一元二次方程提高培优题
一元二次方程培优提高题解析
一元二次方程培优提高题解析一、利用判别式判断方程根的情况1. 已知关于x的一元二次方程(m - 1)x^2+2x - 1=0有两个不相等的实数根,求m 的取值范围。
解析:对于一元二次方程ax^2+bx + c = 0(a≠0),判别式Δ=b^2-4ac。
在方程(m - 1)x^2+2x - 1=0中,a = m- 1,b=2,c=-1。
因为方程有两个不相等的实数根,所以Δ>0且a≠0。
首先计算Δ = 2^2-4(m - 1)×(-1)>0,4 + 4(m - 1)>0,4+4m-4>0,4m>0,解得m>0。
又因为a=m - 1≠0,即m≠1。
所以m的取值范围是m>0且m≠1。
2. 若关于x的一元二次方程kx^2-2x + 1 = 0没有实数根,求k的取值范围。
解析:对于方程kx^2-2x + 1=0,其中a = k,b=-2,c = 1。
因为方程没有实数根,所以Δ=b^2-4ac<0。
Δ=(-2)^2-4k×1<0,4 - 4k<0,-4k<-4,解得k > 1。
又因为方程是一元二次方程,所以k≠0。
综上,k的取值范围是k>1。
二、一元二次方程根与系数的关系(韦达定理)1. 已知方程x^2-3x - 4 = 0的两根为x_1,x_2,求x_1^2+x_2^2的值。
解析:对于一元二次方程ax^2+bx + c=0(a≠0),若两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
在方程x^2-3x - 4 = 0中,a = 1,b=-3,c=-4。
所以x_1+x_2=-(-3)/(1)=3,x_1x_2=(-4)/(1)=-4。
x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=3^2-2×(-4)=9 + 8=17。
2. 已知关于x的方程x^2+kx + k - 1=0的两根为x_1,x_2,且x_1^2+x_2^2=5,求k的值。
数学 一元二次方程的专项 培优练习题含答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根. ()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.【详解】解:()1关于x 的一元二次方程()222130x k x k --+-=有两个实数根, 0∴≥,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,221223x x +=, 224723k k ∴-+=,解得4k =,或2k =-,134k ≤, 4k ∴=舍去,2k ∴=-.【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.以及根与系数的关系.2.已知:关于的方程有两个不相等实数根.(1) 用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k(k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x1>x2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系.请你解答下列问题:3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱.(1)求y与x之间的函数关系式;(2)当每箱售价为多少元时,每星期的销售利润达到3570元?(3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元?【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元【解析】【分析】(1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x,(2)解一元二次方程即可求解,(3)表示出最大利润将函数变成顶点式即可求解.【详解】解:(1)∵售价每降价1元,每星期可多卖10箱,设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60),(2)依题意得:(x-40)(-10x+780)=3570,解得:x=57,∴当每箱售价为57元时,每星期的销售利润达到3570元.(3)设每星期的利润为w,W=(x-40)(-10x+780)=-10(x-59)2+3610,∵-10 0,二次函数向下,函数有最大值,当x=59时, 利润最大,为3610元.【点睛】本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x ,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
一元二次方程专题培优训练精选
一元二次方程专题培优训练精选专题一利用一元二次方程的定义确定字母的取值1.已知(m-3)x^2+m+2x=1是关于x的一元二次方程,则m 的取值范围是()A.m≠3.B.m≥3.C.m≥-2.D。
m≥-2且m≠3已知(m-3)x^2+m+2x=1是关于x的一元二次方程,则m 的取值范围是()A。
m≠3.B。
m≥3.C。
m≥-2.D。
m≥-2且m≠32.已知关于x的方程(m+1)x^m+1+(m-2)x^-1=,问:1)m取何值时,它是一元二次方程并写出这个方程;2)m取何值时,它是一元一次方程?已知关于x的方程(m+1)x^m+1+(m-2)x^-1=,问:1)m取何值时,它是一元二次方程并写出这个方程;2)m取何值时,它是一元一次方程?3.若一元二次方程ax^2+bx+c=0中,a-b+c=0,则此方程必有一个根为.a^2+1若一元二次方程ax^2+bx+c=0中,a-b+c=0,则此方程必有一个根为.a^2+14.已知实数a是一元二次方程x-2013x+1=0的解,求代数式a-2012a-的值.2013^2已知实数a是一元二次方程x-2013x+1=0的解,求代数式a-2012a-的值.2013^2方法技巧:1.ax+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.方法技巧:1.ax+bx+c=0是一元一次方程的情况有两种,需要分类讨论.2.利用一元二次方程的解求字母或者代数式的值时常常用到整体思想,需要同学们认真领会.专题二利用配方法求字母的取值或者求代数式的极值21.若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A.-9或11.B.-7或8.C.-8或9.C.-8或9 若方程25x-(k-1)x+1=0的左边可以写成一个完全平方式;则k的值为()A。
-9或11.B。
-7或8.C。
培优专题01 一元二次方程的解法-原卷版
培优专题01 一元二次方程的解法◎方法一 直接开平方法(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x 2=a(a ≥0)的方程,根据平方根的定义可解得x 1=a ,x 2=a -.(2)直接开平方法适用于解形如x 2 = p 或(mx+a)2 = p(m ≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
1.(2022·浙江绍兴·八年级期末)一元二次方程x 2 -1=0的根是( )A .x 1=x 2=1B .x 1=1,x 2=-1C .x 1=x 2=-1D .x 1=1,x 2=02.(2022·安徽滁州·八年级期末)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-3.(2022·全国·九年级课时练习)关于x 的方程2x p =.(1)当0p >时,方程有__________的实数根;(2)当0p =时,方程有__________的实数根;(3)当0p <时,方程__________.4.(2022·安徽合肥·八年级期末)方程290x -=的解为______.5.(2022·全国·九年级单元测试)将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成a cb d ,定义 ac ad bc b d=-,上述记号就叫做2阶行列式.(1)若210493x x=,求x 的值.(2)若11611x x x x +-=-+,求x 的值.◎方法二 配方法1、配方法的一般步骤可以总结为:一移、二除、三配、四开;2、把常数项移到等号的右边;3、方程两边都除以二次项系数;4、方程两边都加上一次项系数一半的平方,把左边配成完全平方式;5、若等号右边为非负数,直接开平方求出方程的解。
一元二次方程综合培优(难度大-含参考答案)
一元二次方程拓展提高题1、已知x25x20000,则x2 3xx 1 21的值是.22、已知a22004a10,则 2a 24007 a2004_________ .a 213、若ab1,且5a 22005a70 ,7b 22005b 5 0 ,则a_________ . b4、已知方程2x 22ax3a40没有实数根,则代数式a28a16 2 a_____.5、已知y 2 x6x ,则 y 的最大值为.6、已知a b c0, abc2, c0 ,则()A、 ab 0B、 a b 2C、 a b3D、 a b47、已知a b8 , ab c2160,则 a b c________ .8、已知m2m10 ,则m3 2 m22006________ .9、已知a b4, ab c 240 ,则 a b________ .10、若方程x 2px q0 的二根为 x1, x2,且 x1 1 , p q30,则 x2 ()A、小于 1B、等于 1C、大于 1 D 、不能确定是方程 x 213 1 的值为11、已知x0 的一个根,则3.412、若3x2x 1 ,则 9 x 412x 32x 27x2008()A、 2011B、 2010C、 2009 D 、 200813、方程3x23x2 2 的解为.14、已知x2x y 20 ,则x2y 22x的最大值是()26A、 14B、 15C、 16 D 、18、方程x 22 | x |2m恰有 3 个实根,则m()15A、 1B、 1.5C、2 D 、2.516、方程x23xx2379 的全体实数根之积为()3 xA、 60B、60C、 10D、 1017、关于x的一元二次方程2x 25x a 0x1: x2 2 : 3,则x2x1( a 为常数)的两根之比()A、 1B、 2C、1D、3 2218、已知是、方程 x2x10 的两个实根,则43_______ .19、若关于x的方程2ax2xax 1 只有一解,求a 的值。
【数学】培优一元二次方程辅导专题训练附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.解下列方程:(1)x 2﹣3x=1.(2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-== ;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可;(2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0,∵b 2﹣4ac=13>0∴. ∴12313313,22x x +-==. (2)(y+2)2=12, ∴或,∴12223,223y y =-+=--3.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=4.解下列方程:(1)2x2-4x-1=0(配方法);(2)(x+1)2=6x+6.【答案】(1)x1=1+62x2=1-621=-1,x2=5.【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x2-2x=12,∴x2-2x+1=32.∴(x-1)2=32.∴x-1=32±6 2.∴x1=1+62,x2=1-62.(2)由题可得,(x+1)2-6(x+1)=0,∴(x+1)(x+1-6)=0.∴x+1=0或x+1-6=0.∴x1=-1,x2=5.5.已知两条线段长分别是一元二次方程28120x x-+=的两根,(1)解方程求两条线段的长。
一元二次方程竞赛训练题
一元二次方程培优训练命题人:周金林 9.18一:选择题(25分)1.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( C )(A )3<k <4;(B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。
2.方程012=--x x 的解是( D )(A )251±; (B )251±- (C )251±或251±-; (D )3.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是( B )(A)∆>M (B)∆=M (C)∆<M ; (D)不确定. 4.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( C )(A )10≤≤m ; (B )43≥m ; (C )143≤<m ; (D )143≤≤m5.已知b 2-4ac 是一元二次方程ax 2+bx+c=0(a ≠0)的一个实数根,则ab 的取值范围为( B )(A) 18ab ≥ (B) 18ab ≤ (C) 14ab ≥ (D) 14ab ≤二;填空题(25分)1.在Rt ABC 中,斜边AB=5,而直角边BC ,AC 之长是一元二次方程2(21)4(1)0x m x m --+-=的两根,则m 的值是 42.方程01)8)((=---x a x ,有两个整数根,则=a 8 3.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 6 . 4.设21,x x 是二次方程032=-+x x 的两个根,求1942231+-x x 的值 0 5.已知m ,n 是有理数,并且方程02=++n mx x 有一个根是25-,那么m+n 的值是___3___。
(完整版)一元二次方程培优提高例题
考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0"; ②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
针对练习:★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m xm 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程.★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m+x n—2x 2=0是一元二次方程,则下列不可能的是( )A 。
m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 .例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
说明:本题的关键点在于对 “代数式形式”的观察,再利用特殊根“-1”巧解代数 式的值。
【培优提高训练】苏科版九年级数学上册 第一章 一元二次方程 典型例题解析(学生用)
【培优提高训练】苏科版九年级数学上册第一章一元二次方程典型例题解析(学生用)下关系:x1+x2=-ba , x 1x2=ca,把它们称为一元二次方程根与系数关系定理.已知x1、x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值.(2)已知等腰△ABC的一腰长为7,若x1、x2恰好是△ABC 另外两边的边长,求这个三角形的周长.7.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.8.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查发现:在一段时间内,当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.若商场要获得10000元销售利润,该玩具销售单价应定为多少元?售出玩具多少件?9.已知a、b、c为三角形三个边,+bx(x-1)= -2b 是关于x的一元二次方程吗?10.如图,利用一面足够长的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏),设矩形ABCD的宽AD为x米,矩形的长为AB(且AB>AD).(1)若所用铁栅栏的长为40米,用含x的代数式表示矩形的长AB;(2)在(1)的条件下,若使矩形场地面积为192平方米,则AD、AB的长应分别为多少米?11.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
为了迎接“六一”儿童节和扩大销售,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,并且尽快减少库存,那么每件童装应降价多少元?12.如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1cm,AB=3cm,BC=5cm,动点P从点B出发以1cm/s的速度沿BC的方向运动,动点Q从点C出发以2cm/s的速度沿CD方向运动,P、Q两点同时出发,当Q到达点D时停止运动,点P也随之停止,设运动的时间为ts(t>0)(1)求线段CD的长;(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?二、综合题13.解下列方程:(1)(2x-1)2=4 (2)x2−4x+1=0(用配方法)(3)x2+2x=4.(4)2(x−3)2=x(x−3)14.如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方形.(1)用,,表示纸片剩余部分的面积;(2)当=6,=4,且剪去部分的面积等于剩余部分的面积时,求剪去的正方形的边长.15.已知关于x的一元二次方程x2+2x+a=0,(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a的取值范围.16.商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.(1)当每件商品的售价为140元时,每天可销售________件商品,商场每天可盈利________元;(2)设销售价定为x元时,商品每天可销售________件,每件盈利________元;(3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元.17.某服装批发商计划以每件500元的单价对外批发销售某种品牌的羽绒服,由于临近换季,为了尽快清仓,回收资金,对价格经过两次下调后,以每件320元的单价对外销售.(1)求平均每次下调的百分率;(2)请按此调幅,预测第三次下调后的销售单价是多少元?18.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.19.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2019年底的2万个增长到2019年底的2.88万个,求该市这两年(从2019年度到2019年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?20.已知:如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点A出发,沿AB 方向匀速运动,速度为1cm/s;过点P作直线PF∥AD,PF交CD于点F,过点F作EF⊥BD,且与AD、BD分别交于点E、Q;连接PE,设点P的运动时间为t(s)(0<t<10).DG GE =HCAH解答下列问题:(1)填空:AB=________ cm;(2)当t为何值时,PE∥BD;(3)设四边形APFE的面积为y(cm2)①求y与t之间的函数关系式;②若用S表示图形的面积,则是否存在某一时刻t,使得S四边形APFE= 8S菱形ABCD?若存在,求出t的值;若不存25在,请说明理由.21.已知关于x的一元二次方程有两个非零实数根.(1)求m的取值范围;(2)两个非零实数根能否同为正数或同为负数?若能,请求出相应的m的取值范围,若不能,请说明理由.22.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2019年的绿色建筑面积约为950万平方米,2019年达到了1862万平方米.若2019年、2019年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?答案解析部分一、解答题1.【答案】解:(1)2x2+x﹣3=0(用公式法)∵a=2,b=1,c=﹣3b2﹣4ac=25>0x=−1±√254∴x1=1,x2=-32;(2)化为一般形式,得:x2+2x﹣15=0(x+5)•(x﹣3)=0(x+5)=0或(x﹣3)=0∴x1=﹣5,x2=3.2.【答案】解:∵方程有两个不相等的实数根,∴ Δ=(2m+3)2−4m2>0,解得:m>−34,依题意得:α+β=−(2m+3),αβ=m2,∴ 1α + 1β=α+βαβ=−(2m+3)m2=−1 .解得:m1=−1,m2=3,经检验:m1=−1,m2=3是原方程的解,∵ m>−34,∴ m=3 .3.【答案】解:(1)∵原方程有两个实数根,∴△=(k+1)2﹣4(14k2+1)=2k﹣3≥0解得:k≥3;2,(2)∵k≥32∴x1+x2=k+1>0.k2+1>0,又∵x1•x2=14∴x1>0,x2>0,∴|x1|+|x2|=x1+x2=k+1.∵|x1|+|x2|=4x1x2﹣5,k2+1)﹣5,∴k+1=4(14∴k2﹣k﹣2=0,∴k1=﹣1,k2=2,,又∵k≥32∴k=2.4.【答案】解:(1)∵当m=3时,△=b2-4ac=22-4×3=-8<0,∴原方程无实数根;(2)当m=-3时,原方程变为x2+2x-3=0,∵(x-1)(x+3)=0,∴x-1=0,x+3=0,∴x1=1,x2=-3.5.【答案】解:(1)∵x1+x2=a,x1x2=2,又x1x2=x1+x2﹣2,∴a﹣2=2,a=4;(2)方程可化为x2﹣4x+2=0,∴(x﹣2)2=2,解得:x﹣2=√2或x﹣2=﹣√2,∴x1=2+√2,x2=2﹣√2.6.【答案】解:(1)∵x1、x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根,∴x1+x2=2(m+1),x1x2=m2+5,∵(x1﹣1)(x2﹣1)=28,即x1x2﹣(x1+x2)+1=28,∴m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6,当m=﹣4时原方程无解,∴m=6;(2)当等腰三角形的腰长为7时,即方程的一个解为7,将x=7代入原方程得:49﹣14(m+1)+m2+5=0,解得:m=10或m=4,当m=10时,方程为x2﹣22x+105=0,解得:x=7或x=15,∵7+7<15,不能组成三角形;当m=4时,方程为x2﹣10x+21=0,解得:x=3或x=7,此时三角形的周长为:7+7+3=17.7.【答案】解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣1;12(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.8.【答案】解:设该玩具的销售单价应定为x元根据题意,得(x−30)[600−10(x−40)]=10000解得x1=50,x2=80当x=50时,600−10(x−40)=500件,当x= 80时,600−10(x−40)=200件.答:该玩具的销售单价定为50元时,售出500件;或售价定为80元时售出200件.9.【答案】是10.【答案】(1)解:∵AD+BC-2+AB-2=40,AD=BC=x,∴AB=-2x+44;(2)解:由题意得,(-2x+44)•x=192,即2x2-44x+192=0,解得x1=6,x2=16,∵x2=16>44(舍去),3∴AD=6,∴AB=-2×6+44=32.答:AD长为6米,AB长为32米.11.【答案】解:设每件童装应降价x元,由题意得:(40-x)(20+2x)=1200,解得:x1=20,x2=10,当x=20时,20+2x=60(件),当x=10时,20+2x=40(件),∵60>40,∴x2=10舍去.答:每件童装应降价20元.12.【答案】(1)解:如图1,作DE⊥BC于E,则四边形ADEB是矩形.∴BE=AD=1,DE=AB=3,∴EC=BC﹣BE=4,在Rt△DEC中,DE2+EC2=DC2,∴DC= √DE2+CE2 =5厘米;(2)解:∵点P的速度为1厘米/秒,点Q的速度为2厘米/秒,运动时间为t秒,∴BP=t 厘米,PC=(5﹣t )厘米,CQ=2t 厘米,QD=(5﹣2t )厘米, 且0<t≤2.5, 作QH⊥BC 于点H ,∴DE∥QH, ∴∠DEC=∠QHC, ∵∠C=∠C, ∴△DEC∽△QHC,∴ DE QH = DC QC ,即 3QH = 52t , ∴QH= 65 t ,∴S △PQC = 12 PC•QH= 12 (5﹣t )• 65 t=﹣ 35 t 2+3t , S 四边形ABCD = 12 (AD+BC )•AB= 12 (1+5)×3=9, 分两种情况讨论:①当S △PQC :S 四边形ABCD =1:3时, ﹣ 35 t 2+3t= 13 ×9,即t 2﹣5t+5=0, 解得t 1= 5−√52 ,t 2= 5+√52 (舍去);②S △PQC :S 四边形ABCD =2:3时,﹣ 35 t 2+3t= 23 ×9,即t 2﹣5t+10=0, ∵△<0, ∴方程无解, ∴当t为 5−√52 秒时,线段PQ 将四边形ABCD 的面积分为1:2两部分. 二、综合题13.【答案】(1)解:∵(2x -1)2=4, ∴2x -1=2或2x-1=-2, ∴x 1= 32 ,x 2=- 12 , (2)解:∵x 2-4x+1=0, ∴x 2-4x+4=-1+4, ∴(x-2)2=3,∴x 1= 2+√3 , x 2= 2−√3 , (3)解:∵x 2+2x=4, ∴x 2+2x+1=4+1, ∴(x+1)2=5,∴x 1=-1+ √5 ,x 2=-1- √5 ,(4)解:∵2 ( x − 3 ) 2= x ( x − 3 ), ∴(x-3)【2(x-3)-x 】=0,∴(x-3)(x-6)=0,∴x1=3,x2=6,14.【答案】(1)解:纸片剩余部分的面积为:,(2)解:当a=6,b=4时,根据题意有:,∴ ,∴ 即,∴剪去的正方形的边长.15.【答案】(1)解:将x=1代入方程x2+2x+a=0.得,1+2×1+a=0,解得: a=−3.方程为x2+2x−3=0.设另一根为x1,则1⋅x1=−3,x1=−3.(2)解:Δ=4-4a,∵方程有两个不等的实根,∴Δ>0,即4-4a>0,∴a<1.16.【答案】(1)60;120(2)200﹣x;x﹣120(3)解:根据题意得:(200﹣x)(x﹣120)=1500,整理得:x2﹣320x+25500=0,解得:x1=150,x2=170.答:每件商品的销售价定为150元或170元时,商场每天盈利达到1500元17.【答案】(1)解:设平均每次下调的百分率为x.由题意,得500(1﹣x)2=320.解这个方程,得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)解:预计第三次下调后的销售单价为320(1﹣20%)=320×0.8=256,答:平均每次下调的百分比为20%,预计第三次下调后的销售单价为256元18.【答案】(1)解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)解:∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)解:当△ABC是等边三角形,∴(a+c)x2+2bx+(a ﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣119.【答案】(1)解:设该市这两年(从2019年度到2019年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去)(2)解:①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3(100﹣3t)=200,解得:t=25.答:t的值是25.②设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个)20.【答案】(1)10(2)解:∵在菱形ABCD中,∴AB∥CD,∠ADB=∠CDB,又∵PF∥AD,∴四边形APFD为平行四边形,∴DF=AP=t,又∵EF⊥BD于Q,且∠ADB=∠CDB,∴∠DEF=∠DFE,∴DE=DF=t,∴AE=10﹣t,当PE∥BD时,△APE∽△ABD,∴ APAB =AEAD,∴ t10=10−t10,∴t=5,∴当t=5时,PE∥BD(3)蛸:①∵∠FDQ=∠CDO,∠FQD=∠COD=90°,∴△DFQ∽△DCO.∴ QFOC =DFDC,即QF6=t10,∴ QF=3t5.∴ EF=2QF=6t5,同理,QD=4t5,如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG= 12AC•BD,即10•CG= 12×12×16,∴CG= 12.∴S平行四边形APFD=DF•CG= 48t5,∴S△EFD= 12EF•QD= 12×6t5×4t5=12t225∴ y=48t5−12t225,②当S四边形APFE= 825S菱形ABCD则48t5−12t225=825×(12×12×16),即t2﹣20t+64=0,解这个方程,得t1=4,t2=16>10(不合,舍去)∴存在t=4s,使得S四边形APFE= 825S菱形ABCD.21.【答案】(1)解:关于x的一元二次方程有两个非零实数根,∴ 且,∴ ;(2)解:假设两个非零的实数根同号,那么两根的积为正即,∴ ,又由(1)可知:,∴ .22.【答案】(1)解:设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40% (2)解:由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标。
数学 一元二次方程的专项 培优练习题及答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.2.解方程:(3x+1)2=9x+3.【答案】x 1=﹣13,x 2=23. 【解析】试题分析:利用因式分解法解一元二次方程即可.试题解析:方程整理得:(3x+1)2﹣3(3x+1)=0,分解因式得:(3x+1)(3x+1﹣3)=0,可得3x+1=0或3x ﹣2=0,解得:x 1=﹣13,x 2=23. 点睛:此题主要考查了一元二次方程的解法,解题关键是认真观察一元二次方程的特点,然后再从一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法中合理选择即可.3.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β.(1)求m 的取值范围;(2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可. 【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0,解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0 解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去,∴m 的值为3.【点睛】 本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.4.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=2b a -±=4122-=-⨯∴x 1=-1+2,x 2=-1-2(2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32. 5.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =【解析】【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥- ∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =- 92m ≥- 3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.6.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.8.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90% 60⨯.答:该店应按原售价的九折出售.9.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如下表:这20天中,该产品每天的价格y(单位:元/件)与时间t的函数关系式为:1254y t=+(t 为整数),根据以上提供的条件解决下列问题:(1)直接写出m 关于t 的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围【详解】(1)设该函数的解析式为:m=kx+b由题意得:98=k b 94=3k b +⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+.(2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭ 21151002t t =-++ ()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元. (3)由题意得:()1210025204W t t a ⎛⎫=-++--⎪⎝⎭ ()211525001002t a t a =-+++-, ∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤,∴15220a +≥,∴ 2.5a ≥,∴2.54a ≤<.【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.。
数学 一元二次方程的专项 培优练习题附详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】 试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k 1=1,k 2=-3.∵k ≤12,∴k =-3.2.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别以3cm /s 、2cm /s 的速度从点A 、C 同时出发,点Q 从点C 向点D 移动.(1)若点P 从点A 移动到点B 停止,点P 、Q 分别从点A 、C 同时出发,问经过2s 时P 、Q 两点之间的距离是多少cm ?(2)若点P 从点A 移动到点B 停止,点Q 随点P 的停止而停止移动,点P 、Q 分别从点A 、C 同时出发,问经过多长时间P 、Q 两点之间的距离是10cm ?(3)若点P 沿着AB →BC →CD 移动,点P 、Q 分别从点A 、C 同时出发,点Q 从点C 移动到点D 停止时,点P 随点Q 的停止而停止移动,试探求经过多长时间△PBQ 的面积为12cm 2?【答案】(1)2cm ;(2)85s 或245s ;(3)经过4秒或6秒△PBQ 的面积为 12cm 2.【解析】 试题分析:(1)作PE ⊥CD 于E ,表示出PQ 的长度,利用PE 2+EQ 2=PQ 2列出方程求解即可;(2)设x 秒后,点P 和点Q 的距离是10cm .在Rt △PEQ 中,根据勾股定理列出关于x 的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴2cm;∴经过2s时P、Q两点之间的距离是2;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,∴16-5x=±8,∴x1=85,x2=245;∴经过85s或245sP、Q两点之间的距离是10cm;(3)连接BQ.设经过ys后△PBQ的面积为12cm2.①当0≤y≤163时,则PB=16-3y,∴12PB•BC=12,即12×(16-3y)×6=12,解得y=4;②当163<x≤223时,BP=3y-AB=3y-16,QC=2y,则1 2BP•CQ=12(3y-16)×2y=12,解得y1=6,y2=-23(舍去);③223<x≤8时,QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.3.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.4.已知关于x 的方程mx 2+(3﹣m)x ﹣3=0(m 为实数,m≠0).(1) 试说明:此方程总有两个实数根.(2) 如果此方程的两个实数根都为正整数,求整数m 的值.【答案】(1)()2243b ac m -=+≥0;(2)m=-1,-3.【解析】分析: (1)先计算判别式得到△=(m -3)2-4m •(-3)=(m +3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x 1=3m ,x 2=-1,然后利用整除性即可得到m 的值. 详解: (1)证明:∵m ≠0,∴方程mx 2+(m -3)x -3=0(m ≠0)是关于x 的一元二次方程,∴△=(m -3)2-4m ×(-3)=(m +3)2,∵(m +3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x =()()332m m m --±+ , ∴x 1=-3m,x 2=1, ∵m 为正整数,且方程的两个根均为整数,∴m =-1或-3.点睛: 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.5.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根;(2)对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.(1)把x=-1代入得1+m-2=0,解得m=1∴2--2=0. ∴∴另一根是2;(2)∵, ∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.8.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)552t ±=。
一元二次方程培优(含答案)
一元二次方程培优卷【思维入门】1.若关于x 的一元二次方程的两根为x 1=1,x 2=2,则这个方程是 ( )A .x 2+3x -2=0B .x 2-3x +2=0C .x 2-2x +3=0D .x 2+3x +2=02.用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为 ( )A.⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2B.⎝ ⎛⎭⎪⎫x +b 2a 2=4ac -b 24a 2C.⎝ ⎛⎭⎪⎫x -b 2a 2=b 2-4ac 4a 2D.⎝ ⎛⎭⎪⎫x -b 2a 2=4ac -b 24a 2 3.一元二次方程2x 2-3x +1=0的解为____.4.已知关于x 的一元二次方程2x 2-3kx +4=0的一个根是1,则k =____.5.一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =____.6. 先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1,其中x 为方程x 2+3x +2=0的根.【思维拓展】7.若关于x 的方程m (x +h )2+k =0(m ,h ,k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m (x +h -3)2+k =0的解为( ) A .x 1=-6,x 2=-1B .x 1=0,x 2=5C .x 1=-3,x 2=5D .x 1=-6,x 2=28.定义运算“★”:对于任意实数a ,b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5.若x ★2=6,则实数x 的值是____.9.关于x 的一元二次方程为(m -1)x 2-2mx +m +1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?10.某文献对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程m-1x-1-xx-1=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.【思维升华】11.若关于x的一元二次方程(m-2)x2+3x+m2-5m+6=0的常数项为0,则m的值是()A.2 B.3C.2或3 D.012.若n(n≠0)是关于x的方程x2+mx+3n=0的根,则m+n的值是____.13.已知n为正整数,且n4+2n3+6n2+12n+25为完全平方数,则n=____.14.若x2-||2x-1-4=0,则满足该方程的所有根之和为____.15.若x=-1是关于x的方程a2x2+2 015ax-2 016=0的一个根,则a的值为______.一元二次方程的解法【思维入门】1.若关于x 的一元二次方程的两根为x 1=1,x 2=2,则这个方程是 ( B )A .x 2+3x -2=0B .x 2-3x +2=0C .x 2-2x +3=0D .x 2+3x +2=02.用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为 ( A )A.⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2 B.⎝ ⎛⎭⎪⎫x +b 2a 2=4ac -b 24a 2 C.⎝ ⎛⎭⎪⎫x -b 2a 2=b 2-4ac 4a 2 D.⎝ ⎛⎭⎪⎫x -b 2a 2=4ac -b 24a 2 3.一元二次方程2x 2-3x +1=0的解为__x 1=1,x 2=12__.4.已知关于x 的一元二次方程2x 2-3kx +4=0的一个根是1,则k =__2__.5.一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =__1__.【解析】 ∵一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,∴a +1≠0且a 2-1=0,∴a =1.6. 先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫2x +1-1,其中x 为方程x 2+3x +2=0的根. 解:原式=(x -1)÷⎝ ⎛⎭⎪⎫2-x -1x +1=(x -1)·x +1-x +1=-x -1. 由x 2+3x +2=0,得x 1=-1,x 2=-2.当x 1=-1时,原式无意义,所以x 1=-1舍去.当x 2=-2时,原式=1.【思维拓展】7.若关于x 的方程m (x +h )2+k =0(m ,h ,k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m (x +h -3)2+k =0的解为( B ) A .x 1=-6,x 2=-1 B .x 1=0,x 2=5C.x1=-3,x2=5 D.x1=-6,x2=28.定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是__-1或4__.9.关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?解:(1)根据题意得m≠1,Δ=(-2m)2-4(m-1)(m+1)=4,∴x1=2m+22()m-1=m+1m-1,x2=2m-22()m-1=1.(2)由(1)知x1=m+1m-1=1+2m-1,∵方程的两个根都是正整数,∴2m-1是正整数,∴m-1=1或2.∴m=2或3.10.某文献对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程m-1x-1-xx-1=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.解:(1)∵将分式方程m-1x-1-xx-1=0去分母化成整式方程得(m-1)-x=0,解得x=m-1.又∵关于x的方程无解,∴x=m-1是增根.∴m-1-1=0,解得m=2.∵方程x2+kx+6=0的一个根是m,即x=2.∴22+2k+6=0.解得k=-5.(2)x2-5x+6=0,解得x1=2,x2=3.【思维升华】11.若关于x的一元二次方程(m-2)x2+3x+m2-5m+6=0的常数项为0,则m的值是(B)A.2 B.3C.2或3 D.012.若n(n≠0)是关于x的方程x2+mx+3n=0的根,则m+n的值是__-3__.13.已知n为正整数,且n4+2n3+6n2+12n+25为完全平方数,则n=__8__.【解析】易知n=1,n=2均不符合题意,所以n≥3,此时一定有(n2+n+2)2=n4+2n3+5n2+4n+4<n4+2n3+6n2+12n+25,(n2+n+4)2=n4+2n3+9n2+8n+16≥n4+2n3+6n2+12n+25,而n4+2n3+6n2+12n+25为完全平方数,所以一定有n4+2n3+6n2+12n+25=(n2+n+3)2,整理得n2-6n-16=0,解得n=8(负根n=-2舍去).2x-1-4=0,则满足该方程的所有根之和为.14.若x2-||15.若x=-1是关于x的方程a2x2+2 015ax-2 016=0的一个根,则a的值为__2__016或-1__.【解析】∵x=-1是关于x的方程a2x2+2 015ax-2 016=0的一个根,∴将x=-1代入方程得a2-2 015a-2 016=0,因式分解得(a-2 016)(a+1)=0,可化为a-2 016=0或a+1=0,解得a1=2 016,a2=-1,则a的值为2 016或-1.。
中考数学一元二次方程(大题培优)附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用2.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,234x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.3.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=2b a-±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.5.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.6.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.9.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x210.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。
初三数学一元二次方程组的专项培优易错难题练习题附答案解析
初三数学一元二次方程组的专项培优易错难题练习题附答案解析一、一元二次方程1,已知关于x的方程x2- (2k+1) x+k2+i = 0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k> 3 ;(2) A.【解析】【分析】(1)根据关于x的方程x2—(2k+1)x+k2 + 1=0有两个不相等的实数根,得出 ^〉。
,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n, 利用根与系数的关系得出m+n=5, mn=5,则矩形的对角线长为J m2n2,利用完全平方公式进行变形即可求得答案 . 【详解】(1) •••方程x2—(2k+1)x+ k2+1 = 0有两个不相等的实数根,A= [-(2k+1)]2-4X 1 x(史1)=4k-3>0, ,3. . k > 一,4(2)当k=2时,原方程为x2- 5x+ 5 = 0, 设方程的两个根为m, n,• - m + n= 5, mn= 5,矩形的对角线长为:Vm2~n2 jm n 2mn J15 .【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1) ^〉。
时,方程有两个不相等的实数根;( 2) 4=0时,方程有两个相等的实数根;(3) 4〈0时,方程没有实数根.2.父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过大众点评”或美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程5中,大众点评网上的购买价格比原有价格上涨一m%,购买数量和原计划一样:美团”网29上的购头价格比原有价格下降了一m元,购买数量在原计划基础上增加15m%,最终,在20【答案】(1) 120; (2) 20. 【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为 x 元,列不等式为 0.8x?80W7680解出即可;解法二:根据单价=总价一数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花 店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,表示在 大众点评120a (1-25%) (1+3m%),在 美团”网上的购买实际消费总额:a[120 (1 - 25%) - -9-m] (1+15m%);根据 在两个网站的实际消费总额比原计划20的预算总额增加了 一 m%'列方程解出即可.2试题解析:(1)解:解法一:设标价为 x 元,列不等式为 0.8x?80W7680 x<120解法二:7680+ 80+0.8=96 + 0.8=12兆), 答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a 个礼盒,由题意得:120X0由(1 — 25%) (1 + 5m%) +a[120 X 0.81 — 25%) - -m] (1+15m%) =120 x 0282 20(1 — 25%) X2 (1+ — m%)),即 72a (1+ — m%) +a (72 — — m) ( 1+15m%) =144a 2 220(1+ 15m%),整理得:0, 0675m 2-1.35m=0, m 2- 20m=0,解得:m 1=0 (舍)2m 2=20.答:m 的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出 大众点评”或 美团”实际消费总额是解题关键.3.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、 五两月的水费分别是按哪种方案计算的?并求出 而的值.两个网站的实际消费总额比原计划的预算总额增加了一 m%,求出m 的值.2网上的购买实际消费总额:【答案】4. .. 1.7 X 35=59.5 1.7 X 80=136 151,这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按F =1一■工-丽来计算的)w则有151=1.7X80+(80—m) X--100即m2-80m+1500=0解得m〔二30, m2=50.又..•四月份用水量为35吨,m1=30<35,「51=30舍去.m=50【解析】5.观察下列一组方程:①x2 x 0;②x2 3x 2 0;③x2 5x 6 0;④x2 7x 12 0;它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为连根一元二次方程1若x2kx 56 0也是连根一元二次方程”,写出k的值,并解这个一元二次方程;2请写出第n个方程和它的根.【答案】(1) x1 = 7, x2= 8. (2) x1=n—1, x2= n.【解析】【分析】(1)根据十字相乘的方法和连根一元二次方程”的定义,找到56是7与8的乘积,确定k值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k=— 15,则原方程为x2—15x+56=0,则(x—7)(x—8)=0,解得x1=7, x2=8.(2)第n 个方程为x2-(2n- 1)x+ n(n -1)=0, (x- n)(x— n + 1)=0,解得x1 = n_1, x2= n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.2 _ k6.关于x的万程kx k 2 x — 0有两个不相等的实数根.41求实数k的取值范围;2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k的值;若不存在,说明理由.【答案】(1) k 1且k 0; (2)不存在符合条件的实数k,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】1由于方程有两个不相等的实数根,所以它的判别式V 0,由此可以得到关于k的不等式,解不等式即可求出k的取值范围.2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k的等式,解出k值,然后判断k值是否在1中的取值范围内.【详解】解:1依题意得V (k 2)2 4k k 0,k 1 ,又Q k 0,k的取值范围是k 1且k 0;2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,2 k理由是:设万程kx k 2 x - 0的两根分别为x1,X2,4k 2x1 x2由根与系数的关系有:k ,1x1 x24又因为方程的两个实数根之和等于两实数根之积的算术平方根,由1知,k 1,且k 0,4 “人什一k —不符合题意,3因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
一元二次方程达标训练卷(培优题)
一元二次方程达标训练卷(培优题)一.选择题(共6小题)1.若x2+xy+y=14,y2+xy+x=28,则x+y的值为()A.﹣7B.6C.﹣7或6D.﹣6或72.若m是方程x2﹣x﹣1=0的一个根,则m2﹣m+2020的值为()A.2019B.2020C.2021D.20223.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:如图,画Rt△ABC,使∠ACB=90°,BC=,AC=b,在斜边AB上截取BD=,则该方程的一个正根是()A.AC的长B.BC的长C.CD的长D.AD的长4.关于x的一元二次方程ax2+bx=c(ac≠0)一个实数根为2022,则方程cx2+bx=a一定有实数根()A.2022B.C.﹣2022D.﹣5.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.6.可以用如图所示的图形研究方程x2+ax=b2的解:在Rt△ABC中,∠C=90°,AC=,BC=b,以点A为圆心作弧交AB于点D,使AD=AC,则该方程的一个正根是()A.CD的长B.BD的长C.AC的长D.BC的长二.填空题(共7小题)7.若一元二次方程ax2=b(ab>0)的两个根是2m+1和m﹣4,则=.8.已知m为方程x2+3x﹣2022=0的根,那么m3+4m2﹣2019m﹣2023的值为.9.已知m是方程x2﹣3x﹣1=0的一个根,则m3﹣10m=.10.若方程x2﹣6x﹣k﹣1=0与x2﹣kx﹣7=0仅有一个公共的实数根,则k的值为.11.如果多项式9x2+mx+49是一个完全平方式,则常数m=.12.已知,则(a+b)•c=.13.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x1是一元二次方程ax2+bx+c=0的根,则b2﹣4ac=(2ax1+b)2.其中正确的.A.只有①②④B.只有①②③C.①②③④D.只有①②三.解答题(共16小题)14.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D,连接CD.以点A为圆心,AC长为半径画弧,交线段AB于点E,连接CE.(1)求∠DCE的度数.(2)设BC=a,AC=b.①线段BE的长是关于x的方程x2+2bx﹣a2=0的一个根吗?说明理由.②若D为AE的中点,求的值.15.观察下面方程的解法x4﹣13x2+36=0解:原方程可化为(x2﹣4)(x2﹣9)=0∴(x+2)(x﹣2)(x+3)(x﹣3)=0∴x+2=0或x﹣2=0或x+3=0或x﹣3=0∴x1=2,x2=﹣2,x3=3,x4=﹣3你能否求出方程x2﹣3|x|+2=0的解?16.在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.老师:同学们,今天我们来探索如下方程的解法:(x2﹣x)2﹣(x2﹣x)+12=0学生甲:老师,这个方程先去括号,再合并同类项,行吗?老师:这样,原方程可整理为x4﹣2x3﹣7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?学生乙:老师,我发现x2﹣x是整体出现的,最好不要去括号!老师:很好,我们把x2﹣x看成一个整体,用y表示,即x2﹣x=y,那么原方程就变为y2+8y+12=0.全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2﹣x=6或x2﹣x=2.学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=﹣2,x3=2,x4=﹣1,嗬,有这么多根啊!老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.全体同学:OK,换元法真神奇!现在,请你用换元法解下列分式方程:.17.多项式4a2+1加上一个单项式后,正好成为一个完全平方式,那么所加上的单项式可能有哪些?请你写出所有可能的单项式.18.已知关于x的一元二次方程kx2﹣4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.19.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.20.已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.21.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有81人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,在经过3天的传染后,这个地区一共将会有多少人患甲型流感?22.已知一元二次方程x2﹣2(m+2)x+2m2﹣1=0有两个根x1和x2,并且,求m 的值.23.已知非零实数a,b满足a2+ab+b2+a﹣b+1=0,求的值.24.方程x2﹣ax+4a=0仅有整数根,求a.25.实数a,b,c满足:=,求abc的值.26.设a+b+c+3=2(),求a2+b2+c2的值.27.若关于x的一元二次方程mx2+5(2m﹣3)x﹣150=0有两个不等负整数根,求整数m 的值.28.如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?29.农历虎年之际,某社区为了突出浓浓年味,计划购买A与B两种贴花共500张.已知A 贴花的售价是每张15元,B贴花的售价是每张30元,共花费9000元.(1)求计划购买多少张B贴花?(2)为了节省费用,社区工作人员最终在网上购买,A贴花每张售价减少了,B贴花每张售价也便宜了m元.现在在(1)的基础上购买B贴花的数量增加了m张,总数量不变,并且总费用比原计划减少了(2000+10m)元,求m的值.。
人教版九年级上册数学一元二次方程培优习题附答案学生版
人教版九年级上册数学一元二次方程培优习题附答案一、单选题1.对于任意的实数,代数式2−5+10的值是一个()A.正数B.负数C.非负数D.无法确定2.已知实数x,y满足26336−276=1且2≠2,则2+22−2的值为()A.54B.45C.12D.23.如果x2+2(1-2m)x+9=0(m≠0)的左边是一个关于x的完全平方公式,则m等于(). A.1B.-1C.-1或1D.-1或24.已知α,β是方程x2+2014x+1=0的两个根,则(1+2016α+α2)(1+2016β+β2)的值为()A.1B.2C.3D.4二、填空题5.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x=。
6.若关于的一元二次方程(−1)2−4+2−1=0的一根是0,则=. 7.已知(x﹣2016)2+(x﹣2018)2=80,则(x﹣2017)2=.三、解答题8.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
为了迎接“六一”儿童节和扩大销售,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,并且尽快减少库存,那么每件童装应降价多少元?9.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请用一元二次方程的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,那么经过三轮感染后,被感染的电脑共有多少台?10.计算①3x2﹣3=2x(用配方法解)②4(x﹣1)2﹣9(3﹣2x)2=0.11.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元,请问该单位这次共有多少员工去天水湾风景区旅游?四、综合题12.已知:关于的一元二次方程B2−(4−3)+3−3=0(1)求证:无论取何值,方程都有实根;(2)若=−1是该方程的一个根,求的值;(3)若方程的两个实根均为正整数,求的值(为整数).13.已知关于x的一元二次方程2+3B+3−1=0有两个实数根1,2.(1)若1=22,求k的值.(2)若1<1,2>1,求k的取值范围.14.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想平均每天赢利2000元,可能吗?请说明理由.15.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2016年交易额为500亿元,2018年交易额为720亿元。
完整版)一元二次方程能力拔高题
完整版)一元二次方程能力拔高题一元二次方程培优专题复考点一、概念一元二次方程是只含有一个未知数,并且未知数的最高次数是2的整式方程。
其中,一般表达式为ax²+bx+c=0(a≠0),难点在于理解“未知数的最高次数是2”,即该项系数不为0,未知数指数为2.若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是()A、3(x+1)=2(x+1)B、2x+11=2x²C、2x/x-2=-2/xD、x²+2x=x²+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程(m+2)x²=mx+1的一个根为x=1/2.针对练:1、方程8x=7的一次项系数是8,常数项是7.2、若方程(m-2)x²+22mx+1=0是关于x的一元二次方程,则m的值为-11/2.3、若方程(m-1)x+mn²/m·x=1是关于x的一元二次方程,则m的取值范围是m≠0且m≠1.4、若方程nx²+x-2x=0是一元二次方程,则下列不可能的是m=2,n=1.考点二、方程的解方程的解是指使方程两边相等的未知数的值。
应用上,可以利用根的概念求代数式的值。
典型例题:例1、已知2y+y²-3的值为2,则4y+2y²+1的值为3.例2、关于x的一元二次方程(a-2)x²+x+a-4=0的一个根为x=2,则a的值为5.例3、已知关于x的一元二次方程ax²+bx+c=0的系数满足a+c=b,则此方程必有一根为x=1.例4、已知a,b是方程x²-4x+m=0的两个根,b,c是方程y²-8y+5m=0的两个根,则m的值为10.针对练:1、已知方程x+kx-10=0的一根是2,则k为-5,另一根是-2.2、已知关于x的方程x+kx-2=0的一个解与方程x²+3x-10=0的两个解之和相等,则k的值为-2.3、已知m是方程x²-x-1=0的一个根,则代数式m²-m-1=0.4、已知a是方程x²-3x+1=0的根,则2a-6=0,a=3.5、方程(a-b)x+(b-c)x+c-a=0的一个根为x=1.22x+1=3x的解相同。
九年级数学上册-一元二次方程(选择题)专题培优训练100题【含答案】
一、单选题1.若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是()A.﹣2B.﹣1C.1D.22.下列方程是一元二次方程的是()A.3x2−6x+2B.x2−y+1=0C.x2=4D.1x+x2=2 3.若x=5是方程x2﹣6x+k=0的一个根,则此方程的另一个根是()A.1B.2C.3D.44.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k<13B.k>- 1 3C.k<13且k≠0D.k>- 13且k≠05.将一元二次方程x2﹣4x﹣7=0配方,所得的方程是()A.(x﹣2)2=11B.(x﹣2)2=3C.(x+2)2=11D.(x+2)2=36.在下列方程中,是一元二次方程的是()。
A.3(x−2)+x=1B.x2+2x=1x C.2x2=1−3x D.x2−x3+3=0 7.一元二次方程x2+x-1=0根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断8.一元二次方程4x2﹣2x+ 14=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断9.已知关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,则m的取值范围是()A.m≤1B.m<1C.m≤1,且m≠0D.m<1,且m≠010.用配方法方程x2+6x﹣5=0时,变形正确的方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+6)2=4D.(x﹣6)2=411.下列一元二次方程中常数项为0的是()A.x2+x=1B.2x2﹣x+2=0C.3(x2+x)=3x+1D.﹣x2+x=x212.一元二次方程x2+3=2x的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根13.下列选项中的方程,是一元二次方程的为()A.x+ 1x2=1B.x2+2y﹣3=0C.3x2=1D.x3﹣2x+1=014.一元二次方程x2+4x+5=0的根的情况是()A.无实数根B.有一个实根C.有两个相等的实数根D.有两个不相等的实数根15.用配方法解方程x2+8x﹣9=0时,此方程可变形为()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=9D.(x+4)2=﹣716.一元二次方程x2−2x−3=0的二次项系数、一次项系数、常数项分别是() A.1,−2,−3B.1,−2,3C.1,2,3D.1,2,−3 17.一元二次方程4x2−2x+14=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断18.下列方程中是关于x的一元二次方程的是()A.x2+ 3x=0B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)219.下列方程是一元二次方程的是()A.2x+1=0B.x2=3C.y+x=1D.−1x−2x2=4 20.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2B.-2C.4D.-421.下列关于x的方程:①ax2+bx+c=0;②x2+1x2−3=0;③x2−4+x5=0;④3x=x2.其中是一元二次方程的有()A.1个B.2个C.3个D.4个22.关于x一元二次方程x2-kx-6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况23.已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1B.-1C.0D.无法确定24.方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3 25.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9B.(x﹣4)2=9C.(x+8)2=23D.(x﹣8)2=9 26.方程x2−4=0的解是()A.x1=2,x2=−2B.x=0C.x1=x2=2D.x1=x2=−227.一元二次方程x2+2x=0的根是()A.x1=0,x2=2B.x1=0,x2=﹣2C.x1=1,x2=﹣2D.x1=1,x2=228.方程x2=x的解是()A.x=1B.x=0C.x1=1,x2=0D.x1=﹣1,x2=029.一元二次方程2021x2−x+2021=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定30.关于x的一元二次方程x2−2x+k=0有两个相等的实数根,则k的值为()A.1B.-1C.2D.-231.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x千米,则下列方程正确的是()A.(2﹣3x)(1﹣2x)=1B.12(2﹣3x)(1﹣2x)=1C.14(2﹣3x)(1﹣2x)=1D.14(2﹣3x)(1﹣2x)=232.为了促使药品及医用耗材的价格回归合理水平,减轻群众就医负担,国家近几年大力推进带量采购制度改革,在改革推进的过程中,某药品经过两次降价,每瓶零售价由100元降为81元,已知两次降价的百分率都为x,那么x满足的方程是()A.100(1−x)2=81B.100(1+x)2=81C.100x2=81D.100(1−x%)2=8133.方程(x﹣1)(x﹣2)=1的根是()A.x1=1,x2=2B.x1=﹣1,x2=﹣2C.x1=0,x2=3D.以上都不对34.用配方法解方程x²-4x-1=0,方程应变形为()A.(x+2)2=3B.(x+2)²=5C.(x-2)²=3D.(x-2)²=535.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可得到i4n+1=i4n•i=(i4)n•i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值为()A.0B.1C.﹣1D.i36.若方程x2﹣4x﹣3=0的两实根为x1、x2,则x1+x2的值为()A.﹣3B.3C.﹣4D.437.函数y=x2−2px+2p2+2p−1的最小值是()A.−3B.−2C.−1D.038.方程(x+0.5)(x−2)=0的根为()A.x1=2,x2=−0.5B.x1=−2,x2=0.5C.x1=2,x2=0.5D.x1=−2,x2=−0.539.某县第一中学学校管理严格、教师教学严谨、学生求学谦虚,三年来中考数学A等级共728人.其中2016年中考的数学A等级人数是200人,2017年、2018年两年中考数学A等级人数的增长率恰好相同,设这个增长率为x,根据题意列方程,得()A.200(1+x)2=728B.200+200(1+x)+200(1+x)2=728 C.200+200x+200x2=728D.200(1+2x)=72840.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k≥-1且k≠0B .k≥-1C .k≤1D .k≤1且k≠041.二元二次方程组{(x +1)(y +2)=0y =x 2的解的个数是( )A .1B .2C .3D .442.中国正在布局以5G 等为代表的战略性新兴产业,据统计2020年我国已建成5G 基站a 万座,计划2022年基站数量达到b 万座,如果每年的平均增长率为x ,则以下关系正确的是( ) A .a (1+x )=b B .b (1-x )=a C .a (1+2x )=bD .a (1+x )=b43.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2B .a <2C .a <2且a≠1D .a <﹣244.若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为( )A .-2B .2C .4D .-345.若a>0,b<0,c<0则方程ax 2+bx+c=0的根的情况为( )A .有两个同号的实数根B .有两个异号的实数根,且负根的绝对值大C .有两个异号的实数根,且正根的绝对值大D .无实数根46.已知一元二次方程 x 2−3x +1=0 的两根为 x 1 , x 2 ,则 x 12−5x 1−2x 2 的值为( )A .-7B .-3C .2D .547.某种植基地2017年蔬菜产量为80吨,预计2019年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ). A .80(1+x)2=100 B .100(1−x)2=80 C .80(1+2x)2=100D .80(1−x)2=10048.设x 1,x 2是方程2x 2﹣6x+3=0的两根,则x 12+x 22的值是( )A .15B .12C .6D .349.下列方程中,一元二次方程是( ) A .x 2+ 1x2 =0B .(2x ﹣1)(x+2)=1C .ax 2+bx=0D .3x 2﹣2xy ﹣5y 2=050.已知两个整数a,b,有2a+3b=31,则ab的最大值是()A.35B.40C.41D.4251.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.81(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=10052.某县为发展教育事业,加强了对教育经费的投入,2020年投入3000万元,预计2022年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000+3000(1+x)+3000(1+x)2=500053.某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是()A.2(1−20%)(1+x)=1+15%B.(1+15%)(1+x)2=1−20%C.2(1+15%)(1+x)=1−20%D.(1−20%)(1+x)2=1+15%54.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是(A.300(1﹣x)2=243B.243(1﹣x)2=300C.300(1﹣2x)=243D.243(1﹣2x)=30055.关于x的方程ax2−(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1−x1x2+x2=1−a,则a的值是()A.1B.-1C.1或-1D.256.设m,n分别为一元二次方程x2+2x-1=0的两个实数根,则m +n+mn的值为()A.-3B.3C.-2D.257.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中,错误的是…….()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;B.如果方程M有两根符号相同,那么方程N的两根符号也相同;C.如果5是方程M的一个根,那么是方程N的一个根;D.如果方程M和方程N有一个相同的根,那么这个根必是58.下列方程中没有实数根的是()A.x2+2x+1=0B.x2﹣x+2=0C.x2+2x=0D.2x2﹣x﹣1=059.若a−b+c=0,则一元二次方程ax2−bx+c=0(a≠0)必有一根是()A.0B.1C.-1D.无法确定60.由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程提高题一、选择题1. 已知a是方程x2+x-仁0的一个根,则- 的值为( )a - 1 a - aA .-严B . 1C . - 1D . 172. 一元二次方程x(x2) 2 x的根是( )A.x=1B.x=0C.x=1 和x=2D.x=-1 和x=23 .为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是( )2 2A. 289 (1 - x) =256 B . 256 (1 - x) =289C. 289 (1 - 2x) =256 D . 256 (1 - 2x) =2894.岑溪市重点打造的天龙顶山地公园在2013年12月27日试业了.在此之前,公园派出小曾等人到某旅游景区考察,了解到该景区三月份共接待游客20万人次,五月份共接待游客50万人次•小曾想知道景区每月游客的平均增长率x的值,应该用下列哪一个方程来求出?( )2 2 2A. 20 (1+x) =50 B . 20 (1 - x) =50 C . 50 (1+x) =20 D . 50 ( 1 -x) 2=20 5•某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为( )A. x(x 1) 2070 B . x(x 1) 2070C. 2x(x 1) 2070 D . x(x 1 2070x6.若关于x的方程x2- 4x+m=0没有实数根,则实数m的取值范围是A . m<- 4B . m>- 4C . m< 4D . m> 47.已知实数a, b分别满足a2 6a 4 0, b2 6b 4 0,且a工b,则b - a b 的值是【】A. 7 B . —7 C . 11 D . —11&已知关于x的方程kx2 1 k x 1 0,下列说法正确的是A. 当k 0时,方程无解B. 当k 1时,方程有一个实数解C. 当k 1时,方程有两个相等的实数解D. 当k 0时,方程总有两个不相等的实数解9.若x2 Mxy 4y2是一个完全平方式,那么M的值是( )A. 2B. ± 2C. 4D. ± 4二、填空题10 .已知方程x2+ ( 1 - _上;)x -」.=0的两个根X1和X2,贝U X/+X22= ______2 1 111.已知m和n是方程2x —5x —3 = 0的两个根,^ U —+—=___________.m n2 212 .若将方程x 6x 7,化为x m 16,则m = __________________ .13 .已知(x2+ y2) (x2—1+ y2)—12=0,则x2+ y2的值是___________ ?14 .某种药品原价为60元/盒,经过连续两次降价后售价为48.6元/盒.设平均每次降价的百分率为x,则根据题意,可列方程为_________ .15 .若Va 4+ b 1 0 ,且一元二次方程kx2 ax b 0有实数根,则k的取值范围是________ •三、计算题216 .解方程:(x+3) - x (x+3) =0 .按要求解方程:18.2x 2x 3 019.2x x 10 (公式法) 20. x 2 2x 10 (配方法)四、解答题21 .广东省某市政府为了做到“居者有其屋”,加快了廉租房的建设力度, 2010年市政府共投资 2亿元人民币建设了廉租房 8万平方米,预计到 2012年底三年共累计投资 9.5亿元人民币建设廉租房,若在这两年内每年投资的 增长率相同.① 求每年市政府投资的增长率.② 若这两年内的建设成本不变,求到 2012年底共建设了多少平方米廉租房. 22 .已知X 1、X 2是方程2x 2 + 3x — 1 = 0的两个实数根,不解方程,求① (X 1 —2 1 1X 2):②一 + —的值.x-1 x 223.已知关于x 的一元二次方程 x 2 (k 2)x 2k 0 .(1) 若x 1是这个方程的一个根,求 k 的值和它的另一根; (2) 对于任意的实数 k ,判断原方程根的情况,并说明理由. 24 .为丰富学生的学习生活,某校九年级 1班组织学生参加春游活动,所联系的旅行社收费标准如下:阳异加1 低2 丁巴17. x(x 2)3(x 2)春游活动结束后,该班共支付给该旅行社活动费用 多少人参加这次春游活动?2800元,请问该班共有如果人数超过25人,每 增加1人,人均活动费用 降低2元,但人均活动费 用不得低于75元。
参考答案1. D【解析】先化简- ,由a是方程x2+x-仁0的一个根,得a2+a-仁0,则a2+a=1,a - 1 a - a再整体代入即可.解:原式= ■,、人•’a (a+1) (a - 1)=_,a (a+lj■/ a是方程x2+x - 1=0的一个根,--a +a —仁0,2即 a +a=1,原式=_______ =1.a (a+1)故选D.2. D.【解析】试题分析:x(x 2) 2 x x(x 2)+ (x 2)=0(x 1)(x 2) 0••• x 10, x 2 0解得:x1 1 , x22故选D.考点:解一元二次方程----因式分解法.3. A.【解析】试题分析:设平均每次的降价率为x,则经过两次降价后的价格是289 ( 1 —x) 2,根据关键语句“连续两次降价后为256元,”可得方程289 ( 1 —x ) 2=256.故选:A.考点:由实际问题抽象出一元二次方程.4. A.【解析】试题分析::一般用增长后的量=增长前的量X( 1+增长率),如果设每月游客的平均增长率x,根据题意即可列出方程.设每月游客的平均增长率x,根据题意可列出方程为:20 ( 1+x) 2=50.故选A.考点:由实际问题抽象出一元二次方程.5. A.【解析】试题分析:根据题意得:每人要赠送( X- 1)张相片,有x个人,所以全班共送:x (x - 1)=2070.故选A.考点:一元二次方程的应用.6. D【解析】试题分析:由方程没有实数根,得到根的判别式的值小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围:■/△ = (- 4) - 4m=16- 4m< 0,二m>4。
故选7. A。
2 O【解析】••• a, b分别满足a 6a 4 0, b 6b 4 0,且a工b,••• a与b为方程x2- 6x+4=0的两根。
•••根据一元二次方程根与系数的关系,得a+b=6, ab=4。
•则-a ab2 2b a a b2ab 62 2 47。
故选A o ab ab48. C o【解析】\|z k 0时,.、/4亠壬口X 10有唯一解。
当万程为一兀次方程当k 0时,方程为一元二次方程,的情况由根的判别式确定:2 21 k 4 k 1 k 1 ,•••当k 1时,方程有两个相等的实数解,当k 0且k 1时,方程有两个不相等的实数解。
综上所述,说法C正确。
故选Co9. D【解析】试题分析:若x2 Mxy 4y2是一个完全平方式,因为x2Mxy 4y2x2Mxy 2y 2,它要是完全平方式,那么Mxy 2x 2y,即Mxy 4xy,所以M= ± 4考点:完全平方式点评:本题考查完全平方式,解答本题需要考生掌握完全平方式,及其完全平方式的结构。
从而来解答本题10. 3【解析】本题考查一元二次方程ax2+bx+c=0 (0)的根与系数关系即韦达定理,两根之和是一 _,两根之积是_ .已知方程x2+ (1 - f , ) x - /_ =0的两个根X1和X2,贝y X1+X2=-a a(1 -J]), X1X2=- J],而x^+x^= (X1+X2) 2- 2X1X2,然后把前面的值代入即可求出其值. 解:•••方程x2+ (1 - /_ ) x-二;::.=0 的两个根X1 和X2,• X1+X2=-( 1 - 二),X1X2=- J-,则X12+X22= (X1+X2) 2- 2x1X2=3.故填空答案:3.5【解析】2m n是2x —5x —3= 0的两个根,•z 5 3•• m+ n = , m- n=— _2 21 1 m n 5 , 3、5•—— +— = = -^ (—)=——.m n mn 2 2 312. 3.【解析】试题分析:方程两边都加上一次项系数一半的平方,进行配方即可求出m的值.试题解析:••• X26x 7• X26x 9 7 92x 3 16• m=3.考点:配方法.13. 4【解析】将x2+y2看作一个整体m,得m(m 1) 12 0,整理得m2m 12 0,解得m 4 或m 3,由于m是大于零的数,所以m 3舍去.14. 60(1 x)248.6.【解析】试题分析:平均每次降价的百分率为x,第一次降价后售价为60(1 —x),第二次降价后售价为60(1 —x) (1 —x) = 601 —x)据此列出方程:60(1 x)248.6.15. k4且k0.【解析】试题分析:•••a4+ b 10,•根据算术平方根和绝对值的非负数性质,得a 40 a4b 10 b 1 .• kx2ax b0即kx2 4x 1 0.- 元—一次方程kx24x 10有实数根,考点:一元二次方程的应用(增长率问题)•••根据一元二次方程定义和根的判别式,得42 4k 0 k 4• k的取值范围是k 4且k 0 .20. x 2(xX 1解: 2x1)2 1 、5,X 2x 22x二 * ■■■ 2 1, X 2 、2 1 考点:1.算术平方根和绝对值的非负数性质; 2. 一元二次方程定义;3. —元二次方程根的判别式;4.分类思想的应用. 16. x= - 3 【解析】试题分析:方程左边提取公因式变形后,利用两数相乘积为 0,两因式中至少有一个为 0转化为两个一元一次方程来求解.2解:(x+3) - x (x+3) =0, 分解因式得:(x+3) (x+3 - x ) =0, 可得:x+3=0, 解得:x= - 3.点评:此题考查了解一元二次方程-因式分解法, 利用此方法解方程时, 首先将方程右边化 为0,左边化为积的形式,然后利用两数相乘积为 0,两因式中至少有一个为 0转化为两个一元一次方程来求解.17.解: (x 3)(x 2) 0 ......................... ....................... 3分••• x 3 0 或 x 2x 3, X 2 2 ........................................... 5分 18.解: (x 3)(x 1) 0 ........................... .....................3分• x3 0 或 x 1 0x 3H1 ............................ ............... 5分19. 解: T a 1,b 1,c 1;1分b 2 4ac (1)21 ( 1) 5>0,b2a ■- 5 2【解析】略21.①50% ②38万平方米【解析】解:①设市政府每年投资的增长率为X,2由题意,得 2 + 2(1 + x) + 2(1 + x) = 9.5 ,整理,得x2+ 3x — 1.75 = 0,解之得X i= 0.5 , X2=- 3.5(舍). 答:每年市政府投资的增长率为50%.2②到2012年底共建设了9.5十=38(万平方米).8答:共建设了38万平方米.1722 .①一②34【解析】解:由一元二次方程根与系数的关系可知:丄—3 _ 12 22 2 2所以① (x 1—X2)—X1 —2x1X2+ X22 2 2—(x 1 + 2x1X2 + X2) —4X1X2—(x 1 + X2)—4X1X232117———4 X 一2243②丄+ 1 x1x2一—3X1x2x1x21223. (1)1,2 ; (2)原方程总有两个实数根,理由见解析【解析】试题分析:(1)把x=1代入方程得到关于k的方程,求出k的值,再把k的值代入原方程,然后利用因式分解法解方程求出方程的另一根;(2)计算判别式得到厶=(k+2) 2-4 x 2k=k2-4k+4= ( k-2 ) 2,根据非负数的性质得到0, 然后根据判别式的意义判断方程根的情况.试题解析:(1):x 1是方程x2 (k 2)x 2k 0的一个根,••• 1 (k 2) 1 2k 0,解得k 1,•••原方程为x2 3x 2 0 ,解得x11, x22 ,•原方程的另一根为x 2(2 )对于任意的实数k,原方程总有两个实数根,(k 2)2 4 2k2k 4k 4(k 2) 2 0•••对于任意的实数k,原方程总有两个实数根.考点: 1. 根的判别式; 2. 解一元二次方程-因式分解法.24.35.【解析】试题分析:先要根据付给旅行社的费用来判断这次春游人数的大致范围.然后根据相应范围的不同的费用基数按方法来列出方程,求出符合题意的值.试题解析:••• 25人的费用为2500元V 2800元•参加这次春游活动的人数超过25 人.设该班参加这次春游活动的人数为x 名,根据题意得[100-2 (x-25 )]x=28002整理得x2-75x+1400=0解得x1=40,x2=35当x1=40 时,100-2 (x-25 ) =70V 75,不合题意,舍去.当X2=35 时,100-2 (x-25 ) =80 > 75,符合题意.答:该班参加这次春游活动的人数为35名.考点: 一元二次方程的应用.。