APD光电二极管的特性测试及应用研究1
APD光电二极管特性(精)
APD光电二极管特性
教学环境
多媒体机房
教学
内容
1.APD光电二极管一般性能
2.倍增因子
3.过剩噪声因子
教学
目标
1.了解PIN光电二极管一般性能2.ຫໍສະໝຸດ 解倍增因子3.了解过剩噪声因子
重点
难点
1、掌握查看APD光电二极管的参数表,并根据参数表选型。
教学
方法
讲授、讨论、总结
教学
过程
讲授:
1.APD光电二极管一般性能
例举Si材料和InGaAs材料的雪崩光电二极管的参数表格,APD光电二极管的参数
包括光谱响应范围、峰值波长、灵敏度、量子效率、击穿电压、击穿电压温度系数、暗电流、截止波长、结电容、附加噪声指数和增益等。以及两者的特点和应用场合。
2.倍增因子
倍增因子是APD输出光电流和一次光生电流的比值,APD的响应度比PIN增加了g
倍。现有的APD的g值已达几十甚至上百,随反向偏压、波长和温度变化
3.过剩噪声因子
过剩噪声因子F是由于雪崩效应的随机性引起噪声增加的倍数。附加噪声指数与器件所用的材料和工艺相关,并例举了硅、锗和铟镓砷几种材料的附加噪声指数。
小结:
课堂总结
雪崩光电二极管特点
雪崩光电二极管特点雪崩光电二极管(Avalanche Photodiode,简称APD)是一种用于光电转换的器件,它具有一些独特的特点和优势。
本文将对雪崩光电二极管的特点进行详细解释,并在标题中心扩展下进行描述。
1. 雪崩放大效应:雪崩光电二极管通过雪崩放大效应来增强光电转换的效率。
当光子入射到APD中时,产生的电子被高电场加速,撞击到晶格中的原子,使其激发出更多的载流子。
这种级联的雪崩效应可以将光子能量转化为电流信号,并使其放大,从而提高光电转换的灵敏度。
2. 高增益:与传统的光电二极管相比,雪崩光电二极管具有更高的增益。
其内部的雪崩效应可以使电子数目成倍增加,从而大幅度提高输出信号的强度。
这使得雪崩光电二极管在弱光条件下具有更高的信噪比和探测灵敏度,可以探测到较弱的光信号。
3. 宽波长响应范围:雪崩光电二极管的波长响应范围较宽,可以覆盖可见光、红外光等多个波段。
这使得它在不同应用领域具有广泛的适用性。
例如,可以用于光通信、光谱分析、光电检测等领域。
4. 低噪声:雪崩光电二极管具有较低的噪声特性,这是因为它在雪崩放大过程中产生的噪声被级联放大后被抑制。
这使得它在高速光通信和高精度测量等应用中具有优势。
5. 高速响应:由于雪崩放大过程的快速响应特性,雪崩光电二极管具有较高的响应速度。
它可以快速转换光信号为电流信号,适用于高速光通信和高速数据传输等应用。
6. 低工作电压:相比于光电二极管,雪崩光电二极管的工作电压较低。
这使得它在功耗上具有优势,可以降低系统的能耗。
7. 较小尺寸:雪崩光电二极管具有较小的尺寸,重量轻,体积小。
这使得它在集成光学系统和微型设备中的应用更加方便。
雪崩光电二极管具有雪崩放大效应、高增益、宽波长响应范围、低噪声、高速响应、低工作电压和较小尺寸等特点。
这些特点使得它在光通信、光谱分析、光电检测等领域具有广泛的应用前景。
未来随着技术的进一步发展,相信雪崩光电二极管将在更多领域展现出其独特的优势和潜力。
APD光电二极管的特性测试及应用研究1
[5]王庆有.光电传感器应用技术[M].北京:机械工业出版社,2007.10.
[6]其他:可网上搜索查找相关中文和外文文献。
3.进度安排
设计(论文)各阶段名称
起止日期
1
查阅文献资料,确定方案,写文献综述
2014.1.18-3.20
2
学习APD光电二极管的工作原理
2014.3.21-3.30
3
理解APD光电二极管的各项参数指标并测试
因此,拓宽硅基光电探测器件的探测波长范围及探测效率,不仅成为一个较为热点的研究领域,引起了各国科研工作者的兴趣,同时也成为光通信领域迫切需要克服的难题,是市场应用所需迫切解决的问题。最近几年人们尝试了各种方法来提高Si基APD的近红外探测效率,其中有增加Si基APD吸收层的厚度从而提高光子在Si中的吸收,然而随着APD体积的增加,不但提高了近红外处的量子效率,同样增加APD器件的暗电流和噪声,也提高了APD的响应时间,所以用这种方法提高APD近红外的敏感率并不是最好的方法。还有一种方法就是在APD器件表面设计一层防反射层,这层防反射层可以使入射光在APD器件的表面发生多次反射,从而增加了透入到器件内部的光子,也不会增加APD器件的体积,但是这种方法对工艺制作流程要求严格,成本较高,虽然能提高器件的整体效果但依然不能将1064nm处的光探测效率提高到理想的程度。
制约硅基APD在近红外方向特别是1064nm波段发展的原因有两个,第一,硅的禁带宽度是1.12eV,从而导致硅对1100nm处光的吸收截止。Si是间接带隙材料,在300K时硅的禁带宽度是1.12eV。因此硅的吸收截止波长是1100nm。从而导致由间接半导体材料制做的APD器件在截止波长附近吸收效率非常低。为了使硅基APD在1064nm处获得较高的量子效率,人们研发出使用其它半导体材料(锗、铟或者砷化镓)制作光电子器件,但是这些材料的光电子器件暗电流和噪声比较高,价格昂贵,而且与硅的晶格不匹配。或者改变硅基APD的结构设计,还可以使用飞秒激光微构造技术,来改变硅在近红外处的光吸收特性。第二,APD制造工艺过程中必须引入尽可能少的缺陷以减少暗电流,从而保证器件具有较高的信噪比。
物理实验技术中的光电二极管特性测量与分析
物理实验技术中的光电二极管特性测量与分析光电二极管是一种能够将光能转化为电能的器件,广泛应用在光电传感器、光通信、光电测量和光谱分析等领域。
在物理实验技术中,测量和分析光电二极管的特性对于研究光电效应、了解器件性能以及优化实验设计都具有重要意义。
一、光电二极管原理和基本特性光电二极管的原理是基于光电效应,利用光照射在PN结上产生电子-空穴对,使得PN结两端产生电压。
其关键特性包括响应频率、光电流、暗电流、光电流增益等。
测量这些特性需要合适的实验装置和方法来获取准确的结果。
二、光电二极管特性的测量方法1. 频响特性测量频响特性测量是评估光电二极管对光信号变化的响应速度的重要方法。
常用的实验装置包括函数发生器、光源和示波器。
通过改变函数发生器输入的正弦光信号频率,测量光电二极管输出的电流或电压的变化,从而得到频响特性曲线。
这些曲线反映了光电二极管的截止频率、带宽和相移等信息。
2. 光电流和暗电流测量光电流和暗电流是衡量光电二极管敏感度的重要指标。
光电流指的是光照射下二极管产生的输出电流,可以通过连接电流表或电流放大器进行测量。
而暗电流是指在没有光照射的情况下,二极管自身产生的微弱电流。
暗电流直接影响光电二极管的信噪比和稳定性,需要特殊的实验装置和方法进行测量。
三、光电二极管特性分析测量得到的光电二极管特性数据可以通过分析得到有关器件性能的重要信息。
以下是几个典型的分析方法:1. 截止频率和带宽分析利用频响特性曲线可以确定光电二极管的截止频率和带宽。
截止频率是指光电二极管对信号频率的响应达到3dB衰减的频率,可以通过对频响特性进行插值计算得到。
带宽是指光电二极管在特定条件下能够传输信号的频率范围,可以根据频响特性曲线的满足条件进行判断。
2. 光电流增益分析光电流增益是指光电二极管单位光功率入射时输出电流的增益。
可以通过将测得的光电流与已知的入射光功率相除得到。
光电流增益反映了光电二极管对光信号的放大效果,是评估器件性能的重要指标。
光电二极管特性参数的测量及原理应用
光电二极管特性参数的测量及原理应用1.光电二极管特性参数的测量方法(1)光电流和光敏面积的测量:光电二极管的光敏面积决定了其对光信号的接收能力,而光电流是光电二极管对光源产生的电流响应。
测量光电流可通过将光电二极管接入电路中,通过测量电流表的读数来获得。
光敏面积可通过显微镜测量方法来获得。
(2)响应时间的测量:光电二极管的响应时间是指其由光敏变化到电流输出的时间。
可以使用短脉冲光源和示波器来测量光电二极管的响应时间,记录光电流的变化曲线,从而得到响应时间。
(3)量子效率的测量:量子效率是指光束的能量能被光电二极管转换成电流的比例。
测量量子效率常采用比较法,即将待测光电二极管与一个标准光电二极管一起放入相同的光源中进行测量,通过比较两者输出的电流,计算出待测光电二极管的量子效率。
2.光电二极管特性参数的原理应用(1)光电二极管的灵敏度控制:测量光电流和光电二极管参数可以了解光电二极管的灵敏度,从而控制其在光电转换中的应用。
例如,在光电二极管应用于光通信中,可以通过测量光电流来确定光信号的强弱,进而控制光电二极管的灵敏度。
(2)光电二极管的功率测量:通过测量光电二极管的输出电流和光敏面积,可以计算出入射光的功率。
这在激光器功率测量和光学器件测试中非常常见。
(3)光电二极管的频率响应特性:通过测量光电二极管的响应时间,可以评估其对高频光信号的响应能力。
这在通信和雷达系统中具有重要应用,可以保证信号的准确传输和检测。
(4)光电二极管的光谱响应特性:测量光电二极管的光谱响应可以评估其对不同波长光的接收能力。
这在光学测量和光谱分析等领域都有广泛应用。
综上所述,光电二极管特性参数的测量及原理应用对于光电二极管的优化设计和应用具有重要意义。
通过测量光电流、光敏面积、响应时间、量子效率等参数,可以更好地了解光电二极管的特性,从而为光电转换和光信号检测提供基础支持。
同时,根据测量得到的参数,可以进一步控制光电二极管的灵敏度、测量光功率、评估频率响应和光谱响应等应用。
APD光电二极管特性测试实验
APD光电二极管特性测试实验APD光电二极管特性测试实验1,实验目的1,学习掌握APD光电二极管的工作原理2,学习掌握APD光电二极管的基本特性3,掌握APD光电二极管特性测试方法4,了解APD光电二极管的基本应用2,实验内容有1,APD光电二极管暗电流测试实验2,APD光电二极管光电流测试实验3,APD光电二极管伏安特性测试实验4,APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验3、实验仪器1、光电检测综合实验仪器12、光路组件1组3、测光表1组4、1组5和2#重叠插头对(红色,50厘米)和10组6和2#重叠插头对(黑色,50厘米)10根7相电力电缆,1根8相电源线,1本9实验说明书,1台4示波器,雪崩光电二极管APD—雪崩光电二极管是一种具有内部增益的光电探测器,可用于探测微弱的光信号并获得较大的输出光电流。
雪崩光电二极管的内部增益基于碰撞电离效应。
当高反向偏置电压施加到PN结时,5耗尽层中的电场非常强,并且光生载流子在通过时将被电场加速。
当电场强度足够高(约3x10v/cm)时,光生载流子获得大量动能。
它们与半导体晶格高速碰撞,电离晶体中的原子,从而激发新的电子-空穴对。
这种现象被称为碰撞电离碰撞电离产生的电子-空穴对也在强电场的作用下加速,并重复前面的过程。
由于多次碰撞电离,载流子迅速增加,电流迅速增加。
这一物理过程被称为雪崩倍增效应。
++图6-1是APD的结构与电极接触的外侧的P区和N区被重掺杂,分别由P和N+表示;在I区和n区的中间是另一层宽度较窄的p区APD在大的反向偏置下工作。
当反向偏置电压增加到++到一定值时,耗尽层从N-P结区延伸到P区,包括中间P层区和I+区图4的结构是直通APD结构从图中可以看出,电场分布在区域一相对较弱,但在区域N-P++相对较强。
碰撞电离区,即雪崩区,位于n-p区虽然I区的电场比N-P区低得多,但也足够高,达到4(最高2×10V/cm),从而保证载流子达到饱和漂移速度。
APD芯片介绍以及应用
APD芯片介绍以及应用APD芯片(Avalanche Photodiode Chip)是一种用于光电转换的半导体器件,属于光电探测器的一种。
它是在普通光电二极管的基础上进行改进而来的,具有更高的增益和更低的噪声水平。
APD芯片能够将光信号转化为电信号,并放大输出,从而提高光电信号的灵敏度和检测能力。
下面将详细介绍APD芯片的结构、工作原理、特点以及应用领域。
APD芯片采用p-n结的结构,与光电二极管类似,但在p-n结中添加了一层特殊的掺杂层。
掺杂层具有高电场强度浓缩效应,使光电信号在该区域中形成电子雪崩效应。
电子雪崩效应可以将光电信号产生的载流子数目大幅度增加,从而提高了灵敏度和增益。
当光通过APD芯片时,光子会在p-n结区域中与材料相互作用,产生电子和空穴对。
在电场的作用下,电子会被加速向掺杂层移动,而空穴则相对较慢。
当电子到达掺杂层时,由于强电场效应,部分电子会获得能量足够大以至于导致更多的电子被释放,形成电子雪崩效应。
这种电子雪崩效应会导致电流倍增,从而将光信号放大。
最终产生的电信号可以通过外部电路进行进一步放大和处理。
1.高增益:APD芯片的增益比普通光电二极管高几个数量级,能够将微弱的光信号放大到可以被检测到的程度。
2.低噪声:APD芯片的掺杂层能够减少噪声的产生,提高信号与噪声之间的比例。
3.高灵敏度:由于增益的提高,APD芯片对光信号的捕捉能力大大增强,甚至可以捕捉到单个光子的信号。
4.宽频响特性:APD芯片的频响特性较宽,可以在较高的频率范围内工作。
5.高线性:APD芯片可以线性放大光信号,避免了非线性失真的问题。
1.光通信:APD芯片可以用于光通信系统中的接收端,提高光信号的接收灵敏度和距离。
2.光电检测:由于其高灵敏度和低噪声特性,APD芯片可以用于光电检测领域,如激光测距、光谱分析等。
3.核医学:APD芯片可以用于核医学成像领域,如正电子发射断层成像(PET)等,提高图像的分辨率和灵敏度。
APD实验指导书V1.01
目录第一章APD光电二极管综合实验仪说明.......... 错误!未定义书签。
二、实验仪说明................................................................................. 错误!未定义书签。
1、电子电路部分结构分布............................ 错误!未定义书签。
2、光通路组件 ..................................... 错误!未定义书签。
第二章 APD光电二极管特性测试.............. 错误!未定义书签。
1、APD光电二极管暗电流测试........................ 错误!未定义书签。
2、APD光电二极管光电流测试........................ 错误!未定义书签。
3、APD光电二极管伏安特性.......................... 错误!未定义书签。
4、APD光电二极管雪崩电压测试...................... 错误!未定义书签。
5、APD光电二极管光照特性.......................... 错误!未定义书签。
6、APD光电二极管时间响应特性测试.................. 错误!未定义书签。
7、APD光电二极管光谱特性测试...................... 错误!未定义书签。
第一章 APD光电二极管综合实验仪说明一、产品介绍雪崩光电二极管的特点是高速响应性和放大功能。
雪崩光电二极管(APD)的基片材料可采用硅和锗等材料。
其结构是在n型基片上制作p层,然后在配置上p+层。
一般上部的电极制作成环状,这是考虑到能获得稳定的“雪崩”效应。
外来的光线通过薄的p+层,然后被p层吸收,从而产生了电子和空穴。
由于在p层上存在着105V/cm的电场,因此位于价带的电子被冲击离子化后,产生雪崩倍增效应,电子和空穴不断产生。
光电二极管的物理特性和应用研究
光电二极管的物理特性和应用研究光电二极管是一个重要的光电转换器件,可以将光信号转化为电信号或电信号转化为光信号。
光电二极管中的电子通过光激发来转换为电荷,形成电流输出。
光电二极管具有高响应速度、高灵敏度、小体积和低功耗等特点,是现代通信和光电领域中不可或缺的元器件之一。
光电二极管有两种类型:正向偏置和反向偏置。
正向偏置光电二极管可以输出直流电流信号,而反向偏置光电二极管则可以输出脉冲电信号。
正向偏置光电二极管是信号检测和面板照明的常见元件,而反向偏置光电二极管则主要应用于高速通信、雷达和光电计算机等领域。
在实际应用过程中,光电二极管的物理特性对其性能和应用有着很大的影响。
首先,光电二极管的响应速度是其最重要的特性之一。
它取决于光电二极管的结构和材料特性,以及光辐照的强度、波长和时间特性等。
响应速度越快,光电转换的效率越高,适用范围也就越广。
其次,光电二极管的灵敏度是另一个十分重要的特性。
它指的是单位光功率引起的单位电流输出。
灵敏度越高,表示光电转换的效率越高,对于光照弱的场合有着更好的应用价值。
因此,研究光电二极管的灵敏度特性对其性能优化和推广应用具有很大的意义。
除了物理特性之外,光电二极管的应用领域也非常广泛。
一般来说,光电二极管被广泛应用于通信、光信号检测、面板照明、安全监控和能源异构系统等领域。
例如,在通信应用中,光电二极管可以使用在调制解调器、激光器和接收器中。
此外,在单光子计数和霍尔效应测量中,也需要使用光电二极管。
在面板照明领域,光电二极管可以应用于暗场实验与调试、背光源、环境照明和光学检测中。
其中,背光源技术已经成为了当前液晶显示技术的主流之一。
光电二极管可以把电能转换为光能,为LCD平板显示设备提供高效节能的背光源。
在安全监控领域,光电二极管可以应用于白天和夜间视频监控,以及基于红外光的夜视和人脸识别。
由于光电二极管对红外辐射很敏感,因此常用于夜视和红外探测。
总体来说,光电二极管是一种功能强大的光电转换器件。
雪崩光电二极管
雪崩光电二极管(APD)1. 简介雪崩光电二极管(Avalanche Photodiode,简称APD)是一种特殊类型的光电二极管,通过利用光电效应将光能转化为电能。
与常规光电二极管相比,APD具有更高的增益和更低的噪声特性,使其在光通信、光电探测、光谱分析等领域中被广泛应用。
本文将介绍雪崩光电二极管的工作原理、特性以及应用领域等内容。
2. 工作原理APD的工作原理基于光电效应和雪崩效应。
光电效应:当光照射到APD的光敏区域时,光子激发了其中的电子,使其获得足够的能量越过禁带,成为自由电子。
这些自由电子在电场的作用下会向电极方向移动,产生电流。
雪崩效应:在雪崩区域,APD的结构被特别设计,使电子在电场的加速下能获得更高的能量,足够激发带负电量的离子。
这些离子再次被电场加速,撞击晶体结构,从而释放出更多的电子,形成一次雪崩放大效应。
这样,通过雪崩效应,每个光子都可以导致多个电子的释放,从而使APD具有较高的增益。
3. 特性APD具有以下几个主要特性:3.1 增益APD具有极高的增益特性,通常在100倍到1000倍以上。
这使得APD能够检测非常弱的光信号,并提供更高的信号到噪声比。
高增益也意味着APD可以克服光电二极管的缺点,如光元件的电子热噪声和放大噪声。
3.2 噪声APD的噪声水平相对较低,主要由雪崩噪声和暗电流噪声构成。
雪崩噪声是由于雪崩效应引起的电荷起伏。
暗电流噪声是与温度相关的内部电流,可以通过降低工作温度来减少。
3.3 响应速度APD的响应速度较高,可以达到几百兆赫兹的范围。
这使得APD适合于高速通信和高频率测量应用。
3.4 饱和功率APD具有饱和功率的概念,也称为最大接收功率。
这是指当光强度超过一定阈值时,APD的增益将不再增加,并导致其输出信号畸变。
因此,在设计APD应用时,需要注意光功率的控制,以避免饱和和信号畸变。
4. 应用领域APD在以下领域中得到了广泛应用:4.1 光通信APD可以提供高增益和低噪声的特性,使其成为光通信系统中常用的接收器元件。
雪崩光电二极管APD倍增特性的测试
三、实验步骤
倍增系数测试 • 启动单色仪,并扫描到800nm位置; • 不打开高压开关,运行软件采集数据,得到APD的无增益
•
•
电流值; 将反馈电阻更换为300K,然后打开高压开关,在控制面板 上调节“高压调节”旋钮并观察电压表示数,从60V开始 调节,每次增加5V并采集数据,得到APD的增益电流值, 电压达到反向电压的90%(为上次实验测定的值)时停止, 此时软件自动完成数据处理,显示出APD的倍增系数及其 曲线; 可以更换不同的波长或改变光强(通过改变单色 仪出射狭缝的大小),重复做上述步骤,并把结果进行比 较。 实验结束后,先将高压输出调到最小,然后关闭高压开 关,,并闭溴钨灯电源,最后关闭仪器总电源。
三、实验步骤
暗电流测试 1. 在控制面板上,把APD模块所带数据线小的红色插头插控制 面板上APD特性测试框中地正,大的红色插头插在其中的负, 黑色插头插在其中的地。“高压输出”与APD特性测框中的 “负”相连,“高压输出”与电压表的“2000+”连通,电 压表的“-”与地相连,电压表量程切换到2000V。然后用连 接线将APD特性测试框中的正与12-3中的孔2相连,并在4和 5上插上30M的反馈电阻; 2. 接通仪器总电源,打开高压开关; 3. 在控制面板上调节“高压调节”旋钮并观察电压表示数, 从60V开始调节,每次增加5V并采集数据,电压达到90%反 向电压(为上次实验测定的值)时停止; 实验结束后,先 将高压输出调到最小,然后关闭高压开关,再关闭仪器总 电源。
雪崩光电二极管APD倍增特性 的测试
一、实验目的
1. 2. 3. 4. 5. 加深对雪崩光电二极管工作原理的理解 学会雪崩光电二极管的反向电压的测试方法 学会雪崩光电二极管的暗电流的测试方法 学会雪崩光电二极管的倍增特性的测试方法 掌握雪崩光电二极管的使用方法。
光电二极管特性参数的测量及原理应用
光电二极管特性参数的测量及原理应用1.响应时间的测量及原理应用:响应时间是光电二极管从接收到光信号到输出电流达到稳定状态所需的时间。
测量方法主要有脉冲法、步跳法和正弦法等。
脉冲法是通过给光电二极管加一个短脉冲光源,测量输出电流的上升时间和下降时间来确定响应时间。
步跳法是在连续光源作用下,逐步提高或降低光照强度,测量输出电流变化的时间来确定响应时间。
正弦法是通过给光电二极管加一个正弦光源,测量输出电流波形来确定响应时间。
响应时间的测量和研究可以用于优化光电二极管的响应速度,对于高速光通信和光测量等领域有重要应用。
2.光电流的测量及原理应用:光电流是光电二极管接收到光信号后产生的电流,可以通过电流表或电压表来测量。
测量时需要将光电二极管连接到电流表或电压表上,并将光源照射到光电二极管上。
光电流的大小和光源强度呈正比关系。
光电流的测量和研究可以用于光敏元件的特性评估和应用,比如光电转换器、光电探测器、光电放大器等。
3.光谱响应的测量及原理应用:光谱响应是指光电二极管在不同波长的光照下的响应情况。
测量光谱响应可以使用光谱仪或滤光片。
通过调节光源的波长和光强,测量光电二极管输出电流的变化,可以得到光谱响应曲线。
光谱响应的测量和研究可以用于分析光电二极管的光谱特性,优化光电二极管在不同波长范围内的应用,比如光通信、光谱分析等。
4.光敏度的测量及原理应用:光敏度是指光电二极管在单位光功率照射下产生的电流或电压。
光敏度的测量可以通过测量光电流和光功率来计算得到。
测量时,将光电二极管连接到电流表或电压表上,然后将光源照射到光电二极管上,测量输出电流和光功率,通过计算可以得到光敏度。
光敏度的测量和研究可以用于评估光电二极管的敏感程度和应用范围,比如光电转换器、光电探测器等。
综上所述,光电二极管特性参数的测量及原理应用是了解和评价光电二极管性能的重要手段,对于光电器件的研究和应用具有重要意义。
通过测量和研究光电二极管的响应时间、光电流、光谱响应和光敏度等参数,可以优化光电二极管的性能和应用范围,推动光电技术的发展。
APD实验指导书V1.01
APD光电二极管实验仪实验指导书目录第一章APD光电二极管综合实验仪说明..................... - 2 -二、实验仪说明 (2)1、电子电路部分结构分布........................................ - 2 -2、光通路组件 ................................................. - 3 -第二章 APD光电二极管特性测试......................... - 4 -1、APD光电二极管暗电流测试.................................... - 6 -2、APD光电二极管光电流测试.................................... - 7 -3、APD光电二极管伏安特性...................................... - 7 -4、APD光电二极管雪崩电压测试.................................. - 7 -5、APD光电二极管光照特性...................................... - 8 -6、APD光电二极管时间响应特性测试.............................. - 8 -7、APD光电二极管光谱特性测试.................................. - 9 -第一章 APD光电二极管综合实验仪说明一、产品介绍雪崩光电二极管的特点是高速响应性和放大功能。
雪崩光电二极管(APD)的基片材料可采用硅和锗等材料。
其结构是在n型基片上制作p层,然后在配置上p+层。
一般上部的电极制作成环状,这是考虑到能获得稳定的“雪崩”效应。
外来的光线通过薄的p+层,然后被p层吸收,从而产生了电子和空穴。
由于在p层上存在着105V/cm的电场,因此位于价带的电子被冲击离子化后,产生雪崩倍增效应,电子和空穴不断产生。
光电二极管的特性及应用
光电二极管的特性及应用光电二极管是一种能够将光能转化为电能的器件,是光电转换技术中的重要组成部分。
它具有许多独特的特性和广泛的应用,对于现代科技的发展起着重要的推动作用。
首先,光电二极管具有高灵敏度。
在光照条件下,光电二极管可以产生大量的电流。
这是因为当光照射到光电二极管的表面时,光子会激发半导体中的电子,使其跃迁到导带中,产生电流。
因此,光电二极管可以实现对光的高度敏感,可被广泛应用于光电测量、光电传感等领域。
其次,光电二极管具有快速响应的特性。
由于光电二极管中的载流子迁移速度较快,所以其响应速度也相对较高。
在应用中,光电二极管可以实时检测到光的变化,并迅速输出相应的电信号。
这使得光电二极管在通信、光功率检测等领域有广泛的应用。
另外,光电二极管具有宽波长范围的特性。
不同类型的光电二极管对不同波长的光都具有一定的响应能力。
例如,硅制的光电二极管对可见光和近红外光具有良好的响应,而铟铍镓制的光电二极管则对中红外光具有较高的敏感度。
这使得光电二极管在光谱分析、光学传感等领域有着广泛的应用前景。
除了以上的特性,光电二极管还具有小尺寸、稳定性好和耐冲击等优点。
由于其结构简单、体积小巧,因此可以方便地集成到各种光学仪器中。
而且,光电二极管的工作稳定性较好,能够长时间保持其性能。
此外,光电二极管的响应时间短,对于快速变化的光信号也能够准确检测。
这些特点使得光电二极管在医学检测、光学通信、遥感测量等领域广泛应用,极大地推动了相关技术的发展。
在光电二极管的应用中,光电检测是其中最重要的一项。
光电检测主要是通过光电二极管对光信号的响应来实现对物体特性的检测和测量。
例如,在工业生产中,利用光电二极管可以实现对产品尺寸、颜色等参数的检测,从而提高生产效率和质量。
在安防监控领域,光电二极管可用于人体和物体的检测,实现智能监控和报警系统。
此外,光电二极管还可以应用于光学相机、光电耦合器件、光通信设备等众多领域。
光电二极管的特性及应用无疑为现代科技的发展提供了强大的支持。
浅析APD光电二极管基本特性测试研究
浅析APD光电二极管基本特性测试研究发表时间:2019-05-05T16:47:16.533Z 来源:《电力设备》2018年第31期作者:蔡智[导读] 摘要:APD光电二极管是在光探测研究中使用的一种重要的光伏探测器元件,在光电系统领域中有着举足轻重的地位,我国光电领域的科研人员对APD光电二极管的研究十分重视,如何对APD光电二极管的性能进行测试成为了科研人员需要攻破的首要难关。
(汉口学院光电信息科学与工程专业湖北省武汉市 430212)摘要:APD光电二极管是在光探测研究中使用的一种重要的光伏探测器元件,在光电系统领域中有着举足轻重的地位,我国光电领域的科研人员对APD光电二极管的研究十分重视,如何对APD光电二极管的性能进行测试成为了科研人员需要攻破的首要难关。
本文主要介绍的针对APD光电二极管的部分特性测试,主要包括暗电流、光电流的测试、APD光电二极管的电压特点、APD光电二极管的光照性能测试、APD光电二极管的达到什么条件会击穿的测试以及APD光电二极管的响应度与倍增因子情况的测试研究。
关键词:APD光电二极管;结构;特性;测试1.简析APD光电二极管的概念与优点1.1 APD光电二极管的定义Avalanche Photo Diode的中文译名为雪崩光电二极管,又称APD光电二极管,主要应用与光电工程领域,APD光电二极管的生产材料主要是半导体材料硅或锗为主,APD光电二极管被称为雪崩光电二极管的原因是因为在光探测中,在APD光电二极管的P-N结上加上反向偏压后,测试的光被APD光电二极管中的P-N结构吸收后,形成的光电流在改变反向偏压后,会造成光电流成倍的激增的现象,因为视觉上形同“雪崩”,所以APD光电二极管又称为雪崩光电二极管。
1.2 APD光电二极管的优点普通的光电二极管在在光学反映中的性能测试中的性能较差,主要原因是普通光电二极管的灵敏度不高,对光电流的敏感性不强,APD光电二极管则是通过技术改良,增强了光电二极管的灵敏度,提高了对光电流的敏度,对我国光电领域的精密测量提供了技术前提。
APD光电二极管特性(精)
APD光电二极管特性
教学环境
多媒体机房
教学
内容
1.APD光电二极管一般性能
2.倍增因子
3.过剩噪声因子
教学
目标
1.了解PIN光电二极管一般性能
2.了解掌握查看APD光电二极管的参数表,并根据参数表选型。
教学
方法
讲授、讨论、总结
教学
过程
讲授:
1.APD光电二极管一般性能
倍。现有的APD的g值已达几十甚至上百,随反向偏压、波长和温度变化
3.过剩噪声因子
过剩噪声因子F是由于雪崩效应的随机性引起噪声增加的倍数。附加噪声指数与器件所用的材料和工艺相关,并例举了硅、锗和铟镓砷几种材料的附加噪声指数。
小结:
课堂总结
例举Si材料和InGaAs材料的雪崩光电二极管的参数表格,APD光电二极管的参数
包括光谱响应范围、峰值波长、灵敏度、量子效率、击穿电压、击穿电压温度系数、暗电流、截止波长、结电容、附加噪声指数和增益等。以及两者的特点和应用场合。
2.倍增因子
倍增因子是APD输出光电流和一次光生电流的比值,APD的响应度比PIN增加了g
雪崩光电二极管APD的特性与单光子探测研究 吕华 华南理工 (1)
华南理工大学硕士学位论文雪崩光电二极管APD的特性与单光子探测研究姓名:吕华申请学位级别:硕士专业:光学指导教师:冯金垣;廖常俊20050510第三章雪崩光电二极管特性研究于。
‘60D-,:e00000{兰一图3.16单光子计数器计数结果(a)单光子计数结果(b)不同光强下的计数值和输入光功率的函数曲线Fig.3-16Countresultfromsinglephotoncounter(a)Resultofsinglephotoncounting(b)Countvalueversusinputlightpoweratvariedintensity光子探测效率可以表示为玎。
:Ⅳ^×100%-,_.2Lsr3—26)%2巴/^y。
l式中地为有光时由光子产生的计数率,它是光子计数器上的计数值和计数时间(20s)的比值。
P。
为输入光功率,是矿为单光子能量。
这样平均光子数为/.t=O.1和u=O,03时的光子探测效率分别可计算为l,29%和2.09%。
在实验中暗计数率为3.13X10~/ns。
在以上的单光子计数实验中,我们利用EpitaxyAPD进行光探测,由光子数的泊松分布可知,在平均光子数Ⅳ=0.1时,单光子概率已经大于90%;在平均光子数/.t=O.03时,单光子概率大于97%,实验数据显示了单光子计数测量。
在今后的工作中,通过选用噪声性能好的管子,并采取一定的滤噪措施,使APD工作在最佳温度和最佳电压条件下,高性能的单光子探测是可以实现的。
实现单光子探测的基本要求是,一方面是对被探测的光子要有很高的响应灵敏度,另一方面是背景噪声要尽可能少。
提高响应灵敏度和降低噪声是两个可:相制约的因素。
在常规通信系统中,最佳信噪比是个好的选择。
响应灵敏度和暗电流都随工作电压增加而增加,但暗电流和背景噪声随工作电压上升更快。
所以,最佳信噪比的工作电压不是响应灵敏度最高的电压。
对于单光予探测,响应灵敏度是主要追求目标,是在获得最大可能的探测灵敏度的条件下设法降低暗电流和背景噪声。
光电二极管的研究和应用
光电二极管的研究和应用光电二极管是一种可以将光能转化为电能的器件。
它具有很多优点,例如响应速度快,对光的敏感性高,成本低等,因此在很多领域都有广泛的应用。
一、光电二极管的基本原理光电二极管由一个PN结构组成。
当光照射到PN结上时,光子的能量被输送到该结上,并使得PN结中的电子获得足够的能量跨越能隙并进入导带,从而产生电流。
这个电流与光照射到二极管上的光强成正比。
二、光电二极管的应用1. 光电信号检测:光电二极管是一种非常敏感的光探测器件。
它可以将电磁波转换为电信号,并通过电路传递到接收器。
这种技术广泛应用于通信、光学设备和光学测量。
2. 照明:光电二极管还被广泛用于照明。
LED就是一种光电二极管。
随着LED技术的不断发展,LED已经成为节能照明的主要选择之一。
LED被广泛用于室内照明、车灯、路灯等各种场合。
3. 显示器:LED显示屏已经成为现代化城市风景线的一部分。
LED显示屏的特点是亮度高、视角广、色彩丰富,而且非常适合户外环境。
除了LED之外,OLED也是一种光电二极管。
OLED显示器除了有LED显示屏的优点,更加薄和省电。
4. 生命科学:光电二极管可以用于生命科学领域。
例如,在细胞实验中,光电二极管可以用于测量活细胞的荧光信号,从而对细胞的生物过程进行研究。
三、光电二极管的未来与发展趋势随着技术不断发展,光电二极管在未来将有更广泛的应用。
在通信领域,“5G+光网络”将成为未来通信技术的重要选择,而光电二极管则是支撑“5G+光网络”的重要设备之一。
在照明领域,LED照明将成为未来的主流。
未来,人类对于光亮的需求将越来越强烈,而光电二极管的亮度、能效、可靠性、寿命等性能也将不断提高,以满足市场需求。
总之,光电二极管作为一种重要的光电设备,在通信、照明、显示器等众多领域中都具有广泛的应用前景。
它的发展趋势也非常明显,未来有望更好地满足人们对于光明的需求。
APD芯片介绍以及应用
APD芯片介绍以及应用APD芯片即雪崩光电二极管(Avalanche Photodiode)芯片,是一种用于光电转换的器件。
与一般的光电二极管(PD)相比,APD芯片具有更高的增益和更高的灵敏度,能够检测较低强度的光信号。
本文将介绍APD芯片的工作原理、特点以及主要应用领域。
首先,我们来了解APD芯片的工作原理。
APD芯片内部包含一个P-N结构的高掺杂区,该区域被称为雪崩区。
当光子进入APD芯片时,它们会激发出电子和空穴对。
在高电场的作用下,这些电子和空穴会加速,形成电子雪崩和空穴雪崩效应。
这种雪崩效应会引起更多的电子和空穴对生成,从而产生较高的电流。
因此,APD芯片能够放大和检测较弱的光信号。
APD芯片的特点主要包括以下几个方面。
首先,与普通PD相比,APD芯片具有更高的增益。
普通PD的增益通常在10左右,而APD芯片的增益可以达到几百或上千倍。
这意味着APD芯片可以检测到较低强度的光信号。
其次,APD芯片具有更高的灵敏度。
这是因为APD芯片利用雪崩效应放大了光信号,增加了光电流。
此外,APD芯片还具有高速响应、低噪声和宽波长响应范围等特点。
APD芯片在许多领域有着广泛的应用。
首先,在光通信领域,APD芯片被广泛应用于光纤通信系统中的光接收机。
其高增益和高灵敏度使得APD芯片能够接收到远距离传输的光信号,并保持较低的误码率。
其次,在光电子领域,APD芯片被用于激光雷达系统中的目标检测和跟踪。
由于APD芯片的高增益和灵敏度,它能够检测到较远距离的目标,并提供更准确的测量结果。
此外,APD芯片还被应用于光谱分析、医学成像和科学研究等领域中。
总结起来,APD芯片是一种具有高增益和高灵敏度的光电转换器件。
通过利用雪崩效应,APD芯片能够放大和检测较弱的光信号。
其在光通信、光电子和其他领域中的广泛应用,使得APD芯片在现代科技中起着重要的作用。
随着科技的不断发展,相信APD芯片将会在更多领域中展示其优势,推动技术的进步与创新。
APD光电二极管特性测试实验
APD光电二极管特性测试实验一、实验目的1、学习掌握APD光电二极管的工作原理2、学习掌握APD光电二极管的基本特性3、掌握APD光电二极管特性测试方法4、了解APD光电二极管的基本应用二、实验内容1、APD光电二极管暗电流测试实验2、APD光电二极管光电流测试实验3、APD光电二极管伏安特性测试实验4、APD光电二极管雪崩电压测试实验5、APD光电二极管光电特性测试实验6、APD光电二极管时间响应特性测试实验7、APD光电二极管光谱特性测试实验三、实验仪器1、光电探测综合实验仪 1个2、光通路组件 1套3、光照度计 1台4、光敏电阻及封装组件 1套5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、三相电源线 1根8、实验指导书 1本9、示波器 1台四、实验原理雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。
雪崩光电二极管能够获得内部增益是基于碰撞电离效应。
当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。
碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。
图6-1为APD的一种结构。
外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。
APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。
图4的结构为拉通型APD的结构。
从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract
APDmeansAvalanche Photodiode. The photodiode’s P-N junction absorption photon incident can be formed the light current whhe photodiode is widely used in EMC test, bioluminescence detection, laser imaging system, laser ranging, laser radar, laser gyro, infrared detection, and metal ore selection etc. Based on the analysis of the working principle of APD, this paper shows the testing of the APD’s dark current of photodiode dark current, photocurrent, volt ampere characteristics, avalanche voltage, optical characteristics, and spectral characteristics in the laboratory.Finally, a photosensitive switch circuit controlled by MCU was designed and debugged successfully in the laboratory.
Key words:APD;Photoelectric characteristics test;Semiconductor;MCU
第一章
1.1
光探测技术在当今时代是普遍应用的,并且改变着现代人类传递和接收信息的方式。其中雪崩光电二极管(APD)更是一种广泛应用的光电子器件,主要应用于工业、医疗、航空航天以及科学研究等领域,包括光通信、激光测距[1]、深空激光通信、时间光子分辨计数、量子密钥分配、激光成像[2],经常被作为一种前置放大器使用。事实上,目前的光通讯系统前置放大器的设计往往采用APD基的接收器而非以前传统的PIN二极管和掺铒光纤放大器的组合。APD之所以在光通信领域应用广泛,是因为APD具有较高的内部增益,在一些高速系统中可以提高接收器的灵敏度。
特别是伴随着近年来光通讯领域的迅猛发展,尤其是1064nm波段YAG激光器的技术成熟和广泛应用,使得对近红外波段的光探测器件的需求越来越大,进而对APD在近红外波段的高敏感度的探测提出了迫切要求。但遗憾的是基于硅禁带宽度较大的固有缺陷,使得传统的硅基APD在近红外波段的响应度一直没能满足人们的需求。
学生:XXX指导教师:XXX
接受任务时间2014.01.18
教研室主任(签名)二级学院院长(签名)
1.毕业设计(论文)的主要内容及基本要求
1)学习APD光电二极管的工作原理;
2)理解APD光电二极管的各项参数指标并测试各项参数如:暗电流、伏安特性、雪崩电压、光谱特性等;
3)设计利用APD光电二极管的相关检测电路并实际制作硬件;
因此,拓宽硅基光电探测器件的探测波长范围及探测效率,不仅成为一个较为热点的研究领域,引起了各国科研工作者的兴趣,同时也成为光通信领域迫切需要克服的难题,是市场应用所需迫切解决的问题。最近几年人们尝试了各种方法来提高Si基APD的近红外探测效率,其中有增加Si基APD吸收层的厚度从而提高光子在Si中的吸收,然而随着APD体积的增加,不但提高了近红外处的量子效率,同样增加APD器件的暗电流和噪声,也提高了APD的响应时间,所以用这种方法提高APD近红外的敏感率并不是最好的方法。还有一种方法就是在APD器件表面设计一层防反射层,这层防反射层可以使入射光在APD器件的表面发生多次反射,从而增加了透入到器件内部的光子,也不会增加APD器件的体积,但是这种方法对工艺制作流程要求严格,成本较高,虽然能提高器件的整体效果但依然不能将1064nm处的光探测效率提高到理想的程度。
4)撰写毕业论文,参加答辩。
2.指定查阅的主要参考文献及说明
[1]Jerald Graeme.光电二级管及其放大电路设计[M].北京:科学出版社. 2012.8
[2]史玖德.光电管与光电倍增管[M].1981年
[3]黄德修.半导体光电子学(第二版)[M].北京:电子工业出版社,2013.1.
[4]安毓英.光电子技术[M].北京:电子工业出版社,2012.12.
2004年美国哈佛大学E.Mazur等人将这种经过微处理的硅基材料应用于雪崩光电二极管(APD),将1100nm波长处的吸收量子效率提高到58%。不久,Richard A. Myers等人也研究了经过飞秒激光微处理后的硅基APD在近红外波段的量子响应效率,2006年发表的文献得出了与E. Mazur等人基本一致的结论。与此同时,日本滨松也致力于将“黑硅”这种材料应用于提高APD近红外增强,并做出了相关产品。
由于硅半导体工艺技术业已完善成熟,特别容易与其他微电子器件结合,而且在制作硅基半导体器件时的Si薄膜材料有晶体型,无定型和多孔型等多种形式,应用灵活方便。因此硅基光电探测器对于探测波长为200nm-900nm的波段应用越来越普遍,而且在这个波段Si基光电子探测器的响应度比较高,但是随着波长的增加到1000nm左右的时候器件敏感响应度会很低。
各项参数如:暗电流、伏安特性、雪崩电压等
2014.4.1-4.25
4
设计利用APD光电二极管的相关检测电路
2014.4.26-4.31
5
制作调试所设计的电路
2014.5.10-5.20
6
撰写论文
2014.5.21-6.4
7
准备论文答辩
2014.6.5-6.10
注:本表在学生接受任务时下达
APD -Avalanche Photodiode称为雪崩光敏二极管,在光电二极管的P-N结上加上反向偏压,则入射的光子被P-N结吸收后就会形成光电流。雪崩光敏二极管广泛应用于电磁兼容测试、生物发光检测、激光成像系统、激光测距、激光雷达、激光陀螺、红外探测、金属矿石选择等领域。本文在分析APD工作原理的基础上,在实验室实际测试了APD光电二极管的暗电流、光电流、伏安特性、雪崩电压、光电特性、光谱特性等。最后设计了一个通过单片机控制并显示的光敏开关电路,在实验室调试成功。
[5]王庆有.光电传感器应用技术[M].北京:机械工业出版社,2007.10.
[6]其他:可网上搜索查找相关中文和外文文献。
3.进度安排
设计(论文)各阶段名称
起止日期
1
查阅文献资料,确定方案,写文献综述
2014.1.18-3.20
2
学习APD光电二极管的工作原理
2014.3.21-3.30
3
理解APD光电二极管的各项参数指标并测试
图1-1日本第一个雪崩光电二极管简图
Fig.1-1 The first APD diagram of Japanse
图1-2 Mcintyre和Haitz发明的APD简图
Fig.1-2 The APD of Mcintyre and Haitz invented
第一个Geiger模式的APD的性能尽管并不很理想,但是它在几个反向偏电压下已经能够探测出单光子,此项研究奠定了对APD器件深入研究的基础。这种雪崩光电二极管称为单光子雪崩光电二极管(SPAD),随后由Perkin-Elmer发明了SLIKTM结构,不久由RMC公司设计出了单光子雪崩光电二极管阵列。
四川理工学院毕业设计(论文)
APD光电管的特性测试及应用研究
学生:XXX
学号:XXX
专业:物理学
班级:2010.1
指导教师:XXX
四川理工学院理学院
二O一四年六月
附件1:四川理工学院毕业设计(论文)任务书
四川理工学院
毕业设计(论文)任务书
设计(论文)题目:APD光电管的特性测试及应用研究
系:物理专业:物理学班级:2010级1班学号:
制约硅基APD在近红外方向特别是1064nm波段发展的原因有两个,第一,硅的禁带宽度是1.12eV,从而导致硅对1100nm处光的吸收截止。Si是间接带隙材料,在300K时硅的禁带宽度是1.12eV。因此硅的吸收截止波长是1100nm。从而导致由间接半导体材料制做的APD器件在截止波长附近吸收效率非常低。为了使硅基APD在1064nm处获得较高的量子效率,人们研发出使用其它半导体材料(锗、铟或者砷化镓)制作光电子器件,但是这些材料的光电子器件暗电流和噪声比较高,价格昂贵,而且与硅的晶格不匹配。或者改变硅基APD的结构设计,还可以使用飞秒激光微构造技术,来改变硅在近红外处的光吸收特性。第二,APD制造工艺过程中必须引入尽可能少的缺陷以减少暗电流,从而保证器件具有较高的信噪比。
图1-5改进后的APD在650nm~1200nm波段的量子效率
Fig.1-5 Quantum efficiency of the improvedAPDwhosewavelengthis between650nm to1200nm
总之,拓展硅基APD器件的敏感波段,并提高硅基APD近红外敏感探测量子探测效率,越来越成为近年来急需研究解决的问题。
1.2
1.2.1 APD
一个世纪以前光探测技术就已经存在于人们的生产和生活当中,并且改变着人类传递和接收信息的方式。光探测器可以分为三大种:光电倍增管(PMT),光电导元件及光电二极管。早在1913年Einstein发明光电功函数不久,探测弱光信号成为可能,大概20年后,在RCA实验室发明了第一台光电倍增管并于1936年投入市场,从此以后单光子探测成为可能。从此以后光电子器件的发展越来越趋于成熟,第一台硅基雪崩光电二极管实现于六十年代后期,由CRA公司的Mcintyre和Haitz在肖克利实验室完成。第一个关于雪崩光电二极管的专利授予在六十年代末,七十年代初。紧接着日本于1972年也发表了相关专利,那时雪崩光电二极管已经开始按照它们的工作方式分为线性的和盖革模式。下图1-1即为日本首发的固态单光子雪崩光电二极管。图1-2是Mcintyre和Haitz首次发明的APD简图。