第6章 层流的解析解与近似解(1)
流体力学习题解答讲解
2.在现实生活中可视为牛顿流体的有水 和空气 等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。
8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速kv ',其中kv '称为上临界速度,k v 称为下临界速度。
23.圆管层流的沿程阻力系数仅与雷诺数有关,且成反比,而和管壁粗糙无关。
25.紊流过渡区的阿里特苏里公式为25.0)Re68(11.0+=d k λ。
26.速度的大小、方向或分布发生变化而引起的能量损失,称为局部损失。
29.湿周是指过流断面上流体和固体壁面接触的周界。
31.串联管路总的综合阻力系数S 等于各管段的阻抗叠加。
32.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为3211111s s s s ++=。
管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82.097.0,流量比Q 孔口/Q 管嘴等于82.060.0。
层流边界层积分近似解
y 0
假定速度分布函数: b0 b1 y b2 y2 b3 y3
y 0: 0
T T 2T u v a 2 x y y
2 0 2 y
y :
0 y
平板层流边界层微分方程组中 的温度场方程
b0 b1 y b2 y2 b3 y3
基本思路
1) 建立边界层积分方程。 2) 对边界层内的速度和温度分布做出假 设,常用的函数形式为多项式。 3) 利用边界条件确定速度和温度分布中的常 数,然后将速度分布和温度分布带入积分方程, 解出 t 4) 根据求得的速度分布和温度分布计算边界 上的 c fx Nux
边界层能量积分方程式
谢谢观赏
背景
1921年,冯卡门提出了边界层动量积分方程。 1936年,克鲁齐林求解了边界层能量积分方程所得 的结果称为边界层问题的近似解。 边界层积分方程一般可由两种方法获得:一是将动 量守恒定律和能量守恒定律应用于控制体:二是对 边界层微分方程直接进行积分。前一种方法物理意 义清晰,有助于对流动和换热机理的理解;后一种 推倒方法比较简捷。
y 0: u 0
u u 2u u v v 2 x y y
2u 0 2 y
y : u u
u 0 y
平板层流边界层微分方程组中 的速度场方程
u a0 a1 y a2 y 2 a3 y3
y 0: u 0
2u 0 2 y
y : u u
u 0 y
a0 0
a1 3/2
u
a2 0
u a3 3 2
u 3y 1 y 3 ( ) u 2 2 代入动量积分方程后求解得:
第6章层流的解析解与近似解
第6章 层流的解析解与近似解粘性流动基本方程组的解析解有着它固有的数学困难,真正能做解析解的流动为数不多,而且都是比较简单的流动。
本章将介绍几种粘性流动的解析解,有助于我们开阔思路,认识多种实际流动的性质。
首先先介绍一下粘性流研究的意义和研究的特点以及粘性流动的基本方程组,接着介绍一些解析解。
在介绍解析解时先考虑常特性不可压缩流体,通过基本方程,解得流场的速度和温度分布,最后求出摩擦阻力系数和热交换系数。
为了认识可压缩流动的特性,介绍两种简单的可压缩流动的解析解。
另外本章只限于雷诺数不大的流动。
6.1 粘性流研究的意义一切流体都具有粘性,但是人类最经常接触的流体,如水和空气其粘性都很小,要考虑粘性的影响就会使数学问题变得非常复杂;另外,对于这些粘性小的流体,忽略其粘性所得到的结果又能在一定程度上符合实际情况,因此,理想无粘性流体理论最先得到了发展,它比粘性流体理论要成熟得多。
应当指出,虽然理想流体理论取得了重大的成就,但在某些方面却有不可逾越的先天性缺陷。
例如,它不能预估管道流动的压力损失,也不能计算在流体中运动的物体所受到的阻力。
后一问题与著名的达朗伯疑题有关。
达朗伯对理想流体进行了严谨的研究后得出了如下结论:当任意形状的固体在静止的充满无限空间的无粘性流体中作匀速直线运动,它不承受沿运动方向的作用力,即物体所受阻力为零。
在他所做假设的前提下,这一结论的逻辑推理是完全正确的,但它却与实际完全不符,因为所有的物体在流动中运动时都受到阻力作用。
这从反面说明了考虑粘性的必要性。
例1 圆柱绕流对于理想不可压缩流体,()22214sin s p p p C U θρ∞∞-==- 其中 p ∞——远前方静压,ρ——流体密度。
流体力学6,7,8章课后题答案
第六章 6-1解:层流状态下雷诺数Re 2000< 60.1Re 6.710vdv υ-⨯==⨯ ⇒60.120006.710v -⨯<⨯⇒62000 6.710/0.10.134(/)v m s -<⨯⨯= 即max 0.134/v m s =223max max max 0.13.140.1340.00105/ 1.05/44d Q Av v ms L sπ===⨯⨯≈=6-2解:层流状态下雷诺数Re 2000<3Re 20000.910120000.0450.1()vd d m d ρυ-=<⨯⨯⨯⇒<⇒<6-3解:3221.66100.21(/)0.13.1444Q v m s d π-⨯==≈⨯临界状态时Re 2000=52533Re Re0.210.1 1.0510(/)20001.05100.88109.2410()vd vd m s Pa s υυυμυρ---=⇒=⨯⇒==⨯⇒==⨯⨯⨯=⨯⋅ 6-4解:当输送的介质为水时:32210101270131444.(/)..Q v m s d π-⨯===⨯ 612701838632000151910..Re .vd υ-⨯===>⨯水 3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力粗糙。
当输送的介质为石油时:质量流量与水相等3310101010(/)Q kg s -=⨯⨯=31000118850.(/)Q m s == 2200118150********..(/)..Q v m s d π===⨯ 415030113184200011410..Re .vd υ-⨯===>⨯水3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力光滑。
6-5解:判断流态需先求出雷诺数()2900036009000088023144./..Re Q v m s Avd υ÷===⨯=冬季:421101./m s υ-⨯=40088021608820001110..Re ..vd υ-⨯===<⨯ ⇒ 流态为层流。
层流边界层流动和换热的相似解(一)18页PPT
即
dp p
dx x
其中 ddpxuddux若 dd ux0,d d则 p x0
带入化简后的动量方程式得
( u u xv u y) 1d d p x y 2u 2
(3)边界层能量方程,经类似分析有: u xt v yt a y2t2
(4)综上,经数量级分析简化后的控制方程为:
uv0 x y
法则: (1)明确数量级分析得区域空间; (2)任何方程至少有两个数量级相等的主要控制项; (3) C=A+B,若○(A)>> ○(B),则○(C)= ○(A);
若○(A) ~○(B),则 ○(C)~○(A) ~○(B); (4) P=AB, ○(P)~○(A)·○(B) (5)R=A/B, ○(R)~○(A)/○(B)
可忽略分母为平也可以通过下法分析简化压力项考虑边界层内任一点的压力全微分dy除以dx得到dxdydxdp从动量方程的数量级分析考虑压力项和摩擦项平衡如方程1有分析过程类似地由方程2得dxdydxdp一致即边界层的压力主要在x方向换言之在任意x处边界层的压力与边界层外缘处压力相同dxdpdxdp带入化简后的动量方程式得3边界层能量方程经类似分析有
连续性方程
uv0 x y
( u u x v u y) 1 p x ( x 2 u 2 y 2 u 2)
动量方程
能量方程
边 界 条 件
u x tv y ta( x 2T 2 y 2T 2)
u|y00,v|y00,t|y0tw u|yu,t|yt uconst
2、利用数量级分析对控制方程进行化简
层流边界层流动和换热的相似解(一)
幽默来自智慧,恶语来自无能
层流边界层流动和换热的相似解(一)
第二版 8—3 P161
传热学第六章答案解析
传热学第六章答案解析第六章复习题1、什么叫做两个现象相似,它们有什么共性?答:指那些用相同形式并具有相同内容的微分方程式所描述的现象,如果在相应的时刻与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。
凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应相等。
(1)初始条件。
指非稳态问题中初始时刻的物理量分布。
(2)边界条件。
所研究系统边界上的温度(或热六密度)、速度分布等条件。
(3)几何条件。
换热表面的几何形状、位置、以及表面的粗糙度等。
(4)物理条件。
物体的种类与物性。
2.试举出工程技术中应用相似原理的两个例子.3.当一个由若干个物理量所组成的试验数据转换成数目较少的无量纲以后,这个试验数据的性质起了什么变化?4.外掠单管与管内流动这两个流动现象在本质上有什么不同?5、对于外接管束的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一定值后才与排数无关,试分析原因。
答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10排管子以上的管子才能消失。
6、试简述充分发展的管内流动与换热这一概念的含义。
答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。
7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流动和内部流动有什么异同?答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边界层相互干扰时,称为有限空间自然对流。
这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引起的流动,一个是由流体的温度不同而引起的流动。
8.简述射流冲击传热时被冲击表面上局部表面传热系数的分布规律.9.简述数数,数,Gr Nu Pr 的物理意义.Bi Nu 数与数有什么区别? 10.对于新遇到的一种对流传热现象,在从参考资料中寻找换热的特征数方程时要注意什么?相似原理与量纲分析6-1 、在一台缩小成为实物1/8的模型中,用200C 的空气来模拟实物中平均温度为2000C 空气的加热过程。
解析解与数值解 精确解和近似解
解析解与数值解精确解和近似解默认分类2011-01-19 12:51:37 阅读93 评论0字号:大中小订阅在解组件特性相关的方程式时,大多数的时候都要去解偏微分或积分式,才能求得其正确的解。
依照求解方法的不同,可以分成以下两类:解析解和数值解。
解析解(analytical solution)就是一些严格的公式,给出任意的自变量就可以求出其因变量,也就是问题的解, 他人可以利用这些公式计算各自的问题. 所谓的解析解是一种包含分式、三角函数、指数、对数甚至无限级数等基本函数的解的形式。
用来求得解析解的方法称为解析法〈analytic techniques、analytic methods〉,解析法即是常见的微积分技巧,例如分离变量法等。
解析解为一封闭形式〈closed-form〉的函数,因此对任一独立变量,我们皆可将其带入解析函数求得正确的相依变量。
因此,解析解也被称为闭式解(closed-form solution)数值解(numerical solution)是采用某种计算方法,如有限元的方法, 数值逼近,插值的方法, 得到的解.别人只能利用数值计算的结果, 而不能随意给出自变量并求出计算值. 当无法藉由微积分技巧求得解析解时,这时便只能利用数值分析的方式来求得其数值解了。
数值方法变成了求解过程重要的媒介。
在数值分析的过程中,首先会将原方程式加以简化,以利后来的数值分析。
例如,会先将微分符号改为差分符号等。
然后再用传统的代数方法将原方程式改写成另一方便求解的形式。
这时的求解步骤就是将一独立变量带入,求得相依变量的近似解。
因此利用此方法所求得的相依变量为一个个分离的数值〈discrete values〉,不似解析解为一连续的分布,而且因为经过上述简化的动作,所以可以想见正确性将不如解析法来的好。
解析解一般可以理解为通过已经有的方法,是对应的问题在这个解决域上,进行变换演绎得到解的一种结果,变换过程也会有增根或漏根。
传热学第六章
6. 对流换热基础理论6.1 知识结构1. 对流换热的特点;2. 换热系数h 及其影响因素; 3. 对流换热问题的数学描述:(1) 假设:不可压缩牛顿型流体,常物性,无内热源,忽略粘性耗散; (2) 方程组(换热、能量、动量、质量)各项物理涵义;(3) 平板层流强制对流的精确解(边界层理论,数量级分析简化); (4) 平板层流强制对流的近似解(边界层理论,边界层积分)。
4. 实验求解方法: (1) 相似原理相似性质:彼此相似的现象,其同名准则必定相等。
相似判据:同类现象,单值性条件相似,同名已定准则相等,则现象相似。
相似解:实验关联式(准则方程式)。
(2) 准则确定方法:方程分析法、量纲分析法。
(3) 实验数据处理:误差分析,作图法求系数,数据回归。
(4) 实验关联式应用条件:适用范围,定性温度,特征尺度,特征流速,修正系数(入口、弯道、特性)。
5. 对流换热中常用准则(Nu 、Re 、Gr 、Pr )的定义式及其物理涵义。
6.2 重点内容剖析6.2.1 概述对流换热——流体与固体壁面之间的热交换。
t h q t hA ∆=⇒∆=Φ…………(h 的定义式) (6-1) 一、任务求取 h=f (流体、物性、流态、换热面形状等)的具体表达式 二、思路(对流换热量=附壁薄层导热量)()t A h t t A h yt Ax w x y ∆=-=∂∂-=Φ∞=0λ (6-2)()x y x ytt h 0=∂∂∆-=⇒λ (6-3)式中:h x —— 局部表面传热系数λ —— 流体导热系数Δt —— 流体与壁面传热温差求取表面传热系数的问题←求取附面层温度变化率←求取流体温度场三、研究方法1·理论解——建立微分方程组→求解2·实验解—— 相似原理,量纲分析→实验准则→实验关联式四、影响对流换热的因素1· 流动的动力(1) 自然对流——由于流体各部分密度不同而引起的流动,其流动强度与受热不均匀程度、流体性质和空间大小及位置有关。
流体力学课后习题答案第六章【范本模板】
6—5 某蒸汽冷凝器内有250根平行的黄铜管,通过的冷却水流量Q =8 l /s ,水温为10oC ,为了使黄铜管内冷却水保持为紊流(此时黄铜管的热交换性能比层流时好),问黄铜管的直径不得超过多少?解:查表1.3有10℃的水621.310*10/m s ν-= 由214Q n d v π= ① 及临界雷诺数Re 2300vdν== ②联立有 14d mm = 即为直径最大值6.7 某管道的半径0r 15cm =,层流时的水力坡度J 0.15=,紊流时的水力坡度J 0.20=,试求管壁处的切应力0τ和离管轴r 10cm =轴处的切应力. 解:层流时:2f 3000h r r 1510g g J 1.0109.80.15110.25Pa 2l 22τρρ-⨯===⨯⨯⨯⨯=23r 1010g J 1.0109.80.1573.5Pa 22τρ-⨯==⨯⨯⨯⨯=紊流时:2f 3000h r r 1510g g J 1.0109.80.20147Pa 2l 22τρρ-⨯===⨯⨯⨯⨯=2'3r 1010g J 1.0109.80.2098Pa 22τρ-⨯==⨯⨯⨯⨯= 6。
9为了确定圆管内径,在管内通过ν为0。
013 cm 2/s 的水,实测流量为35cm 3/s,长15m ,管段上的水头损失为2㎝水柱,试求此圆管的内径。
解: 设管内为层流42212832264gd lQ gd l g d l d h f πνυνυυν===11441281280.013150035 1.949802f lQ d cm gh νππ⎛⎫⨯⨯⨯⎛⎫===⎪ ⎪⎪⨯⨯⎝⎭⎝⎭校核 1768013.094.13544Re =⨯⨯⨯===πνπνυd Q d 层流 6-18 利用圆管层流Re 64=λ,紊流光滑区25.0Re 3164.0=λ和紊流粗糙区25.011.0⎪⎭⎫⎝⎛=d k s λ这三个公式,(1)论证在层流中0.1v ∝f h ,光滑区75.1v ∝f h ,粗糙区0.2v ∝f h ;(2) 在不计局部损失h m 的情况下,如管道长度l 不变,若使管径d 增大一倍,而沿程水头损失h f 不变,试讨论在圆管层流、紊流光滑区和紊流粗糙区三种情况下,流量各为原来的多少倍?(3) 在不计局部损失h m 的情况下, 如管道长度l 不变,通过流量不变,欲使沿程水头损失h f 减少一半,试讨论在圆管层流、紊流光滑区和紊流粗糙区三种情况下,管径d 各需增大百分之几?解:(1)由Re vdν=,22f l v h d gλ=有1232f l h v gd ν=即在层流 1.0f h v ∝由0.250.3164Re λ= 得0.25 1.752 1.250.1582f lv h d gν= 光滑区 1.752f h v∝由0.250.11s k d λ⎛⎫= ⎪⎝⎭得0.2523 1.250.0505s f k l h v d g=粗糙区 2.03f h v ∝(2)由214Q d v π=,以上公式变为 14128f lQh d gνπ=Q 变为16倍0.25 1.752 4.75 1.750.7898f lQ h d g νπ=Q 变为6.56倍 0.2523 5.2520.808s f k lQ h d g π= Q 变为6。
水力学(闻德荪)习题答案第六章分析解析
选择题(单选题)1.水在垂直管内由上向下流动,测压管水头差h,两断面间沿程水头损失,则:(a)(a)hf=h;(b)h f=h+l;(c)h f=l-h;(d)h f=l。
2.圆管流动过流断面上切应力分布为:(b)(a)在过流断面上是常数;(b)管轴处是零,且与半径成正比;(c)管壁处是零,向管轴线性增大;(d)按抛物线分布。
3.圆管流的雷诺数(下临界雷诺数):(d)(a)随管径变化;(b)随流体的密度变化;(c)随流体的黏度变化;(d)不随以上各量变化。
4.在圆管流中,紊流的断面流速分布符合:(d)(a)均匀规律;(b)直线变化规律;(c)抛物线规律;(d)对数曲线规律。
5.在圆管流中,层流的断面流速分布符合:(c)(a)均匀规律;(b)直线变化规律;(c)抛物线规律;(d)对数曲线规律。
6.半圆形明渠半径r0=4m,水力半径为:(c)(a)4m;(b)3m;(c)2m;(d)1m。
7.变直径管流,细断面直径为d1,粗断面直径d2=2d1,粗细断面雷诺数的关系是:(d)(a)Re1=0.5 Re2;(b)Re1= Re2;(c)Re1=1.5 Re2;(d)Re1=2 Re2。
8.圆管层流,实测管轴线上流速为4m/s,则断面平均流速为: (c)(a)4 m/s;(b)3 .2m/s;(c)2 m/s;(d)1 m/s。
9.圆管紊流过渡区的沿程摩阻系数λ:(c)(a)与雷诺数Re有关;(b)与管壁相对粗糙k s/d有关;(c)与Re及k s/d有关;(d)与Re和管长L有关。
10.圆管紊流粗糙区的沿程摩阻系数λ:(b)(a)与雷诺数Re有关;(b)与管壁相对粗糙k s/d有关;(c)与Re及k s/d有关;(d)与Re和管长L有关。
11.工业管道的沿程摩阻系数λ,在紊流过渡区随雷诺数的增加:(b)(a )增加;(b )减小;(c )不变;(d )不定。
计算题【6.12】水管直径d =10cm ,管中流速v =1m/s ,水温为10℃,试判别流态。
第6章 边界层流动
6.2 二维平面边界层流动
因为d << L,相对于边界层厚度而言,平板就是无 限长的这样而在边界层流动问题中就找不到一个x方向的 特征长度;因此可以设想在任一x断面流速分布都是相似 的并可作以下变换
微 分 方 程 及 其 精 确 解
将边界层微分方程简化为 边界条件h = 0: f (h) = f '(h) = 0; h = ∞: f '(∞) = 1。 上式是一个非线性三阶常微分方程,有对应于 边界条件的确定解;它由布拉休斯在1908年首次得 出并采用幂级数和渐近方法获得精确解。
微 分 方 程 及 其 精 确 解
6.2 二维平面边界层流动
边界层厚度:
边界层位移厚度:
边界层动量厚度: 壁面切应力系数:
微 分 方 程 及 其 精 确 解
摩擦阻力系数:
t0为壁面切应力、FDf为整个平板受到的力,即
6.2 二维平面边界层流动
以上结果得到试验的证实。图6-5表示顺流放置平 板层流边界层的布拉休斯精确解,以及据此绘制的边 界层厚度的沿程变化和流速分布。
图6-4 平板层流边界层
6.2 二维平面边界层流动
微分方程的精确解 如图6-4所示,取平板前缘为直角坐标系的原点,则 平板前方未受扰动的均匀来流速度U∞与平板平行。由伯努 利方程知,在绕平板流动的势流部分,U = U∞、dp/dx = 0; 而由边界层微分方程知,在边界层中压强沿y方向是均匀 分布的,即边界层内任一点处的压强都与同x坐标处边界 层外势流的压强相等。
微 分 方 程 及 其 精 确 解
g 为另一积分常数。
类似还可得三阶渐近解f = f1 + f2 + f3甚至更高 阶渐近解,本问题中仅考虑到二阶。
第六章粘性流体动力学基础
第六章 粘性流体动力学基础实际流体都是有粘性的,只有当粘性力与惯性力相比很小时,才能忽略粘性力而采用“理想流体”这个简单的理想模型。
支配粘性流体运动的方程比理想流体的基本方程复杂得多,因此粘性流体动力学问题的求解比理想流体动力学问题更加复杂、困难。
本章的目的在于介绍粘性流体动力学的一些基本知识。
§1 雷诺数(Re )——粘性对于流动的影响的大小的度量粘性流体运动方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=z y x Dt D z y x p p p f V ρ1 在x 方向的投影为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z p y p x p f z u w y u v x u u t u zx yx xx x ρ1 这里以xu u ∂∂作为惯性力的代表; y p yx ∂∂ρ1作为粘性力项的代表,其大小为⎪⎪⎭⎫ ⎝⎛∂∂∂∂y u y μρ1。
下面以圆球的粘性流体绕流为例,来估算作用在单位质量流体上的惯性力和粘性力的量阶:(插圆球绕流图)L 为所研究问题的特征长度;∞V 为特征速度;∞ρ为特征密度;∞μ为特征粘性系数。
u 的量阶为∞V ;x u ∂∂的量阶为L V ∞; 22yu ∂∂的量阶为L V 2∞, 则: 作用在单位质量流体上的惯性力的量阶为:LV 2∞ 作用在单位质量流体上的粘性力的量阶为:2L V ∞∞∞ρμ 粘性力惯性力~22L V L V ∞∞∞∞ρμ=∞∞v L V =∞Re Re 称为雷诺数(Reynolds 数),它的物理意义是作用在流体上的惯性力与粘性力的比值的度量。
Re 数是粘性流体动力学中最重要的无量纲参数,它在粘性流体动力学中所占地位与无粘气体动力学的M 数相当。
在不同Re 数范围内的粘性流体运动可以有完全不同的性质,下面以圆柱绕流为例看不同Re 数范围内的圆柱绕流运动。
(插圆柱绕流图)总之:Re 增加,粘性影响变弱,当Re 》1时,对于某些问题,如无分离绕流物体的升力问题,可忽略粘性影响,采用“理想流体”模型。
流体力学第六章PPT课件
A0――孔口所在壁面的全部面积。 上式的适用条件是,孔口处在壁面的中心位置,各方向上影响不完善收缩的程度近于
一致的情况。
想一想:为什么不完善收缩、不完全收缩的流量系数较完善收缩、完全收缩的流量系
数大?
第10页/共117页
3、淹没出流
当液体通过孔口流到充满液体的空间称为淹没出流。 由于惯性作用,水流经孔口流束形成收缩断面c-c,然后扩大。 列出上、下游自由液面1-1和2-2的伯诺里方程。式中水头损失项包括孔口的局部损 失和收缩断面c-c至2-2断面流束突然扩大局部损失。
则(1)式可写成:
H v02 vc2 vc2 (1 ) vc2
2g 2g 2g
2g
令
H0
H
,v0代2 入上式,整理得 2g
第5页/共117页
收缩断面流速为
1
vc 1
2gH0 2gH0
式中H0――作用水头,v0与vc相比,可忽略不计,则H=H0;
φ ――孔口的流速系数,
1 1
孔口出流的流量为
第19页/共117页
例: 某洒水车储水箱长l=3m,直径D=1.5m(如图所示)。底部设有泄水孔,孔口 面积A=100cm2,流量系数μ=0.62,试求泄空一箱水所需的时间。
解:水位由D降至0所需时间
t 1
0 dh
A 2g D h
式中水箱水面面积
lB l 2
D 2
2
h
D 2
2
2
(3)
将式(3)中圆括号的表达式按二项式分式展开,并取前四项
(a b)n an nan1b n(n 1) a b n2 2 n(n 1)(n 2) an3b3
2!
3!
流体力学第6章
则
UH
h
0
uxdy
U (H
h)
U1
于是得出δ1的一般定义式:
1
0
(1
ux U
)dy
(3)动量厚度δ2
图中通过1-1和2-2断面的质量已相等, 但由于两断面流速分布图形不同,造成动量 不等,需补充厚度为δ2 的势流动量,以满 足动量守恒定律。 则
边界条件: y 0, ux 0, uy 0 y , ux U(x,t)
2. 层流边界层积分形式的基本方程
(1)动量方程
d dx
(U
2
2
)
1U
dU dx
0
(2)能量方程
d dx
(U
3
3
)
2
0
(
ux y
)
2dy
3. 紊流边界层微分形式的基本方程
ux t
ux
ux x
uy
ux y
普朗特认为,像空气和水那样微小粘性的 流体,运动的全部摩擦损失都发生在紧靠固体 边界的薄层内,这个薄层叫作“边界层”。
引入边界层概念后,微粘流体的广大流场 被划分为边界层和外流区。
6.5 边界层基本特征及边界层厚度
1. 边界层基本特征
(1)边界层为一减速流体薄层,厚度沿 流向增加;
(2)在边界层内粘性力和惯性力属于同 一数量级,均应考虑;
U 2H 0h ux2dy U 2(H h) U 21 U 22
于是得出δ2的一般定义式:
2
0
ux U
(1
6层流、紊流及水头损失解析
R'
=
0 R
管流 R=d/4=r0/2
r0——圆管半径
r
= • 0 切应力线性分布。
r0
三、阻力流速
hf
•
L d
2
2g
0
g
r0 2
J
g
r0 2
•
1 d
2
2g
g r0 1 2 2 2r0 2g
2 8
0
8
u*
u*
0
二、流速分布
du
du
= = -
dy
dr
r = r0 - y dy = -dr
6 层流、紊流及水头损失
主要内容: 水头损失的物理概念及其分类; 沿程水头损失与切应力的关系; 液体运动的两种流态; 圆管中的层流运动及其沿程水头损失的计算; 紊流特征; 沿程阻力系数的变化规律; 计算沿程水头损失的经验公式——谢才公式; 局部水头损失。
水头损失的物理概念及其分类
物理性质—— 固体边界——
6.2.1 水头损失的分类
n
m
hw hfi hjk
i1
k 1
水头损失= 沿程损失 局部损失
H
转弯
0
hj hf
总水头线
测压管 水头线
转弯
突扩
突缩
闸门
h=∑hf +h∑f 2hj
v 22
hf1
22gg h j 2
0
h j1
一、沿程水头损失
hf
l d
2
2g
二、局部h水j 头 损2g2失
气体管道
u*
6.4 圆管紊流的沿程水头损失
hf
l d
2
层流边界层流动与换热的相似解
当Pr→ 0时,上式的解为:
则:
整个平板长度L的平均对流表面传热系数可以由下式计 算获得:
得到:
即:
在整个Pr数范围内,可以整理出:
需要注意的是,在边界层前缘(x→0),边界层的基本 假设不再成立,因此边界层微分方程不适用。否则, 此处的局部对流表面传热系数将无限大,与实际不符。 因此,边界层分析主要用于高Re数范围。
从哈里斯用数值方法得到的结果分析可知: ( l ) β =0,即m =0,对应的是U∞=常数,即前面讨论的外掠平 壁的层流边界层流动。 (2 ) β>0,即m>0,是外掠楔形物的边界层层流流动,在x=0处 主流速度为零,沿流动方向速度加速,在壁面上边界层内速度 分布的斜率较外掠平壁时大。随β的增大,速度分布的斜率更大, 边界层愈薄。 (3 ) β=π描述的是面对平壁的流动,称为滞止流动。 ( 4 ) β<0 表明,边界层主流速度在x=0处为无穷大,沿流动方 向减少,夹角是负值。 通过在平壁吸气使边界层消失,保证主流速度恒定,进入扩充 段,主流速度将沿流动方向减少。在β=-0.1988 时,速度分 布呈S形,在壁面处(y=0)速度梯度为零。当β <-0.1988时, 流动边界层从壁面脱离并在贴壁处产生回流,因而β=-0.1988 称为脱体的临界角。
。
式(8-3-36)表明 是Pr数的函数,波尔豪森给出 了一系列 的数值。表7-2 给出了不同Pr数时外 掠平壁的 的数值。可以发现,在Pr = 0.6 ~15 的范围内, 可以十分精确地用 表 示。
即:
对于Pr < 0.6的低普朗数流体,其导热性能很好,前 面边界层分析已说明,当 Pr << 1时速度边界层厚度 远小于温度边界层厚度,可以近似认为温度边界层内 速度为主流速度U∞,即 。代入方程(8-3-32)得:
《工程流体力学》 杨树人 第六章课后作业详解
0.02
Q2l hf 0.0826 5 4.58m d
则有
作业
【6-10】如图所示,某设备需润滑油的流量为Q=0.4cm3/s, 油从高位油箱经d=6mm,l=5m管道供给。设输油管道终 端为大气,油的运动粘度为1.5×10-4m2/s,(1)求沿程损 失是多少?(2)油箱液面高h应为多少?
作业
(2)列输油管道终端和自由液面的伯努利方程
v2 h (2 0.5) hf 2g
得
h 0.961m
作业
【6-13】如图示给水管路。已知L1=25m,L2=10m, D1=0.15m,D2=0.125m,λ1=0.037,λ2=0.039,闸门开启 1/4,其阻力系数ζ=17,流量为15L/s。试求水池中的水头 H。 【解】
2 v2 H hf hj 2g
其中
l1 l2 h f 0.0826Q (1 2 2 2 ) 0.464m d1 d2
2
2 2 2 v2 v12 A2 v2 v2 hj 0.5 0.5(1 ) ( 1) 1.4m 2g 2g A1 2 g 2g
故
H 1.864m
作业
【6-14】图示两水箱由一根钢管连通,管长100m,管径 0.1m。管路上有全开闸阀一个,R/D=4.0的90°弯头两个。 水温10℃。当液面稳定时,流量为6.5L/s,求此时液面差 H为若干?设△=0.15mm。 【解】此管路属长管,列两液 面的伯努利方程
H
H hf hj
(3)
Re
vd
4 0.2 =611621 6 1.308 10
/ d 2.5 103
查莫迪图得 0.025
流体力学习题解析
第六章 粘性流体绕物体的流动6-1 已知粘性流体的速度场为k xz j xyz i y x u 22835-+=(m/s)。
流体的动力粘度μ=0.144Pa·s ,在点(2,4,-6)处σyy =-100N/m 2,试求该点处其它的法向应力和切向应力。
已知:y x u 2x 5=,z y x u 3y =,2z 8z x u -=,μ=0.144Pa·s ,σyy =-100N/m 2。
解析:在点(2,4,-6)处,有8010x==∂∂xy x u ,363y -==∂∂z x yu ,19216z =-=∂∂z x z u ;2052x ==∂∂x y u ,0x =∂∂z u,723y -==∂∂z y x u ,243y ==∂∂y x zu ,28882z -=-=∂∂z x u , 0z =∂∂y u ;1zy x s 2361923680iv d -=+-=∂∂+∂∂+∂∂=zu y u x u u 由div 322yyy μμσ-∂∂+-=y u p ,可得 Pa 976.66100236144.032)36(144.02div 322yy y=+⨯⨯--⨯⨯=--∂∂=σμμy u p ,则 Pa 592.66236144.03280144.02976.66div 322x xx -=⨯⨯-⨯⨯+-=-∂∂+-=u x u p μμσ Pa 336.34236144.032192144.02976.66div 322z zz -=⨯⨯-⨯⨯+-=-∂∂+-=u z u p μμσ Pa 488.7)2072(144.0)(xy yx xy -=+-⨯=∂∂+∂∂==yu xu μττ Pa 456.3)240(144.0)(yz zyyz =+⨯=∂∂+∂∂==zu y u μττPa 472.41)2880(144.0)(zx xz zx -=-⨯=∂∂+∂∂==xu z u μττ 6-2 两种流体在压力梯度为k xp-=d d 的情形下在两固定的平行平板间作稳定层流流动,试导出其速度分布式。
简述层流现象概念及克服层流现象的方法。
简述层流现象概念及克服层流现象的方法。
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!简述层流现象概念及克服层流现象的方法在许多工程和科技领域,特别是涉及流体动力学和精密实验的场合,层流现象是一个关键的概念。
第6章外部层流边界层中的动量传递
ς ''' (0) + ku∞ς (0)ς '' (0 ) = 0 + ku∞ς (0)ς '' (0 ) = ku ∞ς (0 )ς '' (0) = 0
ς 已经知道关于ς η 的一阶导和三阶导已经等于零,但关于 η 的所有导数在壁面 (y=0)处都等于零是不可能的,因此断定 ς " (0) ≠ 0 ς (0) = 0 ' ς (0 ) = 0 进而得到 ς (0) = 0 对方程进行积分的边界条件 '' ς (0 ) ≠ 0 ς ''' (0 ) = 0
∂u ∂ρ ∂ρu ∂u ∂ρv ∂u left = ρ +u + u + ρu + u + ρv ∂θ ∂θ ∂x ∂x ∂y ∂x ∂u ∂u ∂u ∂ρ ∂G x ∂G y = ρ + u + v + u + + ∂θ ∂x ∂y ∂θ ∂x ∂y
− ku η ς d η exp ∞∫ 0 ς '' = ∞ − ku η ς d η d η ∫0 exp ∞ ∫0
dP ∂ u ∂µ ∂u right = X − +µ 2 + dx ∂y ∂y ∂y
2
0 质量方程
引入质量方程后的动量方程为:
∂u ∂u ∂u dP ∂ 2 u ∂µ ∂u +µ 2 + ρ +u +v = X − ∂x ∂y dx ∂y ∂y ∂y ∂θ
引入:连续性方程、定常、恒定自由流、常物性、 忽略体积力等条件,整理后的动量方程(其实其中 已经包含连续性方程的内容)为 偏微分方程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 层流的解析解与近似解粘性流动基本方程组的解析解有着它固有的数学困难,真正能做解析解的流动为数不多,而且都是比较简单的流动。
本章将介绍几种粘性流动的解析解,有助于我们开阔思路,认识多种实际流动的性质。
首先先介绍一下粘性流研究的意义和研究的特点以及粘性流动的基本方程组,接着介绍一些解析解。
在介绍解析解时先考虑常特性不可压缩流体,通过基本方程,解得流场的速度和温度分布,最后求出摩擦阻力系数和热交换系数。
为了认识可压缩流动的特性,介绍两种简单的可压缩流动的解析解。
另外本章只限于雷诺数不大的流动。
6.1 粘性流研究的意义一切流体都具有粘性,但是人类最经常接触的流体,如水和空气其粘性都很小,要考虑粘性的影响就会使数学问题变得非常复杂;另外,对于这些粘性小的流体,忽略其粘性所得到的结果又能在一定程度上符合实际情况,因此,理想无粘性流体理论最先得到了发展,它比粘性流体理论要成熟得多。
应当指出,虽然理想流体理论取得了重大的成就,但在某些方面却有不可逾越的先天性缺陷。
例如,它不能预估管道流动的压力损失,也不能计算在流体中运动的物体所受到的阻力。
后一问题与著名的达朗伯疑题有关。
达朗伯对理想流体进行了严谨的研究后得出了如下结论:当任意形状的固体在静止的充满无限空间的无粘性流体中作匀速直线运动,它不承受沿运动方向的作用力,即物体所受阻力为零。
在他所做假设的前提下,这一结论的逻辑推理是完全正确的,但它却与实际完全不符,因为所有的物体在流动中运动时都受到阻力作用。
这从反面说明了考虑粘性的必要性。
例1 圆柱绕流对于理想不可压缩流体,()22214sin s p p p C U θρ∞∞-==- 其中 p ∞——远前方静压,ρ——流体密度。
图6-1给出了上述理想流体的压力系数与实际测量值的比较。
图中的实验曲线对应于两个不同的Re 数。
图6-1 圆柱表面的压力分布,理想流体理论与实验测量数据的比较由图6-1可见,在圆柱的前缘(0οθ=和360ο)附近,理想流体的理论结果与实际符合较好。
但在后缘(180οθ=)附近两者差别则相当大。
对于理想流体,圆柱前后的流动是完全对称的,所以理论阻力为零。
但是实测的压力分布前后不对称,圆柱后部的实测压力系数低与前部对应点处的值,使圆柱受到向后作用的力,即压差阻力。
另外,实际流体也引起表面摩擦阻力。
理想流体理论不能计算出这些阻力,这是它与实际流动情况的重要差别。
图6-2真实流绕圆柱的流动由图6-1还可看出,理想流体结果与亚临界雷诺数流动的差别较大,与超临界雷诺数流动的差别较小。
实际上流体在圆柱体后部处于减速增压流动阶段,由于粘性耗散,使边界层内底层流体动能不断消耗,无力克服迎面高压。
这股流体将在该处与固体壁面脱离,这种现象称为边界层分离。
流体分离后,静压不易再有较大的回升,并在其后形成宽的尾迹,见图6-2。
在图6-1中实际流体在圆柱体后缘呈现出的低压区就是这样产生的。
分离点的位置以及尾迹流的宽度和特性取决于雷诺数Re 的数值。
亚临界雷诺数通常对应于层流流动,流体易于分离,而超临界雷诺数通常对应于湍流流动,流体有较强的承受逆压力梯度的能力,不易分离。
这就是图6-1中不同的雷诺数有不同的压力分布曲线的原因。
图 6-3 圆柱的阻力系数随雷诺数的变化图6-3表示无量纲阻力系数()2/D C F U R ρ∞=与雷诺数Re /UD ν=的关系曲线,其中F 为单位长度圆柱所受到的阻力,D 为圆柱直径。
由图可见,亚临界雷诺数时,阻力系数很大,随着雷诺数增加,阻力系数下降,在5Re 510=⨯附近,阻力系数急剧降低,这对应于由层流边界层转变为湍流边界层。
阻力系数的这种变化与图6-1中压力系数分布随雷诺数的变化是一致的。
例2 二维机翼绕流二维机翼是指沿展向无限长,且翼型不变的机翼。
圆柱绕流是非线性体的典型例子,机翼绕流则是流线型体的典型例子。
图6-4给出了儒科夫斯基翼型表面的压力分布。
这是在理想流体与实际测量有相同的升力条件下进行的比较。
由图可见,这里的理想流动的结果比圆柱绕流的情况好得多。
几乎沿翼型的整个表面理想流体的结果都与实验符合,只是在翼型的尾部的上表面有较大的差别,这也是沿流动升压使边界层分离的结果。
图6-5给出了儒科夫斯基翼型的升力系数和阻力系数随攻角的变化。
由图可见,攻角在10C -到10C 的范围内,理想流体导出的升力系数与实验符合得很好,这时没有发生严重的分离。
至于阻力的计算,则和圆柱绕流的情况一样,理想流体理论不能得出有用的结果。
图6-4儒科夫斯基翼型表面的压力分布在流体理想与实际测量有相同的升力条件下 图6-5儒科夫斯基翼型的升力系数 理论值与实测值的比较 和阻力系数随攻角的变化从上面两个例子可见,理想流体理论虽在某些方面(如圆柱体前缘附近的压力分布,翼型的压力分布和升力等)能得出与实际情况大体符合的结果,但不能用这种理论来预估阻力,它也不能处理不同雷诺数引起的差别以及分离等问题,而在许多工程技术问题中人们是很关心这些问题的。
因此需要研究有粘性的实际流体的运动和力的作用关系,即粘性流体的运动学和动力学。
6.2 粘性流体研究的特点(以不可压粘性流μ不变为例)6.2.1 粘性流体有旋(只要壁面相对流场运动就是有旋运动)理想流体运动一般为无旋运动,但也可作有旋运动。
根据亥姆霍兹定理,质量力有势的正压理想流体的涡量和环量具有守恒性,如果初始时刻或入口截面上运动是无旋的,则整个流场都是无旋的,反之则都有旋。
均匀流绕物体流动或物体在静止介质中运动时,从理想流动的观点来看,全流场都是无旋流动。
理想流体的有旋运动出现在质量力无势的斜压流体中,这类运动在气象学中会碰到。
与此相反,粘性流体运动除个别情况外,都是有旋运动,而且涡量和环量没有守恒性,在流动过程中,涡量不断生成,传输和衰减。
粘性运动的有旋性可通过实验观察到,也可从基本方程出发,从数学上得到证明。
下面从不可压缩流体的N-S 方程出发,用反证法来证明有旋性。
根据矢量分析和不可压缩流体的连续方程,可得()()∆=∇∇⋅-∇⨯∇⨯=-∇⨯Ωv v v()22v ⋅∇=∇-⨯Ωv v v因而不可压缩流体的N-S 方程D 1D F p t νρ=-∇+∆v v 可写成22p v F t νρ⎛⎫∂-⨯Ω=-∇+-∇⨯Ω ⎪∂⎝⎭vv (6.2.1) 如果流体作无旋运动,则0Ω=,上式变为22p v F t ρ⎛⎫∂=-∇+ ⎪∂⎝⎭v(6.2.2) 在无旋流场中必有速度势ϕ,当质量力为重力时,则速度和质量力可表为,F gz ϕ=∇=-∇v则上式可写成202v p gz t ϕρ⎛⎫∂∇+++= ⎪∂⎝⎭(6.2.3) 式中 g ——单位质量的重力,z ——与重力平行的轴对上式沿任一方向积分得伯努利方程2()2v pgz C t t ϕρ∂+++=∂ (6.2.4) 式(6.2.2)和(6.2.3)与不可压理想流动的方程完全相同。
由此可见,粘性流体作无旋运动时,其微分形式和积分形式的方程都与理想流动相同,如果不考虑边界条件,则两者的解完全相同,但边界条件必须满足。
理想流动的边界条件只对固壁上的法向速度有规定,而粘性流动除规定法向速度外,还要求切向无滑动,比理想流动多一个边界条件。
理想流动Euler 方程或伯努利方程的解是唯一的,不满足壁面无滑条件,故粘性流体作无旋运动与边界上的无滑条件相矛盾,是不可能的。
另外,从两种流动的微分方程看,Euler 方程是一阶方程,只要求一个边界条件就可定解,而N-S 方程是二阶方程,要有两个边界条件。
当粘性流体作无旋运动时,二阶项消失,降为一阶方程,无滑条件成为多余的约束,根据微分方程定解理论就得不到解。
由此可知,除个别情况外,粘性流体运动总是有旋运动。
6.2.2 旋涡的扩散性(对应无粘,不可压,质量有势)质量力有势的不可压缩粘性流体的涡量方程(涡旋传输方程) 在可压缩条件下,要加正压条件。
D D tν-⋅∇=∇v ΩΩΩ (6.2.5) 以r 和θ分别表示柱坐标的径向和周向坐标,各速度分量与坐标和时间有关0t = 0r θΩ=Ω= z Ω=Ω00()()0r t z t v v ==== 000()()2t t v v rθπ==Γ==0t > 0r v = 0t v = (,)(,)v v r t v r t θθ==0z ∂=∂ 0θ∂=∂ 0r Ω= z Ω=Ω=Ω 则0⋅∇=Ωv 0r z v v v r r zθθ∂∂∂⋅∇=++=∂∂∂ΩΩΩv Ω故涡量方程为:()()tν∂+⋅∇=⋅∇+∇∂Ωv ΩΩv Ω (6.2.6) 在极坐标系中,本流动的涡量方程可写为:r t r r r ν∂Ω∂∂Ω⎛⎫= ⎪∂∂∂⎝⎭(6.2.7) 作相似变换:()F ηνΓΩ=(6.2.8)其中 2r ην=可得:002222()()rr F F r t tηηνννΓΓ∂Ω''==∂ 202222()r r r r F r r r r r r t ηνΓ∂∂Ω∂Ω∂Ω∂Ω∂⎡⎤⎛⎫'=+=+ ⎪⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦300332242()()r r F F r t tηηννΓΓ∂Ω'''=++∂ 300332244()()r rF F t tηηννΓΓ'''=+ (6.2.9) 222202()()()()r r t F F F F t t t t tηηηηννννν-⎡⎤Γ∂ΩΓΓ''=--=-+⎢⎥∂⎣⎦(6.2.10) 把(6.2.9)和(6.2.10)代入(6.2.7)可得[]()()4()()0F F F F ηηηηηη''''+++= (6.2.11)()d 4d 04F F F F ηη'++='+ (6.2.12)得: ()()14F F c ηηη'+=⎡⎤⎣⎦ (6.2.13)0η= ()F η与()F η'有限制,则有()()40F F ηη'+=2ln ln ln 4F c e η=-24422r tF c ec eην--== (6.2.14)把(6.2.14)代入(6.2.8)24r tc e tνν-Ω=(6.2.15)其中 20c c =Γ,为积分常数。
322/4/40d 2(1)2rr t r t c r e c e t ννν--=-⎰ (6.2.16) 将涡量分量用速度表示,并应用斯托克斯定理,将面积分变为线积分d d LAA ⋅=Ω⎰⎰⎰v l式中A 为封闭曲线围成的面积,或流管的任意截面积;d l 为封闭曲线微元线段。