2017高考理科数学第一轮基础知识点复习教案概率与统计1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,下载后您可任意编辑修改!)
第十二编概率与统计
§12.1 随机事件的概率
1.下列说法不正确的有 .
①某事件发生的频率为P(A)=1.1
②不可能事件的概率为0,必然事件的概率为1
③小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件
④某事件发生的概率是随着试验次数的变化而变化的
答案①③④
2.给出下列三个命题,其中正确命题有个.
①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率.
答案0
3.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为, .
答案0.97 0.03
4.甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是 .
答案
5.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率之和为 .
答案
例1盒中仅有4只白球5只黑球,从中任意取出一只球.
(1)“取出的球是黄球”是什么事件?它的概率是多少?
(2)“取出的球是白球”是什么事件?它的概率是多少?
(3)“取出的球是白球或黑球”是什么事件?它的概率是多少?
解(1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是.
(3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1.
例2 某射击运动员在同一条件下进行练习,结果如下表所示:
(1)计算表中击中10环的各个频率;
(2)这位射击运动员射击一次,击中10环的概率为多少?
解(1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906.
(2)这位射击运动员射击一次,击中10环的概率约是0.9.
例3(14分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:
求该射击队员射击一次
(1)射中9环或10环的概率;
(2)至少命中8环的概率;
(3)命中不足8环的概率.
解记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k彼此互斥. 2分
(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得
P(A)=P(A9)+P(A10)=0.32+0.28=0.60.
5分
(2)设“射击一次,至少命中8环”的事件为B,那么当A8,A9,A10之一发生时,事件B发生.由互斥事件概率的加法公式得
P(B)=P(A8)+P(A9)+P(A10)
=0.18+0.28+0.32=0.78. 10
分
(3)由于事件“射击一次,命中不足8环”是事件B:“射击一次,至少命中8环”的对立事件:即表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得
P()=1-P(B)=1-0.78=0.22. 14
分
1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件.
(1)“3件都是二级品”是什么事件?
(2)“3件都是一级品”是什么事件?
(3)“至少有一件是一级品”是什么事件?
解(1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.
(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品.
2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:
抽取球数n50 100 200 500 1 000 2 000 优等品数m45 92 194 470 954 1 902 优等品频率
(1)计算表中乒乓球优等品的频率;
(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)解(1)依据公式p=,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,
0.951.
(2)由(1)知,抽取的球数n不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950.
3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球,求:(1)红或黑的概率;(2)红或黑或白的概率.
解方法一记事件A1:从12只球中任取1球得红球;
A2:从12只球中任取1球得黑球;
A3:从12只球中任取1球得白球;
A4:从12只球中任取1球得绿球,则
P(A1)=,P(A2)=,P(A3)=,P(A4)=.
根据题意,A1、A2、A3、A4彼此互斥,
由互斥事件概率加法公式得
(1)取出红球或黑球的概率为
P(A1+A2)=P(A1)+P(A2)=+=.
(2)取出红或黑或白球的概率为
P(A1+A2+A3)=P(A1)+P(A2)+P(A3)
=++=.
方法二(1)取出红球或黑球的对立事件为取出白球或绿球,即A1+A2的对立事件为A3+A4,
∴取出红球或黑球的概率为
P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)
=1--==.
(2)A1+A2+A3的对立事件为A4.
P(A1+A2+A3)=1-P(A4)=1-=.