年河北省普通高等学校对口招生考试数学模拟试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学全真模拟试题八

一、选择题(每小题3分,共15题,45分)

1、设集合M={2|≥x x },N={51|≤≤-x x },则M ∪N =( )

A .{21|≤≤-x x }

B .{52|≤≤x x }

C .{1|-≥x x }

D .{5|≤x x } 2、1+x >2是x >1的( )

A .充分条件

B .必要条件

C .充要条件

D .不充分不必要条件 3、下列四组函数中,有相同图像的一组是( ) A .x x f =)(,2)(x x g =

B .x x f =)(,33)(x x g =

C .x x f sin )(=,)sin()(x x g +=π

D .x x f =)(,x

e x g ln )(=

4、若0)]lg[lg(lg =x ,则5

1-x

=( )

A .100

B .

C .

D .10 5、观察正弦型函数)sin(2ϕ+=wx y (其中w >0,ϕ<

2

π

)在一个周期内的图像,可知:w 、ϕ分别为( )

3

π

-

A .w =2,ϕ=

3π B .w =2,ϕ=6π

C .w =21,ϕ=3π

D .w =21,ϕ=6

π

6、已知两点A (1,2),B ()2,5-,且3=,则C 点的坐标为( ) A .)3

5

,32(-

B .

(—8,11) C .(0,3) D .(2,1) 7、若=(1,3),=(32,2),则与的夹角为( ) A .0

30 B .450 C .600 D .900

8、设),2

(

ππ

α∈,已知直线1l :03sin 1cos =+-+ααy x ,直线2l :α

sin 1++y x —3=0,则直线1l 与2l 的位置关系为( )

x

A .平行

B .相交且垂直

C .相交但不垂直

D .与α的取值有关

9、在等差数列{n a }中,公差d=1,且1a 、3a 、4a 成等比数列,则该数列中为0的项是第( )项

A .4

B .5

C .6

D .0不是该数列的项

10、不等式12

+-kx kx >0对任意的实数x 都成立,则k 的取值范围是( ) A .0<k <4 B .k <0或k >4 C .0≤k <4 D .k ≤0或k >4 11、函数23-=x

y (x >0)的值域为( )

A .),2(+∞-

B .)2,(--∞

C .),1(+∞-

D .)1,(--∞ 12、若x x f 2cos )(cos =,则)30(sin 0

f =( )

A .

23 B .21 C .—1 D .2

1- 13、在△ABC 中,若B A cos cos >B A sin sin ,则△ABC 是( )

A .锐角三角形

B .直角三角形

C .钝角三角形

D .任意三角形

14、已知方程

11

22

2=-+-m y m x 所表示的曲线是双曲线,那么m 的取值范围是( ) A .1<m <2 B .m <1 C .m >2 D .m >2或m <1

15、双曲线442

2=-ky kx 的一个焦点是(0,5),那么k 的值为( )

A .1

B .2

C .—1

D .—2 二、填空题(每空2分,共15空,30分)

16、从甲、乙、丙三人中任选两人参加社会实践活动,甲被选中的概率为 ;

17、在等比数列{n a }中,891=

a ,n a =31,公比3

2

=q ,则n = ; 18、设直线a 与b 是异面直线,直线c ∥a ,则直线b 与直线c 的关系是 ;

19、抛物线y x 162

=上一点P 到焦点F 的距离为6,则P 点坐标为 ;

20、=+-0

15

tan 115tan 1 ; 21、若直线043=+-m y x 与圆9)2(2

2

=-+y x 相切,那么m 的值为 ; 22、设A={32|),(=-y x y x },B={12|),(=+y x y x },则A ∩B = ; 23、设α为第二象限角,点P (m ,3-)为α终边上的一点,且5

3

cos -

=α,则m = ; 24、过椭圆19

42

2=+y x 的上焦点1F 的直线交椭圆于A 、B 两点,则△AB 2F 的周长为 ;

25、已知2tan =α,3)tan(=-βα,则)2tan(βα-= ;

26、在10张奖券中,有一等奖1张,二等奖2张,从中抽取1张,则中奖的概率为 ; 27、集合A={012|2

=++x ax x }中只有一个元素,则a = ;

28、0022

45sin 8

1

)3()3(2

+

-+----e = ; 29、若=(3,4),=)cos ,(sin αα且⊥,则αtan = ;

30、已知数列{n b }是等差数列,且n b =n a 2log ,若41=a ,3a =2,则数列{n b }的公差为 。

三、解答题(共45分)

31、(5分)求a 的取值范围,使得函数]4

9)1([log 2

2+++=x a ax y 的定义域为R..

32、(6分)已知向量a =(x x sin ,cos ),b =(x x x cos sin 3,sin -),设)(x f =a ·b 。 (1)写出)(x f 的解析式; (2)求)(x f 的最小正周期;

33、(6分)某食品企业一个月内被消费者投诉的次数用ξ表示,据统计,随机变量ξ的概率分布如下: (1)求a 的值;

(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月共被投者投诉两次的概率;

相关文档
最新文档