安徽省淮北一中2019-2020学年高一上学期期末数学试卷 (有解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省淮北一中2019-2020学年高一上学期期末数学试卷

一、选择题(本大题共12小题,共60.0分)

1. 已知集合A ={2,4,6,8,10},B ={x|x <6},则A ∩B = ( )

A. {2,4,6}

B. {2,4}

C. {2,4,6,8,10}

D. {6,8,10}

2. 实数a =0.33,b =log 30.3,c =30.3的大小关系是( )

A. a

B. a

C. b

D. b

4. 设扇形的周长为8,面积为4,则扇形的圆心角的弧度数是( )

A. 1

B. 32

C. 2

D. 3

5. 已知向量a ⃗ ,b ⃗ 满足|b ⃗ |=2|a ⃗ |,且(a ⃗ −b ⃗ )⊥a ⃗ ,则a ⃗ ,b ⃗ 的夹角等于( )

A. 2π3

B. 5π6

C. π3

D. π6 6. 已知函数f (x )={log 2x,x ≥1,f (2x ),0

则f (√22)的值是( ) A. 0 B. 1 C. 12 D. −1

2 7. 如图所示,矩形ABCD 的对角线相交于点O ,AO 的中点为E ,若DE ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +u AD

⃗⃗⃗⃗⃗⃗ (λ,u 为实数),则λ2+u2=( )

A. 1

B. 14

C. 58

D. 516 8. 若x 0是函数f(x)=log 2x −1x 的零点,则( )

A. −1

B. 0

C. 1

D. 2

9.已知定义在R上的奇函数f(x)满足f(x−6)=f(x),且当x∈(0,3)时,f(x)=x3−3x,则

f(2019)=()

A. −18

B. 0

C. 18

D. 不能确定

10.已知函数y=Acos(π

2

x+φ)(A>0)在一个周期内的图象如图所

示,其中P,Q分别是这段图象的最高点和最低点,M,N是图

象与x轴的交点,且∠PMQ=90°,则A的值为()

A. √3

B. √2

C. 1

D. 2

11.已知,则方程f(f(x))=1的实数根的个数是()

A. 4

B. 5

C. 6

D. 7

12.设函数f(x)=2x

1+2x −1

2

,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域是().

A. {0,1}

B. {0,−1}

C. {−1,1}

D. {1,1}

二、填空题(本大题共4小题,共20.0分)

13.已知向量a⃗=(2,1),b⃗ =(1,n),c⃗=a⃗−b⃗ ,c⃗//b⃗ ,则n=________.

14.若sin(π

6−α)=a,则cos(2π

3

−α)=________。

15.若f(x)是定义在(−1,1)上的奇函数,且在(−1,1)上是增函数,则不等式f(1−x)+f(1−2x)<0

的解集为______ .

16.已知函数f(x)=2sin(x+π

3) (x∈R),函数y=f(x+ϕ) (|ϕ|≤π

2

)的图象关于直线x=0对称,

则ϕ的值为__________.

三、解答题(本大题共6小题,共70.0分)

17.已知集合A={x|−2≤x≤6},B={x|−3≤x≤5}.

(1)求A∩B,A∪B;

(2)若C={x|m+1≤x≤2m−1},C⊆(A∩B),求实数m的取值范围.

18. 已知A(3,0),B(0,3)C(cosα,sinα).

(1)若AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =−1,求sin(α+π4)的值;

(2)若|OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ |=√13,且α∈(0,π),求OB ⃗⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角.

19. 函数f (x )=Asin (ωx +φ)(其中A >0, ω>0, |φ|≤π

2)的部分图象如图所示,求函数y =f (x )的

解析式。

20.已知函数f(x)=x−a

x +a

2

在(1,+∞)上是增函数,求实数a的取值范围.

21.已知函数f(x)=2asin(2x−π

3)+b的定义域为[0,π

2

],最大值为1,最小值为−5,求a和b的值.

22.已知f(x)=2sin2x+mcosx+1,

(1)若m=1,求f(x)的值域;

(2)若m∈R,求f(x)的最大值.

-------- 答案与解析 --------

1.答案:B

解析:

本题考查集合的交集运算,属于基础题.

直接求交集即可.

解:集合A={2,4,6,8,10},B={x|x<6},则A∩B={2,4}.

故选B.

2.答案:C

解析:

本题考查指数函数的性质与对数函数的性质,属于基础题.

根据指数、对数函数的单调性,把a、b、c与0或1比较即可得到结果.

解:由指数函数和对数函数的性质有0.33<0.30=1,30.3>30=1,log30.3a>b.

故选C.

3.答案:C

解析:

本题主要考查任意角的三角函数的定义,属于基础题.

解:角α的终边经过点(a,−1),

tanα=−1

2=−1

a

,则a=2,

故选C.