x x =-+. 令()211x t t x =>, 则()()()2112ln f x f x h t t t t-==-+. 由3a ≥,得()22121219222x x a t x x t +==++≥, 即22520t t -+≥,解得2t ≥.∵()()22222121211'0t t t t t t t h t ---+-=--==<,∴()h t 在[)2,+∞上单调递减,∴()()max 322ln 22h t h ==-. 即()()21f x f x -的最大值为32ln 22-.(二)选考题:共10分。
四川绵阳市2020届高三第二次诊断性考数学(文)试卷附答案详析
这三个班中抽 30 人参加学校“遵纪守法好公民”知识测评,则高一(2)班被抽出的人数为( )
A.10
B.12
C.13
D.15
【答案】A
【解析】分层抽样是按比例抽取人数.
【详解】
设高一(2)被抽取
x
人,则
x 30
45
50 50
55
,解得
x
10
.
故选:A.
【点睛】
本题考查分层抽样,属于基础题.
6.已知 M 2, 0 , P 是圆 N : x2 4x y2 32 0 上一动点,线段 MP 的垂直平分线交 NP 于点 Q ,则
动点 Q 的轨迹方程为( )
A. x2 y2 1 95
B. x2 y2 1 59
C. a 13 k , c 10
D. x2 y2 1 95
(1)2 (2)2
5.
故选:C. 【点睛】 本题考查向量平行的坐标表示,考查向量模的坐标表示.属于基础题.
5.已知
为任意角,则“ cos 2
1 3
”是“ sin
3 ”的( 3
)
A.充分不必要条件 C.充要条件 【答案】B
B.必要不充分条件 D.既不充分也不必要
【解析】说明命题 cos 2
若根据表中的数据用最小二乘法求得 y 对 x 的回归直线方程为 y 6.5x 9 ,则下列说法中错误的是( )
A.产品的销售额与广告费用成正相关
B.该回归直线过点 2, 22
C.当广告费用为 10 万元时,销售额一定为 74 万元
1
D. m 的值是 20
2024届绵阳二诊试题及答案、数学文
绵阳市高中2021级第二次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.BACDC BACAD AB二、填空题:本大题共4小题,每小题5分,共20分.13.721014.12-15.1216.0y ±=三、解答题:本大题共6小题,共70分.(2)111111()(23)(25)22325n n a a n n n n +==-++++,······························8分∴1111111(...)257792325n T n n =-+-++-++·················································10分11=104101025n n n =-++.······················································12分18.解:(1)22()()()()()n ad bc K a b c d a c b d -=++++,···········································2分2100(20203030)=4>3.84160405050⨯-⨯=⨯⨯⨯······················································4分故有95%的把握认为喜欢旅游与性别有关;········································5分(2)按分层抽样喜欢旅游的男性为2人,记为A 1,A 2,女性为3人,记为B 1,B 2,B 3,····························································································6分随机抽取2人的事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),····················8分不同性别的事件为:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),···10分故两人是不同性别的概率63==105P .···············································12分19.解:(1)∵43sin BA BC bc A⋅=⋅ ∴4cos 3sin a B b A ⋅=⋅··································································2分∴4sin cos 3sin sin A B B A =,····················································3分∴4tan 3B =,则3cos 5B =,·························································4分又∵424BA BC c ⋅= ,∴4cos 24ac B c =,·····································································5分∴cos 6a B =,∴65610cos 3a B ==⨯=;·····························································6分(2)由余弦定理:2222cos b a c ac B =+-⋅,··································7分∴2210012b c c =+-,·································································8分又48a b c ++=,则38b c +=,····················································9分∴22(38)10012c c c -=+-,·······················································10分∴21c =,·················································································11分∴114102184225ABC S ac sinB =⋅=⨯⨯⨯=.··································12分20.解:(1)设),(11y x A ,),(22y x B ,联立⎩⎨⎧=-=py x kx y 222,消y 整理得:0422=+-p pkx x ,························2分所以:pk x x 221=+,p x x 421=,·················································3分22112211)22()22(22x p kx x p kx x p y x p y k k FB F A +-++-=-+-=212121))(22(2x x x x p x kx ++-=041()22(22=-=+-=p k p k k ,·············································4分∴4=p ,即抛物线E 的方程为:y x 82=;·····································5分(2)由(1)可知:k x x 821=+,1621=x x ···················································6分且064642>-=∆k ,所以:12>k ,184)(||22122121-=-+=-k x x x x x x ,······································7分直线FA 的方程为:2211+-=x x y y ,所以:11114424kx x y x x M -=-=,····8分同理:22224424kx x y x x N -=-=,所以|4444|||||2211kx x kx x x x MN N M ---=-=······················································9分|)(416)(16|2122121x x k x x k x x ++--=···································································10分1618|1|18222≥-=--=k k k ······································································11分解得:125-<≤-k 或251≤<k .·············································12分21.解:(1)2cos )3(2x a x x f '-+=,····················································1分∴2cos (0035)f '=+=,···································································2分切线斜率为5,················································································3分曲线()f x 在x =0处的切线方程为y =5x .···············································4分(2)解法一:①当[]0,x π∈时'()2cos 23f x x ax =-+,····················5分若0a <时,2cos 23x ax >-恒成立,若0a ≥时'()f x 在[]0,π上单调递减.················································6分∴''()()2230f x f a ππ≥=--+≥,则102a π≤≤,···························7分综上:12a π≤;··············································································8分②当,02x π⎡⎤∈-⎢⎥⎣⎦时若0a ≥时,2cos 23x ax >-恒成立,∴'()0f x ≥恒成立,········································································9分若0a <时'()f x 在,02π⎡⎤-⎢⎥⎣⎦上单调递增.∴''()()302f x f a ππ≥-=+≥,则30a π-≤<,······························10分∴3a π≥-,··················································································11分综上所述:312a ππ-≤≤.·································································12分解法二:由(1)可知23=5>0(0)f +'=,∴()f x 在[]2ππ-,上必是单调递增函数,···············································5分令2cos )3(2x a x x f '-+=,则()302≥a f ππ'-=+,()120f a ππ'=-≥,··············································6分∴312a ππ-≤为()f x 在[]2ππ-上是增函数成立的必要条件,···················7分令2cos )3(2x a x x f '-+=,下证:当312a ππ-≤≤时,()≥0f x '对任意[]2,x ππ∈-恒成立,···················8分①当102a π≤≤时,[]2x ππ∈-,则11[42,ax ∈-,12[1]2,ax -∈-,∴2cos 2312(0)≥≥x ax a f x x -+-'=;·····················································9分②当30a π-<≤时,[0],x π∈,20ax ->,很显然()2cos 30f x x '>+>;[0]2,x π∈-,()f x '为增函数,()()302≥≥≥f x f a ππ''-+;·························10分∴当312a ππ-≤≤时,()≥0g x 对任意[]2,x ππ∈-恒成立,·························11分∴312a ππ-≤,使得()f x 在[]2,ππ-上是单调函数.·····························12分22.(1)由题意:11)2()32222=+-=+t t y x (,且0132≥-=t x ,··················2分∴曲线C 的普通方程为:)0(14922≥=+x y x ·························································3分∴曲线C 的极坐标方程为14sin 9cos 2222=+θρθρ(22πθπ≤≤-),即θρ22sin 5436+=(22πθπ≤≤-);··················································5分(2)由(1)得θρ22sin 5436+=,因为且OA ⊥OB ,不妨设)(1θρ,A ,)2(2πθρ+,B ,·····························6分∴θρ221sin 5436+=,······································································7分∴2222)2(sin 5436πθρ++==θ2cos 5436+,··········································8分∴2211OB OA +222211ρρ+=····················································································9分36cos 54sin 5422θθ+++=3658+=3613=.·········································10分23.(1)证明:因为))(11(22by ax b a ++2222y aby b ax x +++=a by b ax y x 22222⋅++≥222)(2y x xy y x +=++=,············3分∴()ba by ax y x 11222+≤++,·······································································4分当且仅当aby b ax 22=,即by ax =时,等号成立;·····································5分(2)函数245144)(22++++=x x x x x f 245)12(22+++=x x x []222)1(23)1(+⋅+⋅++=x x x x ·························7分根据(1)的结论,[]652131)1(23)1(222=+≤+⋅+⋅++x x x x ,··································8分当且仅当)1(23+=x x ,即2=x 时,等号成立.·····································9分∴函数)0(245144)(22>++++=x x x x x x f 的最大值为65,此时x =2.·····················10分。
四川省绵阳市高中高三数学第二次诊断性考试 文
绵阳市高中第二次诊断性考试数 学(文科)本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k knn P P C k P --⋅⋅=)1()(. 一、选择题:本大题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.1.设集合I = { x ︱︱x -2︱≤2,x ∈N * },P = { 1,2,3 },Q = { 2,3,4 },则 I (P ∩Q )=A .{ 1,4 }B .{ 2,3 }C .{ 1 }D .{ 4 } 2.若向量a 、b 、c 满足 a + b + c = 0,则a 、b 、cA .一定能构成一个三角形B .一定不能构成一个三角形C .都是非零向量时一定能构成一个三角形D .都是非零向量时也可能无法构成一个三角形 3.将直线x -3y -2 = 0绕其上一点逆时针方向旋转60︒得直线l ,则直线l 的斜率为A .33 B .3 C .不存在 D .不确定4.已知f (x ) = sin (x +2π),g (x ) = cos (x -2π),则下列命题中正确的是 A .函数y = f (x ) · g (x ) 的最小正周期为2πB .函数y = f (x ) · g (x ) 是偶函数C .函数y = f (x ) + g (x ) 的最小值为-1D .函数y = f (x ) + g (x ) 的一个单调增区间是]4,43[ππ-5.为了得到函数)62sin(π-=x y 的图象,可以将函数y = cos 2x 的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度6.直线4x -3y -12 = 0与x 、y 轴的交点分别为A 、B ,O 为坐标原点,则△AOB 内切圆的方程为 A .(x -1)2 +(y + 1)2 = 1 B .(x -1)2 +(y -1)2 = 1C .(x -1)2 +(y + 1)2 =2D .(x -1)2 +(y + 1)2 = 27.设双曲线12222=-by a x (a >0,b >0)的焦点是F 1(-c ,0)、F 2(c ,0)(c >0),两条准线间的距离等于c ,则双曲线的离心率e 等于A .2B .3C .2D .38.已知焦点(设为F 1,F 2)在x 轴上的双曲线上有一点P (x 0,23),直线x y 3= 是双曲线的一条渐近线,当021=⋅PF 时,该双曲线的一个顶点坐标是 A .(2,0) B .(3,0) C .(2,0) D .(1,0) 9.若不等式︱x -a ︱-︱x ︱< 2-a 2 当x ∈R 时总成立,则实数a 的取值范围是 A .(-2,2) B .(-2,1) C .(-1,1) D .(-∞,-1)∪(1,+∞)10.若抛物线y 2 = x 上一点P 到准线的距离等于它到顶点的距离,焦点为F ,O 是坐标原点,则△POF 的面积等于A .162B .322C .161D .32111.已知等腰三角形的面积为23,顶角的正弦值是底角正弦值的3倍,则该三角形一腰的长为A .2B .3 C .2D .612.设函数f (x )的定义域为A ,若存在非零实数t ,使得对于任意x ∈C (C ⊆ A ),有x + t ∈A ,且f (x + t )≤ f (x ),则称f (x )为C 上的t 低调函数.如果定义域为 [ 0,+∞)的函数f (x )=-︱x -m 2︱+ m 2,且 f (x )为 [ 0,+∞)上的10低调函数,那么实数m 的取值范围是A .[-5,5 ]B .[-5,5]C .[-10,10]D .]25,25[-第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,请不要答在试题卷上.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式13>x的解是 . 14.已知函数f (x )= sin x -cos (6-πx ),x ∈[ 0,2π),则满足f (x )>0的x 值的集合为 .15.设a >2b >0,则29()(2)a b b a b -+-的最小值是 .16.给出下列命题:① “sin α-tan α>0”是“α 是第二或第四象限角”的充要条件; ② 平面直角坐标系中有三个点A (4,5)、B (-2,2)、C (2,0),则直线AB 到直线BC的角为4arctan 3;③ 函数xx x f 22cos 3cos )(+=的最小值为32;④ 设 [m ] 表示不大于m 的最大整数,若x ,y ∈R ,那么[x + y ]≥[x ] + [y ] . 其中所有正确命题的序号是 .(将你认为正确的结论序号都写上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分)设△ABC 三个角A ,B ,C 的对边分别为a ,b ,c ,向量)2,(b a =,)1,(sin A =,且//.(Ⅰ)求角B 的大小;(Ⅱ)若△ABC 是锐角三角形,)tan cos sin ,1(),cos ,(cos B A A n B A m -==,求n m ⋅ 的取值范围. 18.(本题满分12分)如图,在平面直角坐标系xOy 中,AB 是半圆⊙O :x 2 + y 2 = 1(y ≥0)的直径,C 是半圆O (除端点A 、B )上的任意一点,在线段AC 的 延长线上取点P ,使︱PC ︱=︱BC ︱,试求动点P 的轨迹方程. 19.(本题满分12分)某幸运观众参加电视节目抽奖活动,抽奖规则是:在盒子里预先放有大小相同的5个小球,其中一个绿球,两个红球,两个白球.该观众依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个白球就停止摸球,否则直到将盒子里的球摸完才停止.规定:在球摸停止时,只有摸出红球才获得奖金,奖金数为摸出红球个数的1000倍(单位:元).(Ⅰ)求该幸运观众摸三次球就停止的概率; (Ⅱ)求该幸运观众获得1000元奖金的概率. 本题满分12分)已知函数1)1(6)12(32)(23+--+-=x m m x m x x f ,x ∈R .(1)当m =-1时,求函数y = f (x ) 在 [-1,5 ] 上的单调区间和最值;(2)设f ′(x ) 是函数y = f (x ) 的导数,当函数y = f ′(x ) 的图象在(-1,5)上与x 轴有唯一的公共点时,求实数m 的取值范围.21.(本题满分12分)设椭圆C 的中心在坐标原点O ,焦点在x 轴上,短轴长为212,左焦点到左准线的距离为73.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 上有不同两点P 、Q ,且OP ⊥OQ ,过P 、Q 的直线为l ,求点O 到直线l 的距离. 22.(本题满分14分)已知{ a n }是等差数列,{ b n }是等比数列,S n 是{ a n }的前n 项和,a 1 = b 1 =1,2212b S =.(Ⅰ)若b 2是a 1,a 3的等差中项,求a n 与b n 的通项公式;(Ⅱ)若a n ∈N *,{n a b }是公比为9的等比数列,求证:471111321<++++n S S S S绵阳市高中第二次诊断性考试 数学(文科)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. ADCD BACD CBAB二、填空题:本大题共4小题,每小题4分,共16分.13.{ x ︱0<x <3 } 14.(34,3ππ)或 }343|{ππ<<x x 15.12 16.①④三、解答题:本大题共6小题,共74分.17.解 (Ⅰ)∵ )2,(b a =,)1,(sin A =,//,∴ a -2b sin A = 0,由正弦定理得 sin A -2sin B sin A = 0. …………………… 3分∵ 0<A ,B ,C <π,∴ 21sin =B ,得 6π=B 或56B π=. …………………… 6分(Ⅱ)∵ △ABC 是锐角三角形, ∴ 6π=B ,)cos 33sin ,1(),23,(cos A A A -==, 于是 )cos 33(sin 23cos A A A n m -+=⋅=A A sin 23cos 21+=)6sin(π+A .…………………… 9分由 65ππ=-=+B C A 及 0<C <2π,得 )65,3(65πππ∈-=C A . 结合0<A <2π,∴ 23ππ<<A ,得 3262πππ<+<A ,∴1)6sin(23<+<πA ,即123<⋅<n m . …………………… 12分 18.解 连结BP ,由已知得∠APB=45︒. …………………… 2分设P (x ,y ),则 1+=x yk PA ,1-=x y k PB ,由PA 到PB 的角为45︒, 得1111145tan +⋅-++--=︒x y x y x y x y ,化简得 x 2 +(y -1)2 = 2. …………………… 10分由已知,y >0且1+=x yk PA >0,故点P 的轨迹方程为x 2 +(y -1)2 = 2(x >-1,y >0). …………………… 12分法二 连结BP ,由已知可得∠APB = 45︒,∴ 点P 在以AB 为弦,所对圆周角为45︒的圆上.设该圆的圆心为D ,则点D 在弦AB 的中垂线上,即y 轴上,且∠ADB = 90︒,∴ D (0,1),︱DA ︱=2,圆D 的方程为x 2 +(y -1)2 = 2.由已知,当点C 趋近于点B 时,点P 趋近于点B ;当点C 趋近于点A 时,点P 趋近于点(-1,2),所以点P 的轨迹方程为x 2 +(y -1)2 = 2(x >-1,y >0).19.解 (Ⅰ)记“该幸运观众摸球三次就停止”为事件A ,则112232351()5C C A P A A ==.…………………… 6分(Ⅱ)该幸运观众获得1000元奖金的概率为314533121235221212=+=A A C C A A C C P . …………………… 12分答:略.(1)当m =-1时,11232)(23+-+=x x x x f , ∴ f ′(x ) = 2x 2 + 2x -12 = 2(x + 3)(x -2)的两个根为x =-3 或 x = 2, 只有x = 2在 [-1,5 ] 上,所以 f (x ) 在 [-1,2 ] 上单调递减,在 [ 2,5 ] 上单调递增.又340)1(=-f ,41)2(-=f ,148)5(=f . …………………… 4分故函数y = f (x )在 [-1,5 ] 上的最大值为3,最小值为3-. …………………… 6分(2)由已知有 f ′(x ) = 2x 2-2(2m + 1)x -6m (m -1),x ∈R .函数y = f ′(x ) 的图象与x 轴的公共点的横坐标就是二次方程x 2-(2m + 1)x -3m (m -1)= 0 的实数根,解得 x 1 = 3m ,x 2 = 1-m . ① 当x 1 = x 2 时,有 3m = 1-m ⇒ 41=m ,此时x 1 = x 2 =43∈(-1,5)为所求. …………………… 8分② 当x 1≠x 2 时,令H (x )= x 2-(2m + 1)x -3m (m -1),则函数y = f ′(x ) 的图象在(-1,5)上与x 轴有唯一的公共点 ⇒ H (-1)· H (5)≤0,而 H (-1)=-3m 2 + 5m + 2,H (5)=-3m 2-7m + …………………… 9分所以(-3m 2 + 5m + 2)(-3m 2-7m + 0, 即(m -2)(3m + 1)(m + 4)(3m -5)≤0,解得-4≤m≤31-或35≤m ≤2. …………………… 10分经检验端点,当m =-4和m = 2时,不符合条件,舍去.综上所述,实数m 的取值范围是41=m 或-4<m ≤31-或35≤m <2. …………………… 12分21.解 (1)设椭圆C 的方程为12222=+bb a x (a >b >0),则 2122=b ,21=b .由 73)(2=---ca c ,即73222==-c b c c a ,得 7=c . 于是 a 2= b 2+ c 2= 21 + 7 = 28,椭圆C 的方程为1212822=+y x .………………… 5分(2)若直线l 的斜率不存在,即l ⊥x 轴时,不妨设l 与x 正半轴交于点M ,将x = y 代入1212822=+y x 中,得32±==y x ,则点P (32,32),Q (32,32-),于是点O 到l 的距离为32. (7)分若直线l 的斜率存在,设l 的方程为y = kx + m (k ,m ∈R ),则点P (x 1,y 1),Q (x 2,y 2)的坐标是方程组⎪⎩⎪⎨⎧=++=1212822y x mkx y 的两个实数解, 消去y ,整理,得(3 + 4k 2)x 2 + 8kmx + 4m 2-84 = 0, ∴ △ =(8km )2-4(3 + 4k 2)(4m 2-84)= 12(28k 2-m 2 + 21)>0, ①221438k km x x +-=+,222143844km x x +-=. ② …………………… 9分∵ OP ⊥OQ ,∴ k OP · k OQ =-1,即12211-=⋅x y x y ,x 1x 2 + y 1y 2 = 0. 于是 x 1x 2 +(kx 1 + m )(kx 2 + m )=(1 + k 2)x 1x 2 + km (x 1 + x 2)+ m 2 = 0. ③将 x 1 + x 2,x 1x 2 代入上式,得 043843844)1(22222=++-+-⋅+m kkm km k m k , ∴(k 2 + 1)(4m 2-84)-8k 2m 2 + m 2(4k 2 + 3)= 0, 化简,得 m 2 =12(k 2+1).④④代入①满足,因此原点O 到直线l 的距离 32121||2==+-=k m d .…………………… 12分22.解 设等差数列{ a n }的公差为d ,等比数列{ b n }公比为q . (Ⅰ)∵ 2212b S =,∴ qb d a a 11112=++,而 a 1 = b 1 = 1,则 q (2 + d )= 12.① 又 ∵ b 2是a 1,a 3的等差中项,∴ a 1 + a 3 = 2b 2,得 1 + 1 + 2d = 2q ,即 1 + d = q . ②联立①,②,解得 ⎩⎨⎧==,3,2q d 或 ⎩⎨⎧-=-=.4,5q d …………………… 4分 所以 a n = 1 +(n -1)·2 = 2n -1,b n = 3n -1; 或 a n = 1 +(n -1)·(-5)= 6-5n ,b n =(-4)n -1. …………………… 6分(Ⅱ) ∵ a n ∈N *,d n d n a a q q qb b n n )1(1)1(111---+-===,∴ 9)1(1===-+d dn nd a a q q q b b nn ,即 q d = 32.① …………………… 8分由(Ⅰ)知 q ( 2 + d ) = 12,得 dq +=212. ② ∵ a 1 = 1,a n ∈N *,∴ d 为正整数,从而根据①②知q >1且q 也为正整数,∴ d 可为1或2或4,但同时满足①②两个等式的只有d = 2,q = 3, ∴a n=2n-1,22)121(n n n S n =-+=. …………………… 10分∴ )1111(21)1)(1(1112+--=+-<=n n n n n S n (n ≥2). 当n ≥2时, )1111(21)5131(21)4121(21)3111(21111121+--++-+-+-+<+++n n S S S n )]1111()5131()4121()3111[(211+--++-+-+-+=n n)111211(211+--++=n n 11147+--=n n 47<.显然,当n = 1时,不等式成立.故n ∈N *,4711121<+++n S S S . …………………… 14分思路2 或者利用nn n n n S n 111)1(1112--=-<=(n ≥2)从第三项开始放缩。
绵阳-二诊--文科数学试题+答案
绵阳市高2014级第二次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.CA BCA DBC DD CB二、填空题:本大题共4小题,每小题5分,共20分.13.1422=-y x 14.24 ﻩ 15.32ﻩ 16.25-三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)设{a n }的公差为d ,则由题意可得⎪⎩⎪⎨⎧+=+++-=⨯+,,d a d a d a d a 453922331111……………………………………………………3分 解得a1=-4,d =1, ……………………………………………………………5分∴ a n =-4+1×(n -1)=n -5. ……………………………………………………6分 (Ⅱ)Tn =a 1+a 2+a 3+…+a n+n a a a 22221+⋅⋅⋅++ =2)54(-+-n n +)222(32121n +⋅⋅⋅++ ………………………………10分 =21)21(23212)9(--⋅+-n n n =16122)9(-+-n n n .……………………………………………………12分 18.解:(Ⅰ) ∵a c 2=,∴ 由正弦定理有s in C =2sin A . …………………………………………2分 又C =2A,即sin2A=2si nA ,于是2sin A cos A =2s inA , …………………………………………………4分 在△ABC 中,sin A ≠0,于是cos A =22, ∴ A =4π. ……………………………………………………………………6分 (Ⅱ)根据已知条件可设21+=+==n c n b n a ,,, n ∈N *.由C =2A ,得sin C =sin2A =2sin A cos A,∴ ac A C A 2sin 2sin cos ==. ……………………………………………………8分 由余弦定理得ac bc a c b 22222=-+, 代入a ,b,c 可得 nn n n n n n 22)2)(1(2)2()1(222+=++-+++, ……………………………………………10分 解得n =4,∴ a =4,b =5,c =6,从而△ABC 的周长为15,即存在满足条件的△ABC ,其周长为15. (2)19.解:(Ⅰ)由已知有 1765179181176174170=++++=x , 6656870666462=++++=y , 2222)176179()176181()176174()176170()6668)(176179()6670)(176181()6664)(176174()6662)(176170(ˆ-+-+-+---+--+--+--=b =3727≈0.73, 于是17673.066ˆˆ⨯-=-=x b y a=-62.48, ∴ 48.6273.0ˆˆˆ-=+=x a x b y.………………………………………………10分 (Ⅱ) x =185,代入回归方程得48.6218573.0ˆ-⨯=y≈72.57, 即可预测M 队的平均得分为72.57. ………………………………………12分 20.解:(Ⅰ) 点A (0,2)在椭圆C上,于是122=b ,即b2=2. 设椭圆C的焦半距为c ,则由题意有23=a c ,即2243a c =, 又a 2=b 2+c2,代入解得a 2=8, ∴ 椭圆C 的标准方程为12822=+y x . ……………………………………4分 (Ⅱ)设直线PQ :1+=ty x ,)()(2211y x Q y x P ,,,.联立直线与椭圆方程: ⎪⎩⎪⎨⎧+==+,,112822ty x y x 消去x 得:072)4(22=-++ty y t , 显然Δ=4t 2+28(t 2+4)>0,∴ y 1+y 2=422+-t t ,y 1y2=472+-t . ………………………………………7分 于是482)(22121+=++=+t y y t x x , 故P ,Q 的中点)444(22+-+t t t D ,. ………………………………………8分 设)1(0y N ,-, 由NQ NP =,则1-=⋅PQ ND k k , 即t t t ty -=+--++4414220,整理得4320++=t t t y ,得)431(2++-t t t N ,. 又△NPQ 是等边三角形, ∴ PQ ND 23=,即2243PQ ND =, 即]474)42)[(1(43)44()144(22222222+-⋅-+-+=+++++t t t t t t t t , 整理得22222)4(8424)144(++=++t t t , 即222222)4(8424)48(++=++t t t t ,解得 102=t ,10±=t , …………………………………………………11分∴ 直线l的方程是110+±=y x . ………………………………………12分 21.解:(Ⅰ)∵ xe ax xf -=2)(在)0(∞+,上有两个零点, ∴ 方程2x e a x =有两个根,等价于y=a与2xe y x=有两个交点. 令2)(xe x h x =,则3)2()(x x e x h x -=',……………………………………………3分 于是x∈(0,2)时,0)(<'x h ,即h (x )在(0,2)上单调递减;当x ∈(2,+∞)时,0)(>'x h ,即h (x )在(2,+∞)上单调递增,∴ h (x )min =h(2)=42e , ∴ a的取值范围为(42e ,+∞). ……………………………………………5分 (Ⅱ)∵)(2121x x x x <,是x e ax xf -=2)(在)0(∞+,上的零点, ∴ 121x e ax =,222x e ax =, 两式相除可得12212)(x x e x x -=. ………………………………………………7分 令)1(12>=t t x x , ①上式变为122x x e t -=,即t t x x ln 2ln 212==-, ② 联立①②解得:1ln 21-=t t x ,1ln 22-=t t t x . …………………………………9分 要证明421>+x x , 即证明41ln 21ln 2>-+-t t t t t , 即证明22ln ln ->+t t t t . 令22ln ln )(+-+=t t t t t h ,则1ln 1)(-+='t tt h . …………………………10分 令0111)(1ln 1)(22>-=-='-+=tt t t t t t t ϕϕ,, 故)(t ϕ在)1(∞+,上单调递增,故0)1()(=>ϕϕt , 即0)(>'t h , 故)(t h 在)1(∞+,上单调递增,故0)1()(=>h t h ,即22ln ln ->+t t t t ,得证. (2)22.解:(Ⅰ)消去参数得1322=+y x . …………………………………………5分(Ⅱ)将直线l 的方程化为普通方程为0323=++y x .设Q(ααsin cos 3,),则M(ααsin 211cos 23+,), ∴ 233)4sin(26232sin 233cos 23++=+++=παααd ,∴ 最小值是4636-.………………………………………………………10分 23.解:(Ⅰ) 当t=2时,21)(-+-=x x x f . 若x ≤1,则x x f 23)(-=,于是由2)(>x f 解得x <21.综合得x <21. 若1<x <2,则1)(=x f ,显然2)(>x f 不成立 . 若x ≥2,则32)(-=x x f ,于是由2)(>x f 解得x >25.综合得x>25. ∴ 不等式2)(>x f 的解集为{x| x <21,或x >25}. …………………………5分 (Ⅱ))(x f ≥x a +等价于a ≤f (x )-x .令g (x)= f (x )-x . 当-1≤x ≤1时,g (x )=1+t -3x,显然g (x )m in =g (1)=t-2.当1<x <t 时,g (x )=t -1-x ,此时g (x)>g (1)=t-2.当t ≤x ≤3时,g (x )=x-t -1,g (x)mi n=g (1)=t-2.∴ 当x ∈[1,3]时,g (x)min = t-2.又∵ t ∈[1,2],∴ g (x )m in ≤-1,即a ≤-1.综上,a 的取值范围是a ≤-1. …………………………………。
绵阳二诊数学文科答案
y k x 2 , 整理得 (1+2 k 2 ) x 2 + 8 k 2 x +8 k 2 - 8=0 . 2 2 x 2 y 8 0,
2 ,即 A = .…………………………………………………… 6 分 3 3
( 2 )在△ ABC 中,由余弦定理得 a 2 = b 2 + c 2 - 2 bc cos A , 由( 1 )得 A = ∵ a= 3 , ∴ 3= b 2 + c 2 - bc , 即 3=( b + c ) 2 - 3 bc .
3
,所以 a 2 = b 2 + c 2 - 2 bc cos
3
,即 a 2 = b 2 + c 2 - bc .
………… 8 分
文科数学答案第 2页(共 5 页)
天府高考研究中心
已知 b + c =
更多绵阳二诊资讯请加 QQ 群:647077378
3 3 5 ,解得 bc = . ……………………………………………… 10 分 2 4
……………………………… 2 分
y
∴
(x
i 1
5
i
x )( yi y ) (10 10)(78 78) (9 10)(76 78) (9.5 10)(77 78)
(10.5 10)(79 78) (11 10)(80 78)
=5 , ……………………………………………………… 4 分
(x
i 1 5
i
x )( yi y )
i
(x
i 1
x )2
5 2 .…………………………………………… 7 分 2.5
2022年四川省绵阳市高考文科数学二诊试卷及答案解析
2022年四川省绵阳市高考文科数学二诊试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A ={(x ,y )|y =x },B ={(x ,y )|y =x 2},则A ∩B 的元素个数为( ) A .0B .1C .2D .42.(5分)下列函数既是奇函数又是增函数的是( ) A .y =sin xB .y =2xC .y =log 2xD .y =x 33.(5分)已知角α的终边过点A(1,√3),则sin α+tan α=( ) A .3√32B .1+2√32C .5√36D .3+2√364.(5分)已知双曲线E :x 2a 2−y 2b2=1(a >0,b >0)的焦距为4,两条渐近线互相垂直,则E 的方程为( ) A .x 2﹣y 2=1 B .x 22−y 22=1C .x 24−y 24=1 D .x 28−y 28=15.(5分)如图,茎叶图记录了甲、乙两个家庭连续9个月的月用电量(单位:度),根据茎叶图,下列说法正确的是( )A .甲家庭用电量的中位数为33B .乙家庭用电量的极差为46C .甲家庭用电量的方差小于乙家庭用电量的方差D .甲家庭用电量的平均值高于乙家庭用电量的平均值6.(5分)过点A (1,2)且与原点距离最大的直线方程为( ) A .2x +y ﹣4=0B .x +2y ﹣5=0C .x +3y ﹣7=0D .3x +y ﹣5=07.(5分)已知平面向量a →,b →不共线,AB →=4a →+6b →,BC →=−a →+3b →,CD →=a →+3b →,则( )A.A,B,D三点共线B.A,B,C三点共线C.B,C,D三点共线D.A,C,D三点共线8.(5分)已知直线x+y﹣1=0与圆C:(x﹣2)2+(y﹣1)2=m相交于A,B两点,若AB=2√3,则m=()A.√5B.5C.3D.49.(5分)第24届冬季奥林匹克运动会将于2022年在北京举办.为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下2×2列联表:关注冰雪运动不关注冰雪运动合计男451055女252045合计7030100下列说法正确的是()参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.附表:P(K2≥k0)0.1000.0500.0100.001 k0 2.706 3.841 6.63510.828 A.有99%以上的把握认为“关注冰雪运动与性别有关”B.有99%以上的把握认为“关注冰雪运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“关注冰雪运动与性别无关”D.在犯错误的概率不超过0.1%的前提下,认为“关注冰雪运动与性别有关”10.(5分)已知f(x)是定义在R上的偶函数,且在(0,+∞)上单调递减,则()A.f(﹣1)<f(﹣20.1)<f(log25)B.f(log25)<f(−1)<f(−20.1)C.f(log25)<f(−20.1)<f(−1)D.f(﹣20.1)<f(﹣1)<f(log25)11.(5分)若x=2是函数f(x)=x2+2(a﹣2)x﹣4alnx的极大值点,则实数a的取值范围是()A.(﹣∞,﹣2)B.(﹣2,+∞)C.(2,+∞)D.(﹣2,2)12.(5分)已知F 1,F 2分别为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,E 上存在两点A ,B 使得梯形AF 1F 2B 的高为√2c (其中c 为半焦距),且AF 1→=3BF 2→,则E 的离心率为( )A .√63B .√32C .12D .√22二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设i 是虚数单位,若复数z 满足z •i =z +6i ,则复数z 的虚部为 . 14.(5分)函数f(x)={2−x ,x ≥1log 2x ,x <1,则f (f (2))= .15.(5分)已知A ,B 为抛物线C :x 2=4y 上的两点,M (﹣1,2),若AM →=MB →,则直线AB 的方程为 .16.(5分)已知函数f(x)=sin|x|−√3cosx ,若关于x 的方程f (x )=m 在[−2π,4π3]上有三个不同的实根,则实数m 的取值范围是 .三、解答题:共70分。
绵阳二诊】四川省绵阳市2017届高三第二次诊断性测试 数学(文) 扫描版含答案
绵阳二诊】四川省绵阳市2017届高三第二次诊断性测试数学(文) 扫描版含答案参考解答及评分标准:绵阳市高2014级第二次诊断性考试数学(文史类)一、选择题:本大题共12小题,每小题5分,共60分。
答案:CABCADBCDDCB。
二、填空题:本大题共4小题,每小题5分,共20分。
第一小题:解法为(x+y)(x-y)=114,求得x^2-y^2=114.第二小题:解法为cos(α+β)=cosαcosβ-sinαsinβ,代入α=30°,β=45°可得cos75°=cos30°cos45°-sin30°sin45°,计算得cos75°=√6-√2/4.第三小题:解法为(a+b)(a-b)=2413,求得a^2-b^2=2413.第四小题:解法为a/b=3/4,b/c=5/6,代入可得a/c=1/2.三、解答题:本大题共6小题,共70分。
第十五小题:解法为设{an}的公差为d,由题意得到3a1+2d=16.5,a1+4d=23,解得a1=-4,d=1,代入得到an=n-5.第十七小题:解法为(Ⅰ)设{an}的公差为d,由题意得到3a1+2d=16.5,a1+4d=23,解得a1=-4,d=1;(Ⅱ)根据已知条件可设a=n,b=n+1,c=n+2,n∈N*,代入得到cosA=2/(2n-1),代入cosA=2sinA得到sinA=2/(2n+1),代入余弦定理可得到2bc/(a^2+b^2-c^2)=(n+1)/(n+2),整理得到n=4,代入得到a=4,b=5,c=6,从而得到△ABC的周长为15.第十八小题:解法为(Ⅰ)由正弦定理得到sinC=2sinA,又C=2A,即sin2A=2sinA,代入得到2sinAcosA=2sinA,在△ABC中,sinA≠0,所以cosA=1/2,代入得到A=π/4;(Ⅱ)代入余弦定理可得到cosA=c/(2a),代入已知条件可得到cosA=√10/20,代入得到sinA=√6/20,代入正弦定理可得到sinC=√10/20,代入余弦定理可得到cosC=1/5,代入三角形的内角和为180°可得到B=5π/36,从而得到△ABC的三个内角的度数。
四川省绵阳市2024届高三上学期“二诊”模拟数学(文)试题含解析
绵阳高2021级“二诊”模拟考试文科数学(答案在最后)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2log 1A x x =<,集合{B y y ==,则A B = ()A.(),2∞- B.(],2∞- C.()0,2 D.[)0,∞+【答案】C 【解析】【分析】先求出集合A,B ,再求交集即可【详解】解:{}()2log 10,2A x x =<=,{[)0,B y y ===+∞,()0,2A B ∴⋂=.故选:C ,【点睛】此题考查集合的交集运算,考查对数不等式的解法,属于基础题2.已知复数z 满足()1i 1z -⋅=+(i 是虚数单位),则复数z 的共轭复数z 的虚部为()A.1B.iC.i- D.1-【答案】D 【解析】【分析】根据复数的运算法则和概念即可得答案.【详解】∵()1i 12z -⋅=+=,∴()()()21i 21i 1i 1i 1i z +===+--+,∴1i z =-,∴z 的虚部为1-.故选:D .3.若双曲线C :2219x y m-=的焦距长为8,则该双曲线的渐近线方程为()A.4y x =±B.54y x =±C.43y x =±D.3y x =±【答案】D 【解析】【分析】利用双曲线的性质计算即可.【详解】由题意可知28972m m ⎛⎫+=⇒= ⎪⎝⎭,即22:197x y C -=,令220973x y y x -=⇒=±.故选:D4.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295【答案】C 【解析】【分析】先判定两直线平行,再求出两平行线之间的距离即得解.【详解】因为3412=685≠-,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,2910,所以|PQ |的最小值为2910.故选:C.【点睛】本题主要考查平行直线的判定和两平行线之间的距离的求法,意在考查学生对这些知识的理解掌握水平.5.2022年11月,国内猪肉、鸡蛋、鲜果、禽肉、粮食、食用油、鲜菜价格同比(与去年同期相比)的变化情况如图所示,则下列说法正确的是()A.猪肉、鸡蛋、鲜果、禽肉、粮食、食用油这6种食品中,食用油价格同比涨幅最小.B.这7种食品价格同比涨幅的平均值超过7%C.去年11月鲜菜价格要比今年11月低D.猪肉价格同比涨幅超过禽肉价格同比涨幅的5倍【答案】B 【解析】【分析】根据统计图计算可得答案.【详解】由图可知,粮食价格同比涨幅比食用油价格同比涨幅小,故A 不正确;这7种食品价格同比涨幅的平均值为34.4%10.4%9.6%8.5%3%7.6%21.2%7.47%7%7+++++-≈>,故B 正确;因为鲜菜价格同比涨幅为21.2%-,说明去年11月鲜菜价格要比今年11月高,故C 不正确;猪肉价格同比涨幅为34.4%,禽肉价格同比涨幅为8.5%,34.4%58.5%0-⨯<,故D 不正确.故选:B.6.已知()f x 是定义域为R 的奇函数,当0x >时,()f x 单调递增,且()40f =,则满足不等式()10x f x ⋅-<的x 的取值范围是()A.()3,1- B.()1,5 C.()()3,01,5- D.()(),31,5-∞- 【答案】C 【解析】【分析】由奇函数的定义和单调性的性质,即可求解不等式.【详解】因为()f x 是定义在R 上的奇函数,0x >时,()f x 单调递增,且()40f =,所以当()(),40,4x ∈-∞-⋃时,()0f x <,当()()4,04,x ∈-⋃+∞时,()0f x >,不等式()10x f x ⋅-<,则当0x <时,有()10f x ->,即410x -<-<或14x ->,解得31x -<<或5x >,又0x <,30x ∴-<<;当0x >时,有()10f x -<,即14x -<-或014x <-<,又0x >,解得15x <<;综上,不等式()10x f x ⋅-<的解集为()()3,01,5- .故选:C.7.已知非零向量,a b满足||2||a b =,且|2||4|a b a b -=+,则,a b的夹角为()A.6π B.3πC.23π D.56π【答案】C 【解析】【分析】利用平面向量的数量积和模长求夹角即可.【详解】由已知|2||4|a b a b -=+可得222244816a a b b a a b b -⋅⋅+=+⋅+ ,即20a b b ⋅+= ,又因为||2||a b =,所以21cos ,2b a b a b-==-⋅ ,所以夹角为2π3.故选:C8.已知数列{}n a 是递增的等比数列,其前n 项和为n S .若3134a a -=,4158S =-,则2a =()A.932-B.12-C.932-或12- D.-3或12-【答案】B 【解析】【分析】利用等比数列通项公式和求和公式进行基本量的计算即可.【详解】设等比数列{}n a 的公比为()0q q >,则()()231141431411518a a a q a q S q ⎧-=-=⎪⎪⎨-⎪==-⎪-⎩,解得:12q =或3q =-(舍去),所以11a =-,所以212a =-.故选:B.9.已知函数()32221f x x ax a x =-++在1x =处有极小值,则a 的值为()A.1B.3C.1或3D.1-或3【答案】A 【解析】【分析】由()f x 在1x =处有极小值可知,()10f '=解出a 的值,并根据单调性验证.【详解】因为()32221f x x ax a x =-++,所以()2234f x x ax a '=-+,因为函数()32221f x x ax a x =-++在1x =处有极小值,所以()21340f a a '=-+=,解得1a =或3a =,当1a =时,()()()2341311f x x x x x '=-+=--,当()0f x ¢>时,13x <或1x >,当()0f x '<时,113x <<,()f x 在1x =处取到极小值,符合题意;当3a =时,()()()23129313f x x x x x =-+=--',当()0f x ¢>时,1x <或3x >,当()0f x '<时,13x <<,()f x 在1x =处取到极大值,不符合题意;综上:a 的值为1.故选:A.10.若点A 在焦点为F 的抛物线24y x =上,且2AF =,点P 为直线1x =-上的动点,则PA PF +的最小值为()A. B.2+ C.2+ D.4【答案】A 【解析】【分析】先求得A 点的坐标,求得F 关于直线=1x -的对称点F ',根据三点共线求得PA PF +的最小值.【详解】抛物线24y x =的焦点()1,0F ,准线=1x -,12,1A A AF x x =+==,则24,2A A y y ==±,不妨设()1,2A ,()1,0F 关于直线=1x -的对称点为()3,0F '-,由于PF PF '=,所以当,,A P F '三点共线时PA PF +最小,所以PA PF +的最小值为=.故选:A11.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的图象如图所示,图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭,与y 轴的交点为N ,最高点()1,P A ,且满足NM NP ⊥.若将()f x 的图象向左平移1个单位得到的图象对应的函数为()g x ,则(1)g -=()A.B.0C.102-D.102【答案】D 【解析】【分析】根据题意得6T =,π6ϕ=,进而得0,2A N ⎛⎫⎪⎝⎭,再根据NM NP ⊥结合向量垂直关系的表示解得A =,进而得()ππ36f x x ⎛⎫=+ ⎪⎝⎭,再根据平移变换得()π3g x x =,最后求函数值即可.【详解】由题知,函数()f x 的周期T 满足531422M P T x x =-=-=,解得6T =,所以2ππ63ω==,由图象与x 轴的交点为5,02M ⎛⎫⎪⎝⎭得()π5πZ 32k k ϕ⨯+=∈,因为π2ϕ<,所以π6ϕ=,即()ππsin 36f x A x ⎛⎫=+ ⎪⎝⎭,所以,()f x 图象与y 轴的交点为0,2A N ⎛⎫ ⎪⎝⎭,因为NM NP ⊥,所以255,1,022224A A A NM NP ⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭,解得A =,所以A =,所以()ππ36f x x ⎛⎫=+⎪⎝⎭,所以若将()f x 的图象向左平移1个单位得到的图象对应的函数为()g x ,()πππ323g x x x ⎛⎫=+= ⎪⎝⎭,所以()π132g ⎛⎫-=-= ⎪⎝⎭.故选:D12.已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是()A.21e ,2⎡⎤--⎣⎦B.213,e∞⎡⎫--+⎪⎢⎣⎭C.213,2e ⎡⎤---⎢⎥⎣⎦D.2211e ,3e⎡⎤---⎢⎥⎣⎦【答案】A 【解析】【详解】因为函数21y x =+与函数21y x =--的图象关于x 轴对称,根据已知得函数12ln ,(e)ey a x x =-≤≤的图象与函数21y x =--的图象有交点,即方程22ln 1a x x -=--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解,即22ln 1a x x =--在1,e ex ⎡⎤∈⎢⎥⎣⎦上有解.令()22ln 1gx x x =--,1,e e x ⎡⎤∈⎢⎥⎣⎦,则()()22212222x x g x x x x x--'=-==,可知()g x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,故当1x =时,()()max 12g x g ==-,由于21e e 13g ⎛⎫=--⎪⎝⎭,()2e e 1g =-,且2211e3e -->-,所以212e a -≤≤-.故选:A .第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.设α是第二象限角,(),1P x 为其终边上一点,且1cos 3x α=,则tan α=_________.【答案】4-##【解析】【分析】由三角函数的定义及角所在象限、终边上的点列方程求参数,进而求正切值.【详解】由题设1cos 03x α==<,则21119x =+且0x <,可得x =-,所以1tan 4α==-x .故答案为:4-14.为美化校园,创建读书角,同学将莫言的3部作品《红高粱》《酒国》《蛙》随机地排在书架上,《蛙》恰好放在三本书中间的概率是___________.【答案】13【解析】【分析】利用排列数公式计算三本书不同的排法种数,根据古典概型求解.【详解】3本书随机排在书架上共有33A 种,其中《蛙》恰好放在三本书中间共有22A 种排法,根据古典概型可知22332163A P A ===.故答案为:1315.在平面直角坐标系xOy 中,已知点(,0)(0)A t t ->,(,0)B t ,点C 满足8AC BC =,且点C 到直线:34240l x y -+=的最小距离为95,则实数t 的值是__________.【答案】1【解析】【分析】根据题意求出点C 的轨迹,根据几何意义即可求得实数t 的值.【详解】因为点(,0)(0)A t t ->,(,0)B t ,点C 满足8AC BC =,设()00,C x y ,则()()222000000,,,,88AC x t y BC x t y AC BC x y t =+=-⋅=⇒+=+ ,所以点C 是以原点()0,0O为圆心,半径r的圆,而()0,0O 到直线:34240l x y -+=的距离24955d =>,因为点C 到直线:34240l x y -+=的最小距离为95,所以()2493,0155r r t t -=⇒==>⇒=.故答案为:116.设椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,P 是椭圆上一点,且12π3F PF ∠=,若12F PF △的外接圆和内切圆的半径分别为R ,r ,当3R r =时,椭圆的离心率为______.【答案】35##0.6【解析】【分析】由正弦定理得到R =,再根据三角形面积公式和余弦定理得到)3a c r -=,从而根据3R r=得到方程,求出离心率.【详解】由题意得122F F c =,由正弦定理得12122sin 32F F F PF R ∠==,故R =,由椭圆定义可知,122PF PF a +=,故()()12212112PF F S PF PF F F r a c r =++=+V ,又121212211sin 2PF F S PF PF F PF PF =⋅∠=⋅V ,由余弦定理得()2222212121212121212122cos 22PF PF PF PF F F PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅,即222112424122a PF PF c PF PF -⋅-=⋅,解得2212443a c PFPF -⋅=,故())222244334a c a c a cr --+==,解得)3a c r -=,因为3R r=)33a c =-⨯,解得35c a =.故答案为:35三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:每题12分,共60分.17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量()()()cos ,sin m A B A B =-- ,()cos ,sin n B B =- ,且35m n ⋅=- .(1)求sin A 的值;(2)若42a =5b =,求ABC 的面积.【答案】(1)45(2)2【解析】【分析】(1)利用数量积的坐标表示及两角和的余弦公式求出cos A ,即可求出sin A ;(2)由余弦定理求出c ,最后由面积公式计算可得.【小问1详解】因为()()()cos ,sin m A B A B =-- ,()cos ,sin n B B =- ,且35m n ⋅=- ,3cos()cos sin()sin 5A B B A B B ∴---=-,()3cos cos 5A B B A ∴-+==-⎡⎤⎣⎦,又∵A 为ABC 内角,24sin 1cos 5A A ∴=-=,【小问2详解】由余弦定理2222cos a b c bc A =+-,得233225255c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去),故1c =,所以114sin 512225ABC S bc A ==⨯⨯⨯= .18.某面包店记录了最近一周A 口味的面包的销售情况,如下表所示:A 口味星期一二三四五六日销量/个16121410181913(1)求最近一周A 口味的面包日销量的中位数.(2)该面包店店主将在下一周每天都制作n 个A 口味的面包,假设下一周A 口味的面包日销量和被记录的这一周的日销量保持一致,每个面包当天卖出可获利6元,当天未售出则将损失5元,从14,15n =中选一个,你应该选择哪一个?说明你的理由.【答案】(1)14(2)14n =【解析】【分析】(1)将销量从小到大的顺序排列,确定中位数;(2)分别求出时的获利情况,然后比较大小来确定.【小问1详解】最近一周A 口味的面包日销量按照从小到大的顺序排列为10,12,13,14,16,18,19.所以A 口味的面包日销量的中位数为14.【小问2详解】当14n =时,下一周A 口味的面包可获利()()()()1412141014141361412141014135511++++++⨯--+-+-⨯=⎡⎤⎣⎦元.当15n =时,下一周A 口味的面包可获利()()()()()15121410151513615121514151015135509++++++⨯--+-+-+-⨯=⎡⎤⎣⎦元.因为511509>,所以应该选14n =.19.已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n=(2)n nP Q <【解析】【分析】(1)根据n S 与n a 的关系,结合等差数列的通项公式进行求解即可;(2)根据裂项相消法,结合等比数列前n 项和、二项式定理进行求解即可.【小问1详解】当1n =时,211112a S a a =-=,所以11a =或10a =(舍去),当2n ≥时,有221112,2,n n n n n n a S a a S a ---⎧=-⎨=-⎩两式相减得221112n n n n n n n a a a a a a a ----=-+=+,整理得()()111n n n n n n a a a a a a ---+-=+,因为{}n a 的各项都是正数,所以11n n a a --=,所以{}n a 是首项为1,公差为1的等差数列,所以()111n a n n =+⋅-=;【小问2详解】由(1)得()12n n n S +=,则()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,所以12111111111212122311n n P S S S n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪++⎝⎭⎝⎭,由(1)得11211,2n n a --=所以21211222111111111121211222212n n n n n Q a a a a --⎛⎫- ⎪⎛⎫⎝⎭=+++=++++==- ⎪⎝⎭- ,因为()()12(11)11022n n n n n n n +=+=+++>+>≥ ,所以1121n n <+,故111121n n->-+,所以当2n ≥时,n n P Q <.20.已知函数()ln 1x f x me x =--.(1)当1m =时,求曲线()y f x =在点(1, (1))f 处的切线方程;(2)若(1,)m ∈+∞,求证:()1f x >.【答案】(1)(1)y e x =-;(2)见解析【解析】【分析】(1)代入1m =,可得()y f x =的解析式.求得导函数,即可得直线方程的斜率,求得点坐标后,由点斜式即可求得切线方程.(2)根据放缩法,由1m >得()ln 1ln 1x x f x me x e x ->--=-.从而证明ln 20x e x -->即可.构造函数()ln x g x e x =-,通过求得导函数1()x g x e x '=-,再令1()x h x e x =-,求得21()0x h x e x '=+>.即可判断1()x h x e x =-的单调性,进而求得1()x g x e x '=-的零点所在区间,并判断出该零点为()ln x g x e x =-的极小值点,求得在该点的最小值,即证明不等式成立.【详解】(1)当1m =时,()ln 1x f x e x =--所以1()x f x e x'=-所以(1)1f e '=-,又因为(1)1 f e =-,即点坐标为(1,1)e -所以曲线()yf x =在点(1,1)e -处的切线方程为(1)(1)(1)y e e x --=--即(1)y e x=-(2)证明:当1m >时,()ln 1ln 1x x f x me x e x ->--=-,要证明()1f x >,只需证明ln 20x e x -->,设()ln x g x e x =-,则1()xg x e x'=-,设1()x h x e x =-,则21()0x h x e x '=+>,所以函数1()()x h x g x e x '==-在(0,)+∞上单调递增,因为121202g e '⎛⎫=-< ⎪⎝⎭,(1)10g e '=->,所以函数1()x g x e x '=-在(0,)+∞上有唯一零点0x ,且01,12x ⎛⎫∈ ⎪⎝⎭,因为()00g x '=,所以001x e x =,即00ln x x =-,当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>,所以当0x x =时,()g x 取得最小值()0g x ,故()000001()=e ln 220x g x g x x x x ≥--=+->,01,12x ⎛⎫∈ ⎪⎝⎭综上可知,若(1,)m ∈+∞,()1f x >.【点睛】本题考查了利用导数求切线方程,由导数证明不等式成立.根据导数判断函数的单调性和极值,函数的最值及零点的综合应用,对思维能力要求较高,是高考的常考点和重难点,属于难题.21.已知抛物线2:4C x y =,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA,MB,切点分别为A,B.(1)当M 的坐标为(0,-1)时,求过M,A,B 三点的圆的方程;(2)证明:以AB 为直径的圆恒过点M.【答案】(1)22(1)4x y +-=(2)见证明【解析】【分析】(1)设出过M 点的切线方程,与抛物线方程联立,得到一个元二次方程,它的判别式为零,可以求出切线方程的斜率,这样可以求出A,B 两点的坐标,设出圆心P 的坐标为(0,)a ,由PM PB =,可以求出a ,最后求出圆的方程;(2)设0(,1)M x -,设切点分别为211(,4x A x ,222(,4x B x ,把抛物线方程化24x y =,求导,这样可以求出切线的斜率,求出切线MA 的方程,切线MB 的方程,又因为切线MA 过点0(,1)M x -,切线MB 也过点0(,1)M x -,这样可以发现1x ,2x 是一个关于x 的一元二次方程的两个根,计算出2110(,1)4x MA x x =-+uuu r ,2220(,1)4x MB x x =-+uuu r ,计算MA MB ⋅ ,根据根与系数关系,化简MA MB ⋅ ,最后计算出MA MB ⋅ =0,这样就证明出以AB 为直径的圆恒过点M.【详解】解:(1)解:当M 的坐标为(0,1)-时,设过M 点的切线方程为1y kx =-,由24,1,x y y kx ⎧=⎨=-⎩消y 得2440x kx -+=.(1)令2(4)440k ∆=-⨯=,解得1k =±.代入方程(1),解得A(2,1),B(-2,1).设圆心P 的坐标为(0,)a ,由PM PB =,得12a +=,解得1a =.故过,,M A B 三点的圆的方程为22(1)4x y +-=.(2)证明:设0(,1)M x -,由已知得24x y =,12y x '=,设切点分别为211(,4x A x ,222(,)4x B x ,所以12MA x k =,22MB x k =,切线MA 的方程为2111()42x x y x x -=-即2111124y x x x =-,切线MB 的方程为2222()42x x y x x -=-即2221124y x x x =-.又因为切线MA 过点0(,1)M x -,所以得201111124x x x -=-.①又因为切线MB 也过点0(,1)M x -,所以得202211124x x x -=-.②所以1x ,2x 是方程2011124x x x -=-的两实根,由韦达定理得1202,x x x +=124x x =-.因为2110(,1)4x MA x x =-+uuu r ,2220(,1)4x MB x x =-+uuu r ,所以22121020()()(1)(1)44x x MA MB x x x x ⋅=--+++uuu r uuu r 22221212012012121()()21164x x x x x x x x x x x x ⎡⎤=-+++++-+⎣⎦.将1202,x x x +=124x x =-代入,得0MA MB ⋅=.所以以AB 为直径的圆恒过点M .【点睛】本题考查利用直线与抛物线的位置关系,求出切线的斜率,又考查了利用导数,研究抛物线的切线问题,同时考查了求过三点的圆的方程.考查了方程思想、数学运算能力.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.数学中有许多美丽的曲线,例如曲线sin 2:cos x t E y t =⎧⎨=⎩,(t 为参数)的形状如数字8(如图),动点A ,B 都在曲线E 上,对应参数分别为t α=与()π02π2t αα=-<<,设O 为坐标原点,OC OA OB =+ .(1)求C 的轨迹的参数方程;(2)求C 到坐标原点的距离d 的最大值和最小值.【答案】(1)2sin 2sin cos x y ααα=⎧⎨=+⎩,(α为参数,02πα<<)(2,最小值4.【解析】【分析】(1)利用条件找出A ,B 点的坐标,利用向量的基本坐标运算,得出C 的轨迹的参数方程;(2)设出C 的坐标,利用点到直线的距离公式求出表达式,即可求出.【小问1详解】由题意有()sin 2,cos A αα,()sin 2,sin B αα.又OC OA OB =+,所以()2sin 2,sin cos C ααα+,故C 的轨迹的参数方程为2sin 2sin cos x y ααα=⎧⎨=+⎩,(α为参数,02πα<<).【小问2详解】C 点到坐标原点的距离)02πd α=<<.因为[]sin 21,1α∈-,所以当sin 21α=时,d 取得最大值,因为1sin 28α=-,d 取得最小值4.[选修4-5:不等式选讲]23.已知函数()244f x x a x a =+-+.(1)若2a =,求不等式()112f x x +<的解集;(2)若R x ∃∈,[]0,2a ∃∈,使得12f x m ⎛⎫> ⎪⎝⎭能成立,求实数m 的取值范围.【答案】(1){2x x <-或14615x ⎫-<<⎬⎭;(2)(),2-∞.【解析】【分析】(1)分类讨论的方法求解绝对值不等式.(2)利用绝对值的几何意义有2222x a x a a a +-+≤-,将问题转化为[]0,2a ∃∈使2a a m ->成立,结合()2g a a a =-的图象确定其最大值,即可得m 的取值范围.【小问1详解】依题意,得1424412x x x +-++<,当1x ≤-时,1424412x x x --+++<,可得<2x -;当112x -<<-时,1424412x x x ----+<,可得141152x -<<-;当21x ≥-时,1424412x x x +--+<,可得162x -≤<;综上,不等式()112f x x +<的解集为{|2x x <-或146}15x -<<.【小问2详解】依题意,21222f x m x a x a m ⎛⎫>⇔+-+> ⎪⎝⎭,又2222222x a x a x a x a a a +-+≤+--=-,故2a a m ->,令()2g a a a =-,[]0,2a ∈,结合()g a 的图象知,()()max 22g a g ⎡⎤==⎣⎦,故2m <,。
四川省绵阳市2020届高三数学第二次诊断性测试试题文含解析
四川省绵阳市2020届高三数学第二次诊断性测试试题 文(含解析)注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3. 考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}|0U x x =>,{}2|1xM x e e=<<,则UCM =( )A. ()1,2B. ()2,+∞C. (][)0,12,+∞D. [)2,+∞【答案】D 【解析】 【分析】先确定集合M 的元素,再由补集定义求解.【详解】由题意2{|1}{|02}x M x e e x x =<<=<<,∴{|2}U C M x x =≥.故选:D .【点睛】本题考查补集的运算,解题时需确定集合的元素后才能进行集合的运算.本题还考查了指数函数的单调性.2.已知i 为虚数单位,复数z 满足12z i i ⋅=+,则z =( ) A. 2i - B. 2i + C. 12i - D. 2i -【答案】A 【解析】 【分析】由除法计算出复数z . 【详解】由题意122iz i i+==-. 故选:A .【点睛】本题考查复数的除法运算,属于基础题.3.已知高一(1)班有学生45人,高一(2)班有50人,高一(3)班有55人,现在要用分层抽样的方法从这三个班中抽30人参加学校“遵纪守法好公民”知识测评,则高一(2)班被抽出的人数为( ) A. 10 B. 12 C. 13 D. 15【答案】A 【解析】 【分析】分层抽样是按比例抽取人数. 【详解】设高一(2)被抽取x 人,则5030455055x =++,解得10x =. 故选:A .【点睛】本题考查分层抽样,属于基础题.4.已知向量()1,2a =,()1,b x =-,若//a b ,则b =( )B.52D. 5【答案】C 【解析】 【分析】根据向量平行的坐标运算计算出x ,再由模的坐标表示求模.【详解】∵//a b ,∴12(1)0x ⨯-⨯-=,2x =-,∴2(1)b =-=.故选:C .【点睛】本题考查向量平行的坐标表示,考查向量模的坐标表示.属于基础题.5.已知α为任意角,则“1cos 23α=”是“sin 3α=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要【答案】B 【解析】 分析】说明命题1cos 23α=⇒sin α=和sin α=⇒1cos 23α=是否为真即可.【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin 3α=”的必要不充分条件. 故选:B .【点睛】本题考查充分必要条件的判断,只要命题p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件.6.已知()2,0M ,P 是圆N :224320x x y ++-=上一动点,线段MP 的垂直平分线交NP于点Q ,则动点Q 的轨迹方程为( )A. 22195x y +=B. 22159x y -=C. ,? a c ==D.22195x y -= 【答案】A 【解析】 【分析】利用6QM QN QP QN PN +=+==,确定M 点轨迹是椭圆,从而易求得其方程. 【详解】由题意圆标准方程为22(2)36x y ++=,圆心为(2,0)N -,半径为6, ∵线段MP 的垂直平分线交NP 于点Q ,∴QP QM =, ∴6QM QN QP QN PN +=+==4MN >=, ∴Q 点轨迹是以,M N 为焦点,长轴长为6的椭圆,∴3,2a c ==,b ==∴其轨迹方程为22195x y +=.故选:A .【点睛】本题考查用椭圆的定义求轨迹方程,属于基础题.根据椭圆定义确定动点轨迹是椭圆,然后求出,a b 得标准方程,要注意所求轨迹方程是不是圆锥曲线的标准方程. 7.已知某产品的销售额y 与广告费用x 之间的关系如下表:若根据表中的数据用最小二乘法求得y 对x 的回归直线方程为 6.59y x =+,则下列说法中错误的是( )A. 产品的销售额与广告费用成正相关B. 该回归直线过点()2,22C. 当广告费用为10万元时,销售额一定为74万元D. m的值是20【答案】C 【解析】 【分析】根据回归直线方程中x 系数为正,说明两者是正相关,求出x 后,再由回归方程求出y ,然后再求得m ,同样利用回归方程可计算出10x =时的预估值.【详解】因为回归直线方程中x 系数为6.5>0,因此,产品的销售额与广告费用成正相关,A 正确; 又0123425x ++++==,∴ 6.52922y =⨯+=,回归直线一定过点(2,22),B 正确;10x =时, 6.510974y =⨯+=,说明广告费用为10万元时,销售额估计为74万元,不是一定为74万元,C 错误; 由10153035225m y ++++==,得20m =,D 正确.故选:C .【点睛】本题考查回归直线方程,回归直线方程中x 系数的正负说明两变量间正负相关性,回归直线一定过中心点(,)x y ,回归直线方程中计算的值是预估值,不是确定值.8.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为( ) A .18B.14C. 38D.12【答案】B 【解析】 【分析】可用列举法写出三人选择景点的各种情形.然后计数后可概率.【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为2184P ==. 故选:B .【点睛】本题考查古典概型,解题时可用列举法写出所有的基本事件.9.双曲线()222210,0x y a b a b-=>>的右焦点为F ,过F 作与双曲线的两条渐近线平行的直线且与渐近线分别交于A ,B 两点,若四边形OAFB (O 为坐标原点)的面积为bc ,则双曲线的离心率为( )B. 2D. 3【答案】B 【解析】 【分析】把四边形OAFB 面积用,,a b c 表示出来,它等于bc ,变形后可求得离心率. 【详解】由题意(c,0)F ,渐近线方程为by x a =±,不妨设AF 方程为()b y x c a=--, 由()b y x c a b y x a ⎧=--⎪⎪⎨⎪=⎪⎩,得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即(,)22c bc A a ,同理(,)22c bc B a -,∴21(2)222OAFBbc bc S c a a =⨯⨯⨯=,由题意22bc bc a=,∴2c a =.故选:B .【点睛】本题考查求双曲线的离心率.求离心率关键是找到关于,,a b c 的一个等式,本题中四边形OAFB 的面积是bc 就是这个等式,因此只要按部就班地求出其面积即可得. 10.已知圆C :22280x y x +--=,直线l 经过点()2,2M,且将圆C 及其内部区域分为两部分,则当这两部分的面积之差的绝对值最大时,直线l 的方程为( ) A. 220x y B. 260x y +-= C. 220x y --= D. 260x y +-=【答案】D 【解析】 【分析】如图,设设AOB θ∠=(0)θπ<≤,求出直线l 分圆所成两部分面积之差的绝对值9(sin )S πθθ=-+,利用导数确定函数的单调性,确定出当θ最小时S 最大,由圆的性质知θ最小时,CM AB ⊥,从而可求得直线方程.【详解】圆C 标准方程为22(1)9x y -+=,圆心为(1,0)C ,半径为3r =,直线l 交圆于,A B 两点,设AOB θ∠=(0)θπ<≤,如图,则直线l 分圆所成两部分中较小部分面积为22111sin 22S r r θθ=-,较大部分面积为22211(2)sin 22S r r πθθ=-+, ∴这两部分面积之差的绝对值为22221sin 9(sin )S S S r r r πθθπθθ=-=-+=-+,'9(1cos )0S θ=-+≤,∴9(sin )S πθθ=-+是减函数,θ最小时,S 最大.在CAB ∆中,2222218cos 218r AB AB rθ--==,∴AB 最小时,cos θ最大,从而θ最小.∵AB 经过点M ,∴由圆的性质知当CM AB ⊥时,AB 取得最小值.此时112AB CM k k =-=-,∴直线l 方程为12(2)2y x -=--,即260x y +-=.故选:D .【点睛】本题考查直线与圆相交问题,解题关键是引入AOB θ=∠,借助于扇形面积公式用θ表示出两个弓形面积之差的绝对值,再利用导数确定这个绝对值最大时的θ值,从而确定直线l 的位置,求得其方程.本题考查了函数思想的应用.11.已知()f x 为偶函数,且当0x ≥时,()31cos sin 3x x x f x x =-+,则满足不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭的实数m 的取值范围为( )A. 1,22⎛⎫ ⎪⎝⎭B. ()0,2C. ()10,1,22⎛⎫ ⎪⎝⎭D. ()2,+∞【答案】A 【解析】 【分析】由偶函数性质把不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭化为2(log )(1)f m f <,由导数确定函数()f x 在[0,)+∞上的单调性,利用单调性解不等式.【详解】∵()f x 是偶函数,∴12222(log )(log )(log )(log )f m f m f m f m =-==,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为22(log )2(1)f m f <,即2(log )(1)f m f <,0x ≥时,31()cos sin 3f x x x x x =-+,2'()cos sin cos (sin )f x x x x x x x x x =--+=-,令()sin g x x x =-,则'()1cos 0g x x =-≥,∴()g x 是R 上的增函数,∴当0x >时,()(0)0g x g >=,∴0x ≥时,'()0f x ≥,∴()f x 在[0,)+∞上是增函数, ∴由2(log )(1)f m f <得2log 1m <,即21log 1m -<<,122m <<. 故选:A .【点睛】本题考查函数的奇偶性与单调性,考查解对数不等式.此各种类型不等式的解法是:本题这种类型的不等式有两种,一种是奇函数,不等式为12()()0f x f x +>,转化为12()()f x f x >-,一种是偶函数,不等式为12()()f x f x >,转化为12()()f x f x >,然后由单调性去函数符号“f ”.12.函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则实数a 的取值范围是( ) A. 11,32⎛⎫⎪⎝⎭B. (][)1,23,+∞C. ()[)1,23,+∞D. [)2,3【答案】D 【解析】 【分析】由零点存在定理1(0)()0f f a <得23a <<,但还要验证此时在1(0,)a上是否只有一个零点,然后讨论(0)0f =和1()0f a=两种情形是否符合题意.【详解】(1)若由1(0)()0f f a<得(1log 2)(1log 3)0a a --<,lg 2lg 3(1)(1)0lg lg a a--<, (lg lg 2)(lg lg3)0a a --<,lg 2lg lg3a <<,∴23a <<.设2()(21)g x ax =-,()log (2)a h x ax =+,∵23a <<,∴()h x 在定义域内是增函数, 作出()g x ,()h x 的示意图,如图.1(0)()1g g a ==,(0)log 21a h =<,1()log 31a h a =>,∴()g x 与()h x 的图象在1[0,]a上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(2)若(0)0f =,则1log 20a -=,2a =.如(1)中示意图,2()log (22)h x x =+是增函数,只是(0)(0)1h g ==,而11()(0)1()h h g a a >==,∴()g x 与()h x 的图象在1[0,]a上只有一个交点,即()f x 在1[0,]a上只有一个零点,符合题意.(3)若1()0f a =,则1log 30a -=,3a =,如(1)中示意图,3()log (32)h x x =+是增函数,此时11()()1h g a a==,但(0)1g =,而3(0)log 21(0)h g =<=,因此在1(0,)2a 上()g x 与()h x 的图象还有一个交点,即()f x 在1[0,]a上有两个零点,不合题意.综上,a 的取值范围是[2,3). 故选:D .【点睛】本题考查函数零点分布问题.()f x 在闭区间[,]m n 上只有一个零点,首先由零点存在定理()()0f m f n <确定参数范围,但是此种情形下必须验证在(,)m n 上是否是一个零点,零点存在定理只说明有零点,没有说明有几个零点.其次分别讨论()0f m =和()0f n =两种情形是否满足题意.二、填空题:本大题共4小题,每小题5分,共20分.13.直线l :()110ax a y -+-=与直线4630x y -+=平行,则实数a 的值是______. 【答案】2. 【解析】 【分析】由两直线平行的条件判断. 【详解】由题意(1)1463a a -+-=≠-,解得2a =.故答案为:2.【点睛】本题考查两直线平行的充要条件,两直线1110A x B y C ++=和2220A x B y C ++=平行,条件12210A B A B -=是必要条件,不是充分条件,还必须有12210AC A C -≠或12210B C B C -≠,但在2220A B C ≠时,两直线平行的充要条件是111222AB C A B C =≠. 14.某同学在最近的五次模拟考试中,其数学成绩的茎叶图如图所示,则该同学这五次数学成绩的方差是______.【答案】30.8. 【解析】 【分析】写出茎叶图中的5个数据,计算均值后再计算方差.【详解】五个数据分别是:110,114,119,121,126,其平均值为1101141191211261185x ++++==,方差为2222221[(110118)(114118)(119118)(121118)(126118)]5s =-+-+-+-+-30.8=故答案为:30.8【点睛】本题考查茎叶图,考查方差的计算.读懂茎叶图是解题基础. 15.函数()sin 0,2y x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则()f x 在区间[],ππ-上的零点之和为______.【答案】23π. 【解析】 【分析】先求出周期,确定ω,再由点(,1)6π确定ϕ,得函数解析式,然后可求出[,]-ππ上的所有零点.【详解】由题意411()3126T πππ=⨯-=,∴22πωπ==,又sin(2)16πϕ⨯+=且2πϕ<,∴6π=ϕ, ∴()sin(2)6f x x π=+.由sin(2)06x π+=得26x k ππ+=,212k x ππ=-,k Z ∈, 在[,]-ππ内有:7511,,,12121212ππππ--,它们的和为23π.【点睛】本题考查三角函数的零点,由三角函数图象求出函数解析式,然后解方程()0f x =得出零点,就可确定在已知范围内的零点.本题也可用对称性求解,由函数周期是π,区间[,]-ππ含有两个周期,而区间端点不是函数零点,因此()f x 在[,]-ππ上有4个零点,它们关于直线6x π=对称,由此可得4个零点的和.16.过点()1,0M -的直线l 与抛物线C :24y x =交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,若4MBF MAF S S ∆∆=,则ABF ∆的面积为______. 【答案】3. 【解析】 【分析】不妨设,A B 在第一象限且由设1122(,),(,)A x y B x y ,由4MBF MAF S S ∆∆=,得2111422MF y MF y =⨯,从而214y y =.由,,A B M 共线及,A B 在抛物线上,可求得12,y y . 【详解】不妨设,A B 在第一象限,如图,设1122(,),(,)A x y B x y ,由题意(1,0)F , ∵4MBF MAF S S ∆∆=,∴2111422MF y MF y =⨯,∴214y y =.又,,M A B 共线,∴121211y yx x =++,即122212111144y y y y =++,把214y y =代入得: 112211414114y yy y =++,显然10y ≠,解得11y =,∴24y =, ∴12112MAF S ∆=⨯⨯=,4MBF S ∆=,∴413FAB MBF MAF S S S ∆∆∆=-=-=.故答案为:3.【点睛】本题考查直线与抛物线相交的面积问题.解题关键是善于发现MAF ∆和MBF ∆有共同的底MF ,从而由面积比得出,A B 两点的纵坐标比,再由,,M A B 共线及,A B 在抛物线上,求得,A B 的纵坐标,从而得三角形面积.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间t (小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t 的中位数m .(2)已知样本中阅读时间低于m 的女生有30名,请根据题目信息完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.22⨯列联表附表:其中:()()()()()22n ad bcKa b c d a c b d-=++++.【答案】(1)10;(2)不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关.【解析】【分析】(1)频率为0.5对应的点的横坐标为中位数;(2)100名学生中男生45名,女生55名,由频率分布直方图知,阅读时长大于等于m的人数为50人,小于m的也有50人,阅读时间低于m的女生有30名,这样可得列联表中的各数,得列联表,依据2K公式计算2K,对照附表可得结论.【详解】(1)由题意得,直方图中第一组,第二组的频率之和为0.0450.0650.5⨯+⨯=.所以阅读时间的中位数10m=.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m的人数为1000.550⨯=人,故列联表补充如下:2K 的观测值()2100253025201005050455599k ⨯⨯-⨯==⨯⨯⨯ 1.01 2.706≈<,所以不能在犯错误的概率不超过0.1的前提下认为阅读与性别有关.【点睛】本题考查频率分布直方图,考查独立性检验.正确认识频率分布直方图是解题基础.18.已知等差数列{}n a 的公差2d =,30a >,且-4a 与7a 的等比中项.数列{}n b 的通项公式为32n a n b +=.(1)求数列{}n b 的通项公式;(2)记)*n n c a n N=∈,求数列{}nc 的前n 项和nS.【答案】(1)222n n b -=;(2)2241n n S n n =+--.【解析】 【分析】(1)由等差数列的通项公式表示出47,a a ,由等比中项定义求得1a ,注意30a >可确定只有一解,从而中得n a ,也即得n b ;(2)由(1)得1252n n c n -=-+,用分组求和法可求得n S .【详解】(1)由题意得41136a a d a =+=+,711612a a d a =+=+.∴(()()211612a a -=+⋅+,解得13a =-或115a =-.又31220a a =+⨯>,得14a >-,故13a =-. ∴()32125n a n n =-+⋅-=-.∴32222n a n n b +-==.(2)由(1)可知,1252n n n c a n -==-+.12n n S c c c =+++()123112512nn -=--+++-+⎡⎤⎣⎦-()325212n n n -+-=+-2241n n n =+--.【点睛】本题考查等差数列的通项公式,考查等比中项的定义,考查分组求和法以及等差数列和等比数列前n 项和公式,掌握等差数列与等比数列的通项公式和前n 项和公式是解题基础.19.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知()()()sin sin sin sin A B a b c C B +-=+.(1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,BC =,求sin B . 【答案】(1)23A π=;(2)12.【解析】 【分析】(1)由正弦定理把角的关系转化为边的关系,再由余弦定理可求得A ;(2)把ABC ∆的面积用两种方法表示建立AD 与三角形各边的关系,由BC =,即即AD =23a bc =,再代入余弦定理2222cos a b c bc A =+-中可求得b c =,从而可得6B C π==,于是得sin B 的值.【详解】(1)ABC ∆中,由正弦定理得()()()a b a b c c b +-=+,即222ab c bc =++.由余弦定理得2221cos 22b c a A bc +-==-,结合0A π<<,可知23A π=.(2)在ABC ∆中,11sin 22ABC S AB AC BAC BC AD ∆=⋅∠=⋅a AD =⋅.由已知BC =,可得AD =在ABC ∆中,由余弦定理得2222cos120a b c bc =+-︒, 即223bc b c bc =++,整理得()20b c -=,即b c =, ∴6A B π==.∴1sin sin62B π==. 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,第(2)问解题关键是把三角形面积用两种方法表示而建立等式:11sin 22ABC S bc A BC AD ∆==⋅. 20.已知椭圆C :2212x y +=,动直线l 过定点()2,0且交椭圆C 于A ,B 两点(A ,B 不在x轴上).(1)若线段AB 中点Q 的纵坐标是23-,求直线l 的方程; (2)记A 点关于x 轴的对称点为M ,若点(),0N n 满足MN NB λ=,求n 的值. 【答案】(1)220x y --=;(2)1n =. 【解析】 【分析】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+,直线方程与椭圆方程联立消元得y的二次方程,由判别式得t 的取舍范围,由韦达定理得1212,y y y y +,利用AB 中点纵坐标是23-可求得t ,只要满足>0∆即可; (2)由题意()11,M x y -,MN NB λ=,说明M ,N ,B 三点共线,即MN MB k k =.这样可求出n ,化为只含12,y y 的式子后代入(1)中的1212,y y y y +就可求得n . 【详解】(1)设()11,A x y ,()22,B x y ,直线AB :2x ty =+.由22222x ty x y =+⎧⎨+=⎩消去x 得()222420t y ty +++=. 220t ∆=->,解得t >t <由韦达定理得12242t y y t -+=+,12222y y t =+.① ∵AB 中点Q 的纵坐标是23-,∴1243y y +=-,代入①解得1t =或2t =.又t >t <2t =. ∴直线l 的方程为220x y --=. (2)由题意得()11,M x y -,由MN NB λ=,知M ,N ,B 三点共线, 即MN MB k k =.∴()()1211210y y y n x x x ----=--,即121121y y y n x x x +=--, 解得()121121y x x n x y y -=++.将112x ty =+,222x ty =+,代入得121222ty y n y y =++.②由①有12242t y y t -+=+,12222y y t =+.③ 将③代入②得到1n =.【点睛】本题考查直线与椭圆相交问题,解题方法是“设而不求”的思想方法,解题时注意体会.21.已知函数()212ln 2x f x ax x =+-,其中a R ∈. (1)讨论函数()f x 的单调性;(2)若3a ≥,记函数()f x 的两个极值点为1x ,2x (其中21x x >),求()()21f x f x -的最大值.【答案】(1)当a ≤时,()f x 在()0,∞+上单调递增;当a >时,函数()f x在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减; (2)32ln 22-. 【解析】 【分析】 (1)求出导函数'()f x ,由'()0f x >得增区间,由'()0f x <得减区间,注意题中函数定义域是(0,)+∞,因此对二次三项式28x ax -+分类情况为第一类:0a ≤或0∆≤,第二类0a >且>0∆.(2)与极值点有关的问题,不是直接代入极值点,而是用12,x x 表示极值点,由12,x x 是方程220x ax -+=的解,得12x x a +=,122x x =.2212221()()2ln 2f x f x x x ax -=+-21111(2ln )2x x ax -+-()()2222121112ln 2x x x a x x x =+---2222112ln 2x x x x -=-222211122ln x x x x x x -=-2211122lnx x x x x x =-+.不妨设12x x <,引入变量21xt x =,则1t >,21()()f x f x -就转化为t 的函数,由3a ≥求得t 的范围,由导数知识可得所求最大值.【详解】(1)()()2'220x ax x a x x xf x -+=+-=>.令()22g x x ax =-+,则28a ∆=-.①当0a ≤或0∆≤,即a ≤()'0f x ≥恒成立, ∴()f x 在()0,∞+上单调递增.②当00a >⎧⎨∆>⎩,即a >时,由()'0f x >,得0x <<x >由()'0f x <,得22a a x -<<. ∴函数()f x在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减.综上所述,当a ≤()f x 在()0,∞+上单调递增;当a >()f x在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. (2)由(1)得,当a >()f x 有两极值点1x ,2x (其中21x x >). 则1x ,2x 为()220x a g x x =-+=的两根,∴12x x a +=,122x x =.()()()()222212121112ln2x f x f x x x a x x x -=+--- 222222122111122ln 2ln 2x x x x x x x x x x --=-=-2211122lnx x x x x x =-+. 令()211x t t x =>, 则()()()2112ln f x f x h t t t t-==-+.由3a ≥,得()22121219222x x a t x x t +==++≥,即22520t t -+≥,解得2t ≥.∵()()22222121211'0t t t t t t th t ---+-=--==<, ∴()h t 在[)2,+∞上单调递减, ∴()()max 322ln 22h t h ==-. 即()()21f x f x -的最大值为32ln 22-. 【点睛】本题考查用导数研究函数的单调性,函数的极值点以及与极值点有关的最值.在求单调区间时要注意分类讨论.在研究极值点有关的最值问题时,常常设极值点为12,x x ,由极值点的定义得出函数中参数与12,x x 的关系,即用12,x x 表示参数,并代入待求(证)式,同时设21x t x =(本题),可把待求(证)式转化为t 的函数式,从而再利用导数的知识确定这个函数得出结论.这类题难度较大,对学生的思维能力、推理论证能力、转化与化归能力要求较高.(二)选考题:共10分。
2023届四川省绵阳市二诊文数试题及答案
文科数学参考答案第1页(共6页)绵阳市高中2020级第二次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.DDCAABCDBA CA 二、填空题:本大题共4小题,每小题5分,共20分.13.14.1-15.3-16.[1,3)三、解答题:本大题共6小题,共70分.17.解:(1)由23(cos )sin b a C a C -=,及正弦定理可得,3sin 3sin cos sin sin B A C a A C -=,················································2分∵3sin 3sin()3sin cos 3cos sin B A C A C A C =+=+·······································4分∴3cos sin sin sin A C a A C =,································································6分即sin 3cos a A A =,且3A π=,可得a =·············································8分(2)由2121)cos(-=⋅-=-⋅⋅=⋅b c A b c AC BA π,可得1c b ⋅=,·······················10分由余弦定理2222cos 4b c a bc A +=+⋅=.···················································12分18.解:(1)由题意知,2n S =2n a +n a ,①···············································1分当n =1时,21a =21a +1a ,则11a =;···························································2分当2≥n 时,21n S -=21n a -+1n a -,②·····················································3分①②相减可得,2a n =2n a −21n a -+n a −1n a -,················································4分∴a n +1n a -=2n a −21n a -,则a n -1n a -=1,∴数列{}n a 是以11a =为首项,1为公差的等差数列,··································5分所以,a n =n (n ∈N ∗).········································································6分(2)2()3n n n a b n =⋅,············································································7分设n n n c a b =,则1112232((1)()()3333n n n n n n c c n n -----=⋅--⋅=⋅,·························8分∴当3n <时,10n n c c -->,所以1n n c c ->,············································9分当3n =时,10n n c c --=,所以1n n c c -=,·············································10分文科数学参考答案第2页(共6页)当3n >时,10n n c c --<,所以1n n c c -<,··············································11分则12345c c c c c <=>>> ,∴存在23或m =,使得对任意的,≤n n m m n N a b a b *∈恒成立.·····················12分19.解:(1)因为0.92<0.99,根据统计学相关知识,2R 越大,意味着残差平方和521ˆ()i i y y =-∑越小,那么拟合效果越好,因此选择非线性回归方程②2ˆˆˆymx n =+进行拟合更加符合问题实际.································································4分(2)令2i i u x =,则先求出线性回归方程:ˆˆˆymu n =+,·································5分∵14916250.8 1.1 1.5 2.4 3.711 1.955=,u y ++++++++===,······················7分2222221()(111)(411)(911)(1611)(2511)n ii uu =-=-+-+-+-+-∑=374,············9分∴121()()45.1ˆ0.121374()n i i i n i i u u y y m uu ==--==≈-∑∑,·················································10分由ˆ1.90.12111n=⨯+,得ˆ0.5690.57n =≈,即ˆ0.120.57yu =+,···········································································11分∴所求非线性回归方程为:2ˆ0.120.57yx =+.········································12分20.解:(1)设11()B x y ,,22()C x y ,,直线BC 的方程为:4x my =+,其中1=m k,········································1分联立224143x my x y =+⎧⎪⎨+=⎪⎩,消x 整理得:22(34)24360m y my +++=,····················2分所以:1222434m y y m -+=+,1223634y y m ⋅=+,·············································3分从而121212121222(6)(6)y y y y k k x x my my ⋅⋅=⋅=++++12212126()36y y m y y m y y =+++文科数学参考答案第3页(共6页)2222236134361444363434m m m m m +==-+++所以:12k k ⋅为定值14.········································································5分(2)直线AB 的方程为:)2(211++=x x y y ,··············································6分令4x =,得到66261111+=+=my y x y y M ,··················································7分同理:2266N y y my =+.··········································································8分从而121266||||||66M N y y MN y y my my =-=-++122121236|||6()36|y y m y y m y y -=+++······················································9分又122||34y y m -=+,212122144|6()36|34m y y m y y m +++=+,····················································10分所以||MN =,·······································································11分因为:1[34],m k=∈,所以||MN ∈,即线段MN长度的取值范围为.·············································12分21.解:(1)解:(1)a =2时,2()ln 32f x x x x =+-+,2231(21)(1)()x x x x f x x x-+--'==,·······················································2分由()0f x '>解得:x >1或102x <<;由()0f x '<解得:112x <<.·················3分故f (x )在区间(1),+∞,1(0)2,上单调递增,在区间1(1)2,上单调递减.···········4分所以f (x )的极大值是13()ln 224f =-,极小值是f (1)=0;·······························5分文科数学参考答案第4页(共6页)(2)2(1)1(1)(1)()ax a x ax x f x x x-++--'==,且10≥x -,································6分①当≥1a 时,10≥ax -,(1)(1)()0ax x f x x--'=,故f (x )在区间[1,2]上单调递增,所以min ()()0f x h a ==,·····························7分②当102≤a <时,10ax -≤,(1)(1)()0≤ax x f x x--'=,故f (x )在区间[1,2]上单调递减,所以min ()()(2)ln 2102≥a f x h a f ===+-,显然()h a 在区间1(02,上单调递增,故13()()ln 224≤h a h =-<0.······································································9分③当112a <<时,由()0f x '>解得:12≤x a <;由()0f x '<解得:11≤x a<.故f (x )在区间1(2]a 上单调递增,在区间1[1),a上单调递减.此时min 11()()()ln 22a f x f h a a a a ===--,则222111(1)()0222≥a h a a a a -'=-+=,故()h a 在区间1(1)2,上单调递增,故h (a )<h (1)=0.·······································11分综上:011()ln 2102211ln 1222,≥,≤,a a h a a a a a a ⎧⎪⎪⎪=+-<⎨⎪⎪--<<⎪⎩,且h (a )的最大值是0.··························12分22.解:(1)①当B 在线段AO 上时,由|OA |‧|OB |=4,则B (2,π)或(2,23π);②当B 不在线段AO 上时,设B (ρ,θ),且满足|OA |‧|OB |=4,∴A 4()θπρ+,·············································································1分又∵A 在曲线l 上,则44cos()sin()2θπθπρρ+++=-,···························3分∴2sin 2cos ρθθ=+,······································································4分又∵3≤≤2ππθπ+,即20≤≤πθ.综上所述,曲线C 的极坐标方程为:文科数学参考答案第5页(共6页)2sin 2cos ρθθ=+2(0≤≤πθ,或32()2=或=πρθπθ=.···························5分(2)①若曲线C 为:32()2=或=πρθπθ=,此时P ,Q 重合,不符合题意;②设l 1:θα=2(0≤≤πθ,又l 1与曲线C 交于点P ,联立2sin 2cos ,,θαρθθ=⎧⎨=+⎩得:2sin 2cos P ραα=+,····································································6分又l 1与曲线l 交于点Q ,联立sin cos 2,,θαρθρθ=⎧⎨+=-⎩得:2sin cos Q ραα-=+,·······································································7分又∵M 是P ,Q 的中点,1sin cos )2sin cos 2≤≤P Q M ρρπρααααα+==+-+,·······························8分令sin cos t αα+=,则)4t πα=+,又∵20≤≤πα,则3444≤≤πππα+,且1≤t ,∴1(1≤M t t t ρ=-,且1M t t ρ=-在1⎡⎣上是增函数,······················9分∴221M ρ-=,且当42ππα+=时,即4πα=时等号成立.∴OM 的最大值为22.····································································10分23.解:(1)由()f x ≤3的解集为[n ,1],可知,1是方程()f x =3的根,∴(1)f =3+|m +1|=3,则m =−1,······························································1分∴()f x =|2x +1|+|x −1|,①当x ≤12-时,()f x =−3x ≤3,即x ≥−1,解得:−1≤x ≤12-,··················2分②当112x <<时,()f x =x +2≤3,解得:112x -<<,·································3分③当x ≥1时,()f x =3x ≤3,解得:x =1.················································4分综上所述:()f x 的解集为[−1,1],所以m =−1,n =−1.······························5分文科数学参考答案第6页(共6页)(2)由(1)可知m =−1,则1222a b +=.·························································6分令12x a =,2y b =,则12a x =,2b y=,又a ,b 均为正数,则2x y +=(00,x y >>),由基本不等式得,2≥x y =+,·······················································7分∴1≤xy ,当且仅当,x =y=1时等号成立.所以有11≥xy,当且仅当,x =y=1时等号成立.·········································8分又22222244164(2)a b a b x y +=+=+8≥xy =(当且仅当,x =y 时等号成立).··········9分∴22168≥a b +成立,(当且仅当,122,a b ==时等号成立).···················10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
≤ (tm − m) + (tx − tm) = tx − m = f (tx) . 所以 f (tx) ≥ tf (x) + f (tm) . …………………………………………………10 分
文科数学答案第5页(共 5 页)
,t∈
(1,e2] .
令 (t)
=
(t
+1)ln t
,则 (t)
=
t
−
2ln t
−
1 t
.
t −1
(t −1)2
…………………………9 分
文科数学答案第4页(共 5 页)
令 (t)
=
t − 2ln t − 1 ,则 (t) =1− t
2 t
+
1 t2
=
t2
− 2t t2
+1 =
(t
−1)2 t2
e e2 −1
,
2(e2 +1)
所以 x1x3 的最大值为 e e2 −1 . ………………………………………………12 分
22.解:(1)由曲线 C 的参数方程,可得曲线 C 的普通方程为 (x − 2)2 + y2 = 9 ,
即 x2 + y2 − 4x − 5 = 0 . ……………………………………………………… 2 分
17.解:(1)∵ 3Sn=4an-4, ①
∴ 当 n≥2 时, 3Sn−1 = 4an−1 − 4 .② …………………………………………2 分
由① − ②得 3an = 4an − 4an−1 ,即 an = 4an−1 (n≥2). ………………………3 分
当 n=1 时,得 3a1 = 4a1 − 4 ,即 a1 = 4 .
将 = 代入 2 − 4 cos − 5 = 0 中,得 2 − 2 3 − 5 = 0 . 6
设点 P 的极径为 1 ,点 Q 的极径为 2 ,则 12 = −5 . …………………8 分 所以|OP| |OQ|=5. …………………………………………………………… 9 分
m
m
文科数学答案第3页(共 5 页)
所以函数
f
(x) 在(0,
1 m
)上单调递增,在(
1 m
,+∞)上单调递减.
…………4 分
综上所述,当 m≤0 时,函数 f (x) 在区间(0,+∞)上单调递增;
当
m>0
时,
函数
f
(x)
在(0,
1 m
)上单调递增,
函数 f (x) 在( 1 ,+∞)上单调递减. ……………5 分 m
…………………………………………10 分
将
x1+x2=
−4km 2k2 +1
,
x
1
x
2
=
2m2 2k 2
−8 +1
代入,
整理得 3m2=8k2+8. …………………………………………………………11 分
设点 O 到直线 AB 的距离为 d,
于是
d2=
m2 k2 +1
=
8 3
,
故 O 到直线 AB 的距离是定值为 d = 2 6 . 3
∴ 数列{an}是首项为 4,公比为 4 的等比数列. …………………………5 分
∴ 数列{an}的通项公式为 an = 4n . …………………………………………6 分
(2)∵
1
1
bn = log2 an log2 an+1 = log2 4n log2 4n+1
=
1
= 1 (1 − 1 ) . …………………………………8 分
又|OM| |OP| |OQ|=10,则 5 ( 3 −1) t =10.
∴ t= − 3 −1或 3 +1. ………………………………………………………10 分 23.解:(1)由 m=1,则 f (x) = |x-1|,即求不等式|x-3|+|2x-1|>4 的解集.
当 x≥3 时,|x-3|+|2x-1|=3x-4>4 恒成立; 当 1 x 3 时,x+2>4,解得 x>2,综合得 2 x 3 ; ……………………3 分
21.解:(1)函数 f (x) 的定义域为(0,+∞).
……………………………12 分
由已知可得 f (x) = 1 − m = 1− mx .
x
x
当 m≤0 时, f (x) >0,故 f (x) 在区间(0,+∞)上单调递增;………………2 分
当 m>0 时,由 f (x) 0 ,解得 0 x 1 ;由 f (x) 0 ,解得 x 1 .
由(1)得 A= ,所以 a2=b2+c2-2bccos ,即 a2=b2+c2-bc. …………8 分
3
3
∵ a= 3 ,
∴ 3=b2+c2-bc,
即 3=(b+c)2-3bc.
已知 b+c= 3 3 ,解得 bc= 5 . ………………………………………………10 分
2
4
所以△ABC 的面积为 1 bc sin A = 1 5 sin = 5 3 . …………………………12 分
∵ x = cos , y = sin ,
故曲线 C 的极坐标方程为 2 − 4 cos − 5 = 0 .
………………………4 分
(2)将 = 代入 (cos + sin ) = t 中,得 3 + 1 = t ,则 = ( 3 −1)t .
6
2
∴ |OM|= ( 3 −1) t . ………………………………………………………6 分
i =1
+(10.5 −10)(79 − 78) + (11−10)(80 − 78)
=5, ………………………………………………………4 分
5
(xi − x)2 = (10 −10)2 + (9 −10)2 + (9.5 −10)2 + (10.5 −10)2 + (11−10)2 = 2.5 ,
2 当 x≤ 1 时,4-3x>4,解得 x<0,综合得 x<0; …………………………… 4 分
2 所以不等式的解集为{x|x<0,或 x>2}.………………………………………5 分 (2)证明:∵ t<0, ∴ tf (x) + f (tm) = t x − m + tm − m
= tm − m − tx − tm ……………………………………………7 分
2
2 4 3 16
文科数学答案第2页(共 5 页)
20.解:(1)因为直线 l 过点 F1(-2,0),所以 m=2k 即直线 l 的方程为 y=k(x+2). 设 A(x1,y1),B(x2,y2).
联
立
y = k ( x + 2),
x2 + 2 y2 − 8 = 0,
整
理
得
(
1
+
令 t = x3 ,则 t∈ (1,e2] . x1
由 tln=x3xx13=,mx3, ln x1 = mx1,
解得
ln ln
x1 x3
= =
ln t , t −1 t ln t . t −1
故
ln( x1 x3 )
=
ln
x1
+ ln
x3
=
(t
+1)ln t t −1
所以 1 sinA+ 3 cosA= 3 ,即 sin(A+ )= 3 .
2
2
2
32
∵ 0<A< ,
∴ A + 4 .
3
33
∴ A+ = 2 ,即 A= .……………………………………………………6 分
33
3
(2)在△ABC 中,由余弦定理得 a2=b2+c2-2bccosA,
绵阳市高中 2016 级第二次诊断性考试 数学(文)参考答案及评分意见
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分. DBDAD BAACC CA
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.2
14. 2 5
15. x − 1 3
16. 4 3
三、解答题:本大题共 6 小题,共 70 分.
0.
所以 (t) 在区间 (1,e2] 上单调递增,即 (t) > (1) = 0 .
所以 (t) 0 ,即 (t) 在区间 (1,e2] 上单调递增,
即
(t )
≤
(e2 )
=
2(e2 +1) e2 −1
,
所以
ln(x1x2 )
2(e2 + 1) e2 −1
,即
x1x3≤
2(e2 +1)
i =1
文科数学答案第1页(共 5 页)
5
∴
bˆ =
i =1
( xi
5
− x)( ( xi −
yi − x)2
y)
=
5 2.5
=
2
.……………………………………………7
分
i =1
∴ aˆ = y − bˆx = 78 − 2 10 = 58 . ……………………………………………8 分
∴ y 关于 x 的线性回归方程为 yˆ = 2x + 58 . ………………………………9 分