函数极限与连续习题(含答案)

合集下载

第二章 极限与连续习题答案

第二章  极限与连续习题答案
(11)2(12) (13) (14)1(15)是
3.选择题
(1)C(2)A(3)C(4)C(5)D
(6)B(7)D(8)C(9)A(10)A
4.计算与应用题
(1)
(2)
(3)
(4)0
(5)
(6)
(7)
(8)1
(9)
(10)
(11)2
(12)-1
(13)
(14)-2
(15)
(16)1
1.
(1)无穷小
(2)无穷大
(3)无穷小
(4)无穷大
2.
时函数为无穷小; 时函数为无穷大
3.
(1)
(2)
练习题2.4未定式及极限运算
1.
(1)
(2)
(3)
(4)
(5)
(6)
2.
练习题2.5函数的连续
1.
2.
(1)
(2)
3.
连续
不连续
连续
4.
(1) 第二类间断点
(2) 第一类间断点
5.
证明:设 则 在 内连续,所以 在 内也连续,而 ,所以,根据零点定理可知,至少有一个 ,使得 ,即方程 至少有一个实根介于1和2之间。
设则在内连续所以在内也连续而所以根据零点定理可知至少有一个使得即方程至少有一个实根介于1和2之间
第二章极限与连续习题答案
练习题2.1
1.
(1)1
(2)0
(3)不存在
(4)不存在
2.
(1)0
(2)不存在
3.
(1)不存在
(2)0
4.
练习题2.2
1.
(1)
(2)
(3)
(4)

(数一)高等数学习题集(含解答)

(数一)高等数学习题集(含解答)

第一章 函数·极限·连续一. 填空题1.设⎰∞-∞→=⎪⎭⎫⎝⎛+a t axx dt te x x 1lim , 则a = ________. 解. 可得⎰∞-=at adt te e =a a t t e ae ae te -=∞--)(, 所以 a = 2. 2. ⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =________. 解. nn n nn n n n n n +++++++++22221 <n n n nn n n n +++++++++2222211 <11211222+++++++++n n n n n n n 所以 n n n n +++++221 <n n n n n n n n +++++++++2222211 <1212+++++n n n 212)1(2122→+++=+++++n n n n n n n n n , (n →∞) 2112)1(12122→+++=+++++n n n n n n n , (n →∞) 所以 ⎪⎭⎫⎝⎛+++++++++∞→n n n n n n n n n 2222211lim =213. 已知函数⎩⎨⎧=01)(x f 1||1||>≤x x , 则f[f(x)] _______.解. f[f(x)] = 1. 4. )3(lim n n n n n --+∞→=_______.解. nn n n n n n n n n n n n n n n n n -++-++--+=--+∞→∞→3)3)(3(lim)3(lim=233lim=-+++-+∞→nn n n n n n n n5. ⎪⎭⎫⎝⎛-→x x x x 1sin 1cot lim 0=______.解. 616sin lim 3cos 1lim sin lim sin sin sin cos lim020300==-=-=-⋅→→→→x x x x x x x x x x x x x x x x x6. 已知A n n n k kn =--∞→)1(lim 1990(≠ 0 ≠ ∞), 则A = ______, k = _______. 解. A kn n n n n k n k kn =+=---∞→∞→119901990lim )1(lim 所以 k -1=1990, k = 1991;1991111===k A A k , 二. 选择题1. 设f (x )和ϕ(x )在(-∞, +∞)内有定义, f (x )为连续函数, 且f (x ) ≠ 0, ϕ(x )有间断点, 则 (a) ϕ[f (x )]必有间断点 (b) [ ϕ(x )]2必有间断点 (c) f [ϕ(x )]必有间断点 (d))()(x f x ϕ必有间断点 解. (a) 反例⎩⎨⎧=01)(x ϕ1||1||>≤x x , f (x ) = 1, 则ϕ[f (x )]=1(b) 反例 ⎩⎨⎧-=11)(x ϕ 1||1||>≤x x , [ ϕ(x )]2 = 1(c) 反例⎩⎨⎧=01)(x ϕ1||1||>≤x x , f (x ) = 1, 则f [ϕ(x )]=1(d) 反设 g(x ) = )()(x f x ϕ在(-∞, +∞)内连续, 则ϕ(x ) = g (x )f (x ) 在(-∞, +∞)内连续, 矛盾. 所以(d)是答案.2. 设函数xex x x f sin tan )(⋅⋅=, 则f(x)是(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数 解. (b)是答案. 3. 极限⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n 的值是 (a) 0 (b) 1 (c) 2 (d) 不存在 解. ⎥⎦⎤⎢⎣⎡+⨯+++⨯+⨯∞→222222)1(12325213lim n n n n =1)1(11lim )1(1131212111lim 2222222=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+-++-+-∞→∞→n n n n n , 所以(b)为答案. 4. 设8)1()1()1(lim 502595=+++∞→x ax x x , 则a 的值为(a) 1 (b) 2 (c)58 (d) 均不对解. 8 = 502595)1()1()1(lim +++∞→x ax x x =100502559595/)1(/)1(/)1(lim x x x ax x x x +++∞→ =5502595)/11()/1()/11(lim a x x a x x =+++∞→, 58=a , 所以(c)为答案. 5. 设βα=------∞→)23()5)(4)(3)(2)(1(limx x x x x x x , 则α, β的数值为(a) α = 1, β = 31 (b) α = 5, β = 31 (c) α = 5, β = 531(d) 均不对 解. (c)为答案.6. 设232)(-+=xxx f , 则当x →0时(a) f(x)是x 的等价无穷小 (b) f(x)是x 的同阶但非等价无穷小(c) f(x)比x 较低价无穷小 (d) f(x)比x 较高价无穷小解. x x x x 232lim 0-+→=3ln 2ln 13ln 32ln 2lim0+=+→x x x , 所以(b)为答案. 7. 设6)31)(21)(1(lim0=++++→xax x x x , 则a 的值为(a) -1 (b) 1 (c) 2 (d) 3解. 0)31)(21)(1(lim 0=++++→a x x x x , 1 + a = 0, a = -1, 所以(a)为答案.8. 设02)1()21ln()cos 1(tan lim2202≠+=-+--+-→c a e d x c x b x a x x ,其中, 则必有(a) b = 4d (b) b =-4d (c) a = 4c (d) a =-4c解. 2 =)1()21ln()cos 1(tan lim 20x x e d x c x b x a -→-+--+=c a xde xc x b x axx 22212sin cos lim 220-=+--+-→, 所以a =-4c, 所以(d)为答案. 三. 计算题 1. 求下列极限 (1) xxx e x 1)(lim ++∞→解. e e e eee x xxx x x x e x e x e x xe x x xxx =====++++++∞→+∞→+∞→+∞→11lim)ln(lim)ln(1lim )(lim(2) x x xx )1cos 2(sinlim +∞→解. 令xy 1=yy x x y y xx 10)cos 2(sin lim )1cos 2(sin lim +=+→∞→=2cos 2sin sin 2cos 2lim)cos 2ln(sin lim 00e ee y y y y yy y y y ==+-+→→(3) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→解. =⎪⎭⎫ ⎝⎛++→310sin 1tan 1lim x x x x 310sin 1sin tan 1lim x x x x x ⎪⎭⎫ ⎝⎛+-+→3)s i n 1(s i nt a n s i nt a n s i n10s i n 1s i n t a n 1lim x x x x x x x x x x x +--+→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+==3sin tan limx xx x e -→=3)cos 1(sin limx x x x e-→=212sin 2sin lim32e ex xx x =⋅→.2. 求下列极限 (1) 323112arcsin )11ln(lim--+→x x x解. 当x →1时, 331~)11ln(--+x x , 323212~12arcsin --x x . 按照等价无穷小代换 33132313231221121lim121lim12arcsin )11ln(lim=+=--=--+→→→x x x x x x x x (2) ⎪⎭⎫⎝⎛-→x x x 220cot 1lim 解. 方法1:⎪⎭⎫⎝⎛-→x x x 220cot 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎭⎫ ⎝⎛++-→32204sin cos )1(2cos 2lim x x x x x x x =3203204sin cos 2lim 42sin cos 2lim x x x x x x x x x x →→++- =21122cos 2sin cos 4cos 2lim220+++-→x x x x x x x=2131242sin 4sin cos 4lim 2131122cos 2cos 2lim0220++-=+++-→→x x x x x x x x x =322131612131242sin 2lim 0=++-=++-→x x x方法2:⎪⎭⎫ ⎝⎛-→x x x 220c o t 1lim =⎪⎪⎭⎫ ⎝⎛-→x x x x 2220sin cos 1lim =⎪⎪⎭⎫⎝⎛-→x x x x x x 222220sin cos sin lim =⎪⎪⎭⎫ ⎝⎛+-→4220cos )1(1lim x x x x =⎪⎪⎪⎪⎭⎫⎝⎛++-→420)12)(cos 1(211lim x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-++-→444220)(0!4)2(!2)2(11)(1(211lim x x x x x x =⎪⎪⎪⎪⎭⎫ ⎝⎛++-+--→4442420))(024162222(211lim x x x x x x x =3232lim 440=→x xx3. 求下列极限 (1) )1(ln lim-∞→nn n nn解. n nn n n nn n n n ln 1lim )1(ln lim -=-∞→∞→ x n n =-1令 1)1ln(lim0=+→x x x (2) nxnxn e e --∞→+-11lim解. ⎪⎩⎪⎨⎧-=+---∞→10111limnxnxn e e 000<=>x x x (3) nn n n b a ⎪⎪⎭⎫⎝⎛+∞→2lim , 其中a > 0, b > 0 解. nnnn b a ⎪⎪⎭⎫ ⎝⎛+∞→2lim a b c n x /,/1== xc xxx x x ae c a 2ln )1ln(lim 10021lim -+→+→+=⎪⎪⎭⎫ ⎝⎛+=ab abac a ae aexx x x x c c c x c ====+-++→+→1ln lim2ln )1ln(lim0 4. 求下列函数的间断点并判别类型(1) 1212)(11+-=xxx f解. 11212lim )0(110=+-=+→+xxx f , 11212lim )0(110-=+-=-→-xxx f所以x = 0为第一类间断点.( 2 ) ⎪⎪⎩⎪⎪⎨⎧-+=11sin cos 2)2()(2x xx x x f π 00>≤x x解. f(+0) =-sin1, f(-0) = 0. 所以x = 0为第一类跳跃间断点; 11s i nlim )(lim 211-=→→x x f x x 不存在. 所以x = 1为第二类间断点; )2(π-f 不存在, 而2cos 2)2(lim2πππ=+-→x x x x ,所以x = 0为第一类可去间断点;∞=+--→xx x k x c o s 2)2(lim2πππ, (k = 1, 2, …) 所以x =2ππ--k 为第二类无穷间断点.5. 讨论函数⎪⎩⎪⎨⎧+=βαx e x x x f 1sin )(00≤>x x 在x = 0处的连续性. 解. 当0≤α时)1sin (lim 0xx x α+→不存在, 所以x = 0为第二类间断点;当0>α, 0)1sin (lim 0=+→xx x α, 所以1-=β时,在 x = 0连续, 1-≠β时, x = 0为第一类跳跃间断点.6. 设f(x)在[a, b]上连续, 且a < x 1 < x 2 < … < x n < b, c i (I = 1, 2, 3, …, n)为任意正数, 则在(a, b)内至少存在一个ξ, 使 nnc c c c x f c x f c f ++++++=212211)()()(ξ.证明: 令M =)}({max 1i ni x f ≤≤, m =)}({min 1i ni x f ≤≤所以 m ≤nnc c c c x f c x f c ++++++ 212211)()(≤ M所以存在ξ( a < x 1 ≤ ξ ≤ x n < b), 使得nnc c c c x f c x f c f ++++++=212211)()()(ξ7. 设f(x)在[a, b]上连续, 且f(a) < a, f(b) > b, 试证在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 证明: 假设F(x) = f(x)-x, 则F(a) = f(a)-a < 0, F(b) = f(b)-b > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ.8. 设f(x)在[0, 1]上连续, 且0 ≤ f(x) ≤ 1, 试证在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ. 证明: (反证法) 反设0)()(],1,0[≠-=∈∀x x f x x ϕ. 所以x x f x -=)()(ϕ恒大于0或恒小于0. 不妨设0)()(],1,0[>-=∈∀x x f x x ϕ. 令)(min 10x m x ϕ≤≤=, 则0>m .因此m x x f x x ≥-=∈∀)()(],1,0[ϕ. 于是01)1(>+≥m f , 矛盾. 所以在[0, 1]内至少存在一个ξ, 使f(ξ) = ξ.9. 设f(x), g(x)在[a, b]上连续, 且f(a) < g(a), f(b) > g(b), 试证在(a, b)内至少存在一个ξ, 使f(ξ) = g(ξ).证明: 假设F(x) = f(x)-g(x), 则F(a) = f(a)-g(a) < 0, F(b) = f(b)-g(b) > 0 于是由介值定理在(a, b)内至少存在一个ξ, 使f(ξ) = ξ. 10. 证明方程x 5-3x -2 = 0在(1, 2)内至少有一个实根. 证明: 令F(x) = x 5-3x -2, 则F(1) =-4 < 0, F(2) = 24 > 0 所以 在(1, 2)内至少有一个ξ, 满足F(ξ) = 0.11. 设⎪⎪⎩⎪⎪⎨⎧>=<-=⎰0cos 1010)cos 1(2)(022x dt t x x x x x x f x试讨论)(x f 在0=x 处的连续性与可导性.解. 20200200cos lim 1cos 1lim )0()(lim )0('x x dt t x dt t x x f x f f x x x x x -=-=-=⎰⎰+++→→→+ 0221lim 21cos lim 2020=-=-=++→→xx x x x x320200)c o s 1(2lim 1)cos 1(2lim )0()(lim )0('x x x x x x x f x f f x x x --=--=-=++-→→→- 06)1(cos 2lim 32sin 2lim 020=-=-=++→→x x x x x x x 所以 0)0('=f , )(x f 在0=x 处连续可导.12. 设f(x)在x = 0的某领域内二阶可导, 且0)(3sin lim 230=⎪⎭⎫⎝⎛+→x x f xx x , 求)0(''),0('),0(f f f 及23)(limxx f x +→. 解. 0)(3sin lim )(3sin lim )(3sin lim 2030230=+=+=⎪⎭⎫ ⎝⎛+→→→x x f x xx x xf x x x f x x x x x . 所以 0)(3s i n lim 0=⎪⎭⎫⎝⎛+→x f x x x . f(x)在x = 0的某领域内二阶可导, 所以)('),(x f x f 在x = 0连续. 所以f(0) = -3. 因为0)(3s i n lim 20=+→xx f x x x , 所以03)(33sin lim 20=++-→x x f x xx , 所以 2030202033c o s 33lim 3sin 3lim 3sin 3lim 3)(lim x x x x x x x x x x f x x x x -=-=-=+→→→→ =2923sin 3lim 0=→x x x02903)(lim 3)(lim 0)0()(lim )0('2000=⨯=+⋅=+=--=→→→x x f x x x f x f x f f x x x由293)(lim 20=+→x x f x , 将f(x)台劳展开, 得 293)(0)0(''!21)0(')0(lim 2220=++++→x x x f x f f x , 所以29)0(''21=f , 于是 9)0(''=f .(本题为2005年教材中的习题, 2008年教材中没有选入. 笔者认为该题很好, 故在题解中加入此题)第二章 导数与微分一. 填空题 1. xx x f +-=11)(, 则)()(x f n = _______. 解. 1112)1(!12)1()1(11)('++⋅-=++---=x x x x x f , 假设1)()1(!2)1(++⋅-=k k k x k f , 则111)1()1()!1(2)1(++++++⋅-=k k k x k f, 所以1)()1(!2)1(++⋅-=n n n x n f2. 设⎩⎨⎧=+=ty t x cos 12 , 则=22dx d y______.解. t tdx dy 2sin -=, 32'224cos sin 214sin 2cos 22sin t t t t t t t t t dxdt t t dx y d t -=--=⎪⎭⎫ ⎝⎛-= 3. 设函数y = y(x)由方程0)cos(=++xy e yx 确定, 则=dxdy______. 解. 0sin )'()'1(=+-++xy xy y y eyx , 所以xyx e e xy y y y x yx sin sin '--=++4. 已知f(-x) =-f(x), 且k x f =-)('0, 则=)('0x f ______. 解. 由f(-x) =-f(x)得)(')('x f x f -=--, 所以)(')('x f x f =- 所以 k x f x f =-=)(')('005. 设f(x)可导, 则=∆∆--∆+→∆xx n x f x m x f x )()(lim 000_______.解. xx n x f x f x f x m x f x ∆∆--+-∆+→∆)()()()(lim 00000=x m x f x m x f m x ∆-∆+→∆)()(lim 000+x n x f x n x f n x ∆--∆-→∆)()(lim 000=)(')(0x f n m +6. 设)('31)()(lim0000x f x x f x k x f x =∆-∆+→∆, 则k = ________. 解. )('31)()(lim0000x f x k x f x k x f k x =∆-∆+→∆, 所以)('31)('00x f x kf = 所以 31=k7. 已知x x f dx d 112=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛, 则=⎪⎭⎫⎝⎛21'f _______. 解. x xx f 121'32=⋅⎪⎭⎫ ⎝⎛-, 所以21'22x x f -=⎪⎭⎫ ⎝⎛. 令x 2 = 2, 所以11'2-=⎪⎭⎫⎝⎛x f 8. 设f 为可导函数, )]}([sin sin{x f f y =, 则=dxdy_______. 解.)]}([sin cos{)]([sin ')(cos )('x f f x f f x f x f dxdy= 9. 设y = f(x)由方程1)cos(2-=-+e xy eyx 所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______.解. 上式二边求导0)sin()'()'2(2=+-++xy xy y y eyx . 所以切线斜率2)0('-==y k . 法线斜率为21, 法线方程为 x y 211=-, 即 x -2y + 2 = 0. 二. 单项选择题1. 已知函数f(x)具有任意阶导数, 且2)]([)('x f x f =, 则当n 为大于2的正整数时, f(x)的n 阶导数是 (a) 1)]([!+n x f n (b) 1)]([+n x f n (c) n x f 2)]([ (d) nx f n 2)]([!解. 3)]([!2)(')(2)(''x f x f x f x f ==, 假设)()(x f k =1)]([!+k x f k , 所以)()1(x f k +=2)]([)!1()(')]([!)1(++=+k k x f k x f x f k k , 按数学归纳法)()(x fn =1)]([!+n x f n 对一切正整数成立. (a)是答案.2. 设函数对任意x 均满足f(1 + x) = af(x), 且=)0('f b, 其中a, b 为非零常数, 则 (a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且=)1('f a (c) f(x)在x = 1处可导, 且=)1('f b (d) f(x)在x = 1处可导, 且=)1('f ab 解. 在f(1 + x) = af(x)中代入)0()1(,0af f x ==得x f x f f x ∆-∆+=→∆)1()1(lim)1('0=ab af xaf x af x ==∆-∆→∆)0(')0()(lim 0, 所以. (d)是答案 注: 因为没有假设)(x f 可导, 不能对于)()1(x af x f =+二边求导. 3. 设||3)(23x x x x f +=, 则使)0()(n f 存在的最高阶导数n 为(a) 0 (b) 1 (c) 2 (d) 3解. ⎩⎨⎧=3324)(xx x f 00<≥x x . ⎩⎨⎧=x x x f 1224)('' 00<≥x x24024lim 0)0('')(''lim )0('''00=-=--=++→→+xx x f x f f x x12012lim 0)0('')(''lim )0('''00=-=--=--→→-xx x f x f f x x 所以n = 2, (c)是答案.4. 设函数y = f(x)在点x 0处可导, 当自变量x 由x 0增加到x 0 + ∆x 时, 记∆y 为f(x)的增量, dy 为f(x)的微分, xdyy x ∆-∆→∆0lim等于(a) -1 (b) 0 (c) 1 (d) ∞ 解. 由微分定义∆y = dy + o (∆x), 所以0)(lim lim00=∆∆=∆-∆→→∆x x o xdy y x x . (b)是答案.5. 设⎪⎩⎪⎨⎧+=bax x x x f 1sin)(200≤>x x 在x = 0处可导, 则 (a) a = 1, b = 0 (b) a = 0, b 为任意常数 (c) a = 0, b = 0 (d) a = 1, b 为任意常数解. 在x = 0处可导一定在x = 0处连续, 所以)(lim 1sinlim 020b ax x x x x +=-+→→, 所以b = 0.)0(')0('-+=f f , x ax xx x x x -+→→=020lim 1sinlim , 所以 0 = a. (c)是答案. 三. 计算题1. ')]310ln[cos(2y x y ,求+=解. )310tan(6)310cos(6)310sin('222x x x xx y +-=+⋅+-= 2. 已知f(u)可导, ')][ln(2y x a x f y ,求++= 解. ='y ⎪⎪⎭⎫⎝⎛++++⋅++2222211)][ln('x a xx a x x a x f =22)][ln('xa x a x f +++3. 设y 为x 的函数是由方程xyy x arctan ln22=+确定的, 求'y .解.22222221'2'22xy x y x y y x y x yy x +-=+++y x y yy x -=+'', 所以yx yx y -+=' 4. 已知⎩⎨⎧==te y t e x tt cos sin , 求22dx yd . 解. tt tt t e t e t e t e dx dy t t t t sin cos sin cos sin cos sin cos +-=+-=,dt dx t t t t t t dx dt t t t t dt d dx y d 1)sin (cos )sin (cos )sin (cos sin cos sin cos 22222⋅+--+-=⋅⎪⎭⎫ ⎝⎛+-= 322)s i n (c o s 2t t e dx y d t +-= 5. 设2/322)(x x u y y x +=+=,, 求dudy解. dy y dx )12(+=, dx x x x du )12()(23212++=dx x x x dxdu dyy )12(23)12(2++=+)12()12(322+++=x x x y d u d y 6. 设函数f(x)二阶可导, 0)0('≠f , 且⎩⎨⎧-=-=)1()(3te f y t f x π, 求0=t dx dy , 022=t dx yd . 解. )('3)1('33t fe ef dx dy t t -=, 所以0=t dx dy=3. 3333323322)]('[)('')1(')(')]1('3)(3)1(''[3t f t f e f e t f e f e e e f dx y d t t t t t t ---+-= 所以2322)]0('[)0(''6)0('9)]0('[)0('')0(')0(')]0('3)0(''3[30f f f f f f f f f t dx y d +=-+== 7. 设曲线x = x(t), y = y(t)由方程组⎩⎨⎧=+=e e e te x yt t 2确定. 求该曲线在t = 1处的曲率. 解. ee e e e y t ty t t 2'-=-=. 所以)2)(1(12''e e t te e e e e x y dx dy t t t t tt t -+=+-== 所以et dx dy 211-==.t t tt t ee e t te e e dx dt e e t dt d dx y d 2322)2()1(22)2)(1(1-++--=⎪⎪⎭⎫ ⎝⎛-+=所以 222811et dx y d -==. 在t = 1的曲率为 2322322232)41(411811)'1(|''|--+=⎪⎭⎫ ⎝⎛+==+=e e e e t y y k四. 已知当x ≤ 0时, f (x )有定义且二阶可导, 问a, b, c 为何值时⎩⎨⎧++=cbx ax x f x F 2)()( 00>≤x x二阶可导.解. F(x )连续, 所以)(lim )(lim 0x F x F x x +-→→=, 所以c = f (-0) = f (0);因为F(x )二阶可导, 所以)('x F 连续, 所以b = )0(')0('f f =-, 且 ⎩⎨⎧+=-)0('2)(')('f ax x f x F 00>≤x x)0(''F 存在, 所以)0('')0(''+-=F F , 所以a xf f ax x f x f x x 2)0(')0('2lim )0(')('lim 00=-+=--→→+-, 所以)0(''21f a =五. 已知)0(1)()(22n f xx x f ,求-=. 解. xx x f +⋅+-⋅+-=112111211)( 11)()1()1(21)1(!21)(+++-⋅+-⋅=n nn n x x n x f0)0()12(=+k f , k = 0, 1, 2, …!)0(2n fk=, k = 0, 1, 2, …六. 设x x y ln =, 求)1()(n f .解. 使用莱布尼兹高阶导数公式 121)1()()()!2()1()!1()1()(ln )(ln )(------+--=+⋅=n n n n n n n x n n x n x x n x x x f=121121)!2()1()1()!2()1(-------=⎥⎦⎤⎢⎣⎡+----n n n n n x n x n xn n 所以 )!2()1()1(2)(--=-n f n n七. 已知'.,sin cos 20022y y tdt dt e x y t 求+=⎰⎰解. 两边对x 求导, 2222cos 2cos 2',cos '2cos 2'22yy ex x y y yy x x y e y y -=+=第三章 一元函数积分学(不定积分)一. 求下列不定积分: 1.⎰-+-dx x xx 11ln 112解. =-+-⎰dx x x x 11ln 112c x x x x d x x +⎪⎭⎫⎝⎛-+=-+-+⎰211ln 4111ln 11ln 212. c x x x x d x x dx x x x+⎪⎭⎫ ⎝⎛-+=-+-+=-++⎰⎰2211arctan 2111arctan 11arctan 11arctan 11 3.⎰++⋅+++dx x x x x x cos 1sin 1)cos 1(1sin cos 2解. c x x x x d x x dx x x x x x +⎪⎭⎫ ⎝⎛++=++++=++⋅+++⎰⎰22cos 1sin 121cos 1sin 1cos 1sin 1cos 1sin 1)cos 1(1sin cos 4.⎰+)1(8x x dx解. 方法一: 令tx 1=,c t t dt t dt t t t x x dx ++-=+-=⎪⎭⎫⎝⎛+-=+⎰⎰⎰)1ln(8111111)1(887828 = c x +⎪⎭⎫ ⎝⎛+-811ln 81 方法二:⎰⎰⎰+--=+=+dx x x x x x dx x x x dx )111()1()1(8878878 =c x x x x d x dx ++-=++-⎰⎰)1ln(81||ln 1)1(81888=c x +⎪⎭⎫ ⎝⎛+-811ln 815.dx xx x x x x dx x x x ⎰⎰+++-+++=+++cos sin 121)cos (sin 21)cos sin 1(21cos sin 1sin 1 ⎰⎰⎰+++++--=dx x x dx x x x x dx cos sin 1121cos sin 1sin cos 2121dx x x x x x x x d x ⎰⎰++++++-=2cos 22cos 2sin 2121cos sin 1)cos sin 1(212122tan 12tan 121|cos sin 1|ln 2121xd x x x x ⎰++++-=c xx x x +++++-=|12tan |ln 21|cos sin 1|ln 2121二. 求下列不定积分: 1.⎰+++22)1(22x x x dx解.⎰⎰++++=+++1)1()1()1(22)1(2222x x x d x x x dx t x tan 1=+令 ⎰t t t dtsec tan cos 22 =⎰++++-=+-=c x x x c t t tdt 122sin 1sin cos 222.⎰+241xxdx解. 令x = tan t,⎰⎰⎰⎰⎰++-=-===+c t t t t d t t d dt t t t t t dt xxdx sin 1sin 31sin sin sin sin sin cos sec tan cos 1324434224=c x x x x+++⎪⎪⎭⎫⎝⎛+-23211313.⎰++221)12(xxdx解. 令t x tan =⎰⎰⎰⎰+=+=+=++t td dt t t t dt t t t xx dx2222222sin 1sin cos sin 2cos sec )1tan 2(sec 1)12(=c xx c t ++=+21arctansin arctan4.⎰-222x a dx x (a > 0)解. 令t a x sin =⎰⎰⎰+-=-=⋅=-c t a t a dt t a t a tdt a t a x a dxx 2sin 412122cos 1cos cos sin 22222222=c x a a x a x a +⎪⎭⎫⎝⎛--2222arcsin 25.⎰-dx x 32)1(解. 令t x sin =⎰⎰⎰⎰++=+==-dt tt dt t tdt dx x 42cos 2cos 214)2cos 1(cos )1(22432=⎰+++=+++c t t t dt t t t 4sin 3212sin 4183)4cos 1(812sin 4141 =c t t x +++)2cos 411(2sin 41arcsin 83=c tt t x +-++)4sin 214(cos sin 241arcsin 832 =c x x x x +--+)25(181arcsin 8322 6.⎰-dx xx 421解. 令tx 1=⎰⎰⎰--=⎪⎭⎫ ⎝⎛--=-dt t t dt t t t t dx xx 224224211111u t sin =令⎰-udu u 2cos sin =c x x c u +-=+33233)1(cos 317.⎰-+dx x xx 1122解. 令 tdt t dx t x tan sec ,sec ==⎰⎰⎰++=+=+=-+c t t dt t tdt t tt t dx x xx sin )cos 1(tan sec tan sec 1sec 11222c xx x+-+=11arccos 2 三. 求下列不定积分:1. ⎰+-+dx e e e e x xxx 1243 解. ⎰⎰⎰+-=+--=+-+=+-+-----c e e e e e e d dx e e e e dx e e e e x x x x x x x x x x x xx x )arctan(1)()(11222243 2.⎰+)41(2x x dx解. 令xt 2=, 2ln t dtdx =c tt dt t t t t dt dx x x +--=⎪⎭⎫ ⎝⎛+-=+=+⎰⎰⎰2ln arctan 2ln 11112ln 12ln )1()41(22222 =c x x ++--)2arctan 2(2ln 1四. 求下列不定积分:1. ⎰-dx x x 1005)2( 解. ⎰⎰⎰---+--=--=-dx x x x x x d x dx x x 9949959951005)2(995)2(99)2(991)2( =⎰--⋅⋅+-⨯---dx x x x x x x 983984995)2(989945)2(98995)2(99 =962973984995)2(96979899345)2(97989945)2(98995)2(99-⋅⋅⋅⋅⋅--⋅⋅⋅--⋅---x x x x x x x x c x x x +-⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅-9495)2(95969798992345)2(95969798992345 2.⎰+41xxdx解.⎰⎰⎰⎰+-=+-=+-=+22244424)(1211111/11t dt t tdt t t t dt t t x x x dx 令c x x c u u du u u u t ++-=++-=-=⎰24221ln 21|sec tan |ln 21sec sec 21tan 令五. 求下列不定积分: 1.⎰xdx x 2cos 解.⎰⎰⎰+=+=x xd x dx x x xdx x 2sin 4141)2cos 1(21cos 22⎰-+=xdx x x x 2sin 412sin 41412c x x x x +++=2cos 812sin 414122.⎰xdx 3sec解.⎰⎰⎰-==xdx x x x x x xd xdx tan sec tan tan sec tan sec sec3=⎰⎰-++=--xdx x x x x xdx x x x 32sec |tan sec |ln tan sec sec )1(sec tan secc x x x x xd x +++=⎰|t a n s e c |ln 21tan sec 21sec 3 3. ⎰dx xx 23)(ln 解. ⎰⎰⎰+-=-=dx x x x x x d x dx x x 223323)(ln 3)(ln 11)(ln )(ln ⎰+--=dx x x x x x x 223ln 6)(ln 3)(ln ⎰+---=dx x x x x x x x 2236ln 6)(ln 3)(ln c xx x x x x x +----=6ln 6)(ln 3)(ln 23 4.⎰dx x )cos(ln解.⎰⎰⎰-+=+=dx x x x x dx x x x dx x )cos(ln )]sin(ln )[cos(ln )sin(ln )cos(ln )cos(ln∴c x x xdx x ++=⎰)]sin(ln )[cos(ln 2)cos(ln5.⎰⎰⎰⎰---+-=-==dx x x x x xd dx x x xx dx xxx 2sin 812sin 812sin 812cos 2sin 2cos 81sin 2cos 22233434c x x x xd x x x +--=+-=---⎰2cot 412sin 8122sin 412sin 81222 六. 求下列不定积分: 1.⎰-++dx x x x x 222)1()1ln(解.⎰⎰-++=-++2222211)1ln(21)1()1ln(xd x x dx x x x x =⎰+⋅---++dx x x x x x 222211112111)1ln(21 t x t a n =令 tdt t t x x x 2222sec sec 1tan 1121)1(2)1ln(⋅⋅---++⎰ =dt t t x x x ⎰---++222sin 21cos 21)1(2)1ln( =⎰---++t t d x x x 222sin 21sin 2221)1(2)1ln( =c t t x x x +-+--++sin 21sin 21ln 241)1(2)1ln(22 =c xx xx x x x +-+++--++2121ln 241)1(2)1ln(22222.⎰+dx xx x 21arctan解.⎰⎰⎰++-+=+=+dx x x x x x xd dx xx x 2222211arctan 11arctan 1arctan=c x x x x dx x x x +++-+=+-+⎰)1ln(arctan 111arctan 122223. ⎰dx e e xx2arctan解. dx e e e e e de e dx e e x x x xx x x x x ⎰⎰⎰++-=-=---22222121arctan 21arctan 21arctan dx e e e e x x x x ⎰++-=--22121arctan 21⎰++-=-dx e e e e x x xx )1(121arctan 2122 c x e e e dx e e e e e x x x xx x xx +++-=+-+-=---⎰)arctan arctan (21)11(21arctan 21222 七. 设⎩⎨⎧-+-+=-xex x x x x f )32(3)1ln()(22 00<≥x x , 求⎰dx x f )(.解.⎪⎩⎪⎨⎧-+-+=-⎰⎰⎰dx e x x dxx x dx x f x )32()3)1ln(()(22⎪⎩⎪⎨⎧+++-+-+--+=-122222)14(3)]1ln([21)1ln(21c e x x cx x x x x x 00<≥x x 考虑连续性, 所以 c =-1+ c 1, c 1 = 1 + c⎰dx x f )(⎪⎩⎪⎨⎧++++-+-+--+=-c e x x c x x x x x x 1)14(3)]1ln([21)1ln(2122222 00<≥x x 八. 设x b x a e f xcos sin )('+=, (a, b 为不同时为零的常数), 求f(x). 解. 令t x e t xln ==,, )cos(ln )sin(ln )('t b t a t f +=, 所以 ⎰+=dx x b x a x f )]cos(ln )sin(ln [)( =c x a b x b a x+-++)]cos(ln )()sin(ln )[(2九. 求下列不定积分: 1.⎰-dx x x234解. 令t x sin 2=⎰⎰⎰--==-t td t tdt t dx x x cos cos )cos 1(32cos sin 324222323 =c x x c t t +---=++-23225253)4(34)4(51cos 532cos 332 2.⎰>-)0(22a dx xa x解. 令t a x sec =⎰⎰⎰+-===>-c at t a tdt a t t a ta ta a dx x a x tan tan tan sec sec tan )0(222 =c xaa a x +--arccos 223.dx ee e xx x ⎰-+21)1(解.=-+⎰d ee e xx x 21)1(⎰-dx ee xx 21+dx ee xx ⎰-221=⎰-x x e de 21-dx e e d xx ⎰--221)1(21=c e e x x +--21arcsin 4.⎰-dx xa xx2 (a > 0)解. ⎰-dx x a x x 2 x u =令 ⎰-du u a u 2422 t a u sin 2=令 ⎰tdt a 42sin 8=⎰⎰+-=-dt t t a dt t a )2cos 2cos 21(24)2cos 1(82222=c t a t a t a dt t a t a t a ++-=++-⎰4sin 42sin 2324cos 122sin 22422222=c t t t a t t a t a +-+-)sin 21(cos sin cos sin 432222 =c t t a t t a t a +--cos sin 2cos sin 333222 =c axa a x a xa a x a a x a a x a +----2222222232arcsin3222=c x a x x a a x a +-+-)2(232arcsin32十. 求下列不定积分:1.⎰+-dx x xcos 2sin 2 解. ⎰⎰⎰++++=+-xx d dx x dx x x cos 2)cos 2(cos 212cos 2sin 2t x =2t a n 令 ⎰⎰+++=+++-++|cos 2|ln 322|cos 2|ln 1121222222x t dt x t t t dt =c x x c x t +++=+++|cos 2|ln )2(tan 31arctan 34|cos 2|ln 3arctan 342.⎰+dx x x xx cos sin cos sin解. ⎰⎰+-+=+dx xx x x dx x x x x cos sin 1cos sin 2121cos sin cos sin=⎰⎰⎰+-+=+-+dx xx dx x x dx x x x cos sin 121)cos (sin 21cos sin 1cos)(sin 212 =⎰++--)4sin()4(42)cos (sin 21ππx x d x x =c x x x ++--|)82tan(|ln 42)cos (sin 21π 十一. 求下列不定积分: 1.⎰++dx x xx )32(332解.⎰⎰+=+=++++c x d dx x xx xx xx 3ln 3)3(3)32(332332222.⎰-+-dx x x x)13()523(232解. )523()523(21)13()523(2232232+-+-=-+-⎰⎰x x d x x dx x x xc x x ++-=252)523(513.dx xx x ⎰+++221)1ln(解.⎰⎰+++=++++=+++c x x x x d x x dx x x x )1(ln 21)1ln()1ln(1)1ln(222222 4.⎰+++++)11ln()11(222x x xxdx解.c x x xd x x xxdx+++=++++=+++++⎰⎰|)11ln(|ln )11ln()11ln()11ln()11(222222十二. 求下列不定积分: 1.⎰+dx x x x )1(arctan 2解.⎰⎰⎰-+-=++=+1222222)1(arctan 21)1()1(arctan 21)1(arctan x xd x d x x dx x x x ⎰⎰+++-=+++-=dx x x x x d x x x 22222)1(1211arctan 21arctan 11211arctan 21 dt t x x tdt x x t x ⎰⎰+++-=++-=22cos 1211arctan 21cos 211arctan 21tan 222令c t t x x x aex c t t x x ++++-=++++-=cos sin 41arctan 411tan 212sin 81411arctan 2122 c xxx x x aex +++++-=22141arctan 411tan 21 2.⎰+dx x x1arcsin解. 令t x t xx2tan ,1arcsin==+则⎰⎰⎰++-=-==+c t t t t t d t t t t d t dx xxtan tan tan tan tan 1arcsin2222 c x xx x c x x x x x x +-++=+++-+=1arcsin )1(1arcsin 1arcsin3. ⎰-+⋅dx xx x x 22211arcsin解. ⎰⎰⎰+=+⋅=-+⋅dt t t tdt t t t t t x dx xx x x )1(csc cos cos sin 1sin sin 11arcsin 222222令 ⎰⎰⎰+++-=+-=c t tdt t t dt t tdt t 221cot cot cot c t t t t +++-=221|sin |ln cot c x x x x x+++--=22)(arcsin 21||ln 1arcsin4.dx x x x ⎰+)1(arctan 22解.⎰⎰⎰-==+dt t t dt t t t t tx dx x x x)1(csc sec sec tan tan )1(arctan 222222令22221cot cot 21cot csc t dt t t t t d t dt t dt t t -+-=--=-=⎰⎰⎰⎰ c x x x x x c t t t t +-++-=+-+-=222)(arctan 21|1|ln arctan 21|sin |ln cot c x x x x x +-++-=222)(arctan 211ln 21arctan 十三. 求下列不定积分: 1.⎰-dx x x234解.⎰⎰⎰==-dt t t dt t t t t x dx x x 23323cos sin 32cos 2cos 2sin 8sin 24令 c t t t d dt t t ++-=-=⎰5322cos 532cos 332cos cos )cos 1(32 c x x +-+--=252232)4(51)4(342.⎰-xa x 22 解.⎰⎰⎰-==-dt t t a dt t t a t a t a t a x xa x 2222cos cos 1tan sec sec tan sec 令c xaa a x c at t a +--=+-=arccos tan 223.dx ee e xx x ⎰-+21)1(解.udu u uu t dt t t t dt t t t te dx e e e x xx x cos cos sin 1sin 111)1(1)1(222⎰⎰⎰⎰+=-+=-+=-+令令c e e c u u x x +--=+-=21arcsin cos 4.⎰-dx xa xx2 (a > 0)解. ⎰-dx x a x x 2 x u =令 ⎰-du u a u 2422 t a u sin 2=令 ⎰tdt a 42sin 8=⎰⎰+-=-dt t t a dt t a )2cos 2cos 21(24)2cos 1(82222=c t a t a t a dt t a t a t a ++-=++-⎰4sin 42sin 2324cos 122sin 22422222=c t t t a t t a t a +-+-)sin 21(cos sin cos sin 432222 =c t t a t t a t a +--cos sin 2cos sin 333222 =c axa a x a xa a x a a x a a x a +----2222222232arcsin3222=c x a x x a a x a +-+-)2(232arcsin32十四. 求下列不定积分: 1.⎰+xxdx cos 1sin解.⎰⎰⎰⎰-+-=++-=+=+xxd xx x d xx dx x xxdx 222cos 1cos 12cos 1sin )cos 1(cos 1sin sin cos 1sin ⎰⎰--=---=+)2(2)1(12cos 12222u u duu du u x 令⎰+-++=-+-=c u uu du u u |22|ln 2211)211(22 c xx x++-++++=|cos 12cos 12|ln 221cos 112.⎰+-dx x xcos 2sin 2 解. ⎰⎰⎰++++=+-xx d dx x dx x x cos 2)cos 2(cos 212cos 2sin 2t x =2t a n 令 ⎰⎰+++=+++-++|cos 2|ln 322|cos 2|ln 1121222222x t dt x t t t dt=c x x c x t +++=+++|cos 2|ln )2(tan 31arctan 34|cos 2|ln 3arctan 343.⎰+dx x x xx cos sin cos sin解. ⎰⎰+-+=+dx xx x x dx x x x x cos sin 1cos sin 2121cos sin cos sin=⎰⎰⎰+-+=+-+dx xx dx x x dx x x x cos sin 121)cos (sin 21cos sin 1cos)(sin 212 =⎰++--)4sin()4(42)cos (sin 21ππx x d x x =c x x x ++--|)82tan(|ln 42)cos (sin 21π 十五. 求下列不定积分: 1.dx xx x ⎰-1解.c t t td dt t t tx dx xx x+--=---=-=-⎰⎰⎰333321341)1(32121令c x +--=231342.⎰+-dx e e xx 11解.⎰⎰⎰⎰-=-=--=+-dt t dt t t t t e dx e e dx e e xx x x x )1(sec tan tan 1sec sec 11112令c eee c t t t x xx+-++=+--=1arccos )1ln(|tan sec |ln 23.dx xx x ⎰--1arctan 1解. 令t t dx t x x t x t tan sec 2,sec ,1tan ,1arctan22==-=-=⎰⎰⎰⎰-===--dt tt t dt t t dt t t t t t dx x x x 22222cos cos 12tan 2tan sec 2sec tan 1arctan 1。

经济数学(极限与连续习题及答案)——习题集资料文档

经济数学(极限与连续习题及答案)——习题集资料文档

第二章 函数的极限与连续习题 2-11.写出下面数列的前5项,并观察当n —>∞时,哪些数列有极限,极限为多少? 哪些数列没有极限.{}{}{}{}{}{}{}211(1) 1 (2) 21(3) (4) (1)11(1)(5) sin (6) 2n n n nn n n n n n x x n n x x nn x x n π⎧⎫-⎪⎪⎧⎫=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭-⎧⎫==-⎨⎬+⎩⎭⎧⎫+-⎪⎪⎧⎫==⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭解 (1)3231,1615 ,87 ,43 ,21 有极限 , 极限为 1.(2)524,415 ,38 ,23 ,0 没有极限. (3)64,53 ,42 ,31 0, 有极限 , 极限为 1. (4) -1, 2, -3, 4, -5 没有极限.(5)5sin,4sin ,3sin ,2sin ,sin πππππ, 有极限 , 极限为 0 . (6) 0, 1, 0 , 1, 0 没有极限 . 2. 用极限的定义证明:(1) 若k >0,则 1lim0kn n →∞=n 212(2) lim313n n →∞+=+解 (1) 因为对任给的ε> 0,要使不等式110(0)k kk n n ε-=<>11().k n ε>即便可所以对任给的ε> 0, 取正整数 N =11[()]1kε+ , 则当n >N 时, 就恒有 10k n ε-<故由数列极限的定义知, 1lim0kn n →∞=.(2) 因为对任给的ε > 0, 不妨设10ε<3<,要使不等式2121ε31393n n n +-=<++11(3) 9εn >-即便可.所以对任给的ε> 0, 取正整数N = 11[(3)]19ε-+, 则当n > N 时, 就 恒有 212313n n ε+-<+故由数列极限的定义知,3213n 12n lim=++∞>-n .3. 设 120.9,0.99,,0.999,lim .nn n n x x x x →∞===求如果要使x n 与其极限之差的绝对值小于 0.0001 , 问n 应满足什么条件?解 因为0.999,lim 1, 0.0001,nn n n x x ε→∞===由则取要使110.000110000n x -<=110.999910000n x >-=只要便可.所以n > 4 .4. 设数列{x n }有界,且lim 0, lim 0.n n n n n y x y →∞→∞==证明证 因为数列{x n }有界, 所以存在正整数M > 0, 使得nx < M,又因为0lim =∞→n n y , 则对任给的M ε> 0, 存在正整数N , 使得当n > N 时, 就恒有0n y M ε-<所以对任给的ε> 0, 存在正整数N , 使得当n >N 时, 就恒有n n n n x y x y M Mεε=<⋅=故由数列极限的定义知, .0lim =∞→n n n y x5. 设数列{x n }收敛, 求证数列{x n }必定有界.解 由数列{x n }收敛, 设Ax n n =∞→lim .因为对于任意ε > 0, 存在正整数N , 使得当n > N 时的一切x n , 就恒有 n x A ε-<即n A x A εε-<<+所以对任给的ε > 0,取正数{}12max ,,,,,,N M x x x A A εε=+-使得当n > N 时 ,就恒有 n x M <故数列{x n }必定有界.习题 2-21. 用极限的定义证明 :2324(1) lim(31)8 (2) lim 4223(3) lim 2 (4) lim 20x x x x x x x x x x →→-→∞→-∞--==-++==解 (1)因为对任给的ε> 0, 要使不等式|(3 x – 1) – 8| =|3(x – 3)| < ε只要取正数δ= ε3就可以了.所以对任给的ε> 0, 取正数δ= ε3,使得当0 < | x – 3|<δ时, 就恒有|(3x – 1) – 8| < ε故由极限定义知 3lim(31)8x x ->-=.(2)因为对任给的ε > 0, 要使不等式244242ε2x x x x -+=-+=+<+只要取正数δ= ε就可以了.所以对任给的ε> 0, 取正数δ= ε, 使得当0<|x + 2|<δ时, 就恒有244ε2x x -+<+ 故由极限定义知 224lim 42x x x →--=-+.(3)因为对任给的ε> 0, 要使不等式2332εx x x +-=<,则 |x |> 3ε, 只要取正数M = 3ε就可以了.所以对任给的ε> 0, 取正数M =3ε, 使得当| x | > M 时, 就恒有232εx x +-<故由极限定义知 23lim2x x x ->∞+=.(4)因为对任给的ε> 0 (不妨设0<ε<1), 要使不等式ln 202, ln 2x x x εε-=<<即ln ln 2M ε=只要取正数就可以了.所以对任给的ε>0,取正数2ln ln ε=M , 使得当x <-M 时, 就恒有20x ε-<故由极限定义知 lim 20xx ->-∞=.2*. 当x →-2时,x 2 →4. 问δ等于多少,在0<|x + 2|<δ时, 有| x 2 - 4|< 0.003 ?解 因为当x →-2时,x -2 →-4, 取 ε= 0.003, 要使不等式| x 2 - 4|=| x + 2| | x – 2 |< ε设21x +<, 即有 -3< x <-1, -5< x -2 <-3所以当2x -< 5时,取0.0035δ==0.0006, 有240.003x ε-<=.3*. 当x —>∞ 时,102x →-. 问M 等于多少时,在|x |> M 时, 有100.012x -<-?解 因为当x —>∞ 时,要使不等式100.012x -<-2100, 102.x x ->>只要便可 即M = 102.4. 设函数1, 0() 0, 01, 0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 讨论当x —> 0时,f (x )的极限是否存在.解 00lim ()lim (1)1x x f x x --→->=-=-因为00lim ()lim (1)1lim ()lim ()lim ()x x x x x f x x f x f x f x ++-+→->→→->=+=≠即故 不存在.5. 证明函数f (x ) = x | x |, 当x →0时极限为零.22, 0(), 0x x f x x x ⎧≥⎪=⎨-<⎪⎩解 因为--2020lim ()lim ()0lim ()lim 0lim ()0.x x x x x f x x f x x f x ++→→→→→=-====即故6* . 利用定义证明:0, 11lim , 01x x a a a →+∞>⎧=⎨+∞<<⎩. 证 因为当a >1时,对任意ε> 0,不妨设0<ε<1, 要使110x x a a ε-=<1ln ln x a ε->只要取正数便可.所以对于0<ε<1,1ln 0,,ln M x M a ε->>取=当时就恒有10xa ε-<即 1limx x a →+∞=.又因为当0< a < 1时,令11b a =>时,由上述可得1 lim 0x x b →+∞=于是 1lim limx xx x b a →+∞→+∞==+∞故由极限定义知0, 11lim, 01xx a a a →+∞>⎧=⎨+∞<<⎩. 7.设函数21, 2()2, 2x x f x x k x ⎧+≥=⎨+<⎩, 问当k 取何值时,函数f (x )在x —> 2时的极限存在. 解 2lim (), ,x f x ->因为要使存在必须左右极限存在且相等222lim (1)5lim (2)4 1.x x x x k k k ->->+==+=+=+-即解得故 2lim () 5.x f x ->=8. 求(),()x xf x x x x ϕ==当x —> 0时的左、右极限,并说明它们在 x —> 0时的极限是否存在.解 1 , 0(), 0x f x x ≠⎧=⎨=⎩因为不存在lim () lim101 , 0()1, 0x x f x x x x ϕ→→==>⎧=⎨-<⎩即而习题 2-31. 1. 求下列极限:3222010203031222042412(1)(1) lim (2)lim 2(2)(23)31(3) lim (4) lim()1(13)112((5) lim[ ] (6 ) limx n x x n h x x x n x x nx x x x x n x n n n→→∞→∞→→∞→-++++-+------++++222) (7) x x h x h →→-解 322200424424(1)lim lim 2.22x x x x x x x x x x →→-+-+==++22102010202030303012(1)(1)1(2) lim=lim=.2223(1)(2)(2)(23)2(3) lim lim .1(13)3(3)n n x x n n n n n x x x x x x →∞→∞→∞→∞+++------==-- 233112122222313(1)(4) lim()lim111(2)(1)lim1.(1)(1)1212 (5) lim[]lim1(1)1lim .22 (6) lim x x x n n n h x x x x x x x x x x n nn n n n n n n →→→→∞→∞→∞-++-=---+-==-++++++++=+=⋅=22200022200()2lim lim(2)2.(1 (7) lim1(1) lim(1 2.(8) h h x x x x x x h x xh h x h x h h x x →→→→→→→→+-+==+==-+=-+=-=4x x →→===2. 求下列数极限:n n n n n n 1(1)(1) lim111(3) lim[]1223(1)(1) 0.1(1)(2) lim 0.nnnn n n →∞→∞→∞→∞→∞+-+++⨯⨯⨯+==+-=解111(3) (1)1n n n n =-⨯++因为111lim[]1223(1)11111lim[(1)()()]22311lim(1) 1.1n n n n n n n n →∞→∞→∞+++⨯⨯⨯+=-+-++-+=-=+故2. 2. 设 22lim()51x x ax b x →∞--+=--, 求常数a, b 的值.解 222(1)()2lim ()lim 511x x x a x b a x bax b x x →∞→∞--++---+==---由1051, 6.a a b a b -=⎧⎨+=-⎩==-得故3. 3. 若常数k 使233lim 222-++++-→x x k kx x x 存在, 试求出常数k 与极限值. 解 2222233lim lim (2)02x x x kx k x x x x →-→-++++-=+-由己知存在,且 22lim (33)150 15.x x kx k k k →-+++=-==所以得22222315183(2)(3)limlim2(2)(1)3(3)lim 1.1x x x x x x x x x x x x x →-→-→-++++=+-+-+==--则5. 求下列函数的极限:12100(1)1ln(1) (1) lim(2) limln(1)nx x x x x xx x →→∞+--+++解1(1) (1) , 1,n nx t x t +==-令当0x →时, 1t →, 则11201122210109102910(1)1111limlimlim .1(1)(1)11ln (1)ln(1)(2) lim lim 11ln(1)ln (1)112ln ln(1)2 lim lim 1110ln ln(1)nn n n x t t x x x x x t t x nt t t t x x x x x x x x x xx x x x x x --→→→→∞→∞→∞→∞+---===--+++-+-+=+++++-++==+++291011ln(1)/ln 1110ln(1)/ln 15xx x xx x-++++=6 .求下列曲线的渐近线:3222122(1) (2) 232(3) 2 (4) 21xx x y y x x x x x y y x --==+---==-解 332(1) (3)(1)23x x y x x x x ==+-+-3321133233lim lim (3)(1)231;lim lim(3)(1)233;x x x x x x x x x x x x x x x x x x →→→-→-==∞+-+-===∞+-+-=- 因为 所以是铅垂渐近线 因为 所以是铅垂渐近线 323222lim lim 1(23)23 lim[]lim 223232.x x x x y x x x x x x x xx x x x x y x →∞→∞→∞→∞==+--+-==-+-+-=- 又因为 且所以是斜渐近线2222222222121102 (2) lim 121;2(lim lim (2)(1)222lim lim 221,2. (3) lim 21 lim 2x x x x x xxx x x x x y x x x x x x x x x x x x x x x -→∞→→→-→--→∞→-=--=-+==∞-+----==∞----=-===∞因为 所以是水平渐近线 又因为 且所以是铅垂渐近线因为 且所1,0.y x ==以是水平渐近线是铅垂渐近线212(4) lim211.2x xx x →=∞-=因为 所以是铅垂渐近线2221lim lim (21)22(21)11lim[]lim lim 2122(21)4241124x x x x x y x x x x x x x x x x x x y x →∞→∞→∞→∞→∞==----===---=+又因为且 所以是斜近渐近线.7. 已知 2200012000lim 0,,.x x x x b a b x a →+++-=≠-求的值解 2200012000limx x x x b x a →+++-=-由己知存在习题 2-41. 1. 利用极限存在准则,计算下列各题:22221111(1)lim[] (1)(2)()(2)limn n n n n n n →∞→∞+++++++解2222111111(1)4(1)(2)()n nn n n n n ≤++++≤+++因为 222211lim lim 041111lim[]0.(1)(2)() (2)1sin1,n n n nn n n n n n n →∞→∞→∞==++++=+++-≤≤≤≤且 所以因为则有lim lim lim 0.n n n →∞→∞→∞===所以 2.求下列极限:0022021sin (1) lim (2) lim cot 2sin 22(3) lim (4) lim sin tan 3sin(1)(5) lim (6) li 1x x x x x kxx xxx x x x x x →→→→∞→--01cos msin sin (7) lim (8) lim 2sin 2x n nx n xx x x xx ππ→→→∞-- 解 00sin sin (1) lim lim .x x kx kxk k x kx →→==0021(2) lim cot 2lim.2tan 22x x x x x x →→==0022222221112000sin 2sin 2322(3) lim lim .tan 32tan 333222(4) lim sin lim 2sin / 2.sin(1)sin(1)(5) lim lim lim(1) 2.112sin s 1cos 2(6) lim lim2lim sin sin x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x →→→∞→∞→→→→→→=⋅⋅===--=⋅+=---==20in 22sin cos22sin 112 lim cos .2222x x x x x x x x →=⋅=00sin()sin sin (7) limt lim lim = 1.(8) lim 2sin lim sin /.222x t t n n n n n n t x tx x t tx x xx x ππππ→→→→∞→∞+-=-=--== 3.求下列极限:2123sec 03(1) lim (1) (2) 121 (3) lim () (4) lim ()23 (5) lim (1cos ) (6) lim x x x x xx x xx x xx x x x x π+→∞→→∞→∞→→++-++2112cot0(12sin) (7) lim(14) (8) lim(13tan )xxxxx x x x x -→→+-+解 3133333(1) lim (1) lim (1)(1).xx x x e x x x ⋅+→∞→∞+=++=11(3)330222(2) lim(13)lim(13)].11(3) lim () lim (1) .x x x x x x x x x x x e x e x x ---→→→→∞→∞=-=-=+=+=2223113()2()232222133sec cos 1121132(4) lim ()lim ()lim (1)lim (1)323221213 lim (1)lim (1).22(5) lim(1cos ) lim(1cos )x x x xx x x x x x x x x x xx x x x x x x xe e e x xx x ππ-→∞→∞→∞→∞⋅⋅--⋅----→∞→∞→→--==-⋅+++=-⋅+=⋅=+=+223112sin 22sin 011(44)440132cot 233tan 022000.(6) lim(12sin)lim(12sin).(7) lim(14) lim(14).(8) lim(13tan )lim(13tan).1001 4.lim ()5xx xx xx x xx xx x x xx x x x c x e x x e x x e x x e x e x →→-⋅---→→⋅→→+→∞=+=+=-=-=+=+=+=-已知,.c 求解 220001001lim()5x x x x +→∞+-由510062200010065201210061001 lim (1)lim ()552012.x x x x x c x x x e e c -⋅-→∞→∞+=+⋅--===故习题 2-51.下列函数在什么情况下是无穷小量,什么情况下是无穷大量?3211(1) (2) 1(2) (4) ln(1)x x y y x x y e y x --==-==+解 (1)因为 301lim x x →=∞,所以当0x →时,31y x =是无穷大量. 又因为 31lim 0x x →∞=,所以当x →∞时,31y x =是无穷小量. (2)因为21111lim lim 11x x x x x →-→--==∞+-,所以当1x →-时,21 1x y x -=-是无穷大量. 又因为 211lim lim 011x x x x x →∞→∞-==+-,所以当x →∞时,21 1x y x -=-是无穷小量. (3)因为lim x x e -→-∞=∞,所以当x →-∞时,xy e -=是无穷大量. 又因为lim 0x x e -→+∞=,所以当x →+∞时,x y e -=是无穷小量. (4)因为1lim ln(1)lim ln(1)x x x x +→+∞→-+=∞+=∞或,所以当x →+∞,1, ln(1)x y x +→-=+时或时是无穷大量.又因为0limln(1)0x x →+=,所以当0 , ln(1)x y x →=+时是无穷小量.2.当0x →时,指出关于x 的同阶无穷小量、高阶的无穷小量、等价的无穷小量.22211,sin ,cos 1,(1),sin .2xx x e x ---解 因为01lim2x x →→==所以当0x +→时,与x1-;又因为 2200sin sin lim lim 0x x x x x x →→==200cos 1lim lim 02x x x x x x →→-=-= 所以当0x +→时,比x 高阶的无穷小量有2sin x ,2sin x ,cos 1x -;又因为 2001(1)122lim lim 12xx x e xx x →→-=⋅=所以当0x →时,与x 等价的无穷小量有21(1)2xe -.3.把下列函数表示为常数(极限值)与一个当x —>∞时的无穷小量之和的形式.3333(1)() (2) ()121x x f x f x x x ==-+解 (1)因为33lim 11x x x →∞=-,所以3331() 111x f x x x ==+--. (2)因为 33311lim lim 0 22142x x x x x →∞→∞-==++且 所以311()242f x x =-+. 4.证明: 当x —>0 时,(1) e x -1 ∽ x ; (2) arcsin x ∽ x .解 (1)100011lim 1lim lim 1ln(1)ln(1)x x x x x te t t e x t t →→→-=-==++令.(2)00arcsin limarcsin lim 1sin x t x tt x x t →→==令.5.利用等价替换原理, 计算下列极限:sin 2002000sin 31(1) lim (2) limsin tan 52ln(123)(3) lim (4) limsin()arcsin 2(5)lim(6) lims (sin )xx x x x n mx x x x e x xx x x x x x x →→→→→→-+-233in 235(7) lim(8) lim42tan x n xx x x x x→+-+解 (1)因为当0x →时,sin 33,sin ,tan 5522x xx x x x所以 00sin 336limlim 5sin tan 5522x x x x x x x x x x →→⋅==⋅⋅.(2)因为当sin 2sin 0,12xxx e →-时 所以sin 201sin 1limlim22xx x ex xx →→-==.(3)因为当220,ln(123)23x x x x x →+--时所以 22000ln(123)23lim lim lim(23)2x x x x x x x x x x →→→+--==-=. (4)因为当0,sin 22x x x →时所以x x →→=20021)1)lim lim 41x x x x x x →→===++.(5)因为当0,sin ,sin n nx x x x x →时 所以 000, sin lim lim 1, (sin ), nnm mx x n m x x n m x x n m →→>⎧⎪===⎨⎪∞<⎩.(6)因为当0,arcsin 22,sin x x x x x →时所以 00arcsin 22limlim 2sin x x x xx x →→==.(7)因为当230,,x x x x →时都是比更高的无穷小所以 233002352lim lim 12tan 2tan x x x x x x x x x →→+-==+.(8)因为当3433,2n n n n n →∞--limlim0.n n ==所以6. 设x —>0 时, 函数122(1)1cos 1kx x +--与为等价无穷小量,求常数k 的值.解 因为 12220021(1)12lim lim 11cos 12x x kxkx k x x →→+-==-=--所以 k = -1.*7. 求下列函数的极限:)tan 1ln(cos sin 1lim )1(20x xx x x +-+→ 11(2)lim ()x x x x a b →+∞-)]11ln(sin )31ln([sin lim )3(x x xx +-+∞→解 0x →(1)x→=因为222210,1cos ,ln(1tan )tan 2x xx x x x →-+当时所以2201sin cos limlim ln(1tan )2x x x x xx x →→+-=+2001cos sin 113limlim 24242x x x x x x →→-=+=+=.(2)111111(1)(1)lim ()limlim11x x x xx xx x x a b a b x a b x x →+∞→+∞→+∞-----==11(1)(1)limlim11xxx x a bx x →+∞→+∞--=-因为当1,0x x →+∞→时,11111ln ,1ln xx a a b bx x --11lim()ln ln lnxxx ax a b a b b →+∞-=-=所以31(3)lim [sin ln(1)sin ln(1)]x x x x →∞+-+31sin ln(1)sin ln(1)limlim 11x x x x x x →∞→∞++=-因为当x →∞时,333sinln(1)ln(1)x xx ++111sin ln(1)ln(1)x xx ++31lim [sin ln(1)sin ln(1)]31lim lim 31 2.11x x x x x xx x x x →∞→∞→∞+-+=-=-=所以习题 2-61.求函数 xy +=1 在x = 3, ⊿x = -0.2时的增量⊿y . 解 因为()()y f x x fx ∆=+∆-=3,0.2,2x x y =∆=-∆== 由所以2.利用连读函数的定义,证明下列函数在 x = 0 点的连续性.21(1)()1()21arctan , 10, 0(3)() (4) () 1, 01 0, 0x f x f x x x xx x f x f x xx x x x +=+=-⎧⎧-<<≠⎪⎪==⎨⎨⎪⎪-≤<=⎩⎩解 (1)因为(0)(0)1y f x f ∆=+∆-=lim lim 1)0()10.x x y f x x ∆→∆→∆=-==+=且所以 在处连续(2)因为21(0)(0)121x y f x f x ∆+∆=+∆-=+∆-2020001lim lim (1)110211()0.210, (0)0,lim ()lim (1)1,lim ()lim 11lim ()()0x x x x x x x x y x x f x x x x f f x f x f x f x x --++∆→∆→→→→→→∆+∆=+=-+=∆-+==-===-=-===且所以在处连续 (3)因为在 时且所以 不存在,故在不连续.0000,(0)1,arctan lim ()lim arctan lim 1tan x x t x f x tf x t x x t ---→→→===== (4)因为在时且00lim ()lim (1)1lim ()1(0)arctan , 10() 0.1, 01x x x f x x f x f xx f x x x x x ++→→→=-===⎧-<<⎪==⎨⎪-≤<⎩所以 在处连续3. 求下列函数的间断点, 并指出间断点的类型. 若是可去间断点,则补充定义,使其在该点连续.221(1)() (2) ()ln(21)(1)x x f x f x x x x -==--1, 11arctan , 0(3)()2, 10 (4) () 0, 01 sin , 02x x x f x x x f x xx x x x -⎧≤-⎪⎧⎪≠⎪=+-<≤=⎨⎨⎪⎪=⎩⎪<≤⎩ 解(1)0,1,1() ,x x x f x ==-=因为在处没有定义() 0,1,1. f x x x x ==-=所以在处间断而0000(1)lim ()lim 1(1)(1)(1)lim ()lim 1(1)(1)x x x x x x f x x x x x x f x x x x --++→→→→-==---+-==-+ 故 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.又因为 11(1)1lim ()lim (1)(1)2x x x x f x x x x →→-==-+所以 x = 1是()f x 的可去间断点,补充定义1(1)2f =.又因为111(1)lim ()limlim (1)(1)(1)x x x x x xf x x x x x x →-→-→--===∞-++所以x = -1是()f x 的无穷间断点.(2) 因为1x =在处()f x 没有定义, 且111lim ()limln(21)x x f x x →→==∞-所以x = 1是()f x 的无穷间断点.(3)因为(1)1,f -=且11111 lim ()lim 1,lim ()lim (2)1x x x x f x xf x x --++→-→-→-→--===+=则1lim ()(1) 1.x f x f →-=-=所以x = 1是()f x 的连续点.(0)2, lim ()lim (2)21 lim ()lim sin0x x x x f f x x f x x x --++→→→→==+===又因为且所以 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.0000(4)(0)0,1lim ()lim arctan21lim ()lim arctan 2x x x x f f x x f x x ππ--++→→→→===-==因为且 所以0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点. 4.讨论下列函数的连续性,并作出函数图形.2211(1)()lim(0) (2) () lim11nnnn n x f x x f x xx x →∞→∞-=≥=++解 (1) 因为1, 011()lim0, 11n n x f x x x →∞≤≤⎧==⎨>+⎩(函数图形见图2-1)且11(1)1,lim ()1,lim ()0x x f f x f x -+→→===所以x = 1是()f x 的间断点.图2-122 , 11 (2)()lim0 , 11 , 1nnn x x xf x x x x x x →∞⎧<⎪-=⋅==⎨+⎪->⎩因为(函数图形见图2-2) 1111(1)0lim ()lim ()1 lim ()lim 1x x x x f f x x f x x --++→-→-→-→-±==-===-且1111lim ()lim 1 lim ()lim ()1x x x x f x x f x x --++→→→→===-=- 图2-211lim (),lim ()x x f x f x →-→所以都不存在.因此x = 1,x = -1是()f x 的跳跃间断点.5.已知2, 01() 2, 1ln(1), 13ax b x f x x bx x ⎧+<<⎪==⎨⎪+<≤⎩,问当 a , b 为何值时,()f x 在 x =1 处连续.解 因为(1)2,f =且21111lim ()lim () lim ()lim ln(1)ln(1)x x x x f x ax b a bf x bx b --++→→→→=+=+=+=+若函数()f x 在x = 1处连续,则必须 1lim ()2x f x →=.即 2ln(1)2a b b +=⎧⎨+=⎩解之,得223,1a e b e =-=-. 6.求函数32233()6x x x f x x x +--=+-的连续区间,并求 )(lim ),(lim ),(lim 32x f x f x f x x x -→→→.解 因为323223333()(3)(2)6x x x x x x f x x x x x +--+--==+-+-所以()(,3)(3,2)(2,),f x -∞-⋃-⋃+∞的连续区间是且3200331lim ()lim (3)(2)2x x x x x f x x x →→+--==+-322223233333lim ()lim (3)(2)(3)(1)338lim ()lim lim (3)(2)(3)(2)5x x x x x x x x f x x x x x x x x f x x x x x →→→-→-→-+--==∞+-+-+--===-+-+-7.设函数()f x 在[a , b ]上连续,且(),()f a a f b b <>,证明在(a , b )内至少存在一点ξ,使得f (ξ) = ξ.证 [][] ()(),(),,(),F x f x x f x a b F x a b =-设由已知在上连续则在上(),(),()()0,()()0f a a f b b F a f a a F b f b b <>=-<=->连续.又因为所以故由零值定理知,在(,)a b 内至少存在一点ξ,使得F (ξ)= 0, 即 ()f ξξ=.8.设函数()f x 在[a , b ]上连续,12n a x x x b <+++<, 求证在(a , b )内至少有点ξ,使n x f x f x f f n )()()()(21+++=ξ证 因为()f x 在[a , b ]上连续,则1()[,]n f x x x 在上也连续.由最大最小值定理知,1()[,]n f x x x 在上存在最小值m ,最大值M ,取12()()()((),1,2,,),n i f x f x f x C m f x M i n nm C M +++=≤≤=≤≤则由介值定理知, 在(a , b )内至少有点ξ,使12()()()()n f x f x f x f C nξ+++==.9. 证明方程331x x -=至少有一个根介于1和2之间.证 设3()31F x x x =--,由于F (x )在[1,2]内连续,且(1)30,(2)10F F =-<=>由零值定理知,在(1,2)内至少存在一点ξ,使得F (ξ)= 0. 即 331ξξ-=.故方程331x x -=在[1,2]内至少有一个根.综合习题二1.选择填空:(1) 数列{y n }有界是数列收敛的 ( ) .① 必要条件 ② 充分条件 ③ 充要条件 ④ 无关条件(2) 当x —>0 时,( )是与sin x 等价的无穷小量. ① tan2 x②x③ 1ln(12)2x + ④ x (x +2)(3) 设0, 0(), lim (), 0x x e x f x f x ax b x →⎧≤=⎨+>⎩若存在, 则必有( ) .① a = 0 , b = 0 ② a = 2 , b = -1③ a = -1 , b = 2 ④ a 为任意常数, b = 1(4)若31169x x→=--,则f (x) = ( ) .①x+1 ②x+5③(5) 方程x4–x– 1 = 0至少有一个实根的区间是( ) .①(0,1/2) ②(1/2, 1)③(2, 3) ④(1, 2)(6)函数10()lnxf xx-=+的连续区间是( ) .①(0, 5) ②(0, 1)③(1, 5) ④(0, 1)∪(1,5)解(1)①;(2)③;(3)④;(4)③; (5)②;(6)④.2.计算题:3sin()3(1) lim (2)lim12cos sin(3) 12(1)](4) lim0)x xxxnxaxe ex xn naαβππ+→→→∞→---++-+++->2300cot222tan sin(5)lim (6)limsin11(7)lim(cos) (8) lim(1)4(9)lim1x xx n x nxxx xxxn nxx→→→→∞→∞-++⎛⎫-⎪⎪-⎝⎭(10)lim[ln ln(2)]nn n n→∞-+解333sin()sin()sin()333(1) lim= lim lim112cos2(cos)2(cos cos)23x x xx x xx x xπππππππ→→→---=---33001112sin()cos()cos()1232323lim lim11124sin()sin()sin()232323(1)(1)(2) lim limsin sin0,1,1,sinx xx x x xx xx xx x xx x xe e e ex xx e x e x x xππαβαβαβππππππαβ→→→→-⋅--===+⋅-+----=→--因为当时所00lim lim.sinx xx xe e x xx xαβαβαβ→→--==-以(3) 12(1)]1lim2limnn nnn n→∞→∞++-+++-====3200(4) lim lim limlimlimtan sin tan1cos(5) lim limsinx a x a x axax ax xx x x xxx x+++++→→→→→→→-=-=-=--=⋅22001lim.22(6) limlimtan sin1tan1cos1lim lim.2(1cos)21cos2xxxx xx xx xx x x xx x x x→→→→→=⋅==--==⋅⋅=--221cot(cos1)cot cos100(7)lim(cos) =lim(1cos1)x xx xx xx x⋅⋅--→→+-因为222001cos112lim lim2tanx xxxx x→→--==-21cot2lim(cos).xxx e-→=所以22111()11221111(8) lim(1)lim(1)nn nn n nn nn nn n⋅⋅++→∞→∞++=++因为211lim()1nnn n→∞⋅+=211lim(1).nnen n→∞++=所以2222414(9)lim=lim111xxx xx xxx→∞→∞⎛⎫-⎪⎛⎫-⎪⎪⎪- ⎪⎝⎭-⎪⎝⎭2212222(1)(1)lim (1)lim (1) =lim =1111(1)(1)lim (1)lim (1) 1.(10)lim [ln ln(2)]lim ln()21 lim ln 2(1)x x x xx x x x x x xx x n n n n nx x x x x x x xe e e en n n n n n →∞→∞→∞→∞→∞--→∞→∞→∞-+-+-+-+⋅==⋅-+=+==+22lim ln(1)ln 2.n n e n →∞-+=-=-2. 1. 设 10sin , 02() , , lim ()(1), 0x x x x x f x a f x ax x →⎧<⎪⎪=⎨⎪+>⎪⎩试求使得存在.解00sin 1lim ()lim 22x x x f x x --→→==因为 10000 lim ()lim (1) lim ()lim ()1,ln 2.2a x x x x x a f x ax e f x f x e a +-+-→→→→=+====-则所以 即 3. 2. 作出函数()lim 1txtx t x e f x e →+∞+=+的图形,并指出间断点.解 由已知可得1, 0()lim , 01tx tx t x x e f x x x e →∞≥⎧+==⎨<+⎩ 则函数图形见图2-3.00 lim ()0lim ()1x x f x f x -+→→=≠=因为 0().x f x =所以是的跳跃间断点5. 求函数tan 32(3)x y x x =-的可去间断点. 图2-3 解 因为tan 32(3)x y x x =-在x = 0,x = 3处无意义,所以x = 0,x = 3都是函数f (x )的间断点.但00tan 331lim lim 2(3)2(3)2x x x x x x x x →→==--- 故 x = 0是f (x )的可去间断点.而 3tan 3lim 2(3)x x x x →=∞- 故 x = 3是f (x )的无穷间断点.6.设f (x )在点 x = x 0 处连续且 f (x 0)> 0, 试证在x 0 的某个邻域内有f (x )> 0.证 由已知f (x )在点 x = x 0 处连续,则00lim ()()x x f x f x →=.取00()0,0,02f x x x εδδ=>∃><-<使得时,恒有00()(),()()f x f x f x f x εεε-<→-<-< 故 0000()()()()()022f x f x f x f x f x ε>-=-=>. 7. 设本金为p 元,年利率为r, 若一年分为n 期, 存期为t 年, 则本金与利息之和是多少 ? 现某人将本金p = 1000元存入果银行, 规定年利率为 r = 0.06, t = 2, 请按季度、月、日以及连续复利计算本利和,并作出你的评价.解 依题意,第一期到期后的利息为本金×利率=r p n ⨯ 第一期到期的本利和是本金+利息=(1)r r p p p n n +⨯=+若按总利计算,第二期到期的本利和为 2(1)(1)(1)r r r r p p p n n n n+++⨯=+第n 期到期后的本利和为 (1)n r p n +存期若为t 年(事实上有t n 期),到期后的本利和为 (1)tnr p n + (*)由题设p = 1000 ,r = 0.06, t = 2,(1) (1) 一年分为四季,取n = 4带入得(*)式,得2480.061000(1)1000 1.0151126.494⨯⨯+=⨯≈(2) (2) 一年分为12个月,取n =12带入得(*)式,得 212240.061000(1)1000 1.0051127.1612⨯⨯+=⨯≈(3) (3) 一年分为365天,取n = 365带入得(*)式,得 23657300.061000(1)1000 1.0001643841127.49365⨯⨯+=⨯≈(4) 连续取息就是在(*)式中令n →+∞,得 20.120.060.120.060.06lim 1000(1)1000lim [(1)] 10001127.50nn n n n ne ⨯→+∞→+∞⨯+=⨯+=⨯≈ 结论是:用复利计算时,按季、月、日以及连续复利计算所得结果相差不大.8.证明方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +. 证 设()sin F x x a x b =--,显然F (x )在[0,a b +]上连续,(0)0(0)()sin()[1sin()]0F b b F a b a b a a b b a a b =-<>+=+-+-=-+≥又则若()F a b +=0,则a b +为方程F (x )= 0的正根;若()F a b +>0,则由零值定理,至少有一点(0,)a b ξ∈+使得F (x )= 0,即sin a b ξξ=+.。

微积分第1章函数极限与连续答案

微积分第1章函数极限与连续答案

2微积分 第一章练习题答案、选择题:F 列函数为偶函数的是( 1、 ★ A 、B 、C 均为奇函数A. y x 3 sin 2 xB. 5xcos xC. y sin x cos 5xxxD. y 22F 列函数不具有对称性的是 A. y arctanx B. 下列函数在定义域内无界的是 1A. y 1 sin x 下列各对函数不相等的是 A. C.B. )• ★对称性就是奇偶性• A 、B 、D 均奇•指数函数无对称性x “x ( C ). x 32 (x sin xC. D.ln(x , 1 x 2)).cos(ln x)C. y arcta ne xD. ysin x).B.2) D. sin 2 x cos 2 x 与 y 1 A .是幕函数 B.是指数函数 C .不是基本初等函数 D.不是函数6、对于普通分段函数,以下说法不正确的是A.定义域为各段并集 C.各段内分别为初等函数 (D ).B.整体若不能由一个解析式表示就不是初等函数 D 不是一个函数,而是多个函数 7、 函数 8、函数 函数 10、lim xf (x)在点X 。

处有定义是函数 f ( x)在点X 。

处极限存在的( f (x)在点X 0处有定义是函数 f (x)在点X 0处连续的 f (x)在点X °处连续是f (x)在点X °处极限存在的( xe (D.不存在 ) 为两个方向,D.无关)条件 B.必要)条件 A.充分)条件 x 仍为两个方向无穷;指数函数不对称111、 lim sin— x 0 (D.不存在但函数有界 1,lim sin —lim sin ux 0xu12、已知 13、已知 lim 2x a 1,则常数a x 3x 2x 3 4 ax 1 lim xB.0 ,且分式极限存在,分子必T 014、2x4,则常数a ( D. ★由已知nA.lim xs in 丄 x1 B. lim xsin 1xxC. xlim 2 (2 sin x) 0 x1 xD. lim x sin x x sin k(x 15、 limx 2 x 2 2)A.sin k(x ★ v lim x 22)x 2216、若 lim (1 ax)x e 3,则 a (x 0B.2★ v lim (1 ax)xex 02a17、f(x) ,则x叫f (x)(B.1 )18、f(x)1 .sinx x19、20、21、B. limx 0时,C.极限值为.1xsi nx(C.e x)是无穷小量In x,(B. xs in〔)不是无穷小★x)正确★ Um*1 . sinxxD. lim xsin1x1 22 lim (xsinx23、函数y(x 填空题:1、函数f(x)f(0)3、已知4、已知5、已知1★ v lim e x lim e u 0x 0 u★与f(0)0无关sin x;x1 ;cosx 12x23" x2x arctan x、1 1—sin —无穷小量与有界变量乘积x xlim xx 1lim(x 1)x 1 \ /分母极限为0, 不满足极限商的运算法则条件sinx1; C.limxx 0 x.1sinlim xx 11xx(2sin X)xx2 11^cosx1 x2(3x 1)x0 f(x) ln 2 f (x) x2,B.2)f(x)的间断点为(1 .sin xC.A.lim - lim sinxx x xB. 10: lim sinx不存在,不满足法则条件xC. 2D. 3★使分母为0的点x 0的定义域为0x23x 1,2]X—0f(f (0))1,f(f(0)) f(1) (x 2)x1,则f(x。

第二章_极限与连续_习题解答

第二章_极限与连续_习题解答

1习题2-11. 观察下列数列的变化趋势,讨论有界性和单调性。

如果有极限请写出极限值:(1)13nn x ⎛⎫=- ⎪⎝⎭;解:{}n x 的前五项为:11111,,,,392781243⎧⎫---⎨⎬⎩⎭,从趋势可知,{}n x 不单调;11()33n -≤ ,故{}n x 有界。

{}n x 有极限值0。

(2)1n nx n =+; 解: {}01nx <<,所以有界。

111021(1)(2)n n n n xx n n n n ++-=-=>++++,所以单调递增, {}n x 有极限值1 (3)()10.1nn x =-; 解:{}01nx <<,所以有界。

()0.1n随着n 值的增大而减小,所以相应的n x 的值增大,所以为单调递增。

{}n x 的极限值为1 (4)cos2n n x n π=; 解:分别取)(2+∈=N k k n 和)(12+∈+=N k k n ,显然cos2n n x n π=是无界不单调的,故没有极限值。

(5)1n x n =-。

解:是无界的,且单调递减。

不存在极限2. 用极限定义证明::对于任意的正数2,即(3)3limn +3. 对下面情况进行讨论,对得到的结论作出论证:(1) 数列{}n x 和{}n y 都发散,{}n n x y ±和{}n n x y 的收敛性如何?解:{}n n x y ±,{}n n x y 可能收敛,可能发散。

如sin ,n n x n y n ==,n n n n x y n n x y n n ±±⋅⋅=s i n 、=s i n 均发散的。

又如1,n n x n y n ==,1n n x y n n±±=是发散的,n n x y ⋅=1是收敛的。

({}n n x y ±收敛需要再举个例子) (2) 数列{}n x 、{}n y 中有一个收敛,另一个发散,{}n n x y ±、{}n n x y 的收敛性如何? 解:{}n n x y ±一定发散,而{}n n x y 可能收敛可能发散。

高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023

高中数学函数的极限与连续练习题及参考答案2023题目一:函数极限1. 计算以下极限:a) lim(x→2) (x^2 + 3x - 4)b) lim(h→0) [(4+h)^2 - 16]/hc) lim(x→∞) [(x+1)/(x-1)]^2d) lim(x→0) (1/x - 1)/(1 - sqrt(1 + x))解答:a) 将x代入函数,得到:lim(x→2) (2^2 + 3*2 - 4) = 8b) 将h代入函数,得到:lim(h→0) [(4+0)^2 - 16]/0 = 0c) 当x趋向于正无穷大时,[(x+1)/(x-1)]^2 = 1d) 将x代入函数,得到:lim(x→0) (1/0 - 1)/(1 - sqrt(1)) = undefined题目二:连续函数2. 判断以下函数在给定区间是否连续:a) f(x) = x^2 - 5x + 6, 在区间[1, 5]上b) g(x) = √(x + 2), 在区间[-2, 3]上c) h(x) = 1/(x-2), 在区间(-∞, 2)上解答:a) 函数f(x)是一个二次函数,对于任意实数x,f(x)都是连续的。

因此,f(x)在区间[1, 5]上连续。

b) 函数g(x)是一个开根号函数,对于非负实数x,g(x)都是连续的。

在区间[-2, 3]上,g(x)的定义域为[-2, ∞),因此在该区间上连续。

c) 函数h(x)在x=2处的定义域为无穷,因此在该点不连续。

在区间(-∞, 2)上除x=2之外的点,h(x)为一个连续函数。

题目三:函数极限的性质3. 判断以下命题的真假,并简要说明理由:a) 若lim(x→a) f(x) = L,且L≠0,则lim(x→a) [f(x)]^2 = L^2。

b) 若lim(x→a) f(x) = L,且f(x) > 0,那么lim(x→a) 1/f(x) = 1/L。

c) 若lim(x→a) f(x) = L,且lim(x→a) g(x) = M,则lim(x→a) [f(x) +g(x)] = L + M。

(完整版)函数、极限与连续习题及答案

(完整版)函数、极限与连续习题及答案

第一章 函数、极限与连续(A)1.区间[)+∞,a 表示不等式( )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( )A .2-eB .∞C .0D .21 18.无穷小量是( )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为 ,()0f = ,()1f = 。

第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续习题答案.doc

第一章函数、极限与连续1 . 若」 t =t31,贝 U 「t 31 =( D )A. t 31 B. t62 C. t92 D. t 9 3t 6 3t322. 设函数 f x = In 3x ? 1 ? i 5 - 2x ? arcsin x 的定义域是 ( C )1 5C.-1,1 D. -1,13 ,233. 下列函数 f x 与 g x 相等的是 (A )— 2A. f x = x 2 , g x - x4B . fx=x ,gx= xC.fX gx「X 1x -14. 下列函数中为奇函数的是 (A )2x x八sin xf- c 2— 22 ?A. y2B .y - xe xCsin xD . y = x cosx xsin xx25 . 若函数 fxl=x , - 2:; x ::: 2,则 f x-1 的值域为 (B )A. 0,2B. 0,3C. 0,21D. 0,316 . 函数y =10x4 -2 的反函数是(D )xC .A . y =igB .log x 2x—2a X X 是有理数7.设函数 %是无理数°<a",则(B )1y =Iog 2_ D . y =1 lg x 2 x1A . 当 Xr J 时, f x 是无穷大B . 当 x- 工: 时, f x 是无穷小C. 当 Xr - ■时, f x 是无穷大 D . 当 x—. - ■时, f x 是无穷小8 . 设 f x 在R上有定义 ,f x 在点X。

连续的(A . 充分条件C.必要条件x2 a,cos x, 函数 f x 在点X。

左、右极限都存在且相等是函数B. 充分且必要条件D. 非充分也非必要条件x—1在 R 上连续,则 a 的值为(D)x::: 1C. -1D.-210.若函数 f x 在某点X。

极限存在,则(C )f x 在X o的函数值必存在且等于极限值B. f x 在X o函数值必存在,但不一定等于极限值C. f X 在X o的函数值可以不存在D. 如果f X o存在的话 ,11 . 数列0,3 ,2,4,是 (B )A.以0为极限B.以1为极限C . 以口为极限D . 不存在在极限n112 . lim xsin( CxB. 不存在C. 1D. 013.li=(A )C.0x2214?无穷小量是(C)A.比零稍大一点的一个数B. —个很小很小的数C. 以零为极限的一个变量 D . 数零[2X,-1 _ x :: 015. 设f(x)= 2, x ::: 1 则f x的定义域为[-1,3] , f 0 =x—1, 1 _x _32 __ , f 1 =0。

高等数学函数的极限与连续习题精选和答案

高等数学函数的极限与连续习题精选和答案

1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。

2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。

5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。

7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。

9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()b ax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim 222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→x xax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域恒有()M x f ≤(M 是正数),则函数()x f 在该邻域( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。

函数极限与连续习题(含答案)

函数极限与连续习题(含答案)

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。

函数的极限与连续训练题1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限(2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续(3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续(4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。

其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若a x f x x =→)(lim 0,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0C 、)(x f 在0x x =处可以无意义D 、x 可以只从一侧无限趋近于0x3、下列命题错误的是( D )A 、函数在点0x 处连续的充要条件是在点0x 左、右连续B 、函数)(x f 在点0x 处连续,则)lim ()(lim 00x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00x f x f x x =→ 4、已知x x f 1)(=,则xx f x x f x ∆-∆+→∆)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B )A 、1lim 0=→x xx B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→xb ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和7、已知,2)3(,2)3(-='=f f 则3)(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在8、=--→33lim a x ax a x ( D )A 、0B 、1C 、32aD 、323a9、当定义=-)1(f 2 时,xx x f +-=11)(2在1-=x 处是连续的。

高等数学:函数 、极限与连续习题含答案

高等数学:函数 、极限与连续习题含答案

1第一章函数、极限与连续一、选择题1.函数)(x f 的定义域为[]10,,则函数51()51(-++x f x f 的定义域是().A.⎥⎦⎤⎢⎣⎡-54,51B.⎥⎦⎤⎢⎣⎡56,51C.⎦⎤⎢⎣⎡54,51D.[]1,02.已知函数()62+x f 的定义域为[)4,3-,则函数)(x f 的定义域是().A.[)4,3-B.[)14,0C.[]14,0D.⎪⎭⎫⎢⎣⎡--1,293.函数211ln ++-=x xy 的定义域是().A.1≠x B.2-≥x C.2-≥x 且1≠x D.[)1,2-4.下列函数)(x f 与)(x g 是相同函数的是().A.11)(+⋅-=x x x f ,1)(2-=x x g B.2)(π=x f ,x x x g arccos arcsin )(+=C.x x x f 22tan sec )(-=,1)(=x g D.1)(=x f ,x x x g 22cos sin )(+=5.下列函数)(x f 与)(x g 是相同函数的是().A.x x g x x f lg 2)(,lg )(2==B.2)(,)(x x g x x f ==C.33341)(,)(-=-=x x x g x x x f D.xx x g x f 22tan sec )(,1)(-==6.若1)1(2-=-x x f ,则)(x f =().A.2)1(+x x B.2)1(-x x C.)2(+x x D.)1(2-x x 7.设xx f cos 2)(=,xx g sin 21)(⎪⎭⎫⎝⎛=,在区间⎪⎭⎫ ⎝⎛20π,内成立().A.)(x f 是增函数,)(x g 是减函数B.)(x f 是减函数,)(x g 是增函数C.)(x f 和)(x g 都是减函数D.)(x f 和)(x g 都是增函数28.函数)1lg()1lg(22x x x x y -++++=().A.是奇函数B.是偶函数C.是非奇非偶函数D.既是偶函数,也是奇函数9.下列函数中()是奇函数.A.1cos sin +-=x x y B.2xx a a y -+=C.2211x x y +-=D.)1)(1(+-=x x x y 10.函数x x x f sin )(2=的图形().A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.关于直线x y =对称11.下列函数中,()是奇函数.A.2ln(1)x +B.)x C.sin x x D.x xe e-+12.若()f x 是奇函数,且对任意实数x ,有(2)()f x f x +=,则必有(1)f =().A.1-B.0C.1D.213.偶函数的定义域一定是().A.包含原点的区间B.关于原点对称 C.),(+∞-∞D.以上三种说法都不对14.若)(x f 是奇函数,)(x ϕ是偶函数,且)]([x f ϕ有意义,则)]([x f ϕ是().A.偶函数B.奇函数C.非奇非偶函数D.奇函数或偶函数15.函数xx f 1sin )(=是其定义域内的什么函数().A.周期函数B.单调函数C.有界函数D.无界函数16.若()f x 在(,)-∞+∞内单调增加,()x ϕ是单调减少,则[()]f x ϕ在(,)-∞+∞内().A.单调增加B.单调减少C.不是单调函数D.无法判定单调性17.函数xxe e y -+=的图形对称于直线().A.y x=B.y x=-C.0x =D.0y =318.下列函数中周期为π的是().A.xy 2sin =B.xy 4cos = C.xy πsin 1+= D.()2cos -=x y 19.下列函数是周期函数的是().A.)sin()(2x x f =B.xx f 1cos)(=C.xx f πcos )(=D.xx f 1sin)(=20.设1cos )(-=x x f 的定义域和周期分别为().A.πππ2,,22=∈+=T Z k k x B.ππ2,,2=∈=T Z k k x C.ππ=∈=T Z k k x ,,D.πππ=∈+=T Z k k x ,,221.下列结论不正确的是().A.基本初等函数在其定义域内是连续的B.基本初等函数在其定义区间内是连续的C.初等函数在其定义域内是连续的D.初等函数在其定义区间内是连续的22.下列说法正确的是().A.无穷小的和仍为无穷小B.无穷大的和仍为无穷大C.有界函数与无穷大的乘积仍为无穷大D.收敛数列必有界23.下列说法不正确的是().A.两个无穷小的积仍为无穷小B.两个无穷小的商仍为无穷小C.有界函数与无穷小的乘积仍为无穷小D.在同一变化过程中,无穷大的倒数为无穷小24.若无穷小量α与β是等价的无穷小,则αβ-是()无穷小.A.与β同阶不等价的B.与β等价的C.比β低阶的D.比β高阶的25.当0→x 时,4x x +是32x x +的().A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小26.当0→x 时,x x sin 2-是x 的().A.高阶无穷小B.低阶无穷小C.同阶无穷小但不等价D.等价无穷小27.设232)(-+=xxx f ,则当0=x 时,有().4A.)(x f 与x 是等价无穷小B.)(x f 是x 同阶但非等价无穷小C.)(x f 是比x 高阶的无穷小D.)(x f 是比x 低阶的无穷小28.设x x f -=1)(,31)(x x g -=,则当1→x 时().A.)(x f 是比)(x g 高阶的无穷小B.)(x f 是比)(x g 低阶的无穷小C.)(x f 与)(x g 是同阶但不等价的无穷小D.)(x f 与)(x g 是等价无穷小29.当0→x 时,与x 不是等价无穷小量的是().A.2sin xx -B.xx 2sin -C.3tan x x -D.xx -sin 30.当0→x 时,下列函数为无穷小量的是().A.x x sin B.xx sin 2+C.)1ln(1x x+D.12-x 31.当0→x 时,是无穷大量的有().A.xx 1sin 1B.xx sin C.2xD.xx 21-32.当0→x 时,下列函数不是无穷小量的是().A.x x x x tan cos 2-B.21sin xx C.x x x sin 3+D.xx )1ln(2+33.下列等式正确的是().A.1sin lim=∞→x xx B.11sinlim =∞→xx C.11sinlim =∞→xx x D.11sin lim=∞→xx x 34.设函数()f x 在闭区间[1,1]-上连续,则下列说法正确的是().A.1lim ()x f x →+必存在B.1lim ()x f x →必存在C.1lim ()x f x →-必存在D.1lim ()x f x →-必存在35.=→xx 102lim ().A.0B.∞+C.∞D.不存在36.下列各式中正确的是().A.0cos lim0=→xxx B.1cos lim0=→xxx C.0cos lim=∞→xxx D.1cos lim=∞→xxx537.若(sin )3cos 2f x x =-,则(cos )f x =().A.3sin 2x+B.32sin 2x-C.3cos 2x+D.3cos 2x -38.设21()arcsin 3lim ()1x x f x f x x x→∞=++,则lim ()x f x →∞等于().A.2B.21C.2-D.21-39.设x xx f )31()2(-=-,则=∞→)(lim x f x ().A.1e-B.2e-C.3e-D.3e40.极限lim sinx x xπ→∞=().A.1B.πC.2eD.不存在41.当0x →时,1xe 的极限是().A.0B.+∞C.-∞D.不存在42.当5x →时,5()5x f x x -=-的极限是().A.0B.∞C.1D.不存在43.设x x x f 21)(-=,则=→)(lim 0x f x ().A.1B.不存在C.2eD.2e-44.若0→x 时,kx x x ~2sin sin 2-,则=k ().A.1B.2C.3D.445.若52lim22=-++→x bax x x ,则().A.1=a ,6=b B.1-=a ,6-=b C.1=a ,6-=b D.1-=a ,6=b 46.=+-∞→x x xx arctan 1lim ().A.2πB.2π-C.1D.不存在647.=+→xx x )1ln(lim0().A.1-B.1C.∞D.不存在但非∞48.已知22lim 222=--++→x x bax x x ,则b a ,的值是().A.8,2-==b a B.b a ,2=为任意值C.2,8=-=b a D.b a ,均为任意值49.=-+-+++∞→11)2(3)2(3lim n n nn n ().A.31B.31-C.∞D.050.xx x x 1011lim ⎪⎭⎫⎝⎛+-→的值等于().A.2eB.2e-C.1D.∞51.设xx g x3e 1)(2-=,当0≠x 时,)()(x g x f =,若)(x f 在0=x 处连续,则)0(f 的值是().A.0B.32-C.1D.3152.设函数⎪⎪⎩⎪⎪⎨⎧<+=>-=0,1sin 0,10,1e )(2x a x x x x x x f x 在点0=x 处连续,则常数=a ().A.1-B.1C.2-D.253.若)(x f 在点0x 点连续,则=+→)2(sin lim 00h x f h ().A.)2(sin 0h x f +B.)(sin 0x f C.)(sin 0x f D.不存在54.函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点有().7A.3个B.1个C.0个D.2个55.设0=x 是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0,1sin 0,00,11)(1x x x x x ex f x 的().A.跳跃间断点B.可去间断点C.第二类间断点D.连续点56.11)(11+-=xxe e xf ,则0=x 是)(x f 的().A.可去间断点B.跳跃间断点C.第二类间断点D.连续点二、填空题57.函数xxx f -+=11ln21)(的定义域是_________.58.函数2ln arcsin +=x xy 的定义域为_________.59.函数xx y 1arctan3+-=的定义域是_________.60.设)(x f 的定义域[]1,0=D ,则)(sin x f 的定义域_________.61.若函数()f x 的定义域为[1,0]-,则函数(cos )f x 的定义域为_________.62.若函数()f x 的定义域为[0,1],则函数(arctan 2)f x 的定义域为_________.63.设2(1)32f x x x +=-+,则f =_________.64.函数nn x a y 12)(-=的反函数是_________.65.函数)0(≠-++=bc ad dcx bax y 的反函数是_________.66.函数x y 3sin 2=⎪⎭⎫ ⎝⎛≤≤-66ππx 的反函数是_________.867.函数3arccos2xy =的反函数是_________.68.______28153lim 233=+-++∞→n n n n n n .69._______43867lim 22=+-+∞→n n n n .70.⎪⎭⎫⎝⎛++++∞→n n 21...41211lim =_________.71.2)1(...321limnn n -++++∞→=_________.72.35)3)(2)(1(limn n n n n +++∞→=_________.73._______lim 2210=+→x x x e.74._______1lim432=-+++∞→nn n n n n .75._______43...21lim 2=++++∞→nn nn .76._______1!!sin lim=+∞→n n n .77.=⎪⎭⎫⎝⎛++++++∞→πππn n n n n n 222...221lim _________.78.设012lim 2=⎪⎪⎭⎫⎝⎛--++∞→b ax x x x x ,则=a _________,=b _________.79._______4421lim 22=⎪⎭⎫ ⎝⎛---→x x x .80._______2)2sin(lim22=---→x x x x .81._______63sin lim=∞→xxx .982.m n x x x )(sin )sin(lim 0→(m n ,为正整数,且m n >)=.83._______1cos 1lim 20=--→x e x x .84._______4tan 8arcsin lim0=→xxx .85._______81221lim 32=⎪⎭⎫ ⎝⎛---→x x x .86.xxx x 30sin sin tan lim-→=.87.)1(lim 2x x x x -++∞→=.88.)1sin 1)(11(tan sin lim32-+-+-→x x xx x =.89.若2)1sin(1lim 21=--+→x ax x x ,则_________=a .90.若0x →时函数tan sin x x -与nmx 是等价无穷小,则=m ,n =.91.当∞→x 时,函数)(x f 与21x是等价无穷小,则_______)(3lim 2=∞→x f x x .92.当0→x 时,函数112-+ax 与x 2sin 是等价无穷小,则_______=a .93.当∞→x 时,函数)(x f 与x4是等价无穷小,则_______)(2lim =∞→x xf x .94.若1x →时,2(1)1mx x --是比1x -高阶的无穷小,则m 的取值范围是.95.11232lim +∞→⎪⎭⎫⎝⎛++x x x x =_________.96.40)21(lim -→=-e x x kx ,则_________=k .1097.nn n x x f ⎪⎭⎫⎝⎛+=∞→sin 1lim )(,则=')(x f .98.4lim e a x a x xx =⎪⎭⎫ ⎝⎛+-+∞→,则_______=a .99._______1lim 23=⎪⎭⎫ ⎝⎛++∞→x x x x .100.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.101.设函数⎪⎩⎪⎨⎧≥<<+≤+=1,10,0,2)(2x bx x a x x x x f 在),(+∞-∞内连续,则___________,==b a .102.)(lim 2)sin 21()(031x f x x f x x→++=,求()=x f .103.如果201cos ()3lim ()x xf x f x x→-=+,则0lim ()x f x →=.104.设2211xx x x f +=⎪⎭⎫ ⎝⎛-,则=)(x f .105.函数⎪⎩⎪⎨⎧=≠+=010,1sin 1)(x x xx x f 的连续区间是.106.若函数()⎪⎩⎪⎨⎧>+≤+=0,21ln 0,)(12x x x x a x f x 在0=x 处连续,则=a .107.极限02sin 3lim[sin]x x x x x→+=.108.极限3sin 2lim[sin ]x xx x x→∞+=.109.若⎪⎩⎪⎨⎧=≠-+=-0,0,316sin )(3x a x x e x x f ax 在0=x 连续,则_______=a .110.函数⎪⎩⎪⎨⎧><<-±===2,420,42,0,2)(2x x x x x x f 的间断点有_________个.111.函数653)(2+--=x x x x f 的第二类间断点是_________.112.函数)5)(32(86)(22-----=x x x x x x f 的间断点是.113.设⎪⎩⎪⎨⎧≤+>=,0,,0,1sin )(2x x a x x x x f 要使)(x f 在),(+∞-∞内连续,则=a .114.设⎪⎩⎪⎨⎧<+=>+=0,20,0,)(2x b x x a x e x x f 在点0=x 处连续,则=a ,=b .115.设⎪⎩⎪⎨⎧≤>=0,0,3sin )(x x x x x x f ,则点0=x 是)(x f 的第类间断点.116.设⎪⎩⎪⎨⎧≤<-+>=-,01),1ln(,0,)(11x x x e x f x 则点0=x 是)(x f 的第类间断点;点1=x 是)(x f 的第类间断点.117.若函数=)(x ϕ,则函数)(x f 为奇函数这里⎪⎪⎩⎪⎪⎨⎧<=>++=0, )( 0, 0 0 ),1ln()(2x x x x x x x f ϕ118.⎩⎨⎧<-≥=00 )(22x x x x x f ,则)(x f 是(奇/偶)函数.119.⎩⎨⎧>+≤-=0 10 1)(x x x x x f ,则)(x f 是(奇/偶)函数.三、计算题120.设函数1)1(2++=x x x f 0>x ,求)(x f .121.设函数2211xx x x f +=⎪⎭⎫ ⎝⎛+,求)(x f .122.设xx f -=11)(,求))((x f f .123.设23)1(2+-=+x x x f ,求)(x f .124.已知x x g xx f -==1)(,1)(,求))((x g f .125.设x x x f 2)1(2-=-,求)1(+x f .126.求函数321)(2-+=x x x f 的连续区间.127.设函数)(x f 的定义域为)0,1(-,求函数)1(2-x f 的定义域.128.设x xx f +=12arccos )(,求其定义域.129.设)(x f 的定义域为[]1,0,求)(cos x f 的定义域.130.已知⎩⎨⎧≤<≤≤=+21,210,)1(2x x x x x ϕ,求)(x ϕ.131.设⎩⎨⎧<+≥+=0,40,12)(2x x x x x f ,求)1(-x f .132.判断函数x x x f 32(32()(-++=的奇偶性.133.判断11-+=x x a a x y 的奇偶性.134.设)21121)(()(-+=x x f x F ,已知)(x f 为奇函数,判断)(x F 的奇偶性.135.求函数x x y 44sin cos -=的周期.136.求函数2cos sin x x y +=的周期.137.求函数x y 3sin 2=)66(ππ<<-x 的反函数.138.求函数)1ln(2-+=x x y 的反函数.139.xx x 3113sin lim +-∞→.140.633lim 6--+→x x x .141.2203)1ln(lim x x x +→.142.x xx 4cos 12sin 1lim 4-+→π.143.2321lim 4--+→x x x .144.123lim 221-+-→x x x x .145.25273lim 33+-++∞→x x x x x .146.)cos 3(11lim 32x x x x +++∞→.147.2021cos lim x x x -→.148.2021lim x ex x -→.149.3222......21lim nn n +++∞→.150.)3(lim 2x x x x -++∞→.151.xx x ln 1lim 21-→.152.20cos 1lim x x x -→.153.38231lim x x x +---→.154.⎪⎪⎭⎫ ⎝⎛+-++⨯+⨯∞→)12)(12(1...531311lim n n n .155.n n 11lim +∞→.156.114sin lim 0-+→x xx .157.)(lim 22x x x x x --++∞→.158.156223lim 22+-++∞→n n n n n .159.nx mxx sin sin lim 0→.160.⎪⎭⎫ ⎝⎛-→x x x x ln ln 1lim 1.161.145lim 1---→x xx x .162.⎪⎪⎭⎫ ⎝⎛--→11lim 31x x x .163.xx x --→πππ1cos )(lim .164.20cos 1lim x mx x -→.165.11sinlim -+∞→x x x x x .166.)15(lim 323x x x x -+-∞→.167.)cos 1(cos 1lim 0x x x x --+→.168.28lim 38--→x x x .169.n n n 31...9131121...41211lim ++++++++∞→.170.xx x x x 6sin 4cos lim ++∞→.171.)1(lim 2x x x x -+∞→.172.⎪⎪⎭⎫⎝⎛-+→114sin lim 0x x x .173.174lim 22++→x x x .174.2220)1()41ln(lim x x e x -+→.175.115)2(5)2(lim ++∞→+-+-n n nn n .176.xx e 1011lim +→.177.若123lim 22=-+-→x ax x x ,求a .178.已知01lim 2=⎪⎪⎭⎫ ⎝⎛--+∞→b ax x x x ,其中a ,b 是常数,求a ,b .179.已知),0()1(lim 2017∞≠≠=--∞→A n n n k k n ,求k 的值.180.计算⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2222211lim .181.已知5312)(22+++-=bx x ax x f ,当∞→x 时,求a 和b 的值使)(x f 为无穷小量.182.当0→x ,比较函数22)(-+=x x e x f 与x 是否为同阶无穷小.183.已知82lim 3=⎪⎭⎫ ⎝⎛-+∞→x x a x a x ,求a .184.()xx x sec 32cos 1lim +→π.185.11212lim +∞→⎪⎭⎫⎝⎛-+x x x x .186.26311lim -∞→⎪⎭⎫ ⎝⎛+x x x 187.xx x x 311lim ⎪⎭⎫ ⎝⎛+-∞→.188.21232lim +∞→⎪⎭⎫ ⎝⎛++x x x x .189.xx x tan 2)(sin lim π→.190.已知⎪⎪⎩⎪⎪⎨⎧<=>+=0,sin 10,0,1sin )(x x x x p x q x x x f 在点0=x 处极限存在,求p 和q 的值.191.求函数⎪⎩⎪⎨⎧=≠--=0,210,cos 1)(42x x x x xx f 的间断点的个数.192.判断函数111)(--=x x ex f 的间断点及其类型.193.判断函数xx x f 1cos)(=的间断点及其类型.194.设)(x f 在点0=x 处连续,且⎪⎩⎪⎨⎧=≠-=0,0,cos 1)(2x a x x x x f ,求a .195.求函数xxy sin =的间断点及类型.196.求函数)1()(22--=x x xx x f 的间断点.197.证明方程019323=+--x x x 至少有一个小于1的正根.198.判断函数122+=x y 的单调性.199.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧<⎪⎭⎫ ⎝⎛-=>+--=0,110,0,1)1(2sin )(2x x x b x a e e x f x x x 在点0=x 处连续,求a 和b 的值.200.设函数⎩⎨⎧≥+<=0,0,)(x x a x e x f x 在),(+∞-∞内连续,求a .201.设⎪⎪⎩⎪⎪⎨⎧<≤---+=>+=01,110,00,)1ln()(x x xx x x x x x f ,判断其间断点及类型.202.设xe xf x 1)(-=,判断其间断点及类型.203.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0)(,11x x x e x f x ,判断)(x f 的间断点及其类型.204.求曲线65222+-=x x x y 的渐近线.205.求xex f -+=1111)(的间断点并判断其类型.206.设⎪⎪⎪⎩⎪⎪⎪⎨⎧>++=<=0,)21ln(0,0,sin 1sin )(2x a xx x b x x x x x f ,求b a ,的值使其在),(+∞-∞内连续.207.设⎪⎪⎩⎪⎪⎨⎧≤<=<<-=-21,1,210,1ln )(1x e x x x xx f x ,(1)求)(x f 的定义域(2)判断间断点1=x 的类型,如何改变定义使)(x f 在这点连续?208.判断函数x x y ln +=在区间),0(+∞内的单调性.第一章函数、极限与连续1..54,51:15101510⎥⎦⎤⎢⎣⎡⇒⎪⎪⎩⎪⎪⎨⎧≤-≤≤+≤D x x 选C2.43<≤-x ,826<≤-x ,14620<+≤x 。

数学-函数极限连续_真题(含答案与解析)-交互

数学-函数极限连续_真题(含答案与解析)-交互

数学-函数、极限、连续(总分150, 做题时间90分钟)一、选择题1.函数f(x)在(a,b)内有反函数f-1(x)存在,则f(x)必为( ).(A)有界函数(B)严格单调上升(C)严格单调下降(D)以上结论都不正确SSS_SIMPLE_SINA B C D该问题分值: 3答案:D[解析] 首先可知(A)不正确,例如,x∈(0,1)无界,但它有反函数,x∈(1,+∞).其次,(B),(C)也不正确,试看反例:有反函数存在,但显然f(x)在(0,2)上无单调性.2.设[x]为取整函数,则函数f(x)=x-[x]在(-∞,+∞)上为( ).(A)单调上升函数(B)奇函数(C)偶函数(D)周期函数SSS_SIMPLE_SINA B C D该问题分值: 3答案:D[解析] 由[x]的定义可知,[x+1]=1+[x],因此,对于任一x∈(-∞,+∞),都有f(x+1)=(x+1)-[x+1]=(x+1)-(1+[x])=x-[x]=f(x),可见f(x)是周期T=1的函数,它在一个周期[0,1)上的表达式为f(x)=x,x∈[0,1),所以易知(A),(B),(C)都不正确.故应选(D).3.等于( ).(A)1 (B)(C)0 (D)2SSS_SIMPLE_SINA B C D该问题分值: 3答案:C[解析] 本题是“0·∞”型未定式的极限,可用洛必达法则.首先应将其化为“”型或“”型未定式,究竟化为哪一种,要视具体情况而定,如本题必须化为“”型,即4.等于( ).(A)∞ (B)0 (C)(D)1SSS_SIMPLE_SINA B C D该问题分值: 3答案:D[解析] 这是“∞”型未定式,可用洛必达法则,但必须先化为“”型或“”型未定式,即,而是“0·∞”型,若用洛必达法则去计算,则很难求出,这时必须用其他方法:于是可知5.等于( ).(A)1 (B)0 (C)-1 (D)ln2SSS_SIMPLE_SINA B C D该问题分值: 3答案:B[解析] 因为极限不存在,也不是未定式,所以无法用以上各种方法求此极限.但是,由,且,可知,当x→0时,ln(2-e x)为无穷小量,函数是有界函数,因此它们之积仍为无穷小量,即6.等于( ).(A)(B)1 (C)(D)2SSS_SIMPLE_SINA B C D该问题分值: 3答案:A[解析] 因为有以下的不等式成立而由夹逼定理即知7.等于( ).(A)1 (B)0 (C)2 (D)ln2 SSS_SIMPLE_SINA B C D该问题分值: 3 答案:D[解析] 取函数,x∈[0,1],将区间[0,1]n 等分,分点为,i=0,1,…,n .在每个小区间[x i-1,x i ]上取点ξ=x i ,i=1,2,…,n ,则函数,x∈[0,1]的积分和为于是由定积分的定义8.下列个选项中的两函数相等的是( ).(B)y=e lnx3和y=x 3(D)y=x 和SSS_SIMPLE_SINA B C D 该问题分值: 3 答案:C[解析] 两个函数是否为同一函数,只与其定义域和对应法则有关,而与其他因素无关.具体如表1—1—1所示。

第一章 函数、极限与连续(答案)

第一章  函数、极限与连续(答案)

第一章 函数、极限与连续(一)1.区间[)+∞,a 表示不等式( B )A .+∞<<x aB .+∞<≤x aC .x a <D .x a ≥ 2.若()13+=t t ϕ,则()=+13t ϕ( D )A .13+tB .26+tC .29+tD .233369+++t t t 3.设函数()()x x x x f arcsin 2513ln +-++=的定义域是( C )A .⎪⎭⎫ ⎝⎛-25,31B .⎪⎭⎫ ⎝⎛-25,1C .⎪⎭⎫⎝⎛-1,31 D .()1,1-4.下列函数()x f 与()x g 相等的是( A )A .()2x x f =,()4x x g =B .()x x f =,()()2x x g =C .()11+-=x x x f ,()11+-=x x x g D . ()112--=x x x f ,()1+=x x g 5.下列函数中为奇函数的是( A )A .2sin xx y = B .xxe y 2-= C .x x x sin 222-- D .x x x x y sin cos 2+= 6.若函数()x x f =,22<<-x ,则()1-x f 的值域为( B ) A .[)2,0 B .[)3,0 C .[]2,0 D .[]3,0 7.设函数()x e x f =(0≠x ),那么()()21x f x f ⋅为( B )A .()()21x f x f +B .()21x x f +C .()21x x fD .⎪⎪⎭⎫⎝⎛21x x f8.已知()x f 在区间()+∞∞-,上单调递减,则()42+x f 的单调递减区间是( C ) A .()+∞∞-, B .()0,∞- C .[)+∞,0 D .不存在 9.函数()x f y =与其反函数()x fy 1-=的图形对称于直线( C )A .0=yB .0=xC .x y =D .x y -=10.函数2101-=-x y 的反函数是( D ) A .2lg-=x x y B .2log x y = C .xy 1log 2= D .()2lg 1++=x y 11.设函数()⎩⎨⎧=是无理数是有理数x x a x f x ,0,10<<a ,则( B )A .当+∞→x 时,()x f 是无穷大B .当+∞→x 时,()x f 是无穷小C .当-∞→x 时,()x f 是无穷大D .当-∞→x 时,()x f 是无穷小 12.设()x f 在R 上有定义,函数()x f 在点0x 左、右极限都存在且相等是函数()x f 在点0x 连续的( C )A .充分条件B .充分且必要条件C .必要条件D .非充分也非必要条件13.若函数()⎩⎨⎧<≥+=1,cos 1,2x x x a x x f π在R 上连续,则a 的值为( D )A .0B .1C .-1D .-2 14.若函数()x f 在某点0x 极限存在,则( C ) A . ()x f 在0x 的函数值必存在且等于极限值 B .()x f 在0x 函数值必存在,但不一定等于极限值 C .()x f 在0x 的函数值可以不存在 D .如果()0x f 存在的话,必等于极限值15.数列0,31,42,53,64,…是( B )A .以0为极限B .以1为极限C .以n n 2-为极限 D .不存在在极限 16.=∞→xx x 1sin lim ( C )A .∞B .不存在C .1D .017.=⎪⎭⎫ ⎝⎛-∞→xx x 211lim ( A )A .2-eB .∞C .0D .21 18.无穷小量是( C )A .比零稍大一点的一个数B .一个很小很小的数C .以零为极限的一个变量D .数零19.设()⎪⎩⎪⎨⎧≤≤-<≤<≤-=31,110,201,2x x x x x f x 则()x f 的定义域为[]3,1-,()0f = 2 ,()1f = 0 。

高等数学函数的极限与连续习题及答案

高等数学函数的极限与连续习题及答案
欲使上式成立,令
上式化简为
1a2
0,∴a1,
2
1b
12ab12abx1b212ablimlimlim
xxx1a∴1
a1,12ab0,b2
10、函数fx
的间断点是(x0,x1).
11
xx2x2
11、fx2的连续区间是(,1,1,3,3,).
x4x3ax2sinx
2,则a(2)12、若lim.
xx∴aax2sinxsinxlimlima2a0a02limxxxxx
a
xx21
logaxx21fx
3、当x0时,ex1是x的(c)
a.高阶无穷小b.低阶无穷小c.等价无穷小
4、如果函数fx在x0点的某个邻域b.连续c.有界
5、函数fx1
1x在(c)条件下趋于.
a.x1 b.x10 c.x10
6、设函数fxsinx
x,则limx0fx(c)
a.1b.-1c.不存在∵sinx
6、如果~,则o.
1,是
∴limlim10,即是的同阶无穷小.
2xx2sin2sin1cosx11limlim2正确∵limx0x0x04x2x2x2
2正确∵lim
11limxlimsin0.x0xx0x0x
1错误∵limsin不存在,∴不可利用两个函数乘积求极限的法则计算。x0x8、limxsin
高等数学函数的极限与连续习题精选及答案
第一章函数与极限复习题
1、函数fxx2x31x1与函数gxx1相同.
错误∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴fxx2x31x1与gx函数关系相同,但定义域不同,所以fx与gxx1
是不同的函数。
2、如果fxM(M为一个常数),则fx为无穷大.

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b .7、=+→xx x 6)13ln(lim 0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、lim ____________x →+∞=。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________.15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分 第1章函数极限与连续答案

微积分 第1章函数极限与连续答案

微积分 第一章 练习题 答案一、选择题:1、下列函数为偶函数的是( D ) ★A 、B 、C 均为奇函数A. x x y 23sin =B. x x y 5cos =C. x x y 5cos sin =D. x x y -+=222、下列函数不具有对称性的是( C ). ★对称性就是奇偶性. A 、B 、D 均奇. 指数函数无对称性A. x y arctan =B. x x y sin 3-=C. xe y = D. )1ln(2x x y ++= 3、下列函数在定义域内无界的是( D ). A. x y 1sin 1+= B. )cos(ln x y = C. x e y arctan = D. xy sin 1= 4、下列各对函数不相等的是( B ). A.55--=x x y 与⎩⎨⎧<->=5151x x y B. 242--=x x y 与2+=x y C. 242--=x x y 与2+=x y )2(≠x D. x x y 22cos sin +=与1=y 5、x x y =( C ). A. 是幂函数 B. 是指数函数 C. 不是基本初等函数 D. 不是函数6、对于普通分段函数,以下说法不正确的是( D ).A.定义域为各段并集B.整体若不能由一个解析式表示就不是初等函数C.各段内分别为初等函数 D 不是一个函数,而是多个函数7、函数)(x f 在点0x 处有定义是函数)(x f 在点0x 处极限存在的( D.无关 )条件8、函数)(x f 在点0x 处有定义是函数)(x f 在点0x 处连续的( B.必要 )条件9、函数)(x f 在点0x 处连续是)(x f 在点0x 处极限存在的( A.充分 )条件10、x x e -∞→lim ( D.不存在 ) ★∞→x 为两个方向,x -仍为两个方向无穷;指数函数不对称11、x x 1sinlim 0→ ( D.不存在但函数有界 ) ★0→x ,∞→=x u 1,u x u x sin lim 1sin lim 0∞→→= 12、已知4132lim 23=--+→x x a x x ,则常数=a ( B.3- ) ★∵分母→0,且分式极限存在,∴分子必→0 13、已知4121lim =+-∞→x ax x ,则常数=a ( D. 8 ) ★由已知m n = 14、( D )不正确 A.01sin lim 0=→x x x B.11sin lim =∞→xx x C.0)sin 2(1lim 2=++∞→x x x x D.1sin lim =∞→xx x 15、212)2(sin lim 2=--→x x k x ,则=k ( A. 21 ) ★∵k x x k x =--→2)2(sin lim 2 16、若320)1(lim e ax x x =-→,则=a ( B.23- ) ★∵a x x e ax 220)1(lim -→=-17、⎪⎩⎪⎨⎧<+>+=0101)(1x e x x x f x ,则=→)(lim 0x f x ( B.1 ) ★∵0lim lim 10==-∞→→-u u x x e e 18、⎪⎪⎩⎪⎪⎨⎧>+=<=01sin 1000sin 1)(x x x x x xx x f 在0=x ( C.极限值为1 ) ★与0)0(=f 无关19、+→0x 时,( C.1-x e )是无穷小量 ★ -∞→x ln ;1sin →xx ;1cos →x 20、∞→x ,(B.x x 1sin )不是无穷小★1232+-x x x :m n <;x e x arctan 2-、x x 1sin 1无穷小量与有界变量乘积 21、( D ) 正确 ★A.∞=-=-→→→)1(lim lim 1lim 111x x x x x x x 分母极限为0,不满足极限商的运算法则条件 B.1sin lim sin 1lim 00==→→xx x x x x ;C.0sin lim 1lim sin 1lim ==∞→∞→∞→x x x x x x x :x x sin lim ∞→不存在,不满足法则条件 D. 111sin lim 1sin lim ==∞→∞→xx x x x x 22=+∞→)sin 21sin (lim xx x x x ( B. 1 ) A. 0 B. 1 C. 2 D. 3 23、函数)2)(1(12---=x x x y 的间断点为( C. 1=x 和2=x ) ★使分母为0的点二、填空题:1、函数⎩⎨⎧≤≤+<=2010cos )(2x xx x x f 的定义域为 ]2,(-∞ 2、⎩⎨⎧>-≤+=02013)(x x x x x f ,=))0((f f 1- ★1)13()0(0=+==x x f ,1)2()1())0((1-=-===x x f f f3、已知2ln )(=x f ,则=-+)()(00x f h x f 0 ★πln )(=x f 为常数函数4、已知2)(x x f =,则=-+)()(x f h x f 22h xh +5、已知1)1(2-=-x x f ,则=)3(f 15 ★ 先求x x x f 2)(2+=,15)3(=f6、=→2ln lim 3x ( 2ln );7、)0(21lim =-∞→x x ;)(21lim 2∞=-→x x ;)(sin 1lim 0∞=→x x 8、)(233lim );0(22lim );21(213lim );()12(lim 2332223∞=--=-+-=--∞=+-∞→∞→∞→∞→x x x x x x x x x x x x x x x 9、)0(sin lim 0=→x x ;x x sin lim ∞→( 不存在 );x x 1sin lim 0→( 不存在 );)0(1sin lim =∞→xx 10、)2(arctan lim π=+∞→x x ;)2(arctan lim π-=-∞→x x ;x x arctan lim ∞→( 不存在 ) 11、)1(ln lim );0(ln lim );(ln lim );(ln lim 10==∞-=∞+=→→→+∞→+x x x x ex x x x 12、);0(sin lim );1(sin lim0==∞→→x x x x x x );1(1sin lim );0(sin 1lim 0==→∞→xx x x x x 13、);(tan lim );(sin sin lim );(sin lim 000k x kx b a bx ax k x kx x x x ===→→→);(tan tan lim 0b a bx ax x =→ 14、已知a ,b 为常数,2121lim 2=+-+∞→x bx ax x ,则=a ( 0 ),=b ( 4 ). ★∵m n = 15、已知⎪⎩⎪⎨⎧=≠-=00)1()(2x a x x x f x 在点0=x 处连续,则=a ( 2-e ). 16、⎪⎪⎩⎪⎪⎨⎧>+=+<<-=01sin 201042tan )(x x x x k x x x x f π 处连续在时,处极限存在在时,任意实数0)()1()2(0)()()1(====x x f k x x f k 三、计算题:1.1)32(lim 22=-+→x x x ★代入法 2.221lim 221-=-+→xx x x ★代入法 3.421lim )2)(3()1)(3(lim 6532lim 3300223=-+=--+-=+---→→→x x x x x x x x x x x x x 4.∞=-+=-+-=+--→→→11lim )1()1)(1(lim 121lim 12100221x x x x x x x x x x x 5.31232lim )12()32(lim 232lim 232023200034230=+++-+++-=+++-→→→x x x x x x x x x x x x x x x x x x x6.0112321lim 232lim 232lim 3324344233423=+++-=+++-=+++-∞→∞→∞∞∞→x x x x x x x x x x x x x x x x x x x x x x 7.0)sin 2(21lim 32=+-+∞→x x x x 021lim 32=-+∞→x x x ,且)sin 2(x +有界 8.7252tan lim 5sin lim 2tan 5sin lim 00000=+=+=+→→→xx x x x x x x x x 9.2363sin 6sin lim 3sin 6sin lim 0000===→→xx x x x x x x 10.111sin sin )sin(sin lim )sin(sin lim 0000=⨯=⋅=→→xx x x x x x x 11. ∞=-+=-+=-+→→→xx x x x x x x x x x x x x x x x sin 1sin 1lim sin sin lim sin sin lim 00000 12.15854)32(2354)321(lim )321(lim -⋅--∞→∞→=-=-e x x x x x x 13.3231)2(21023102310)21(lim )21()21(lim )21(lim e x x x x x x x x x x x x =-=--=----→-→+-→ 14.8444444)11()11(lim 11lim 11lim e e e xx x x x x x x xx x x x x x ==-+=⎪⎪⎪⎪⎭⎫⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∞→∞→∞→ 15.设11sin2sin lim 20=-→xx x x k x ,求k 121sin lim 2sin lim 1sin lim 2sin lim 1sin 2sin lim 0020020==-=-=-→→→→→k x x x x k x x x x x k xx x x k x x x x x 21=∴k。

经济数学(极限与连续习题及答案)——习题集资料文档

经济数学(极限与连续习题及答案)——习题集资料文档

第二章 函数的极限与连续习题 2-11.写出下面数列的前5项,并观察当n —>∞时,哪些数列有极限,极限为多少? 哪些数列没有极限.{}{}{}{}{}{}{}211(1) 1 (2) 21(3) (4) (1)11(1)(5) sin (6) 2n n n nn n n n n n x x n n x x nn x x n π⎧⎫-⎪⎪⎧⎫=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭-⎧⎫==-⎨⎬+⎩⎭⎧⎫+-⎪⎪⎧⎫==⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭解 (1)3231,1615 ,87 ,43 ,21 有极限 , 极限为 1.(2)524,415 ,38 ,23 ,0 没有极限. (3)64,53 ,42 ,31 0, 有极限 , 极限为 1. (4) -1, 2, -3, 4, -5 没有极限.(5)5sin,4sin ,3sin ,2sin ,sin πππππ, 有极限 , 极限为 0 . (6) 0, 1, 0 , 1, 0 没有极限 . 2. 用极限的定义证明:(1) 若k >0,则 1lim0kn n →∞=n 212(2) lim313n n →∞+=+解 (1) 因为对任给的ε> 0,要使不等式110(0)k kk n n ε-=<>11().k n ε>即便可所以对任给的ε> 0, 取正整数 N =11[()]1kε+ , 则当n >N 时, 就恒有 10k n ε-<故由数列极限的定义知, 1lim0kn n →∞=.(2) 因为对任给的ε > 0, 不妨设10ε<3<,要使不等式2121ε31393n n n +-=<++11(3) 9εn >-即便可.所以对任给的ε> 0, 取正整数N = 11[(3)]19ε-+, 则当n > N 时, 就 恒有 212313n n ε+-<+故由数列极限的定义知,3213n 12n lim=++∞>-n .3. 设 120.9,0.99,,0.999,lim .nn n n x x x x →∞===求如果要使x n 与其极限之差的绝对值小于 0.0001 , 问n 应满足什么条件?解 因为0.999,lim 1, 0.0001,nn n n x x ε→∞===由则取要使110.000110000n x -<=110.999910000n x >-=只要便可.所以n > 4 .4. 设数列{x n }有界,且lim 0, lim 0.n n n n n y x y →∞→∞==证明证 因为数列{x n }有界, 所以存在正整数M > 0, 使得nx < M,又因为0lim =∞→n n y , 则对任给的M ε> 0, 存在正整数N , 使得当n > N 时, 就恒有0n y M ε-<所以对任给的ε> 0, 存在正整数N , 使得当n >N 时, 就恒有n n n n x y x y M Mεε=<⋅=故由数列极限的定义知, .0lim =∞→n n n y x5. 设数列{x n }收敛, 求证数列{x n }必定有界.解 由数列{x n }收敛, 设Ax n n =∞→lim .因为对于任意ε > 0, 存在正整数N , 使得当n > N 时的一切x n , 就恒有 n x A ε-<即n A x A εε-<<+所以对任给的ε > 0,取正数{}12max ,,,,,,N M x x x A A εε=+-使得当n > N 时 ,就恒有 n x M <故数列{x n }必定有界.习题 2-21. 用极限的定义证明 :2324(1) lim(31)8 (2) lim 4223(3) lim 2 (4) lim 20x x x x x x x x x x →→-→∞→-∞--==-++==解 (1)因为对任给的ε> 0, 要使不等式|(3 x – 1) – 8| =|3(x – 3)| < ε只要取正数δ= ε3就可以了.所以对任给的ε> 0, 取正数δ= ε3,使得当0 < | x – 3|<δ时, 就恒有|(3x – 1) – 8| < ε故由极限定义知 3lim(31)8x x ->-=.(2)因为对任给的ε > 0, 要使不等式244242ε2x x x x -+=-+=+<+只要取正数δ= ε就可以了.所以对任给的ε> 0, 取正数δ= ε, 使得当0<|x + 2|<δ时, 就恒有244ε2x x -+<+ 故由极限定义知 224lim 42x x x →--=-+.(3)因为对任给的ε> 0, 要使不等式2332εx x x +-=<,则 |x |> 3ε, 只要取正数M = 3ε就可以了.所以对任给的ε> 0, 取正数M =3ε, 使得当| x | > M 时, 就恒有232εx x +-<故由极限定义知 23lim2x x x ->∞+=.(4)因为对任给的ε> 0 (不妨设0<ε<1), 要使不等式ln 202, ln 2x x x εε-=<<即ln ln 2M ε=只要取正数就可以了.所以对任给的ε>0,取正数2ln ln ε=M , 使得当x <-M 时, 就恒有20x ε-<故由极限定义知 lim 20xx ->-∞=.2*. 当x →-2时,x 2 →4. 问δ等于多少,在0<|x + 2|<δ时, 有| x 2 - 4|< 0.003 ?解 因为当x →-2时,x -2 →-4, 取 ε= 0.003, 要使不等式| x 2 - 4|=| x + 2| | x – 2 |< ε设21x +<, 即有 -3< x <-1, -5< x -2 <-3所以当2x -< 5时,取0.0035δ==0.0006, 有240.003x ε-<=.3*. 当x —>∞ 时,102x →-. 问M 等于多少时,在|x |> M 时, 有100.012x -<-?解 因为当x —>∞ 时,要使不等式100.012x -<-2100, 102.x x ->>只要便可 即M = 102.4. 设函数1, 0() 0, 01, 0x x f x x x x -<⎧⎪==⎨⎪+>⎩, 讨论当x —> 0时,f (x )的极限是否存在.解 00lim ()lim (1)1x x f x x --→->=-=-因为00lim ()lim (1)1lim ()lim ()lim ()x x x x x f x x f x f x f x ++-+→->→→->=+=≠即故 不存在.5. 证明函数f (x ) = x | x |, 当x →0时极限为零.22, 0(), 0x x f x x x ⎧≥⎪=⎨-<⎪⎩解 因为--2020lim ()lim ()0lim ()lim 0lim ()0.x x x x x f x x f x x f x ++→→→→→=-====即故6* . 利用定义证明:0, 11lim , 01x x a a a →+∞>⎧=⎨+∞<<⎩. 证 因为当a >1时,对任意ε> 0,不妨设0<ε<1, 要使110x x a a ε-=<1ln ln x a ε->只要取正数便可.所以对于0<ε<1,1ln 0,,ln M x M a ε->>取=当时就恒有10xa ε-<即 1limx x a →+∞=.又因为当0< a < 1时,令11b a =>时,由上述可得1 lim 0x x b →+∞=于是 1lim limx xx x b a →+∞→+∞==+∞故由极限定义知0, 11lim, 01xx a a a →+∞>⎧=⎨+∞<<⎩. 7.设函数21, 2()2, 2x x f x x k x ⎧+≥=⎨+<⎩, 问当k 取何值时,函数f (x )在x —> 2时的极限存在. 解 2lim (), ,x f x ->因为要使存在必须左右极限存在且相等222lim (1)5lim (2)4 1.x x x x k k k ->->+==+=+=+-即解得故 2lim () 5.x f x ->=8. 求(),()x xf x x x x ϕ==当x —> 0时的左、右极限,并说明它们在 x —> 0时的极限是否存在.解 1 , 0(), 0x f x x ≠⎧=⎨=⎩因为不存在lim () lim101 , 0()1, 0x x f x x x x ϕ→→==>⎧=⎨-<⎩即而习题 2-31. 1. 求下列极限:3222010203031222042412(1)(1) lim (2)lim 2(2)(23)31(3) lim (4) lim()1(13)112((5) lim[ ] (6 ) limx n x x n h x x x n x x nx x x x x n x n n n→→∞→∞→→∞→-++++-+------++++222) (7) x x h x h →→-解 322200424424(1)lim lim 2.22x x x x x x x x x x →→-+-+==++22102010202030303012(1)(1)1(2) lim=lim=.2223(1)(2)(2)(23)2(3) lim lim .1(13)3(3)n n x x n n n n n x x x x x x →∞→∞→∞→∞+++------==-- 233112122222313(1)(4) lim()lim111(2)(1)lim1.(1)(1)1212 (5) lim[]lim1(1)1lim .22 (6) lim x x x n n n h x x x x x x x x x x n nn n n n n n n →→→→∞→∞→∞-++-=---+-==-++++++++=+=⋅=22200022200()2lim lim(2)2.(1 (7) lim1(1) lim(1 2.(8) h h x x x x x x h x xh h x h x h h x x →→→→→→→→+-+==+==-+=-+=-=4x x →→===2. 求下列数极限:n n n n n n 1(1)(1) lim111(3) lim[]1223(1)(1) 0.1(1)(2) lim 0.nnnn n n →∞→∞→∞→∞→∞+-+++⨯⨯⨯+==+-=解111(3) (1)1n n n n =-⨯++因为111lim[]1223(1)11111lim[(1)()()]22311lim(1) 1.1n n n n n n n n →∞→∞→∞+++⨯⨯⨯+=-+-++-+=-=+故2. 2. 设 22lim()51x x ax b x →∞--+=--, 求常数a, b 的值.解 222(1)()2lim ()lim 511x x x a x b a x bax b x x →∞→∞--++---+==---由1051, 6.a a b a b -=⎧⎨+=-⎩==-得故3. 3. 若常数k 使233lim 222-++++-→x x k kx x x 存在, 试求出常数k 与极限值. 解 2222233lim lim (2)02x x x kx k x x x x →-→-++++-=+-由己知存在,且 22lim (33)150 15.x x kx k k k →-+++=-==所以得22222315183(2)(3)limlim2(2)(1)3(3)lim 1.1x x x x x x x x x x x x x →-→-→-++++=+-+-+==--则5. 求下列函数的极限:12100(1)1ln(1) (1) lim(2) limln(1)nx x x x x xx x →→∞+--+++解1(1) (1) , 1,n nx t x t +==-令当0x →时, 1t →, 则11201122210109102910(1)1111limlimlim .1(1)(1)11ln (1)ln(1)(2) lim lim 11ln(1)ln (1)112ln ln(1)2 lim lim 1110ln ln(1)nn n n x t t x x x x x t t x nt t t t x x x x x x x x x xx x x x x x --→→→→∞→∞→∞→∞+---===--+++-+-+=+++++-++==+++291011ln(1)/ln 1110ln(1)/ln 15xx x xx x-++++=6 .求下列曲线的渐近线:3222122(1) (2) 232(3) 2 (4) 21xx x y y x x x x x y y x --==+---==-解 332(1) (3)(1)23x x y x x x x ==+-+-3321133233lim lim (3)(1)231;lim lim(3)(1)233;x x x x x x x x x x x x x x x x x x →→→-→-==∞+-+-===∞+-+-=- 因为 所以是铅垂渐近线 因为 所以是铅垂渐近线 323222lim lim 1(23)23 lim[]lim 223232.x x x x y x x x x x x x xx x x x x y x →∞→∞→∞→∞==+--+-==-+-+-=- 又因为 且所以是斜渐近线2222222222121102 (2) lim 121;2(lim lim (2)(1)222lim lim 221,2. (3) lim 21 lim 2x x x x x xxx x x x x y x x x x x x x x x x x x x x x -→∞→→→-→--→∞→-=--=-+==∞-+----==∞----=-===∞因为 所以是水平渐近线 又因为 且所以是铅垂渐近线因为 且所1,0.y x ==以是水平渐近线是铅垂渐近线212(4) lim211.2x xx x →=∞-=因为 所以是铅垂渐近线2221lim lim (21)22(21)11lim[]lim lim 2122(21)4241124x x x x x y x x x x x x x x x x x x y x →∞→∞→∞→∞→∞==----===---=+又因为且 所以是斜近渐近线.7. 已知 2200012000lim 0,,.x x x x b a b x a →+++-=≠-求的值解 2200012000limx x x x b x a →+++-=-由己知存在习题 2-41. 1. 利用极限存在准则,计算下列各题:22221111(1)lim[] (1)(2)()(2)limn n n n n n n →∞→∞+++++++解2222111111(1)4(1)(2)()n nn n n n n ≤++++≤+++因为 222211lim lim 041111lim[]0.(1)(2)() (2)1sin1,n n n nn n n n n n n →∞→∞→∞==++++=+++-≤≤≤≤且 所以因为则有lim lim lim 0.n n n →∞→∞→∞===所以 2.求下列极限:0022021sin (1) lim (2) lim cot 2sin 22(3) lim (4) lim sin tan 3sin(1)(5) lim (6) li 1x x x x x kxx xxx x x x x x →→→→∞→--01cos msin sin (7) lim (8) lim 2sin 2x n nx n xx x x xx ππ→→→∞-- 解 00sin sin (1) lim lim .x x kx kxk k x kx →→==0021(2) lim cot 2lim.2tan 22x x x x x x →→==0022222221112000sin 2sin 2322(3) lim lim .tan 32tan 333222(4) lim sin lim 2sin / 2.sin(1)sin(1)(5) lim lim lim(1) 2.112sin s 1cos 2(6) lim lim2lim sin sin x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x →→→∞→∞→→→→→→=⋅⋅===--=⋅+=---==20in 22sin cos22sin 112 lim cos .2222x x x x x x x x →=⋅=00sin()sin sin (7) limt lim lim = 1.(8) lim 2sin lim sin /.222x t t n n n n n n t x tx x t tx x xx x ππππ→→→→∞→∞+-=-=--== 3.求下列极限:2123sec 03(1) lim (1) (2) 121 (3) lim () (4) lim ()23 (5) lim (1cos ) (6) lim x x x x xx x xx x xx x x x x π+→∞→→∞→∞→→++-++2112cot0(12sin) (7) lim(14) (8) lim(13tan )xxxxx x x x x -→→+-+解 3133333(1) lim (1) lim (1)(1).xx x x e x x x ⋅+→∞→∞+=++=11(3)330222(2) lim(13)lim(13)].11(3) lim () lim (1) .x x x x x x x x x x x e x e x x ---→→→→∞→∞=-=-=+=+=2223113()2()232222133sec cos 1121132(4) lim ()lim ()lim (1)lim (1)323221213 lim (1)lim (1).22(5) lim(1cos ) lim(1cos )x x x xx x x x x x x x x x xx x x x x x x xe e e x xx x ππ-→∞→∞→∞→∞⋅⋅--⋅----→∞→∞→→--==-⋅+++=-⋅+=⋅=+=+223112sin 22sin 011(44)440132cot 233tan 022000.(6) lim(12sin)lim(12sin).(7) lim(14) lim(14).(8) lim(13tan )lim(13tan).1001 4.lim ()5xx xx xx x xx xx x x xx x x x c x e x x e x x e x x e x e x →→-⋅---→→⋅→→+→∞=+=+=-=-=+=+=+=-已知,.c 求解 220001001lim()5x x x x +→∞+-由510062200010065201210061001 lim (1)lim ()552012.x x x x x c x x x e e c -⋅-→∞→∞+=+⋅--===故习题 2-51.下列函数在什么情况下是无穷小量,什么情况下是无穷大量?3211(1) (2) 1(2) (4) ln(1)x x y y x x y e y x --==-==+解 (1)因为 301lim x x →=∞,所以当0x →时,31y x =是无穷大量. 又因为 31lim 0x x →∞=,所以当x →∞时,31y x =是无穷小量. (2)因为21111lim lim 11x x x x x →-→--==∞+-,所以当1x →-时,21 1x y x -=-是无穷大量. 又因为 211lim lim 011x x x x x →∞→∞-==+-,所以当x →∞时,21 1x y x -=-是无穷小量. (3)因为lim x x e -→-∞=∞,所以当x →-∞时,xy e -=是无穷大量. 又因为lim 0x x e -→+∞=,所以当x →+∞时,x y e -=是无穷小量. (4)因为1lim ln(1)lim ln(1)x x x x +→+∞→-+=∞+=∞或,所以当x →+∞,1, ln(1)x y x +→-=+时或时是无穷大量.又因为0limln(1)0x x →+=,所以当0 , ln(1)x y x →=+时是无穷小量.2.当0x →时,指出关于x 的同阶无穷小量、高阶的无穷小量、等价的无穷小量.22211,sin ,cos 1,(1),sin .2xx x e x ---解 因为01lim2x x →→==所以当0x +→时,与x1-;又因为 2200sin sin lim lim 0x x x x x x →→==200cos 1lim lim 02x x x x x x →→-=-= 所以当0x +→时,比x 高阶的无穷小量有2sin x ,2sin x ,cos 1x -;又因为 2001(1)122lim lim 12xx x e xx x →→-=⋅=所以当0x →时,与x 等价的无穷小量有21(1)2xe -.3.把下列函数表示为常数(极限值)与一个当x —>∞时的无穷小量之和的形式.3333(1)() (2) ()121x x f x f x x x ==-+解 (1)因为33lim 11x x x →∞=-,所以3331() 111x f x x x ==+--. (2)因为 33311lim lim 0 22142x x x x x →∞→∞-==++且 所以311()242f x x =-+. 4.证明: 当x —>0 时,(1) e x -1 ∽ x ; (2) arcsin x ∽ x .解 (1)100011lim 1lim lim 1ln(1)ln(1)x x x x x te t t e x t t →→→-=-==++令.(2)00arcsin limarcsin lim 1sin x t x tt x x t →→==令.5.利用等价替换原理, 计算下列极限:sin 2002000sin 31(1) lim (2) limsin tan 52ln(123)(3) lim (4) limsin()arcsin 2(5)lim(6) lims (sin )xx x x x n mx x x x e x xx x x x x x x →→→→→→-+-233in 235(7) lim(8) lim42tan x n xx x x x x→+-+解 (1)因为当0x →时,sin 33,sin ,tan 5522x xx x x x所以 00sin 336limlim 5sin tan 5522x x x x x x x x x x →→⋅==⋅⋅.(2)因为当sin 2sin 0,12xxx e →-时 所以sin 201sin 1limlim22xx x ex xx →→-==.(3)因为当220,ln(123)23x x x x x →+--时所以 22000ln(123)23lim lim lim(23)2x x x x x x x x x x →→→+--==-=. (4)因为当0,sin 22x x x →时所以x x →→=20021)1)lim lim 41x x x x x x →→===++.(5)因为当0,sin ,sin n nx x x x x →时 所以 000, sin lim lim 1, (sin ), nnm mx x n m x x n m x x n m →→>⎧⎪===⎨⎪∞<⎩.(6)因为当0,arcsin 22,sin x x x x x →时所以 00arcsin 22limlim 2sin x x x xx x →→==.(7)因为当230,,x x x x →时都是比更高的无穷小所以 233002352lim lim 12tan 2tan x x x x x x x x x →→+-==+.(8)因为当3433,2n n n n n →∞--limlim0.n n ==所以6. 设x —>0 时, 函数122(1)1cos 1kx x +--与为等价无穷小量,求常数k 的值.解 因为 12220021(1)12lim lim 11cos 12x x kxkx k x x →→+-==-=--所以 k = -1.*7. 求下列函数的极限:)tan 1ln(cos sin 1lim )1(20x xx x x +-+→ 11(2)lim ()x x x x a b →+∞-)]11ln(sin )31ln([sin lim )3(x x xx +-+∞→解 0x →(1)x→=因为222210,1cos ,ln(1tan )tan 2x xx x x x →-+当时所以2201sin cos limlim ln(1tan )2x x x x xx x →→+-=+2001cos sin 113limlim 24242x x x x x x →→-=+=+=.(2)111111(1)(1)lim ()limlim11x x x xx xx x x a b a b x a b x x →+∞→+∞→+∞-----==11(1)(1)limlim11xxx x a bx x →+∞→+∞--=-因为当1,0x x →+∞→时,11111ln ,1ln xx a a b bx x --11lim()ln ln lnxxx ax a b a b b →+∞-=-=所以31(3)lim [sin ln(1)sin ln(1)]x x x x →∞+-+31sin ln(1)sin ln(1)limlim 11x x x x x x →∞→∞++=-因为当x →∞时,333sinln(1)ln(1)x xx ++111sin ln(1)ln(1)x xx ++31lim [sin ln(1)sin ln(1)]31lim lim 31 2.11x x x x x xx x x x →∞→∞→∞+-+=-=-=所以习题 2-61.求函数 xy +=1 在x = 3, ⊿x = -0.2时的增量⊿y . 解 因为()()y f x x fx ∆=+∆-=3,0.2,2x x y =∆=-∆== 由所以2.利用连读函数的定义,证明下列函数在 x = 0 点的连续性.21(1)()1()21arctan , 10, 0(3)() (4) () 1, 01 0, 0x f x f x x x xx x f x f x xx x x x +=+=-⎧⎧-<<≠⎪⎪==⎨⎨⎪⎪-≤<=⎩⎩解 (1)因为(0)(0)1y f x f ∆=+∆-=lim lim 1)0()10.x x y f x x ∆→∆→∆=-==+=且所以 在处连续(2)因为21(0)(0)121x y f x f x ∆+∆=+∆-=+∆-2020001lim lim (1)110211()0.210, (0)0,lim ()lim (1)1,lim ()lim 11lim ()()0x x x x x x x x y x x f x x x x f f x f x f x f x x --++∆→∆→→→→→→∆+∆=+=-+=∆-+==-===-=-===且所以在处连续 (3)因为在 时且所以 不存在,故在不连续.0000,(0)1,arctan lim ()lim arctan lim 1tan x x t x f x tf x t x x t ---→→→===== (4)因为在时且00lim ()lim (1)1lim ()1(0)arctan , 10() 0.1, 01x x x f x x f x f xx f x x x x x ++→→→=-===⎧-<<⎪==⎨⎪-≤<⎩所以 在处连续3. 求下列函数的间断点, 并指出间断点的类型. 若是可去间断点,则补充定义,使其在该点连续.221(1)() (2) ()ln(21)(1)x x f x f x x x x -==--1, 11arctan , 0(3)()2, 10 (4) () 0, 01 sin , 02x x x f x x x f x xx x x x -⎧≤-⎪⎧⎪≠⎪=+-<≤=⎨⎨⎪⎪=⎩⎪<≤⎩ 解(1)0,1,1() ,x x x f x ==-=因为在处没有定义() 0,1,1. f x x x x ==-=所以在处间断而0000(1)lim ()lim 1(1)(1)(1)lim ()lim 1(1)(1)x x x x x x f x x x x x x f x x x x --++→→→→-==---+-==-+ 故 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.又因为 11(1)1lim ()lim (1)(1)2x x x x f x x x x →→-==-+所以 x = 1是()f x 的可去间断点,补充定义1(1)2f =.又因为111(1)lim ()limlim (1)(1)(1)x x x x x xf x x x x x x →-→-→--===∞-++所以x = -1是()f x 的无穷间断点.(2) 因为1x =在处()f x 没有定义, 且111lim ()limln(21)x x f x x →→==∞-所以x = 1是()f x 的无穷间断点.(3)因为(1)1,f -=且11111 lim ()lim 1,lim ()lim (2)1x x x x f x xf x x --++→-→-→-→--===+=则1lim ()(1) 1.x f x f →-=-=所以x = 1是()f x 的连续点.(0)2, lim ()lim (2)21 lim ()lim sin0x x x x f f x x f x x x --++→→→→==+===又因为且所以 0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点.0000(4)(0)0,1lim ()lim arctan21lim ()lim arctan 2x x x x f f x x f x x ππ--++→→→→===-==因为且 所以0lim ()x f x →不存在,x = 0是()f x 的跳跃间断点. 4.讨论下列函数的连续性,并作出函数图形.2211(1)()lim(0) (2) () lim11nnnn n x f x x f x xx x →∞→∞-=≥=++解 (1) 因为1, 011()lim0, 11n n x f x x x →∞≤≤⎧==⎨>+⎩(函数图形见图2-1)且11(1)1,lim ()1,lim ()0x x f f x f x -+→→===所以x = 1是()f x 的间断点.图2-122 , 11 (2)()lim0 , 11 , 1nnn x x xf x x x x x x →∞⎧<⎪-=⋅==⎨+⎪->⎩因为(函数图形见图2-2) 1111(1)0lim ()lim ()1 lim ()lim 1x x x x f f x x f x x --++→-→-→-→-±==-===-且1111lim ()lim 1 lim ()lim ()1x x x x f x x f x x --++→→→→===-=- 图2-211lim (),lim ()x x f x f x →-→所以都不存在.因此x = 1,x = -1是()f x 的跳跃间断点.5.已知2, 01() 2, 1ln(1), 13ax b x f x x bx x ⎧+<<⎪==⎨⎪+<≤⎩,问当 a , b 为何值时,()f x 在 x =1 处连续.解 因为(1)2,f =且21111lim ()lim () lim ()lim ln(1)ln(1)x x x x f x ax b a bf x bx b --++→→→→=+=+=+=+若函数()f x 在x = 1处连续,则必须 1lim ()2x f x →=.即 2ln(1)2a b b +=⎧⎨+=⎩解之,得223,1a e b e =-=-. 6.求函数32233()6x x x f x x x +--=+-的连续区间,并求 )(lim ),(lim ),(lim 32x f x f x f x x x -→→→.解 因为323223333()(3)(2)6x x x x x x f x x x x x +--+--==+-+-所以()(,3)(3,2)(2,),f x -∞-⋃-⋃+∞的连续区间是且3200331lim ()lim (3)(2)2x x x x x f x x x →→+--==+-322223233333lim ()lim (3)(2)(3)(1)338lim ()lim lim (3)(2)(3)(2)5x x x x x x x x f x x x x x x x x f x x x x x →→→-→-→-+--==∞+-+-+--===-+-+-7.设函数()f x 在[a , b ]上连续,且(),()f a a f b b <>,证明在(a , b )内至少存在一点ξ,使得f (ξ) = ξ.证 [][] ()(),(),,(),F x f x x f x a b F x a b =-设由已知在上连续则在上(),(),()()0,()()0f a a f b b F a f a a F b f b b <>=-<=->连续.又因为所以故由零值定理知,在(,)a b 内至少存在一点ξ,使得F (ξ)= 0, 即 ()f ξξ=.8.设函数()f x 在[a , b ]上连续,12n a x x x b <+++<, 求证在(a , b )内至少有点ξ,使n x f x f x f f n )()()()(21+++=ξ证 因为()f x 在[a , b ]上连续,则1()[,]n f x x x 在上也连续.由最大最小值定理知,1()[,]n f x x x 在上存在最小值m ,最大值M ,取12()()()((),1,2,,),n i f x f x f x C m f x M i n nm C M +++=≤≤=≤≤则由介值定理知, 在(a , b )内至少有点ξ,使12()()()()n f x f x f x f C nξ+++==.9. 证明方程331x x -=至少有一个根介于1和2之间.证 设3()31F x x x =--,由于F (x )在[1,2]内连续,且(1)30,(2)10F F =-<=>由零值定理知,在(1,2)内至少存在一点ξ,使得F (ξ)= 0. 即 331ξξ-=.故方程331x x -=在[1,2]内至少有一个根.综合习题二1.选择填空:(1) 数列{y n }有界是数列收敛的 ( ) .① 必要条件 ② 充分条件 ③ 充要条件 ④ 无关条件(2) 当x —>0 时,( )是与sin x 等价的无穷小量. ① tan2 x②x③ 1ln(12)2x + ④ x (x +2)(3) 设0, 0(), lim (), 0x x e x f x f x ax b x →⎧≤=⎨+>⎩若存在, 则必有( ) .① a = 0 , b = 0 ② a = 2 , b = -1③ a = -1 , b = 2 ④ a 为任意常数, b = 1(4)若31169x x→=--,则f (x) = ( ) .①x+1 ②x+5③(5) 方程x4–x– 1 = 0至少有一个实根的区间是( ) .①(0,1/2) ②(1/2, 1)③(2, 3) ④(1, 2)(6)函数10()lnxf xx-=+的连续区间是( ) .①(0, 5) ②(0, 1)③(1, 5) ④(0, 1)∪(1,5)解(1)①;(2)③;(3)④;(4)③; (5)②;(6)④.2.计算题:3sin()3(1) lim (2)lim12cos sin(3) 12(1)](4) lim0)x xxxnxaxe ex xn naαβππ+→→→∞→---++-+++->2300cot222tan sin(5)lim (6)limsin11(7)lim(cos) (8) lim(1)4(9)lim1x xx n x nxxx xxxn nxx→→→→∞→∞-++⎛⎫-⎪⎪-⎝⎭(10)lim[ln ln(2)]nn n n→∞-+解333sin()sin()sin()333(1) lim= lim lim112cos2(cos)2(cos cos)23x x xx x xx x xπππππππ→→→---=---33001112sin()cos()cos()1232323lim lim11124sin()sin()sin()232323(1)(1)(2) lim limsin sin0,1,1,sinx xx x x xx xx xx x xx x xe e e ex xx e x e x x xππαβαβαβππππππαβ→→→→-⋅--===+⋅-+----=→--因为当时所00lim lim.sinx xx xe e x xx xαβαβαβ→→--==-以(3) 12(1)]1lim2limnn nnn n→∞→∞++-+++-====3200(4) lim lim limlimlimtan sin tan1cos(5) lim limsinx a x a x axax ax xx x x xxx x+++++→→→→→→→-=-=-=--=⋅22001lim.22(6) limlimtan sin1tan1cos1lim lim.2(1cos)21cos2xxxx xx xx xx x x xx x x x→→→→→=⋅==--==⋅⋅=--221cot(cos1)cot cos100(7)lim(cos) =lim(1cos1)x xx xx xx x⋅⋅--→→+-因为222001cos112lim lim2tanx xxxx x→→--==-21cot2lim(cos).xxx e-→=所以22111()11221111(8) lim(1)lim(1)nn nn n nn nn nn n⋅⋅++→∞→∞++=++因为211lim()1nnn n→∞⋅+=211lim(1).nnen n→∞++=所以2222414(9)lim=lim111xxx xx xxx→∞→∞⎛⎫-⎪⎛⎫-⎪⎪⎪- ⎪⎝⎭-⎪⎝⎭2212222(1)(1)lim (1)lim (1) =lim =1111(1)(1)lim (1)lim (1) 1.(10)lim [ln ln(2)]lim ln()21 lim ln 2(1)x x x xx x x x x x xx x n n n n nx x x x x x x xe e e en n n n n n →∞→∞→∞→∞→∞--→∞→∞→∞-+-+-+-+⋅==⋅-+=+==+22lim ln(1)ln 2.n n e n →∞-+=-=-2. 1. 设 10sin , 02() , , lim ()(1), 0x x x x x f x a f x ax x →⎧<⎪⎪=⎨⎪+>⎪⎩试求使得存在.解00sin 1lim ()lim 22x x x f x x --→→==因为 10000 lim ()lim (1) lim ()lim ()1,ln 2.2a x x x x x a f x ax e f x f x e a +-+-→→→→=+====-则所以 即 3. 2. 作出函数()lim 1txtx t x e f x e →+∞+=+的图形,并指出间断点.解 由已知可得1, 0()lim , 01tx tx t x x e f x x x e →∞≥⎧+==⎨<+⎩ 则函数图形见图2-3.00 lim ()0lim ()1x x f x f x -+→→=≠=因为 0().x f x =所以是的跳跃间断点5. 求函数tan 32(3)x y x x =-的可去间断点. 图2-3 解 因为tan 32(3)x y x x =-在x = 0,x = 3处无意义,所以x = 0,x = 3都是函数f (x )的间断点.但00tan 331lim lim 2(3)2(3)2x x x x x x x x →→==--- 故 x = 0是f (x )的可去间断点.而 3tan 3lim 2(3)x x x x →=∞- 故 x = 3是f (x )的无穷间断点.6.设f (x )在点 x = x 0 处连续且 f (x 0)> 0, 试证在x 0 的某个邻域内有f (x )> 0.证 由已知f (x )在点 x = x 0 处连续,则00lim ()()x x f x f x →=.取00()0,0,02f x x x εδδ=>∃><-<使得时,恒有00()(),()()f x f x f x f x εεε-<→-<-< 故 0000()()()()()022f x f x f x f x f x ε>-=-=>. 7. 设本金为p 元,年利率为r, 若一年分为n 期, 存期为t 年, 则本金与利息之和是多少 ? 现某人将本金p = 1000元存入果银行, 规定年利率为 r = 0.06, t = 2, 请按季度、月、日以及连续复利计算本利和,并作出你的评价.解 依题意,第一期到期后的利息为本金×利率=r p n ⨯ 第一期到期的本利和是本金+利息=(1)r r p p p n n +⨯=+若按总利计算,第二期到期的本利和为 2(1)(1)(1)r r r r p p p n n n n+++⨯=+第n 期到期后的本利和为 (1)n r p n +存期若为t 年(事实上有t n 期),到期后的本利和为 (1)tnr p n + (*)由题设p = 1000 ,r = 0.06, t = 2,(1) (1) 一年分为四季,取n = 4带入得(*)式,得2480.061000(1)1000 1.0151126.494⨯⨯+=⨯≈(2) (2) 一年分为12个月,取n =12带入得(*)式,得 212240.061000(1)1000 1.0051127.1612⨯⨯+=⨯≈(3) (3) 一年分为365天,取n = 365带入得(*)式,得 23657300.061000(1)1000 1.0001643841127.49365⨯⨯+=⨯≈(4) 连续取息就是在(*)式中令n →+∞,得 20.120.060.120.060.06lim 1000(1)1000lim [(1)] 10001127.50nn n n n ne ⨯→+∞→+∞⨯+=⨯+=⨯≈ 结论是:用复利计算时,按季、月、日以及连续复利计算所得结果相差不大.8.证明方程sin x a x b =+(其中0,0a b >>)至少有一个正根,并且它不超过a b +. 证 设()sin F x x a x b =--,显然F (x )在[0,a b +]上连续,(0)0(0)()sin()[1sin()]0F b b F a b a b a a b b a a b =-<>+=+-+-=-+≥又则若()F a b +=0,则a b +为方程F (x )= 0的正根;若()F a b +>0,则由零值定理,至少有一点(0,)a b ξ∈+使得F (x )= 0,即sin a b ξξ=+.。

(完整版)高等数学函数的极限与连续习题精选及答案

(完整版)高等数学函数的极限与连续习题精选及答案

1、函数与函数相同.()12++=x x x f ()113--=x x x g 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。

∴与函数关系相同,但定义域不同,所以与()12++=x x x f ()113--=x x x g ()x f 是不同的函数。

()x g 2、如果(为一个常数),则为无穷大.()M x f >M ()x f 错误 根据无穷大的定义,此题是错误的。

3、如果数列有界,则极限存在. 错误 如:数列是有界数列,但极限不存在()nn x 1-=4、,.a a n n =∞→lim a a n n =∞→lim 错误 如:数列,,但不存在。

()nn a 1-=1)1(lim =-∞→nn n n )1(lim -∞→5、如果,则(当时,为无穷小).()A x f x =∞→lim ()α+=A x f ∞→x α正确 根据函数、极限值、无穷小量的关系,此题是正确的。

6、如果~,则.αβ()α=β-αo 正确 ∵,是1lim=αβ∴,即是的高阶无穷小量。

01lim lim =⎪⎭⎫⎝⎛-=-αβαβαβα-α7、当时,与是同阶无穷小.0→x x cos 1-2x 正确 ∵ 2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 .01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x 错误 ∵不存在,∴不可利用两个函数乘积求极限的法则计算。

xx 1sin lim 0→9、 .e x xx =⎪⎭⎫⎝⎛+→11lim 0错误 ∵ex xx =⎪⎭⎫⎝⎛+∞→11lim 10、点是函数的无穷间断点.0=x xxy =错误 ,=-→x x x 00lim1lim 00-=--→x x x =+→x x x 00lim 1lim 00=+→xx x ∴点是函数的第一类间断点.0=x xxy =11、函数必在闭区间内取得最大值、最小值.()x f x1=[]b a ,错误 ∵根据连续函数在闭区间上的性质,在处不连续()x f x1=0=x ∴函数在闭区间内不一定取得最大值、最小值()x f x1=[]b a ,二、填空题:1、设的定义域是,则()x f y =()1,0(1)的定义域是( );()xef (,0)-∞ (2)的定义域是( );()x f 2sin 1-,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭(3)的定义域是( ).()x f lg (1,10)答案:(1)∵ 10<<xe(2)∵ 1sin 102<-<x (3)∵1lg 0<<x 2、函数的定义域是( ).()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f (]4,2-3、设,,则( ).()2sin x x f =()12+=ϕx x ()[]=ϕx f ()221sin +x 4、=( ).nxn n sinlim ∞→x ∵x x n n x n n x n x n n n n =⋅==∞→∞→∞→sinlim sin limsin lim 5、设,则( 2 ),( 0 ).()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩()10lim x f x →--=()=+→x f x 01lim ∵,()1010lim lim (1)2x x f x x →--→--=-=()()01lim lim 0101=-=+→+→x x f x x 6、设,如果在处连续,则( ).()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ()x f 0=x =a 21∵,如果在处连续,则21cos 1lim 20=-→x x x ()x f 0=x ()a f x x x ===-→021cos 1lim 207、设是初等函数定义区间内的点,则( ).0x ()x f ()=→x f x x 0lim ()0x f ∵初等函数在定义区间内连续,∴()x f ()=→x f x x 0lim ()0x f 8、函数当( 1 )时为无穷大,当( )时为无穷小.()211-=x y x →x →∞ ∵,()∞=-→2111limx x ()11lim2=-∞→x x 9、若,则( 1 ),( ).()01lim2=--+-+∞→b ax x xx =a =b 21-∵()bax x xx --+-+∞→1lim2()()()bax x x bax x x b ax x x x +++-+++---+-=+∞→111lim222()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令,∴,012=-a 1a =±上式化简为∴()22112lim lim lim1x x x bab x a →+∞→+∞→+∞--+==+,,1a =021=+ab 12b =-10、函数的间断点是( ).()x x f 111+=1,0-==x x 11、的连续区间是( ).()34222+--+=x x x x x f ()()()+∞∞-,3,3,1,1,12、若,则( 2 ).2sin 2lim =+∞→x xax x =a ∴()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x 2=a13、( 0 ),( 1 ),=∞→x x x sin lim=∞→xx x 1sin lim ( ),( ).()=-→xx x 11lim 1-e =⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ke ∵0sin 1lim sin lim=⋅=∞→∞→x x x x x x 111sinlim 1sinlim ==∞→∞→xx x x x x()[]1)1(101)(1lim 1lim ---→→=-+=-e x x xx xx k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim 14、(不存在 ),( 0)lim sin(arctan )x x →∞=lim sin(arc cot )x x →+∞=三、选择填空:1、如果,则数列是( b )a x n n =∞→lim n x a.单调递增数列 b .有界数列 c .发散数列2、函数是( a )()()1log 2++=x x x f a a .奇函数 b .偶函数 c .非奇非偶函数∵()()11log 1)(log 22++=+-+-=-x x x x x f aa ()()x f x x a -=++-=1log 23、当时,是的( c )0→x 1-xe x a .高阶无穷小 b .低阶无穷小 c .等价无穷小4、如果函数在点的某个邻域内恒有(是正数),则函数在该邻域内( c ()x f 0x ()M x f ≤M ()x f )a .极限存在b .连续c .有界5、函数在( c )条件下趋于.()x f x-=11∞+a . b . c .1→x 01+→x 01-→x 6、设函数,则( c )()x f xxsin =()=→x f x 0lim a .1 b .-1 c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x 1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:不存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经 过有限次四则运算及有限次复合后所构成的函数类。

函数的极限与连续训练题
1、 已知四个命题:(1)若 f (x ) 在 x 0 点连续,则 f (x ) 在 x → x 0 点必有极限
2)若 f (x )在x → x 0点有极限,则 f (x )在x 0点必连续
3)若 f (x )在x → x 0点无极限,则 f (x )在x = x 0点一定不连续
(4)若 f (x ) 在 x = x 0 点不连续,则 f (x ) 在 x → x 0 点一定无极限。

其中正确的命题个数是( B ) A 、1 B 、2
C 、3
D 、4
2、若 lim f ( x ) = a ,则下列说法正确的是( C )
x →x 0 A 、 f (x )在x =x 0处有意义
B 、 f (x 0)=a
C 、 f (x )在x = x 0处可以无意义
D 、x 可以只从一侧无限趋近于x 0
3、下列命题错误的是( D ) A 、函数在点x 0 处连续的充要条件是在点x 0 左、右连续
B 、函数 f (x )在点x 0处连续,则lim f (x )= f (lim x ) 0
x →x 0 x → x 0 C 、初等函数在其定义区间上是连续的 D 、对于函数 f (x )有lim f (x ) = f (x 0) x → x 0 0 4、已知f (x )= 1 ,则lim f (x +x )- f (x )的值是( C ) x x →0 x
11 A 、
B 、 x
C 、 -
D 、 - x x 2
x 2 5、下列式子中,正确的是( B ) x 2 + ax + b 6、lim x +ax +b =5,则a 、b 的值分别为( A ) x →1 1 - x
A 、- 7和6
B 、7和- 6
C 、- 7和- 6
D 、7和6 7、已知f (3) = 2, f (3) = -2,则lim 2x - 3 f (x )的值是( C )
x →3 x - 3
8、l x i →m a 3 x x --3a a =( D )
A 、lim x = 1
B 、lim x -1 = 1
C 、lim x -1=1 x →0 x x →1 2(x -1) x →-1 x - 1 lim x x →
0 x =0 A 、-4
B 、0
C 、8
D 、不存在
D 、
10、 lim 16 - x = 12/11 。

x →
2 7 x -
3 13、 lim ( x 2 + x - x 2 -1) = 1/2 。

x → +
14、 lim ( x 2 + x - x 2 - 1) = x → - 15、设 f (x )=1 ,x = 1 1,1 x 2
(1)求x →1时, f (x )的左极限和右极限;
(2)求 f (x )在x =1的函数值,它在这点连续吗?
(3)求出的连续区间。

答:(1)左右极限都为 1 (2)不连续(3)( 0,1)( 1,2) A 、0 B 、1 时, D 、 33 a 2 9、当定义 f (-1) = 2 f ( x ) = 1-x 2 1 + x
在x = -1处是连续的。

11、 -1 12、 lim 3 x -1-1 x → 2 x - 1 - 1 2/3 lim x → -。

相关文档
最新文档