血流动力学基础
血流动力学监测基础
前负荷-左心
间接测量
左房压( LAP ) 肺嵌压(PAOP) 肺动脉舒张压(PAedp)
左室前负荷∝
肺嵌压(PAOP) =左房压( LAP ) =肺动脉舒张压(PAedp)
后负荷
收缩期,心脏所承受的负荷或压力
收缩期测量
后负荷
多因素影响
心室收缩所遇到的阻力
后负荷
后负荷-右心
间接测量
肺动脉舒张压=肺嵌压≈左室舒张压
收缩期
肺动脉收缩压=右室收缩压
主动脉收缩压=左室收缩压
肺动脉收缩压=右室收缩压
主动脉收缩压=左室收缩压
PAC的作用
评价左右心室功能
利用PAOP评价肺充血情况 评价心输出量和组织氧合
PAC的作用
诊断
指导治疗 监测治疗反应 评价氧输送
组织氧合
氧输送 氧需
氧输送(DO2)
心输出量(CO)
×
动脉氧含量
心输出量(CO)
心率
×
每搏输出量(SV)
每搏输出量(SV)
心脏每次收缩的射血量
正常值为50-100ml/搏 左心室SV=右心室SV
Example
HR100bpm(
SV=50 CO=50×100(ml/beat
肺动脉血管阻力 (pulmonary vascular resistance,
PVR)
后负荷-左心
间接测量
全身血管阻力 (systemic vascular resistance, SVR)
心肌收缩力
临床监测困难
氧输送(DO2)
心输出量(CO)
×
动脉氧含量
动脉氧含量(CaO2)
血流动力学基础
二、流体能量和柏努力方程
在血流动力学中,遵循能量守恒定律,它是由柏努利方程(Emoulli equation)来描述的。
1)流体能量:理想流体在流管中作稳定流动时,其流体能量为单位体积的压强P、动能1/2ρv2和势能ρgh之和为一常数,他们之间可以互相转换。
E=P + ρgh +1/2ρv2=常数
10、湍流流动:当血流在血管中流动遇到阻塞时,障碍物对流体产生加速和瀑乱的旋涡喷射,血流运动变化反复无常,这便形成湍流。在湍流状态时,流体万分间相互错杂交换。此时压差和流率之间不遵循泊肃叶流体定律。
在心血管系统疾患中,湍流常发生于血流从高压心腔经过窄孔进入低压心腔时,如狭窄瓣口、狭窄隔膜、返流瓣口、异常缺损或分流通道。当血流经过窄孔时,血流分布可分为射流区、湍流区、射流旁区、边界层和再层流化区等几部分。
上式称为理想流体的柏努利方程。
2)狭窄处血流动力学:在狭窄口两端的压力阶差,可用简化的柏努利方程来测算。当血流经过狭窄口时,流速和压强均要发生变化。
ΔP=4V2 2 即为简化的柏努利公式
简化柏努利方程不仅用于计算狭窄口的压差,还用于解释动态压强对于血流梗阻的影响;红细胞的轴向集中;弯曲血管中的流速分布。
4、流率:流率系指单位时间里的流体体积。即 q = A·V=t
当流体匀速流动时,流率等于管腔横截面积与流速的乘积。在非匀速流动时,流速qI = A·VI
即流率等于横截面积和瞬时流速的乘积。
流率的单位是流量/时间,常用ml /s 或L/min表示。
当流体流动时,由于粘性作用,流体各处的速度出现差异。在圆筒形容器中,形成层流状相互滑落。
由于通过管腔的流量不变,面积的扩大必然导致流速的减低。
血流动力学基础解读课件
04
血流动力学异常与疾病
高血压与血流动力学
高血压与血流动力学异常密切相关,高血压会导致血管阻力增加,心脏负担加重, 进而引发一系列心血管疾病。
高血压患者的血流动力学异常主要表现为血管阻力增加、心输出量增加、外周阻力 增大等,这些因素相互作用,加剧了高血压对心血管系统的损害。
个体化血流动力学研究
根据个体差异,开展个体化的血流动力学研 究,为临床治疗提供更有针对性的方案。
血流动力学在医学领域的应用前景
心血管疾病诊疗
通过血流动力学监测,评估心血 管疾病的病情和预后,为治疗提 供依据。
重症医学应用
在重症患者中,血流动力学监测 对于评估病情、指导治疗具有重 要意义。
药物研发与评价
热稀释法
在导管头端加热一定量生 理盐水,通过温度变化计 算心输出量。
血气分析
抽取动脉血液样本,分析 氧气和二氧化碳浓度,了 解氧合状态。
动态监测技术
连续心输出量监测
通过放置在心脏的传感器,实时监测心输出量和血流 动力学参数。
生物阻抗分析
利用电学原理测量身体阻抗变化,评估体液分布和循 环血量。
多普勒超声
血流动力学基础解读课件
• 血流动力学概述 • 血流动力学基础知识 • 血流动力学监测技术 • 血流动力学异常与疾病 • 血流动力学治疗与干预 • 血流动力学研究展望
01
血流动力学概述
定义与概念
总结词
血流动力学是研究血液在心血管系统 中的流动和压力变化的一门科学。
详细描述
血流动力学主要关注血液在心血管系 统中的流动特性、压力分布、血流量 、血管阻力等参数,以及这些参数之 间的相互关系和影响。
血流动力学基础知识点概括
前期科研训练第三周总结流体力学理论概述流体力学: 力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。
流体的连续介质模型:1.流体质点(Fluid Particle )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
2.连续介质(Continuum Medium ):质点连续地充满所占空间的流体和固体。
3.连续介质模型(Continuum Medium Model ):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有物理量都是空间坐标和时间的连续函数的一种假设模型。
流体的性质1、流体的惯性惯性(Fluid In ertia):指流体不受外力作用时,保证其原有运动状态的属性。
惯性和质量有关,质量越大,其惯性就越大。
单位体积流体的质量称为密度(Density ),以表示,单位/对于均质流体,设其体积为V,质量为m,则其密度为:(1.1)对于非均质流体,密度随点而异。
若取包含某点在内的体积为^ V,其中质量为△ m,贝y该点的密度需要用极限的方式表示,即(1.2)2、流体的压缩性压缩性(Compossibility)作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。
压缩性(Compressibility)可用体积压缩率k来量度:k=(1.3)其中:P为外部压强。
在研究流体流动过程中,若考虑到流体的压缩性,则称为可压缩性流动,相应地称流体为可压缩流体,例如高速流动的气体。
若不考虑流体的压缩性,则称为不可压缩流动,相应的流体为不可压缩流体,如水、油、血液等。
3、流体的粘性一牛顿流体和非牛顿流体粘性(Viscosity )指在运动的状态下,流体所产生的抵抗剪切变形的性质。
粘性大小由粘度来量度。
流体的粘度是由流体流动的内聚力和分子的动量交换所引起的,粘度有动力粘度和运动粘度V之分。
血流动力学基础知识
血流动力学基础知识
休克
定义:有效循环血容量明显下降,引起组织器官低灌注,造成组织器官缺氧;
休克
急性循环衰竭
氧输送障碍
Sc/vO2下降
氧利用障碍、细胞缺氧
乳酸增加
©2020瑞呼吸大讲堂
休克分类
©2020瑞呼吸大讲堂
MAP=CO*SVR
分布性休克
分布性休克的循环衰竭是相对的循环衰竭,此时的心排量是高于正常的,但是由于外周循 环的扩张造成组织灌注不足;
➢ 心功能异常合并CO下降,优先补液再使用血管活性药物; ➢ 仅有心功能异常不需要使用强心药物;
评价容量反应性
➢ PLR; ➢ SVV/PPV; ➢ 不是有容量反应性就需要补液
©2020瑞呼吸大讲堂
生化指标
➢ 血乳酸 ➢ SVO2/SCVO2
血流动力学 ➢ MAP=CO*SVR
©2020瑞呼吸大讲堂
休克和血流动力学
休克
鞭抽病牛
急性循环衰竭
微循环 大血管 心脏
液体复苏
©2020瑞呼吸大讲堂
前负荷
细胞氧利用障碍
目前无有效手段 血管活性药物 正性肌力药物 改善心输出量
目前无有效手段
改善组织灌注
对于感染性休克,组织的氧利用障碍加重了病情的进展
MAP=CO*SVR
分布性休克由于SIRS造成外周血管扩张,张力性容量下降,为 了维持灌注压力,机体代偿性增加心排量;
冷休克则是由于心排量下降,机体为了维持灌注压力则代偿性 收缩血管;
©2020瑞呼吸大讲堂
休克诊断
临床表现
➢ 组织低灌注:皮肤粘膜、神志、尿量 ➢ 低血压非必备条件(注意个体化)
休克和血流动力学
血流动力学基础解读ppt课件
中Hale Waihona Puke 静脉压(CVP)里程碑之一▪ 血液流经右心房及上、下腔静脉胸腔段压力。
1959 ,Hughes and Magovern 首次 描述了测量CVP的方法,并用来指 导液体治疗。
至今 CVP 成为血容量指标,用来 指导液体治疗。
17
Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012
▪ 但此时的中心静脉压值仅是初始压力,并 不是意味着在血流动力学治疗中需要维持 高的中心静脉压。
31
▪ 动态阶梯性液体复苏策略包括早期扩容、 维持容量状态和递减治疗(包括脱水治疗), 也提示维持较低中心静脉压的重要性。
▪ 越来越多的研究发现,过于激进的液体复 苏导致液体过负荷,从而使得无论是严重 感染、外科手术或外伤以及胰腺炎的患者 病死率和致死率升高。
11
▪ Boyd发现,液体正平衡超过4 d或第12天仍 在正平衡、中心静脉压升高至大于12 mmHg超过12 h,感染性休克患者的病死率 明显升高。
▪ 近期关于感染性休克复苏的ProCESS研究 显示,感染性休克患者的病死率远低于早 期目标指导治疗(EGDT)研究,相比2个研 究发现,ProCESS研究复苏所用的液体量较 EGDT研究少,中心静脉压较EGDT研究低。
▪ 肺容积减少时,由于肺泡外血管急剧扭曲 而倾向于塌陷;同时,周边气道塌陷引起 的肺泡缺氧导致缺氧性肺血管收缩。这两 方面因素导致PVR、肺动脉压升高,右室射 血阻力增加。
45
恰当的肺复张与通气策略可改善 右心功能,改善血流动力学状态
血流动力学基础
血流动力学基础血流动力学是指血液在循环系统中运动的物理学,通过对作用力、流量和容积三方面因素的分析,观察并研究血液在循环系统中的运动情况。
血流动力学监测是指根据物理学的定律,结合生理或病理生理学概念,对循环系统中血液运动的规律进行定量的、动态的、连续的的测量和分析,并将这些参数反馈性用于对病情的发展的了解和对治疗的指导。
血流动力学的发展史上具有里程碑意义的是应用热稀释法测量心输出量的飘浮导管(Swan-Ganz Cather)的出现,从而使得血流动力学指标更加系统化和具有对治疗的反馈性指导。
对任何原因引起的心理动力学不稳定以及氧合功能的改变,或存有可能引起这些改变的危险因素的情况,都有指征应用Swan-Ganz导管。
一、无创血流动力学监测无创血流动力学监测是应用对机体组织没有机械损伤的方法,经皮肤或粘膜等途径间接获取有关资料。
(一)心率(二)心电图(三)无创血压(四)心排血量和心功能1.心阻抗血流图(ICG)2.超声心动图3.多普勒心排血量测定4.二氧化碳无创心排血量测定二、有创血流动力学检测有创血流动力学检测是指经体表插入各种导管或探头到心腔或血管腔内,利用各种检测仪或监测装置直接测定各项生理学参数。
(一)中心静脉压测定是测定位于胸腔内的上下腔静脉近右心房入口处的压力,主要反映右心室的前负荷。
1.适应症包括(1)休克、失血、血容量不足等危重病人的手术麻醉;(2)较大、较复杂的颅内手术;(3)术中需要大量输血、血液稀释的病人;(4)麻醉手术中需施行控制性降压、低温的病人;(5)心血管代偿功能不全或手术本身可以起血流动力学显著变化的病人;(6)脑血管舒缩功能障碍的病人;2.禁忌症包括(1)凝血机制严重障碍者避免进行锁骨下静脉穿刺;(2)局部皮肤感染者应另选穿刺部位;(3)血气胸病人避免行颈内以及锁骨下静脉穿刺;3.置管部位围手术期监测CVP最常用的部位是右侧颈内静脉、锁骨下静脉、左颈内静脉及股静脉也常被选用;4.测压方法有换能器测压和水压力计测压两者。
ICU基础课5-血流动力学基础
Page 18
动脉血压(BP)、心输出量(CO)、外周阻力 (PVR)三者之间的关系: BP=CO×PVR
Page 19
SVR与PVR在临床上经常被测量,以此反映心室 后负荷。实际上这是不准确的。原因如下:
1.血管阻力是心室后负荷的一小部分,主要部分 反映在大血管的顺应性上;
Page 2
1.人体有100trillion细胞需要与外界进行物质交换 以维持活力,这个过程由循环流动的血液来完成;
2.心脏每天泵出8000升血液进入血管系统;全身 血管的总长度加起来超过60000英里(超过地球 周长的两倍);
3.本课主要讲解两个问题,第一是血流动力学的 基本参数,第二是心输出量的测量。
压意义同RAP.
6.肺动脉压(PAP)
正常值:收缩压2.00~3.33kPa(15~25mmHg),舒张压1.07~
1.87kPa(8~14mmHg),平均压1.33~2.67kPa(10~20mmHg)。
Page 21
外周血流(末梢血流)
人体的末梢毛细血管总长度达60000英里; 提醒:我们所学习到的关于微循环的知识都是基
于以下模拟: 1.微循环的血流是规则的层流; 2.微血管都是不可压缩的、刚性的血管; 实际情况下:很多时候微循环的血流也是搏动性
的、不规则的喘流;微血管也是可压缩的、非刚 性的血管。
Page 31
四腔导管
Swan-Ganz漂浮导管 (四腔:血压、指示剂、 温度传感器、漂浮气囊)
Page 32
导管从心室进入主动脉过程中的血压波形 的变化
Page 33
热稀释法测量心输出量
热稀释采用冷生理盐水作为指示剂,具有热敏电阻的 Swan-Ganz漂浮导管作为心导管。热敏电阻置于肺动 脉,向右心房注入冷生理盐水。心输出量可由 Stewart-Hamilton方程确定:
血流动力学学习-心功能基础理论
血流动力学学习-心功能基础理论血流动力学是应用物理学的理论,结合生理和病理生理学知识对循环系统的功能及其相关因素进行研究,因其应用于临床监测及反馈性指导治疗而称为血流动力学支持。
因此,临床进行血流动力学支持不仅要掌握医学的基础知识,而且要理解物理学的相关概念。
根据血流动力学的特点,可以把循环系统分为阻力血管、毛细血管、容量血管、血容量和心脏五个部分。
在这五个部分当中,心脏作为动力源,维持着血液在循环系统巾的运动。
所以,血流动力学的基本原理多是从心脏的角度出发,观察并研究五个部分的相互影响。
心功能基础理论心脏是一个由心肌组织构成并具有瓣膜结构的空腔器官,是血液循环的动力装置。
生命过程中,心脏不断做收缩和舒张交替的活动,舒张时容纳静脉血返回心脏,收缩时把血液射入动脉,为血液流动提供能量。
通过心脏的这种节律性活动以及由此而引起的瓣膜的规律性开启和关闭,推动血液沿单一方向循环流动。
心脏的这种活动形式与水泵相似,因此可以把心脏视为实现泵血功能的肌肉器官。
其功能包括收缩功能和舒张功能两方面。
一、心脏收缩功能及影响因素心脏在循环系统中所起的主要作用就是泵出血液以适应机体新陈代谢的需要,不言而喻,心脏输出的血液量,即心输出量是衡量心脏收缩功能的基本指标。
其直接受到心率和每搏输出量的影响,等于心率和每搏输出量的乘积,其中每搏输出量取决于心脏的前负荷、后负荷及心肌的收缩力。
心脏收缩功能反映的是心室前负荷、后负荷、心肌收缩能力及心率等变数的综合效果。
以下对各因素的作用分别进行阐述。
心脏前负荷1.Starling理论心脏的前负荷是指心室在舒张末期所承担的负荷,Frank及Starling等人将其表述为心肌收缩的初长度。
心脏的前负荷可以用压力负荷或容量负荷表示,是心输出量的重要影响因素。
前负荷通过改变初长度来调节每搏量的作用称为异长自身调节( heterometric autoregulation),并提出了“心肌收缩产生的能量是心肌纤维初长度的函数”,这就是Frank-Starling定律,简称Starling定律。
高血压血流动力学基础
血管的神经支配:
交感神经缩血管纤维:支配大多数器官血管,尤其是小动脉。 释放去甲肾上腺素,作用于血管平滑肌α受体,使之收缩,口 径变小:小动脉收缩,可使外周阻力加大,血压升高; 小静脉收缩,可使回心血量增加,提高心输出量。
交感神经舒血管纤维和副交感神经舒血管纤维,支配部分器 官血管,释放乙酰胆碱,作用于M受体,使血管舒张,局部 器官血流量增加,但对全身动脉血压影响不大。
高血压的血流动力学基础
江苏建康职业学院
张日新
一、血管的功能分类
1. 大动脉 丰富的弹力纤维,弹性贮器血管; 2. 中动脉 较丰富平滑肌, 分配血管;
3. 小动脉和微动脉 平滑肌,阻力血管;
4. 毛细血管 内皮细胞, 交换血管(营养血管);
5. 静脉 平滑肌、胶原纤维,容量血管(60-70%)。
二 、血流量、血流阻力和血压
Pa=Q· R
血管紧张素原(肝) 血量↓ (血压↓) 肾入球小动脉牵张感受器+ 致密斑Na+感受器+ 交感神经+、儿茶酚胺↑ 血压↑ 儿茶酚胺↑ 转 换 酶 抑 制 剂 肾近球细胞+ 肾素↑
肾上腺髓质
血管紧张素Ⅰ(10) 转换酶
血管紧张素受体阻断剂
心输出量↑
回心血量↑
外周阻力↑
β受体阻断剂
血管平滑肌收缩
P0 - P1 Q =————— R Pa Q =————— R
则:
进一步可推出:
Pa=Q· R
动脉血压是心输出量和外周阻力相互作用的结果。
根据流体力学公式: 8 ℓη R=————— πr 4 其中: ℓ为血管长度,可视为常数; η为血液粘滞性;r为血管半径; η R ∝ ———— r4
则:
血流动力学基础图解:值得一看!
血流动力学基础图解:值得一看!跳动的心脏是流动的血流的源动力,对心脏功能的了解是血流动力学治疗的基础。
心脏射血受到动脉和静脉回流等因素影响,如何保证心输出量呢?这就需要了解左心室功能、左心室容量-压力环的特点、左心室-大动脉偶联、静脉回流情况。
可以通过以下几张图来加深,一起来吐槽吧!最后一张图很重要哦!1图1:经典的心功能曲线横坐标代表前负荷,纵坐标代表心输出量。
前负荷指标可以是心肌舒张末期容积、右房压、中心静脉压。
心功能曲线表明,心脏前负荷增加,心输出量增加。
这条曲线随着前负荷增加,逐步趋于平缓。
在曲线平缓阶段,前负荷增加心输出量增加不显著。
心肌收缩力增加、心脏顺应性增加、后负荷降低都会让心功能曲线左移。
2图2.心肌长度-收缩力关系和阶梯现象正常情况下,心肌肌丝初长度越长,心肌收缩力越大。
在心肌细胞受到一次刺激收缩后,如果在不应期外再次受到刺激,心肌会释放更多的钙离子,导致心肌收缩加强。
图中横坐标代表心肌被动拉伸长度,纵坐标代表心肌肌力,空心圆圈代表没受到电刺激时候心肌初长度拉长后压力变化,实心圆圈代表受到刺激后心肌拉长长度和肌力的变化,三角形代表在一次刺激之后给予额外刺激,引起的心肌肌力增加。
图片表明,心肌初长度增加后受到电信号刺激,会引起心肌肌力增加,给予额外刺激后,心肌肌力会继续增加。
延伸出一个阶梯现象理论:心率越快,心肌收缩力越强。
但是需要知道的是,心率增快,心肌做功增加,氧耗增加,心脏舒张末期容积可能会因为充盈时间减少而降低。
3图3.改良的心功能曲线将经典的心功能曲线横坐标改为左心室舒张末期压力,纵坐标改为左心室每博功,同样可以得到一个心功能曲线。
对于正常心功能来说,左心室舒张末期压力增加,左室搏功增加,但是对于心肌收缩力下降的患者来说,这种增加不明显。
对于心功能较强的患者来说,这种增加显著。
还有以下其他的改良,比如横坐标改为CVP,纵坐标改为心输出量。
无论哪种改良,都反应了心肌异长自身调节功能。
血流动力学基础解读59页PPT
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读人充实,会谈使人敏捷,写作使人精确。——培根
血流动力学基础解读
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
血流动力学基础解读_图文
结论
CVP与血容量的相关性差; CVP不能预测对液体冲击的反应; 不应根据CVP进行液体管理。
动态阶梯性液体复苏策略包括早期扩容、 维持容量状态和递减治疗(包括脱水治疗), 也提示维持较低中心静脉压的重要性。
越来越多的研究发现,过于激进的液体复 苏导致液体过负荷,从而使得无论是严重 感染、外科手术或外伤以及胰腺炎的患者 病死率和致死率升高。
静脉回流( VR : venous return)=CO
RVR : the resistance to VR.
当右房压等于零时,VR不再继 续增加。
(MCFP -RAF)为VR的唯一动力。
当右房压 等于MCFP 时,VR为 零。
液体复苏对静脉回流的影响
1)Pms 2)CVP 3)RVR
容量过负荷的风险
Boyd发现,液体正平衡超过4 d或第12天仍在 正平衡、中心静脉压升高至大于12 mmHg超过 12 h,感染性休克患者的病死率明显升高。
近期关于感染性休克复苏的ProCESS研究显示, 感染性休克患者的病死率远低于早期目标指导 治疗(EGDT)研究,相比2个研究发现, ProCESS研究复苏所用的液体量较EGDT研究 少,中心静脉压较EGDT研究低。
b) MAP ≥ 65 mm Hg c) Urine output ≥ 0.5 mL·kg·hr d) Superior vena cava oxygenation saturation (Scvo2)
or mixed venous oxygen saturation (Svo2) 70% or 65%, respectively.
至今 CVP 成为血容量指标,用来指 导液体治疗。
Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012
高血压的血流动力学基础
血管内皮功能障碍与高血压
01
血管内皮细胞的功能
血管内皮细胞具有调节血管张力、抗凝、抗炎、抗氧化等多种生理功能。
02
血管内皮功能障碍与高血压的关系
血管内皮功能障碍导致血管舒张功能减弱,收缩功能增强,使得血压升
高。同时,内皮功能障碍还可促进动脉粥样硬化的发生和发展。
03
血管内皮功能障碍的危险因素
包括高血压、高血脂、糖尿病、吸烟等,这些因素可直接或间接损伤血
高血压的血流动力学基础
目 录
• 血流动力学概述 • 心脏功能与高血压 • 血管系统与高血压 • 血液成分与高血压 • 神经体液调节与高血压 • 血流动力学在高血压治疗中应用
01 血流动力学概述
定义与基本原理
血流动力学是研究血液在心血管系统 中流动的一系列物理学和生理学问题 的科学。
血流动力学涉及血液的黏滞性、血管 的弹性与阻力、心脏的泵血功能等因 素。
血压压力感受器敏感性降低
位于颈动脉窦和主动脉弓的压力感受器可感知血压变化,并通过神经反射调节 心血管活动。若其敏感性降低,则对血压升高的缓冲作用减弱,易导致高血压。
肾素-血管紧张素系统激活与高血压
肾素分泌增加
肾素是肾小球旁器分泌的一种蛋白水解酶,可激活血管紧张素原生成血管紧张素Ⅰ,进而在血管紧张素转换酶作 用下生成具有强烈缩血管作用的血管紧张素Ⅱ,导致血压升高。
03
包括生长因子、细胞因子、血管活性物质等,这些因素可促进
或抑制血管平滑肌细胞的增殖和肥大。
04 血液成分与高血压
红细胞增多与高血压
红细胞数量增加
红细胞增多时,血液粘稠度增高,血 流阻力增大,易导致高血压。
红细胞变形能力下降
红细胞变形能力下降时,难以通过微 循环毛细血管,影响组织器官的灌注, 同时增加血流阻力,引起血压升高。
血流动力学入门
11血流动力学入门血流动力学的目标▪ 评估组织水平氧运输和氧需求间的平衡▪ 应用所得信息来最优化氧供来满足组织代谢的需要 ▪ 评价氧运输血流动力学监测的目的▪ 预防:早期鉴别高危病人从而最优化到组织细胞的氧运输 ▪ 诊断:血流动力学参数 用于诊断 ▪ 管理:血流动力学参数用于指导治疗- 评估左心功能 (间接) - 评估肺部的状况 - 评估右心功能- 评估氧运输/氧需求平衡 - 评估测定的容积状况 (前负荷) -衍生参数的应用动脉氧运输 (DO 2) =心排量 (CO) x 动脉氧含量 (CaO 2)心排量 =每搏量 (SV) x 心率CaO 2 =Hgb x SaO 2 x PaO 2心排量▪定义:心室每分钟的射血容量。
▪公式: Stroke Volume (SV) x Heart Rate (HR)▪正常心排量:4 – 8 升/分▪心排指数:-定义: CO ÷ BSA-正常值: 2.8 – 4.2 L/min/m2▪心率的影响-心动过缓-心动过速▪每搏量-定义:心室每次搏动射出的血液容量-决定因素◊前负荷◊后负荷◊收缩力围绕肺动脉(PAC)导管应用的争论▪1996 –“Connors” 研究: “右心导管和高死亡率相关。
”▪医师应用血流动力学参数的相关知识-1990: Iberti 研究-其它▪十二月– 1996 SCCM 肺动脉导管应用研究会议-印刷于1997 年7月– New Horizons-论点◊支持在危重病人中应用肺动脉导管的临床证据◊相关医师的知识◊缺乏标准的教育–最少必需的知识◊进一步的研究 / 需要应用结果研究▪现在:-PACEP = 肺动脉导管教育项目-应用结果研究-了解“无创技术”◊生物阻抗◊食道超声◊LITCO◊Pulsion肺动脉导管▪导管端口▪近端接口: 中止于距导管末鞘 30cm 处,开口于右心房-用于Bolus CO 注射, 液体管理, 药物治疗, 抽取血样▪VIP接口: 中止于距导管末鞘 31cm 处,开口于右心房-用于轮流Bolus CO 注射, 液体管理, 药物治疗, 抽取血样▪远端接口: 中止于导管末梢,位于肺动脉-测定 PA和 PAWP-混合静脉血抽样▪球囊接口: 球囊充气测 PAW, 导丝▪热敏电阻: 位于距导管末梢4cm处-测定肺动脉血液温度▪导入鞘的测接口: 用于液体和血液管理肺动脉压监测的适应症▪急性心肌梗塞伴右/左心室收缩力损害(通常伴严重心功能衰竭或心源性休克)▪充血性心衰伴低心排▪休克:感染性或低血容量▪ARDS▪心脏病人或心功能不全病人围手术期▪外伤▪评估容量状态▪大手术术后: 心脏手术, 腹部大血管手术, 其他外科大手术▪血管活性药物支持血流动力学监测的直接参数和衍生参数▪直接-右房压 (RAP / CVP)-肺动脉压 (PAP: S/D/M)-肺动脉阻断压/ 肺动脉楔压 (PAOP / PAWP)-右室射血分数-动脉压-混合血氧饱和度 (SvO2)-心排量 / 心排指数-每搏量▪衍生参数-体循环阻力 (SVR)-肺循环阻力 (PVR)-每搏功/ 每搏功指数–右和左-右室舒张末期容量 / 右室舒张末期容量指数 (EDV/EDVI)-右室收缩末期容量 / 右室收缩末期容量指数(ESV/ESVI)肺动脉导管的插入▪插入点:-颈内静脉-锁骨下静脉 (右与左)-股静脉-前臂静脉▪插入方法-经皮:导管通过导丝进入-切开 (极少采用)▪插入过程中观察波形变化:右房压-用于评估右心室前负荷-正常值◊新生儿: 0-3mmHg◊儿童: 1-5 mmHg◊成人:2-6 mmHg-右房波右室压-反映右心室压力/功能-正常值◊新生儿: 30-60/2-5mmHg◊儿童: 15-30/2-5mmHg◊成人: 15-28/0-8mmHg-波形用作导管位置的指南肺动脉压-反映肺血管床的压力◊肺动脉收缩压:反映右心室收缩力正常 = 15-25mmHg◊肺动脉舒张压:反映肺血管床的舒张压也用来间接测量左心“充盈”压正常 = 8-15mmHg◊肺动脉平均压 (PAM): 10-20mmHg新生儿儿童成人PAS 30-60mmHg 15-30mmHg 15-25mmHgPAD 2-10mmHg 5-10mmHg 8-15mmHgPAM 13-15mmHg 10-20mmHg 10-20mmHg肺动脉楔压 (Pawp/Paop)-用作左房/左室舒张期压力的间接指示(充盈)◊正常情况下,在心脏舒张期间,肺动脉导管尖端和左心室之间是开放的连续血流循环,因此,压力应该是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
血流动力学基础
血流动力学是指血液在循环系统中运动的物理学,通过对作用力、流量和容积三方面因素的分析,观察并研究血液在循环系统中的运动情况。
血流动力学监测是指根据物理学的定律,结合生理或病理生理学概念,对循环系统中血液运动的规律进行定量的、动态的、连续的的测量和分析,并将这些参数反馈性用于对病情的发展的了解和对治疗的指导。
血流动力学的发展史上具有里程碑意义的是应用热稀释法测量心输出量的飘浮导管(Swan-Ganz Cather)的出现,从而使得血流动力学指标更加系统化和具有对治疗的反馈性指导。
对任何原因引起的心理动力学不稳定以及氧合功能的改变,或存有可能引起这些改变的危险因素的情况,都有指征应用Swan-Ganz导管。
一、无创血流动力学监测
无创血流动力学监测是应用对机体组织没有机械损伤的
方法,经皮肤或粘膜等途径间接获取有关资料。
(一)心率
(二)心电图
(三)无创血压
(四)心排血量和心功能
1.心阻抗血流图(ICG)
2.超声心动图
3.多普勒心排血量测定
4.二氧化碳无创心排血量测定
二、有创血流动力学检测
有创血流动力学检测是指经体表插入各种导管或探头到心腔或血管腔内,利用各种检测仪或监测装置直接测定各项生理学参数。
(一)中心静脉压测定是测定位于胸腔内的上下腔静脉近右心房入口处的压力,主要反映右心室的前负荷。
1.适应症包括(1)休克、失血、血容量不足等危重病人
的手术麻醉;(2)较大、较复杂的颅内手术;(3)术中需要大量输血、血液稀释的病人;(4)麻醉手术中需施行控制性降压、低温的病人;(5)心血管代偿功能不全或手术本身可以起血流动力学显著变化的病人;(6)脑血管舒缩功能障碍的病人;
2.禁忌症包括(1)凝血机制严重障碍者避免进行锁骨下静脉穿刺;(2)局部皮肤感染者应另选穿刺部位;(3)血气胸病人避免行颈内以及锁骨下静脉穿刺;
3.置管部位围手术期监测CVP最常用的部位是右侧颈内静脉、锁骨下静脉、左颈内静脉及股静脉也常被选用;
4.测压方法有换能器测压和水压力计测压两者。
其体表零点位置,通常是第4肋间腋中线部位。
5.中心静脉压的意义中心静脉压的正常值为5-12cm H2O (0.392-1.177KPa);中心静脉压的高低取决于心功能、血容量、静脉血管张力、胸内压、静脉回心血量和肺循环阻力等因素,并反映右心室对回心血量的排除能力,但它不反映左心室功能和整个循环功能状态。
一般,CVP不高,补液和输血是安全的。
6.临床并发症有血肿、气胸、心包填塞、血胸、水胸、空气栓塞和感染等;
(二)床旁血流动力学监测
以Swan-Ganz导管为代表,主要用于循环功能障碍的危重病人,如急性心肌梗死、心源性休克、心力衰竭等;
Swan-Ganz气囊漂浮导管是进行肺动脉压(PAP)和肺毛细血管契压(PCWP)测量的工具。
全长110cm,每10cm 有一刻度,气囊距导管顶端约lmm,可用0.8~lml的空气或二氧化碳气充胀,充胀后的气囊直径约13mm,导管尾部经一开关连接一lml的注射器,用以充胀或放瘪气囊。
导管顶端有一腔开口,可做肺动脉压力监测,此为双腔心导管。
三腔管是在距导管顶部约30cm处,有另一腔开口,可做右心房压力监测。
如在距顶部4cm处加一热敏电阻探头,就可做心输出量的测定(近端孔注射4摄氏度以下的生理盐水或
5%葡萄糖溶液进入右心房,液体岁血流进入肺动脉,使肺动脉内血液温度发生变化,即可在心排量计算机屏幕上显示出心排量),此为完整的四腔气囊漂浮导管。
Swan-Ganz气囊漂浮导管的优越性在于以下四点:
1.可以测定肺动脉舒张压和肺毛细血管楔压,估计左心室充盈压;
2.连续监测肺动脉收缩压和平均压,可以反映由于缺氧、肺水肿、肺栓塞和肺功能不全所致的肺血管阻力(PVR)的变化;
3.可以采取混合静脉血,测定动静脉血氧含量,测心输出量和测动静脉血混合情况;
4.可用稀释法测定心输出量;
压力曲线图形:
1.右心房压力曲线:包括正波、即a、c、v。
a波出现在心电图p波及R波之间,c波在a波的下波。
V波与心电图的T波相一致。
2.右心室压力曲线呈圆锥形,当心室收缩时,曲线形成高峰。
3.肺动脉压力曲线接近于三角形,其降支上有一重搏波切迹,以此为标志,可协助辨认。
4.肺毛细血管楔压
为漂浮导管的气囊充盈进入左或右肺动脉,并嵌顿该分支血管时所测得的压力图形,其形状与右心房压很相似,肺毛细血管楔压的平均压力低于肺动脉压力。
其可以反映 a. 反映肺部的循环状态;b. 是判断肺充血及其程度较有价值的指标;c. 肺毛细血管楔压与左心房平均压有关,一般不高于1-2mmHg.
5. 热稀释法测定心排血量
心排血量是指心脏每分钟泵出的血量。
本法测定心排血量的误差为4%,而且不需要采血。
为保证检查的准确性,临床上多采用心脏指数来评价心脏的泵功能,以矫正身材大小对结果的影响,心脏指数(Cardiac Index,CI)=心排血量/体表面积。
正常的CI为2.8-3.2L/(min*m2)。
CI<2.0-2.2L/。