等腰直角三角形中

合集下载

专题03 等腰(直角)三角形中动点问题(老师版)

专题03 等腰(直角)三角形中动点问题(老师版)

专题3等腰(直角)三角形中动点问题【典型例题】1.(2021·黑龙江集贤·八年级期末)如图,等腰三角形ABC的底边BC长为3,面积是18,腰AC的垂直平分线分别交AC、AB边于点E、F.若点D为DC边的中点,点M为线段EF上一动点,则CDM周长的最小值为___.【答案】13.5【解析】【分析】连接MA、AD,易得MA=MC,则△CMD的周长为:MC+MD+CD=MA+MD+CD≥AD+CD,当M点在线段AD上时,△CMD的周长最小,再由面积可求得AD的长,从而可求得周长的最小值.【详解】如图,连接MA、AD∵EF垂直平分线段AC∴MA=MC∴△CMD的周长=MC+MD+CD=MA+MD+CD≥AD+CD∵点D为DC边的中点,BC=3∴1 1.52CD BC==∵AB=AC ∴AD⊥BC∴118 2BC AD⨯=即1318 2AD⨯=∴AD=12∴AD+CD=12+1.5=13.5即△MCD的周长的最小值为13.5故答案为:13.5【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质定理,三角形的面积,两点之间线段最短等知识,关键是利用线段的垂直平分线的性质定理作辅助线MA,把MC+MD的最小值问题转化为两点间线段最短来解决.【专题训练】一、填空题1.(2022·江苏昆山·八年级期末)如图,∠ABC=30°,AB=6,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒,当△ABP是以AB为底的等腰三角形时,t的值为______秒.【答案】【解析】【分析】过点P作PD⊥AB于点D,根据等腰三角形有性质得到BD=3,再根据30度角的直角三角形的性质结合勾股定理即可求解.【详解】解:过点P作PD⊥AB于点D,∵△ABP是以AB为底的等腰三角形,即BP=PA,∴BD=DA=12AB=3,∵∠ABC=30°,∴BP=2PD,即12BP=PD,∵BP2-PD2=BD2,∴BP2-14BP2=32,解得:BP=∵点P的运动速度是每秒1个单位长度,∴t的值为故答案为:【点睛】本题考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理等知识点,解答本题的关键是明确题意,找出所求问题需要的条件.2.(2021·浙江·诸暨市暨阳初级中学八年级期中)如图∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=6,动点C从点A出发,以每秒1个单位沿射线AN运动,当运动时间t是_______秒时,△ABC是直角三角形.【答案】3或12【解析】【分析】分∠ACB=90°和∠ABC=90°两种情况,根据含30°角的直角三角形的性质求出AC,再求出答案即可.【详解】解:如图:当△ABC是以∠ACB=90°的直角三角形时,∵∠MAN=60°,∴∠ABC=30°,∴AC=13 2AB=,∴运动时间t=3311AC==秒,当△ABC是以∠ABC=90°的直角三角形时,∵∠MAN=60°,∴∠ACB=30°,∴AC=212AB=,∴运动时间t=121211AC==秒,当运动时间t是3或12秒时,△ABC是直角三角形.故答案为:3或12【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能熟记含30°角的直角三角形的性质是解此题的关键.3.(2022·新疆·乌鲁木齐市第四中学八年级期末)如图,在边长为6,面积为ABC中,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是_______【答案】【解析】【分析】由等边三角形的对称性得到MC=BM,再利用垂线段最段解题.【详解】解:过点C 作CN AB ⊥于点N ,BD Q 平分∠BAC ,△ABC 为等边三角形,BM MC∴=∴BM +MN MC MN =+,当CN AB ⊥时,=MC MN CN +最小等边△ABC 面积为6,CN ∴故答案为:【点睛】本题考查轴对称—最短路径问题、等边三角形的性质等知识,是重要考点,掌握相关知识是解题关键.4.(2021·福建省罗源第二中学八年级期中)如图,在等腰△ABC 中,AB =AC ,∠BAC =120°,BC =30cm ,一动点P 从B 向C 以每秒2cm 的速度移动,当P 点移动____________秒时,PA 与△ABC 的腰垂直.【答案】5或10【解析】【分析】根据等腰三角形性质求出∠B =∠C =30°,分PA ⊥AC 和PA ⊥AB 两种情况分类讨论,得到BP =10cm 或BP =20cm ,即可求出点P 移动的时间.【详解】解:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°.如图①,当PA ⊥AC 时,∵∠C =30°.∴PC =2AP ,∠APC =60°,∴∠B =∠BAP =30°,∴AP =BP ,∴PC =2BP ,∴BP =13BC =13×30=10cm ,∴P 点移动了10÷2=5(秒);如图②当PA⊥AB时,∵∠B=30°.∴PB=2BP,∠APB=60°,∴∠C=∠CAP=30°,∴AP=CP,∴BP=2CP,∴BP=23BC=23×30=20cm,∴P点移动了20÷2=10(秒).故答案为:5或10【点睛】本题考查了等腰三角形的性质与判定,直角三角形性质等知识,熟知相关定理,根据条件分类讨论是解题关键5.(2022·福建省泉州实验中学八年级期末)如图,在等腰△ABC中,∠BAC=30°,AB=AC,BC=4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,△PQR周长的最小值是______.【答案】423【解析】【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时△PQR周长最小,求出MQ,RQ,RN即可解决问题.【详解】过点P作AB,AC的对称点M,N,连接MN交AB于Q,交AC于R,设AP交MN于点D,则PQ MQ =,PR RN =,∴PQR 周长为PQ QR PR MQ QR EN MN ++=++≥,当,,,M Q R N 四点共线时,即当点P 是BC 的中点时,PQR 的周长最小,如图∵30BAC ∠=︒,∴75B C ∠=∠=︒,150MPN ∠=︒,∴15M N ∠=∠=︒,∴75MQB PQB B ∠=∠=∠=︒,∴MN BC ∥,2PQ PB ==,同理2PR PC ==,∵⊥AP BC ,∴AP MN ⊥.DP MN∴⊥PQ PR =DQ DR∴=∵180757530PQR ∠=︒-︒-︒=︒,∴Rt PDQ 中,112QD PQ ==∴==2QR DQ =⨯=,∴PQR 周长的最小值是22PQ QR PR ++=+=4+.故答案为:4+【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.6.(2022·辽宁铁西·八年级期末)同学们,我们在今后的学习中会学到这个定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图,在Rt △ABC 中,∠ACB =90°,若∠ABC =30°,则12AC AB =.问题:在Rt △ABC ,∠ACB =90°,∠ABC =30°,AC D 是边BC 的中点,点E 是斜边AB 上的动点,连接DE ,把△BDE 沿直线DE 折叠,点B 的对应点为点F .当直线DF ⊥AB 时,AE 的长为_____.【答案】2或2【解析】【分析】如图1所示,设DF 与AB 交点为G ,先求出AB ==3BC ,由D 是BC 的中点,可以得到1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,即可得到1324DG BD ==,1122EG EF BE ==,BG ==,由此即可求出AE 的长;如图2所示,同理可得1324DG BD ==,4BG ==,1122EG EF BE ==,则32BE BG GE BG =+==,AE AB BE =-=【详解】解:如图1所示,设DF 与AB 交点为G ,∵∠ABC =30°,∠ACB =90°,∴2AB AC ==∴BC =,∵D 是BC 的中点,∴1322BD BC ==,由折叠的性质可知∠F =∠B =30°,BE =EF ,∵DF ⊥AB ,∴∠DGB =∠FGB =90°,∴1324DG BD ==,1122EG EF BE ==,∴4BG ==,∴2332BE BG ==,∴AE AB BE =-=如图2所示,延长FD 与AB 交于点G ,同理可求出1324DG BD ==,4BG ==,1122EG EF BE ==,∴22BE BG GE BG =+==,∴2AE AB BE =-=,故答案为:2【点睛】本题主要考查了含30度角的直角三角形的性质,勾股定理,旋转的性质,熟练掌握含30度角的直角三角形的性质是解题的关键.7.(2021·全国·八年级专题练习)如图,60BOC ∠=︒,点A 是BO 延长线上的一点,10cm OA =,动点P 从点A 出发沿AB 以3cm/s 的速度移动,动点Q 从点O 出发沿OC 以1cm/s 的速度移动,如果点P Q ,同时出发,用(s)t 表示移动的时间,当t =_________s 时,POQ △是等腰三角形;当t =_________s 时,POQ △是直角三角形.【答案】52或54或10【解析】【分析】根据POQ ∆是等腰三角形,分两种情况进行讨论:点P 在AO 上,或点P 在BO 上;根据POQ ∆是直角三角形,分两种情况进行讨论:PQ AB ⊥,或PQ OC ⊥,据此进行计算即可.【详解】解:如图,当PO QO =时,POQ ∆是等腰三角形,103PO AO AP t =-=-,OQ t =,∴当PO QO =时,103t t -=,解得52t =;如图,当PO QO =时,POQ ∆是等腰三角形,310PO AP AO t =-=-,OQ t =,∴当PO QO =时,310t t -=,解得5t =;如图,当PQ AB ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2(310)t t =⨯-,解得4t =;如图,当PQ OC ⊥时,POQ ∆是直角三角形,且2QO OP =,310PO AP AO t =-=-,OQ t =,∴当2QO OP =时,2310t t =-,解得:t =10.故答案为:52或5;4或10.【点睛】本题主要考查了等腰三角形的性质以及直角三角形的性质,解决问题的关键是进行分类讨论,分类时注意不能遗漏,也不能重复.二、解答题8.(2021·浙江余杭·八年级期中)如图,已知在ABC 中,90B ∠=︒,10AC =,6BC =,若动点P 从点B 开始,按B A C B →→→的路径运动,且速度为每秒2个单位长度,设出发的时间为t 秒.(1)出发2秒后,求CP 的长.(2)出发几秒钟后,CP 恰好平分ABC 的周长.(3)当t 为何值时,BCP 为等腰三角形?【答案】(1)PC 52(2)出发3秒钟后,CP 恰好平分△ABC 的周长(3)t =3或5.4或6或6.5时,△BCP 为等腰三角形【解析】【分析】(1)勾股定理求得AB 的长,进而根据速度求得出发2秒后BP 的长,Rt BCP △中勾股定理求解即可;(2)由于CP 恰好平分ABC 的周长,则P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意列出一元一次方程,解方程求解即可;(3)①当P 在AB 上时,若BP =BC 时,②当P 在AC 上时,若BP =BC 时,③当P 在AC 上时,若CB =CP 时,④当P 在AB 上时,若PC =PB 时,根据题意列出一元一次方程解方程求解即可(1)由∠B =90°,AC =10,BC =6,∴AB =8,∵P 从点B 开始,按B →A →C →B ,且速度为2,∴出发2秒后,则BP =4,AP =6,∵∠B =90°,∴在Rt BCP △中,由勾股定理得PC 22226452BP BC +=+=;(2)P 点不可能位于线段BC 和AC 上,即对P 点在线段AB 上进行探究,根据题意可得,6+2t =10+8-2t ;解得t =3∴出发3秒钟后,CP 恰好平分△ABC 的周长(3)①当P 在AB 上时,若BP =BC 时,得到2t =6;则t =3,②当P 在AC 上时,若BP =BC 时,过点B 作BD AC ⊥,则68 4.810AB BC BD AB ⨯⨯===在Rt BDP △中,22226 4.8 3.6PD PD BD =-=-=在Rt ADB 中,22228 4.8 6.4AD AB BD =-=-=8 6.4 3.610.8BA AP BA AD PD ∴+=+-=+-=即210.8t =解得 5.4t =③当P 在AC 上时,若CB =CP 时,810612BA PA BA AC PC +=+-=+-=即212t =解得6t =④当P 在AC 上时,若PC =PB 时,15PA AB ==8513BA AP ∴+=+=得到2t=6;则t=6.5.综上可得t=3或5.4或6或6.5时,△BCP为等腰三角形.【点睛】本题考查了勾股定理,一元一次方程的应用,等腰三角形的性质与判定,分类讨论是解题的关键.9.(2022·吉林·八年级期末)如图,△ABC是等腰直角三角形,∠ACB=90°,AB=6.动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动.点P出发后,连接CP,以CP为直角边向右作等腰直角三角形CDP,使∠DCP=90°,连接PD,BD.设点P的运动时间为t秒.(1)△ABC的AB边上高为;(2)求BP的长(用含t的式子表示);(3)就图中情形求证:△ACP≌△BCD;(4)当BP:BD=1:2时,直接写出t的值.【答案】(1)3(2)当0<t≤3时,PB=6-2t;当t>3时,PB=2t-6;(3)见解析(4)t的值为2或6.【解析】【分析】(1)根据等腰直角三角形的性质解答即可;(2)根据两种情况,利用线段之间关系得出代数式即可;(3)根据SAS证明△ACP与△CBD全等即可;(4)利用全等三角形的性质解得即可.(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,AB=6,∴△ABC的AB边上高=12AB=3,故答案为:3;(2)解:∵AB=6,动点P从点A出发,以每秒2个单位长度的速度在射线AB上运动,∴点P在线段AB上运动的时间为62=3(秒),当0<t≤3时,PB=6-2t,当t>3时,PB=2t-6;(3)证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∵∠PCD=90°,CP=CD,∴∠ACP+∠PCB=90°,∠PCB+∠BCD=90°,∴∠ACP=∠BCD,在△ACP与△CBD中,AC BC ACP BCD CP CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△CBD (SAS );(4)解:∵△ACP ≌△CBD ,∴AP =BD ,当BP :BD =1:2,即BD =2BP 时,当0<t ≤3时,2t =2(6-2t ),解得:t =2;当BP :BD =1:2,即BD =2BP 时,当t >3时,2t =2(2t -6),解得:t =6,综上所述,t 的值为2或6.【点睛】本题是三角形的综合题,关键是根据等腰直角三角形的性质和全等三角形的判定和性质解答.10.(2022·福建·厦门一中八年级期末)在锐角△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D.(1)如图1,过点B 作BG ⊥AC 于点G ,求证:AC =BF ;(2)动点P 从点D 出发,沿射线DB 运动,连接AP ,过点A 作AQ ⊥AP ,且满足AP AQ =.①如图2,当点P 在线线段BD 上时,连接PQ 分别交AD 、AC 于点M 、N .请问是否存在某一时刻使得△APM 和△AQN 成轴对称,若有,求此刻∠APD 的大小;若没有,请说明理由.②如图3,连接BQ ,交直线AD 与点F ,当点P 在线段BD 上时,试猜想BP 和DF 的数量关系并证明;当点P 在DB 的延长线上时,若27AD FD =,请直接写出PB BD 的值.【答案】(1)证明过程见解析.(2)①存在某一时刻使得△APM 和△AQN 成轴对称,∠APD =30°,理由见解析.②BP =2DF ,47PB BD =【解析】【分析】(1)根据已知条件,证明△BDF 和△ADC 全等,即可得出AC =BF .(2)①因为∠C =60°在Rt △ABC 中∠CAD =30°,∠PAQ =90°,由对称的性质可知∠PAD =∠QAC =30°,所以可以得出∠APD =60°;②过Q 作QE ⊥AD ,交AD 与点E ,可证△APD ≌△QAE ,得出AE =PD ,再证△APD ≌△QAE ,得出EF =DF ,再通过等量代换即可.(1)证明:∵AD ⊥BC∴∠ADB =∠ADC =90°又∵∠B =45°∴△ABD 是等腰直角三角形∴AD =BD∵BG ⊥AC∴∠BGC =90°又∵∠C =60°∴∠DAC =90°-∠C =90°-60°=30°∠FBD =90°-∠C =90°-60°=30°∴∠DAC =∠FBD在△BDF 和△ADC 中,FBD CDA BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC ∴AC =BF(2)①存在某一时刻使得△APM 和△AQN 成轴对称∵AQ ⊥AP∴∠QAP =90°由(1)的证明知∠DAC =30°,根据对称的性质,得∠PAD =∠QAC =2QAP CAD ∠-∠=90︒︒-302=30°∵∠ADP =90°∴∠APD =90°-∠PAD =90°-30°=60°②BP =2DF理由如下:如图4所示,过Q 作QE ⊥AD ,交AD 与点E ,那么∠AEQ =∠FEQ =90°∴∠AQE +∠QAE =90°又∵∠PAD +∠QAE =90°∴∠AQE =∠PAD在△APD 和△QAE 中,AQE PAD AEQ PDA AQ AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△QAE ∴AE =PD ;AD =QE∴DE =BP又∵AD =BD∴BD =QE在△QEF 和△BDF 中,QEF BDF EFQ DFB EQ DB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△QEF ≌△BDF∴EF =DF∴BP =2DF当点P 在DB 的延长线上时,如下图所示,由上述证明过程可知PB =2DF ,BD =AD又已知27AD FD∴DF =27AD∴PB =2×27BD =47BD ∴PB BD =47【点睛】本题考查了三角形全等的判定与性质,解题的关键是通过适当的作辅助线找等量关系从而得出三角形全等,再由全等的性质找出线段的关系,本题是一道压轴题,比较难.11.(2022·北京顺义·八年级期末)我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC 中,AB =AC ,AB BC的值为△ABC 的正度.已知:在△ABC 中,AB =AC ,若D 是△ABC 边上的动点(D 与A ,B ,C 不重合).(1)若∠A =90°,则△ABC 的正度为;(2)在图1,当点D 在腰AB 上(D 与A 、B 不重合)时,请用尺规作出等腰△ACD ,保留作图痕迹;若△ACD的正度是2,求∠A 的度数.(3)若∠A 是钝角,如图2,△ABC 的正度为35,△ABC 的周长为22,是否存在点D ,使△ACD 具有正度?若存在,求出△ACD 的正度;若不存在,说明理由.【答案】(1)22(2)图见解析,∠A =45°(335.【解析】【分析】(1)当∠A=90°,△ABC是等腰直角三角形,故可求解;(2)根据△ACD的正度是22,可得△ACD是以AC为底的等腰直角三角形,故可作图;(3)由△ABC的正度为35,周长为22,求出△ABC的三条边的长,然后分两种情况作图讨论即可求解.【详解】(1)∵∠A=90°,则△ABC是等腰直角三角形∴AB=AC∵AB2+AC2=BC2∴BC∴△ABC2故答案为:2 2;(2)∵△ACD1)可得△ACD是以AC为底的等腰直角三角形故作CD⊥AB于D点,如图,△ACD即为所求;∵△ACD是以AC为底的等腰直角三角形∴∠A=45°;(3)存在∵△ABC的正度为3 5,∴ABBC=35,设:AB=3x,BC=5x,则AC=3x,∵△ABC的周长为22,∴AB+BC+AC=22,即:3x+5x+3x=22,∴x=2,∴AB=3x=6,BC=5x=10,AC=3x=6,分两种情况:①当AC=CD=6时,如图过点A 作AE ⊥BC 于点E ,∵AB =AC ,∴BE =CE =12BC =5,∵CD =6,∴DE =CD −CE =1,在Rt △ACE 中,由勾股定理得:AE =在Rt △AED 中,由勾股定理得:AD =∴△ACD 的正度=AC AD =②当AD =CD 时,如图由①可知:BE =5,AE ,∵AD =CD ,∴DE =CE −CD =5−AD ,在Rt △ADE 中,由勾股定理得:AD 2−DE 2=AE 2,即:AD 2−(5−AD )2=11,解得:AD =185,∴△ACD 的正度=185365AD AC ==.综上所述存在两个点D ,使△ABD 具有正度.△ABD 35.【点睛】此题考查了等腰三角形的性质,解题的关键是理解正度的含义、熟知勾股定理与等腰三角形的性质.12.(2022·北京西城·八年级期末)在ABC 中,120BAC ∠=︒,AB AC =,AD 为ABC 的中线,点E 是射线AD 上一动点,连接CE ,作60CEM ∠=︒,射线EM 与射线BA 交于点F .(1)如图1,当点E 与点D 重合时,求证:2AB AF =;(2)如图2,当点E 在线段AD 上,且与点A ,D 不重合时,①依题意,补全图形;②用等式表示线段AB ,AF ,AE 之间的数量关系,并证明.(3)当点E 在线段AD 的延长线上,且ED AD ≠时,直接写出用等式表示的线段AB ,AF ,AE 之间的数量关系.【答案】(1)见解析;(2)AB AF AE =+,证明见解析;(3)当AD ED >时,AB AF AE =+,当AD ED <时,AB AE AF=-【解析】【分析】(1)根据等腰三角形三线合一的性质得60BAD CAD ∠=∠=︒,90ADC ∠=︒,从而可得在Rt ADB 中,30B ∠=︒,进而即可求解;(2)画出图形,在线段AB 上取点G ,使EG EA =,再证明()BGE FAE ASA ≅,进而即可得到结论;(3)分两种情况:当AD ED >时,当AD ED <时,分别画出图形,证明()BHE FAE ASA ≅或()NEF AEC ASA ≅,进而即可得到结论.【详解】(1)∵AB AC =,∴ABC 是等腰三角形,∵120BAC ∠=︒,∴30B C ∠=∠=︒,18012060FAC ∠=︒-︒=︒,∵AD 为ABC 的中线,∴60BAD CAD ∠=∠=︒,90ADC ∠=︒,∴6060120DAF CAD FAC ∠=∠+∠=︒+︒=︒,∵60CEM ∠=︒,∴906030ADF ∠=︒-︒=︒,∴180(12030)30AFD ∠=︒-︒+︒=︒,∴AD AF =,在Rt ADB 中,30B ∠=︒,∴22AB AD AF ==;(2)AB AF AE =+,证明如下:如图2,在线段AB 上取点G ,使EG EA =,∵60BAC ∠=︒,∴AEG △是等边三角形,∴60AEG ∠=︒,120BGE FAE ∠=∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴EB EC =,BED CED ∠=∠,∴AEB AEC ∠=∠,即AEG GEB CEF AEF ∠+∠=∠+∠,∵60CEF AEG ∠=∠=︒,∴GEB AEF ∠=∠,在BGE △与FAE 中,GEB AEF EG EA BGE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BGE FAE ASA ≅,∴GB AF =,∴AB GB AG AF AE =+=+;(3)当AD ED >时,如图3所示:与(2)同理:在线段AB 上取点H ,使EH EA =,∵60BAD ∠=︒,∴AEH △是等边三角形,∴120BHE FAE ∠=∠=︒,60AEH ∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴BED CED ∠=∠,∵60CEF AEH ∠=∠=︒,∴HEB AEF ∠=∠,∴()BHE FAE ASA ≅,∴HB AF =,∴AB HB AH AF AE =+=+,当AD ED <时,如图4所示:在线段AB 的延长线上取点N ,使EN EA =,∵60BAD ∠=︒,∴AEN △是等边三角形,∴60AEN FNE ∠=∠=︒,∵60CEF AEN ∠=∠=︒∴NEF AEC ∠=∠,在NEF 与AEC △中,60FNE CAE EN EA NEF AEC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()NEF AEC ASA ≅,∴NF AC AB ==,=,∴BN AF=-=-,∴AB AN BN AE AF∴AB AE AF=-.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.。

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

高三复习-等腰三角形的高公式计算方法

高三复习-等腰三角形的高公式计算方法

等腰三角形的高公式计算方法假设等腰三角形底边为a,腰长为b,则底边上的高h=根号(b²-(a/2)²)。

腰上的高=ah/b。

根据勾股定理,一下就出来了:h(高)²=a(腰)²-[b(底边)/2]²。

等腰三角形的高怎么算 1.设三角形的腰长为a,底边为b,高为h,因为它是等腰三角形,所以高平分底边(根据三线合一公理),则出现了两个直角三角形,根据勾gu定理很容易算出h的平方=a的平方-b/2的平方等腰直角三角形求高等腰直角三角形:两条直角边相等(等底等高)高=底=2底。

三角形面积公式=底×高÷2=2底÷2用字母表示:面积:S,底:a,高:hS=ah÷2=2a÷2h=2S÷a问题:知道S,a,求h等腰三角形的性质 1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。

但等边三角形(特殊的等腰三角形)有三条对称轴。

每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。

8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。

9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。

第3讲等腰(直角)三角形存在性处理策略

第3讲等腰(直角)三角形存在性处理策略

第三讲等腰(直角)三角形的存在性问题处理策略一、两圆一线与两线一圆二、代数解法(SSS法)前提:三边的平方是常数或者是关于某个参数的二次式,根据边或直角分类三、几何解法(SAS法)1等腰三角形的存在性问题前提:三角形有一个不变的内角θ步骤:①用同一个参数表示该不变角相邻的两条边;②以腰为标准分三类列方程。

具体如下:情形一、当定角θ为顶角时,如图3-2-6,有a=b;情形二1等腰三角形的存在性问题、当定角θ为底角且b为腰时,如图3-2-7,有cosθ=a/2b;情形三、当定角θ为底角且a为腰时,如图3-2-8,有cosθ=b/2a.2直角三角形存在性问题法1:若直角三角形有一个不变的锐角θ,可狠抓不变角θ,利用其三角函数列式计法2:依托直角三角形,作“横平竖直”辅助线,造“一线三直角”,利用相似求解3等腰直角三角形存在性问题方法:一般构造“一线三直角”全等,即“K 字型”全等值得一提的是,以上问题,有时还可以结合导角、相似等转化手段进行求解例1、在菱形ABCD中,∠ABC=60°,AB=12,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(两点不重合)两点间的最短距离是_________。

变式1、在菱形ABCD中,∠ABC=120°,AB=12,点P是这个菱形外部的一点,若以点P、B、D为顶点的三角形是Z直角三角形,则P、C(两点不重合)两点间的最短距离是_________。

例2、已知点A(3,0),B(0,4),在坐标轴上找一点C,使△ABC为等腰三角形,求所有点C的坐标..变式1、已知点A(3,0),B(0,4),在坐标轴上找一点C,使△ABC为直角三角形,求所有点C的坐标..例3、如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.以下是几何解法(一、)显性的不变角(二、例4已知矩形ABCD的三个顶点B(4,0),C(8,0),D(8,8),抛物线y=ax2+bx+c过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.例5在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,若AB=10,BC=16,当△APD为直角三角形时,求BP的长变式:在△ABC中,AB=AC,点P、D分别是BC、AC边上的点(点P不与B、C重合),且∠ABD=∠B,若AB=10,BC=16,当△APD为等腰三角形时,求BP的长(二)隐形的不变角(三)例6、如图,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P,Q运动的时间为t秒.(1)在运动过程中,求P,Q两点间距离的最大值;(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P ,Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形?若存在,求出此时的t 值;若不存在,请说明理由例7在平面直角坐标系中,已知点A(1,0)与直线l :y=x 34,点B 在x 轴正半上,且位于点A 的右侧,过点B 作x 轴的垂线,交直线l 于点C,再过点C 作直线l 的垂线,交x 轴于点D 在BC 上取点E ,使BE=BA,连接OE,并延长,交CD 于点F,当△CEF 为等腰三角形时,求点C 的坐标..练习1、直线y=-x+4与x 轴交于点B,点C 在直线AB 上,在平面直角坐标系中求一点,使得以O 、A 、C 、D 为顶点的四边形是菱形。

勾股定理在共边直角三角形中的应用

勾股定理在共边直角三角形中的应用

勾股定理(Pythagorean Theorem)是数学中一个重要的定理,在共边直角三角形中也有广泛的应用。

共边直角三角形是指三角形中有两边相等的三角形,通常称作等腰直角三角形。

勾股定理告诉我们,在等腰直角三角录中,斜边的平方等于其他两边的平方之和。

具体来说,如果三角形的两条相等的边长分别为a,b,斜边的长度为c,则勾股定理可以表示为:a^2 + b^2 = c^2。

在共边直角三角形中,我们可以通过勾股定理来求解各种问题。

例如,我们可以通过勾股定理来求出斜边的长度,也可以通过勾股定理来求出其他两边的长度。

例如,假设我们已知等腰直角三角形的两条边长分别为5和12,则我们可以通过勾股定理来求出斜边的长度。

根据勾股定理,我们可以得到:5^2 + 12^2 = c^2。

将5^2和12^2带入可得:25 + 144 = c^2。

将两边相加得到169,因此c^2 = 169。

取平方根得到c = 13。

因此,斜边的长度为13。

勾股定理在共边直角三角形中的应在共边直角三角形中,勾股定理可以被用来求解各种问题。

例如,如果我们知道两条直角边的长度,我们可以使用勾股定理来求解斜边的长度。

另外,我们还可以使用勾股定理来求解三角形的面积,以及其他各种角度的大小。

因此,勾股定理在共边直角三角形中是一种非常有用的工具,可以帮助我们快速求解各种数学问题。

此外,勾股定理也可以用来证明共边直角三角形的各种性质。

例如,我们可以使用勾股定理来证明直角边互相垂直,以及斜边是正方形的对角线。

这些性质对于我们进行几何推理和计算都非常重要。

总之,勾股定理在共边直角三角形中是一种非常有用的工具,可以帮助我们快速求解各种数学问题,同时还可以用来证明三角形的各种性质。

如果你想要更好地掌握勾股定理的应用,建议你多做一些练习题,加深对勾股定理的理解。

第3讲等腰(直角)三角形存在性处理策略

第3讲等腰(直角)三角形存在性处理策略

B第三讲等腰(直角)三角形存在性处理策略知识必备一、平面直角坐标系与两点间距离公式如图3-1-1,已知P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2=√(x 2−x 1)2+(y 2−y 1)2.证明:如图3-1-2,作系列“水平/竖直辅助线”,易知P 1G =MN =︱x 2− x 1︱,P 2G =P 1N −GN =︱y 2− y 1︱,故P 1P 2=√(x 2−x 1)2+(y 2−y 1)2.注1:为考虑全面,这里实施绝对值策略,即便两点位置发生变化,上述过程均成立. 注2:此结论用文字语言叙述为“平面直角坐标系中,任意两点之间的距离等于其横坐标之差与纵坐标之差的平方和的算术平方根” . 二、“三线合一”定理与勾股定理1.如图3-1-3,在等腰三角形ABC 中,若AB =AC ,则有AD 平分∠BAC ⇔AD ⊥BC ⇔ BD =CD ,即等腰三角形顶角的角平分线、底边上的高线以及底边上的中线重合,简称“三线合一”定理,其逆命题依旧成立.2.在RtΔABD 中,若∠ADB =90°,则有BD 2+AD 2=AB 2,即直角三角形两直角边的平方和等于斜边的平方,称为勾股定理,其逆命题依旧成立.3.值得一提的是,常利用“三线合一”定理,将等腰三角形转化为直角三角形解决问题,如图3-1-3,有cos ∠B =BD AB=BC 2AB,此结论常用于解决与等腰三角形相关的存在性问题.三、全等判定方法与确定性分析1.三边分别相等的两个三角形全等,简称“边边边”,记为“SSS ” .2.两边及其夹角分别相等的两个三角形全等,简称“边角边”,记为“SAS ” .图3-1-1 图3-1-2图3-1-33.全等是两个三角形之间的关系,若一个三角形具备“SSS ” 或“SAS ”等全等特征,则这个三角形是确定的,必可解.方法提炼一、“两圆一线法”与“两线一圆法”问题1:如图3-2-1,请借助尺规作图,在平面内找出所有的点C ,使△ABC 为等腰三 角形.问题2:如图3-2-2,请在平面内找出所有的点C ,使△ABC 为直角三角形.问题3:如图3-2-3,请在平面内找出所有的点C ,使△ABC 为等腰直角三角形. 二、代数解法(“SSS ”法)1.等腰三角形存在性问题前提:该三角形三边的平方为常数或者是关于某个参数的二次式. 步骤:①写出或设出三角形三个顶点的坐标; ②利用两点间距离公式,计算三角形三条边长的平方;③由等腰三角形的三边长(的平方)可以两两相等,需分三类,列方程求解; ④检验求出的点是否符合题意,即能否构成三角形.注:这里指平面直角坐标系中的存在性问题,若无坐标系,可利用勾股定理直接表述出三边(的平方),下同. 2.直角三角形存在性问题只有第③步分类标准不同,即以斜边为标准分三类,列方程求解,其他步骤同上.二、几何解法(“SAS ”法)1. 等腰三角形存在性问题前提:该三角形有一个不变的内角θ.图3-2-1图3-2-2图3-2-3步骤:①用同一个参数表示出该不变角相邻的两条边,如图3-2-5; ②以腰为标准分三类,列方程求解,具体如下:情形一:当定角θ为顶角时,如图3-2-6,有a =b ; 情形二:当定角θ为底角且b 为腰时,如图3-2-7,有cosθ=a 2b ; 情形三:当定角θ为底角且a 为腰时,如图3-2-8,有cosθ=b 2a. 2.直角三角形存在性问题法1:若直角三角形有一个不变的锐角θ,可狠抓不变角θ,利用其三角函数列式计算.法2:依托直角三角形,作“横平竖直”辅助线,造“一线三直角”,利用相似求解. 3.等腰直角三角形存在性问题方法:一般构造“一线三直角”全等,即“K 字型”全等.值得一提的是,以上问题,有时还可以结合导角、相似等转化手段进行求解.实战分析例1 (2016年陕西中考)如图3-3-1,在菱形ABCD 中,∠ABC =60°,AB =2,点P 是这个菱形内部或边上一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为____________.B图3-2-5图3-2-6图3-2-7图3-2-8图3-3-1反思:“两圆一线法”可精准定位“两定一动”型等腰三角形存在性问题中动点的路径,若是直角三角形存在性问题,可借助“两线一圆法”精准作图,请看下面的变式.变式:如图3-3-3,在菱形ABCD中,∠ABC=120°,AB=2,点P是这个菱形外部的一点,若以点P、B、D为顶点的三角形是直角三角形,则P、C两点间的最短距离为__________.图3-3-4例2 如图3-3-5,已知点A(3,0),B(0,4),在坐标轴上找一点C,使△ABC为等腰三角形,求所有点C的坐标.图3-3-5反思:代数解法的最大优势是实现盲解盲算,若精准作图,利用“两圆一线法”找到C点所有位置,如图3-3-6,可直接口算出“两圆”与坐标轴的六个交点,而“一线”与坐标轴的两个交点可利用勾股定理求解.代数解法盲解盲算,“两圆一线”精准定位,两者各具优势,结合使用亦可,以数解形,以形助数,数形结合,百般为好.例3 (2014年苏州中考)如图3-3-8,二次函数y =a (x 2−2mx −3m 2)(其中a ,m 是常数,且a >0,m >0)的图像与x 轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴交于点C (0,-3),点D 在二次函数的图像上,CD //AB ,连接AD .过点A 射线AE 交二次函数的图像于点E ,AB 平分∠DAE .(1) 用含m 的代数式表示a ; (2) 求证:ADAE为定值;(3) 设该二次函数图像的顶点为F ,探索:在x 轴的负半轴上是否存在点G ,连接GF ,以线段GF ,AD ,AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.反思:此类含参型二次函数问题属中考的热点压轴题型,需要学生具备一定的代数运算技能,以算代证,应引起重视.中考压轴题的问题设计,往往采用层层递进式的命题方式,解题需要不时“回头看” “没有代数解法是万万不能的,但代数解法也并不是万能的”,这也是部分学生经常做的傻事,遇到等腰(直角)三角形存在性问题,管他三七二十一,上来就是硬算、狂算,到头来一场空,算不下去也有可能,请谨记:“世界上没有绝对的通法.”图3-3-8下面请欣赏所谓的“几何解法” (一)显性的“不变角”例4 如图3-3-11,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8),抛物线y =ax 2+bx 过A 、C 两点.(1)求出抛物线的解析式;(2)动点P 从点A 出发沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动,速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G ,连接EQ . ①求EG 的最大值;②在点P 、Q 运动过程中,判断有几个时刻使△CEQ 是等腰三角形?请求出相应的t 值.反思:所谓“几何解法”,就是“抓不变角”,再结合“三线合一”定理等,导比导边,需“眼中有角,心中有比”,即不变的角就是不变的比.图3-3-11例5 如图3-3-15,在△ABC 中,AB =AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD =∠B .若AB =10,BC =16,当△APD 为直角三角形时,求BP 的长.反思:看似两种情形,实则算理一致,只需狠抓不变角,易于掌握,便于实施. 情形二,若不能着急计算,导角得出∠APC =90°,由“三线合一”定理可立秒.变式:如图3-3-18,△ABC 中,AB =AC ,点P ,D 分别为BC ,AC 边上的点(点P 不与B 、C 重合),且∠APD =∠B .若AB =10,BC =16,当△APD 为等腰三角形时,求BP 的长.反思:“眼中有角,心中有比”,利用三角比结合相似比,转化比例,列式计算.情形三,若能不着急计算,导角可得:∠APD =∠ADP >∠C ,引出矛盾,可直接舍去.(二)隐性的“不变角”例6 (2015年湖南怀化中考压轴题)如图3-3-22,已知Rt △ABC 中,∠C =90°,AC =8,BC =6,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A →B →C 方向运动,它们到C 点后都停止运动,设点P ,Q 运动的时间为t 秒. (1) 在运动过程中,求P ,Q 两点间距离的最大值;BB图3-3-15图3-3-18(2) 经过t 秒的运动,求△ABC 被直线PQ 扫过的面积S 与时间t 的函数关系式; (3) P 、Q 两点在运动过程中,是否存在时间t ,使得△PQC 为等腰三角形?若存在,求出此时的t 值;若不存在,请说明理由.反思:本题若采取“代数解法”也并非不可,但计算量颇大,很可能面临无功而返之窘境,并非方法不通,而是运算能力不到位.然“几何解法”需具备敏锐的洞察力,以算代证,发现不变角∠CPQ ,但比较隐藏,难以察觉,事实上,在第二大类中,依然有tan ∠CPQ =CQ CP=2不变.两种解法,各有裨益,孰轻孰重,不好权衡,建议皆会,合理使用,方可自如.例7(自编题)如图3-3-28,在平面直角坐标系中,已知点A (1,0)与直线l :y =43x ,点B 在x 轴正半轴上,且位于点A 的右侧,过点B 作x 轴的垂线,交直线l 于点C ,再过点C 作直线l 的垂线,交x 轴于点D ,在BC 上取点E ,使BE =BA ,连接OE 并延长,交CD 于点F .当△CEF 为等腰三角形时,求点C 的坐标.A图3-3-22图3-3-28反思:本题表面看上去是一个等腰三角形存在性问题,但通过导角转移,情形一变为“角处理”问题,情形二变为角平分线的处理问题,情形三转化为等腰三角形OCE的存在性问题,真可谓“问山不是山,转化妙无穷” .解题启示:先定性分析,后定量计算.即解题时,莫要着急求边长,可以先考虑导角分析,看看能不能转化成其他常规问题.这里等腰三角形存在性问题的特殊解法,可以与下一讲相似三角形存在性问题中所谓“AA”解法,类比巩固,将更加有趣.总结等腰(直角)三角形存在性问题常见的处理策略有:1.代数法→实现盲解盲算2.几何法→狠抓不变角,“眼中有角,心中有比”3.垂直处理→构造“一线三直角”,即“K字型”4.混和解法→综合以上各种解法,灵活使用.类题巩固1.如图3-4-1,在平面直角坐标系中,直线y=−x+4与x轴交于点A,与y轴交于点B,点C在直线AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形.图3-4-12.如图3-4-2,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,将△DEF绕点D旋转,点D与AB的中点重合,DE、DF分别交AC于点M、N.若△DMN为等腰三角形,求此时重叠部分(△DMN)的面积.图3-4-23.(2017年新疆乌鲁木齐市压轴题)如图3-4-3,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求该抛物线的解析式;(2)点P事抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①PE=2ED时,求P点的坐标;②是否存在点P,使△BEC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.图3-4-34.(2016年镇江中考)如图3-4-4,在菱形ABCD中,AB=6√5,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=________秒时,DF的长度有最小值,最小值等于________;(3)如图3-4-5,连接BD、EF,BD交EC、EF于点P、Q,当t为何值时,△EPQ 是直角三角形?图3-4-4图3-4-5。

等腰直角三角形

等腰直角三角形

11等腰直角三角形等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹亦直角锐角45,斜边上中线角平分线垂线三线合一,等腰直角三角形斜边上的高为外接圆的半径R,那么设内切圆的半径r为1,则外接圆的半径R就为(根号2加1),所以r:R=1:(根号2加1)。

目录1关系2线段3解三角形4勾股定理5证明方法6定理7相关定理8梅涅劳斯9特殊等腰高:顶点到对边垂足的连线。

角平分线;顶点到两边距离相等的点所构成的直线。

中位线:任意两边中点的连线。

3解三角形在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有(1)正弦定理a/SinA=b/SinB= c/SinC=2r (外接圆半径为r)(2)余弦定理。

a^2=b^2+c^2-2bc*CosA cosA=c^2+b^2-a^2/2cbb^2=a^2+c^2-2ac*CosB cosB=a^2+c^2-b^2/2acc^2=a^2+b^2-2ab*CosC cosC=a^2+b^2-c^2/2ab4勾股定理如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;;即直角三角形两直角边长的平方和等于斜边长的平方。

如果三角形的三条边A,B,C 满足A^2+B^2=C^2;,还有变形公式:AB=根号(AC^2+BC^2),如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。

(称勾股定理的逆定理)5证明方法证法1作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过点C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180°―90°= 90°又∵ AB = BE = EG = GA = c,∴ AB EG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90°∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90°即∠CBD= 90°又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则a^2+b^2=c^2证法2作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90°,QP∥BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2证法3作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再作一个边长为c的正方形. 把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,∴RtΔCJB ≌ RtΔCFD ,同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE∴∠ABG = ∠BCJ,∵∠BCJ +∠CBJ= 90°,∴∠ABG +∠CBJ= 90°,∵∠ABC= 90°,∴G,B,I,J在同一直线上,a^2+b^2=c^2证法4作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B 三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ 即a^2+b^2=c^2证法5(欧几里得的证法)《几何原本》中的证明在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。

专题13 等腰三角形中三线合一的应用(原卷版)

专题13 等腰三角形中三线合一的应用(原卷版)

七年级数学下册解法技巧思维培优专题13 等腰三角形中三线合一的应用题型一利用三线合一求角度【典例1】(2019•兴平市期末)如图,已知房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.题型二利用三线合一求线段【典例2】(2019•金华校级月考)如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,BC=10,△BDC的周长为22,求AB的值.题型三利用三线合一证线段(角)相等【典例3】(2019•吉林期末)已知△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,若E、F分别是AB、AC上的点,且BE=AF.求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.题型四利用三线合一证垂直【典例4】(2019•湖里区校级期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.题型五利用三线合一证线段的倍数关系【典例5】如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF 的延长线于点D,试说明:BF=2CD.题型六利用三线合一证线段的和差关系【典例6】如图,在△ABC中,AD⊥BC于点D,∠B=2∠C,试说明:AB+BD=CD.巩固练习1.(2019•鄂州期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠ABC=45°,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.2.(2019•镇赉期末)如图,在四边形ABCD中,CB=CD,∠D+∠ABC=180°,CE⊥AD于E.(1)求证:AC平分∠DAB;(2)若AE=3ED=6,求AB的长.3.(2019•长宁区期末)如图,在△ABC中,AB=AC,点P是BC边上的一点,PD⊥AB于D,PE⊥AC于E,CM⊥AB于M,试探究线段PD、PE、CM的数量关系,并说明理由.4.(2019•丰南区期中)如图,在△ABC中,AB=AC,∠BAC=120°.AB的垂直平分线交AB于E,交BC于M;AC的垂直平分线交AC于F,交BC于N.连接AM、AN.(1)∠MAN的大小;(2)求证:BM=CN.5.(2019•重庆校级期中)如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.(1)求线段EF的长;(2)求四边形AFDE面积.。

等腰三角形与直角三角形PPT

等腰三角形与直角三角形PPT

等腰三角形与直角三角形PPT一、等腰三角形(一)定义等腰三角形是指至少有两边相等的三角形。

相等的两条边称为这个三角形的腰,另一边称为底边。

两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(二)性质1、等腰三角形的两个底角度数相等(简写成“等边对等角”)。

2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”)。

3、等腰三角形是轴对称图形,其对称轴是顶角平分线所在的直线。

(三)判定1、有两条边相等的三角形是等腰三角形。

2、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。

(四)常见题型1、利用等腰三角形的性质求角度。

例如,已知等腰三角形的一个底角为 70°,求顶角的度数。

因为等腰三角形两底角相等,所以另一个底角也是 70°,根据三角形内角和为 180°,可得顶角为 180° 70°× 2 =40°。

2、证明一个三角形是等腰三角形。

比如,给出一个三角形的两条边长度相等,或者两个角的度数相等,来证明该三角形为等腰三角形。

二、直角三角形(一)定义有一个角为 90°的三角形,叫做直角三角形。

直角所对的边称为斜边,其余两条边称为直角边。

(二)性质1、直角三角形两直角边的平方和等于斜边的平方(勾股定理)。

2、在直角三角形中,两个锐角互余。

3、直角三角形斜边上的中线等于斜边的一半。

(三)判定1、有一个角为 90°的三角形是直角三角形。

2、若一个三角形的三边满足勾股定理,则这个三角形是直角三角形。

(四)特殊的直角三角形1、等腰直角三角形:两条直角边长度相等的直角三角形,其两个底角均为 45°。

2、 30° 60° 90°直角三角形:其边长关系为短直角边:长直角边:斜边= 1:√3:2 。

(五)直角三角形的应用1、在实际生活中,如建筑、测量等领域经常用到直角三角形的知识。

等腰直角三角形中中点的探究

等腰直角三角形中中点的探究

鸿桥中学“立人课堂”导学案班级:______姓名:___________掌握中点做辅助线的方法,并能够综合利用三角形全等,三角形中位线的相关性质解决问题。

学习过程设计一、基础知识回顾同学们,你能说出等腰直角三角形的那些相关知识呢? (1)等腰直角三角形具有的性质:(2)如何判定一个三角形是等腰直角三角形: 二、例题探究例:某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: ●操作发现:在等腰△ABC 中,AB=AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论正确的是(填序号即可) ①AF =AG =21AB ;②MD=ME ;③整个图形是轴对称图形;④∠DAB =∠DMB . ●数学思考:在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧..作等腰直角三角形,如图2所示,M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程; ●类比探索:在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图3所示,M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状. 答: .涉及知识点: 本题考查了轴对称、三角形中位线、平行四边形、直角三角形斜边上的中线等于斜边的一半、全等、角的转化等知识,能力要求很高.思路启迪: (1) 由图形的对称性易知①、②、③都正确,④∠DAB =∠DMB=45°也正确;(2)直觉告诉我们MD 和ME 是垂直且相等的关系,一般由全等证线段相等,受图1△DFM ≌△MGE 的启发,应想到取中点构造全等来证MD=ME ,证MD ⊥ME 就是要证∠DME =90°,由△DFM ≌△MGE 得∠EMG =∠MDF , △DFM 中四个角相加为180°,∠FMG 可看成三个角的和,通过变形计算可得∠DME =90°. (3)只要结论,不要过程,在(2)的基础易知为等腰直角三解形.数学思想与方法: 由特殊到一般,形变但本质不变(仍然全等)学(教)后反思我的收获:我的反思:。

等腰直角三角形顶点和直角边中点的连线-定义说明解析

等腰直角三角形顶点和直角边中点的连线-定义说明解析

等腰直角三角形顶点和直角边中点的连线-概述说明以及解释1.引言1.1 概述概述部分的内容可以描述文章所要探讨的主题以及该主题的重要性和应用。

在这篇文章中,我们将讨论等腰直角三角形顶点和直角边中点的连线,并探究其几何意义、性质和特点。

在数学中,三角形是研究的基本对象之一,而等腰直角三角形是其中的一类特殊三角形。

它具有两边长度相等的性质,同时其中一个角是直角。

顶点和直角边中点的连线是一条连接等腰直角三角形顶点和直角边中点的直线。

这条连线的几何意义是非常有意思的。

它不仅可以帮助我们更好地理解等腰直角三角形的性质,还能揭示出一些有趣的几何关系。

通过研究这条连线,我们可以更深入地了解等腰直角三角形的内部结构以及其中隐藏的几何奥秘。

在接下来的部分中,我们将探讨这条连线的性质和特点。

从连线的长度和角度的角度变化,到连线和其他几何元素(如中线、高线等)的关系,我们将深入研究并解释这些重要的观察结果。

本文的目的是为读者提供对等腰直角三角形顶点和直角边中点连线的深入理解,以及揭示一些相关的重要性质和几何关系。

通过阅读本文,读者将能够更全面地理解等腰直角三角形,并将这些概念应用到实际问题中。

总而言之,本文将通过引言的概述,带领读者进入等腰直角三角形顶点和直角边中点连线的探讨。

深入分析这条连线的几何意义、性质和特点,让读者能够更好地理解和应用等腰直角三角形的相关概念。

1.2 文章结构文章结构的主要部分分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构、目的和总结四个方面。

在概述中,简要介绍等腰直角三角形顶点和直角边中点的连线问题,并引起读者的兴趣。

文章结构部分说明整篇文章的组织结构,包括各个章节的内容和顺序。

目的部分是明确研究该问题的目的,以便读者能够清楚地了解文章的研究重点。

总结部分概括了整个文章的主要内容和结论。

正文部分是对等腰直角三角形顶点和直角边中点的连线的几何意义进行详细的探讨。

其中,2.1节主要介绍了等腰直角三角形的定义和性质,为后续的讨论奠定基础。

等腰三角形中的有关公理

等腰三角形中的有关公理

等腰三角形中的有关公理、定理:(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”.(4)等边三角形的各个内角都相等,并且每一个内角都等于60°.直角三角形的有关公理、定理:(1)直角三角形的两个锐角互余;(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半.(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.性质0:直角三角行的外切圆直径是直角三角形的斜性质1:直角三角形两直角边的平方和等于斜边的平方.性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积,即ab=ch.性质5:直角三角形垂心位于直角顶点.性质6:直角三角形的内切圆半径等于两直角边之和减去斜边的差的一半,即r=a+b-c/2性质7:直角三角形中,斜边上的高是两条直角边在斜边上的射影比例中项.性质8:直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.由此,直角三角形两条直角边的平方比等于它们在斜边上的射影比.性质9:含30°的直角三角形三边之比为1:根号3:2性质10:含45°角的直角三角形三边之比为1:1:根号2回答者:╭⌒XDY⌒╮- 试用期一级9-17 16:55直角三角形的题形一般是已知两边长(或是一边长一角度)求第三边或角度三角形分类(1)按角度分a.锐角三角形:三个角都小于90度。

等腰三角形复习1

等腰三角形复习1

A

如图, 例4.如图,已知△ABC中,AB=AC,BD=BC, 如图 已知△ 中 , , AD=DE=EB. 的度数. 求∠A的度数 的度数 • 分析:本题有较多的等腰三角形的条件,最好用列方程组 分析:本题有较多的等腰三角形的条件, 的方法来求解,应当在图形上标出各未知数, 的方法来求解,应当在图形上标出各未知数,可使解题过 程清晰明了。 程清晰明了。
已知: 分别在BC和 例5.已知:如图,∠C=90°,BC=AC,D、E分别在 和 已知 如图, ° , 、 分别在 AC上,且BD=CE,M是AB的中点 的中点. 上 , 是 的中点 求证: 是等腰三角形. 求证:△MDE是等腰三角形 是等腰三角形 • 分析:要证△MDE是等腰三角形,只需证 分析:要证△ 是等腰三角形, 是等腰三角形 只需证MD=ME。连结 。 CM,可利用△BMD≌△CME得到结果 得到结果。 ,可利用△ ≌ 得到结果
等腰三角形复习
等腰三角形的性质与判定 1.性质 性质 性质定理:等腰三角形的两个底角相等。 性质定理:等腰三角形的两个底角相等。 定理:等腰三角形的顶角平分线、 定理:等腰三角形的顶角平分线、底边上的中 底边上的高互相重合。 线、底边上的高互相重合。 2.判定 判定 定义:有两边相等的三角形是等腰三角形。 定义:有两边相等的三角形是等腰三角形。 判定定理:有两个角相等的三角形是等腰三角形。 判定定理:有两个角相等的三角形是等腰三角形。 推论1 三个角都相等的三角形是等边三角形。 推论 三个角都相等的三角形是等边三角形。 推论2 有一个角等于60° 推论 有一个角等于 °的等腰三角形是等边三 角形。 角形。 推论3 在直角三角形中,如果一个锐角等于30° 推论 在直角三角形中,如果一个锐角等于 °, 那么它所对的直角边等于斜边的一半

等腰直角三角形底边和高的关系证明-概述说明以及解释

等腰直角三角形底边和高的关系证明-概述说明以及解释

等腰直角三角形底边和高的关系证明-概述说明以及解释1.引言1.1 概述等腰直角三角形是一种特殊的三角形,它具有两条边相等且与底边垂直的性质。

在几何学中,研究等腰直角三角形底边和高的关系是一项重要且有趣的任务。

本文旨在证明等腰直角三角形底边和高之间的关系,并探讨其性质及应用。

为了达到这一目的,我们将首先介绍等腰直角三角形的定义和性质,然后对底边和高的定义和性质进行详细的阐述。

最终,我们将通过证明来建立等腰直角三角形底边和高的具体关系。

通过深入研究等腰直角三角形的底边和高之间的关系,我们可以更好地理解等腰直角三角形的特性和性质。

这不仅有助于提高我们的几何学知识和技能,还可以应用于实际生活中的问题解决和几何推理中。

在结论部分,我们将对等腰直角三角形底边和高的关系进行总结,并讨论其可能的应用。

通过这些应用,我们可以进一步探索等腰直角三角形在各个领域中的实际应用和意义。

总之,本文将通过对等腰直角三角形底边和高的关系的论证,深入探讨这一问题,并对其性质和应用进行全面分析。

通过这篇文章,我们希望读者能够加深对等腰直角三角形的了解,提升几何学的认识和理解能力。

1.2文章结构1.2 文章结构本文将按照以下结构进行论述等腰直角三角形底边和高的关系的证明:1. 引言:首先介绍等腰直角三角形和底边、高的基本概念,并简要阐述本文的目的。

2. 正文:2.1 等腰直角三角形的定义和性质:详细叙述等腰直角三角形的定义、性质以及常见应用,为后续证明做准备。

2.2 底边和高的定义和性质:具体描述底边和高的定义以及相关性质,包括与等腰直角三角形的关系。

2.3 底边和高的关系证明:详细推导和证明等腰直角三角形底边和高的关系,列出证明过程中的重要步骤和公式推导,以确保证明的完整性和准确性。

3. 结论:3.1 总结等腰直角三角形底边和高的关系:总结证明过程中得出的结论,强调底边和高之间的关系,并提醒读者注意该关系在几何学中的应用价值。

3.2 应用等腰直角三角形底边和高的关系:展示等腰直角三角形底边和高关系在实际问题中的应用案例,包括几何推理、工程测量、图像处理等领域。

三角形的高度和中线

三角形的高度和中线

三角形的高度和中线三角形是几何中最基本的形状之一,具有许多独特的性质和特点。

其中,三角形的高度和中线是我们常常研究和关注的重要内容。

本文将深入探讨三角形的高度和中线的概念、性质以及它们在几何学中的应用。

一、三角形的高度三角形的高度是指从一个顶点到与对边垂直相交的线段。

根据三角形的形状和特点,我们可以得到以下几种常见的三角形高度:1. 等腰三角形高度:在等腰三角形中,高度也是对称轴,将底边一分为二。

由于等腰三角形的两边等长,所以高度也是等长。

2. 直角三角形高度:在直角三角形中,高度对应直角边的垂直线段。

根据勾股定理,直角三角形的两条直角边平方和等于斜边平方,所以利用高度和底边构成的直角三角形也是相似的。

3. 普通三角形高度:对于普通三角形,高度可以通过作垂线来求得。

可以利用垂直相交线段长度的性质,或者应用三角形面积公式来计算高度。

二、三角形的中线三角形的中线是指连接一个顶点与对边中点的线段。

根据三角形的不同类型,我们可以得到下面三种常见的中线:1. 等腰三角形中线:在等腰三角形中,中线和高度是重合的。

由于等腰三角形的底边中点与对边中点重合,所以中线和高度重合。

2. 直角三角形中线:在直角三角形中,中线可以将斜边一分为二,连接直角顶点与斜边中点。

根据性质,直角三角形的中线与斜边垂直,并且长度等于斜边的一半。

3. 一般三角形中线:普通三角形的中线不同于高度可以通过作垂线来构造。

一般情况下,三角形中线的长度与对边的长有着一定的关系。

比如,如果一个三角形的两个中线交于一点,并且这个点距离第三个顶点的距离为a,那么这个点到对边两边的距离为2a。

三、高度和中线的性质高度和中线作为三角形的重要性质,具有以下几个重要的性质和应用:1. 高度与底边的关系:三角形的高度将底边分成两部分,根据性质可以得到两个三角形的相似关系。

如等腰三角形中,底边中点、高度起始点和顶点构成的三角形与底边中点、高度终止点和底边起点构成的三角形是相似的。

直角等腰三角形面积公式

直角等腰三角形面积公式

直角等腰三角形面积公式等腰直角三角形的面积公式
等腰直角三角形的面积公式:两条直角边乘积的一半。

因为等腰直角三角形的两条腰是相等的,所以也就是腰长平方的一半。

比如腰长是a,那么这个等腰三角形的面积就是
S=a÷2。

举例来说,一个等腰直角三角形的腰长为6厘米,也就是S=a÷2里的字母a,那么这个等腰直角三角形的面积就是6÷2,即18cm。

只要是求三角形的面积,找对底和高后,就能计算其面积,而对于等腰直角三角形这种特殊的三角形来说更简单,可以不用区分高和底,只要知道一条腰长,也就是一条直角边的边长已知的话,就可以计算出这个等腰直角三角形面积。

如果不是等腰的,把两条直角边的边长看成腰长即可,如果是锐角三角形或者钝角三角形,就会稍稍复杂一点。

等腰直角三角形的性质
1.等腰直角三角形的两条直角边等长,两条直角边形成的角为直角。

另外两个角度数相同,都是45度。

2.等腰直角三角形具有平分线、斜边上中线、稳定性和三条垂直线成一体的特点。

同时符合勾股定理、余弦定理、中线定理、正弦定理、角平分线定理。

直角三角形√3倍定理

直角三角形√3倍定理

直角三角形√3倍定理
直角三角形√3倍定理是指:在一个直角三角形中,斜边等于直角边的√3倍。

具体来说,设直角三角形的两条直角边分别为a和b,斜边为c,则有:
c = √(a^2 + b^2)
如果a = b,则有:
c = √(2a^2) = √2 × a
而如果a = b = 1,则有:
c = √2
因此,在一个直角边长为1的等腰直角三角形中,斜边长度为√2,而在一个边长为a的直角三角形中,斜边长度为√3 × a。

直角三角形√3倍定理在数学和物理中都有重要应用。

例如,在电学中,如果一个电容器的两个电极之间连接了一个电阻器,而这个电容器和电阻器构成了一个直角三角形,那么根据欧姆定律和电容器的电场定理,我们可以推导出电容器的电势差和电容量之间的关系,从而计算出电场强度和电荷分布等相关参数。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EF=AE+CF
七、常见模型
(二)四边形中更一般的“半角模型”
EF=AE+CF
七、常见模型
(三)等腰直角三角形中“半角(45度)模型”
已知等腰直角△ABC中,∠DAE=45°,则DE2=BD2+CE2.
DE2=BD2+CE2
七、常见模型
(四)对角互补模型(1)
简称“共斜边等腰直角三角形+直角三角形”模型(异侧型).
五、实战分析
传统意义上,此类问题可以用“截长补短法”解决。如图,在PA上 截取PQ=PB,易证明∠BPA=∠CPA=60°,这样△PBQ为等边三角形, 由“共顶点双等边三角形模型”易证明△ABQ≌△CBP(SAS),故 PC=QA,所以PA=PQ+QA=PB+PC,得证。这是传统的“截长法”。
五、实战分析
A C'
B'
如右图,△ABC和△AB’C’都 B
C
是等边三角形(AB绕A逆时针旋转旋
转60°至AC位置、AB’绕A逆时针旋
转旋转60°至AC’位置),易知 △ABB’≌△ACC’(SAS)。
A
C'
B'
B
C
A C'
B'
B
C
A
C'
B'
B
C
这个模型可以形象地称为“共顶点的双等边三角形模型”。
四、“旋转一拖二”的特例(2)
B 解决问题。
解题后反思:过点D作DF⊥BC于点F,可由条件推出△ADE≌△CDF ,这样也达到了与上述旋转同样的目的,这也是学生容易想到的辅助线 。前面的“旋转法”,必须证明B、C、F三点共线;而后者必须证明 △ADE≌△CDF,两者各有裨益。
三、“旋转一拖二”(全等)
A C'
B'
B
C
如左图,等腰△ABC绕着点A按 逆时针方向旋转α度至△AB’C’位 置,易知△ABC≌△AB’C’(即旋 转后的图形与旋转前的图形全等)。
七、常见模型
(四)对角互补模型(2)
简称“共斜边等腰直角三角形+直角三角形”模型(同侧型).
七、常见模型
(四)对角互补模型(3)
已知等边△ABC,且∠BPC=120°,则PA=PB+PC.
PA=PB+PC
简称“等边三角形对120°模型”.
七、常见模型
(四)对角互补模型(4)
简称“120°等腰三角形对60°模型”.
BP绕B旋转:
逆时针
顺时针
所有转法
由AB=AC,绕A转: 逆时针
由BA=BC,绕B转: 逆时针
由CA=CB,绕C转:
逆时针
顺时针 顺时针 顺时针
规律总结: 当某个顶点处有两条相等的线段时,这就为旋转提供了先天
条件,只需将此顶点处出发的第三条线段绕着这个顶点作相应的 旋转即可,可顺时针转,也可逆时针转,构造出“共顶点的双等 腰三角形模型”,借助“旋转一拖二”,得到全等,解决问题。
上述规律可简记为“等线段、共顶点;造旋转、一拖二”。
六、变式训练
A
D
A
D
O Q
B
C
P
逆时针
O
B
C
QP
顺时针
简析:由BA=BC,可绕B转90度,可证得
六、变式训练
逆时针
顺时针
简析:由BA=BC,可绕B转120度,可证得
七、常见模型
(一)方形中“半角(45度)模型”
已知正方形ABCD中,∠EBF=45°,则EF=AE+CF
D AE
F
反思:解本题的关键是图中已有的
两条相等的线段DA=DC,这就为“旋转”奠
C 定了基础。将AD绕着点D按逆时针方向旋转
90°至DC位置,则由点D出发的第三条线段
DE也作相同的旋转至DF位置,得到如图所
示辅助线。可以证出B、C、F三点共线(即
∠DAF+∠DCB=∠A+∠DCB=180°),进而
B
如右图,△ABC和△AB’C’都 是等腰直角三角形(AB绕A逆时针旋 转旋转90°至AC位置、AB’绕A逆时 针旋转旋转60°至AC’位置),易知 △ABB’≌△ACC’(SAS)。
A C B'
A
C' B
C'
A C B'
A
C' C'
B
B' B
B'
C
C
这个模型可以形象地称为“共顶点的双等腰直角三角形模型”。
《“旋转”那些事》
高邮市赞化学校 段广猛
一、旋转的定义
在平面内,将一个图形绕 一个定点 按 某个方向 转 动 一定的角度 ,这样的图形运动称为旋转.
B
C 1.绕哪个点旋转?
2.向哪个方向旋转?
A
3.转动了多少度?
三要素:旋转中心、旋转方向、旋转角度
二、小试牛刀
如图∠ADC=∠B=90°,DE⊥AB,E为AB上的一点,且 AD=CD,DE=5.请求出四边形ABCD的面积.
如左图,若连接BB’、CC’, 易证明△ABB’≌△ACC’(SAS)。
这就是传说中的“旋转一拖二”,即等腰三角形旋转之后 会有两个全等三角形,尤其是第二个全等往往是解题的关键。 另外,结合“8字形”,易证∠BDC=∠BAC。
上述模型有个形象的名字,可以称为“手拉手模型”。
四、“旋转一拖二”的特例(1)
传统意义上,此类问题还可以用“补短法”解决。如图,延长CP 至点Q,使PQ=PB,易证明∠BPQ=60°,这样△PBQ为等边三角形, 由“共顶点双等边三角形模型”易证明△ABP≌△CBQ(SAS),故 PA=QC,所以PA=QC=QP+PC=PB+PC,得证。
纵观上述两种传统解法,若是用旋转的眼光来看,就更有趣了。 观察到原题中点B出发有三条线段BA、BC、BP,其中BA=BC,这就为 旋转作了很好地铺垫。 第一种“截长法”可以看成BP、BC同时绕点B按逆时针方向旋转60° 所得,即将△PBC绕着点B逆时针旋转60°至△QBA。若是这样作辅助线, 难在证明P、Q、A三点共线(提示:∠AQB=∠CPB=120°,∠BQP=60° 可证)。 第二种“补短法”可以看成BP、BA同时绕点B按顺时针方向旋转60° 所得,即将△PBA绕着点B顺时针旋转60°至△QBC。若是这样作辅助线, 难在证明Q、P、C三点共线(提示:∠BPQ=60°,∠BPC=120°可证)。 总而言之,上述两种解法若用旋转的眼光来看,就是绕着旋转中心B按 顺时针或逆时针方向旋转60度,这样BA与BC必然重合(这是由BA=BC产生 的结果)。BP则旋转60至BQ位置,构造出“共顶点双等边三角形模型”, 得出全等,解决问题。 但旋转的缺点是麻烦在证明“三点共线”上,这也是对学生而言易忽略 的地方。建议,在解题中,用“旋转”的眼光立即想到解题方案,但书写过 程可以借用“截长补短”的方法进行,两种想法相得益彰。但后者必须证明 全等。
相关文档
最新文档