沥青乳化剂乳化原理
乳化沥青的生产原理及新用途
厂家
齐鲁70 齐鲁90 镇海70 镇海90 西安90 塔化90 辽河70 辽河90
克拉玛依70
克拉玛依90
18.99
17.1 17.6
26.50
32.1 31.1
54.40
37.1 38.2
0.11
7.0 6.4
中海70 中海90
4 沥青组成结构及对沥青乳化性能的影响
4.1 石油沥青的组成结构及特性
84.83
77.44 85.8 84.00 83.52 84.41 81.9 81.8 79.06 82.20 76.05 84.46
9.73
8.46 11.41 10.75 12.53 10.29 9.93 8.62 10.01 9.16 8.18 11.26
2.18
2.86 0.55 0.70 0.39 1.29 1.33 0.74 1.90 2.39 0.47
3 乳化沥青的性能及其主要影响因素
3.1 乳化沥青的性能指标
(1)道路乳化沥青品种及适用范围
分类 阳离子 乳化沥青 品种及代号 PC-1 PC-2 PC-3 BC-1 PA-1 阴离子 乳化沥青 非离子 乳化沥青 PA-2 PA-3 适用范围 表处、贯入式路面及下封层用 透层油及基层养生用 粘层油用 稀浆封层或冷拌沥青混合料用 表处、贯入式路面及下封层用 透层油及基层养生用 粘层油用
乳化沥青在发达国家得到广泛应用。原因:
● 环保,节省能源、节省资源 ●
在公路修建、养护技术中,很多都适合使用甚至只 能使用乳化沥青作为结合料
● 乳化沥青技术的发展,使乳化沥青质量不断提高 ● 乳化沥青应用新技术也在不断涌现
1 乳化沥青的概念及应用
1.2 乳化沥青的应用领域
乳化沥青的原理
乳化沥青的原理乳化沥青是一种常用的道路材料,它具有良好的粘附性和稳定性。
乳化沥青的原理是通过将沥青与乳化剂进行乳化反应,形成稳定的乳状液体。
本文将就乳化沥青的原理进行详细阐述。
乳化沥青的原理可以通过以下几个方面来解释。
首先,乳化剂的作用是使沥青与水相溶,并形成稳定的乳状液体。
乳化剂一般是一种表面活性剂,它可以降低沥青和水之间的表面张力,使它们能够充分混合。
乳化剂还能够形成一层分子膜,包裹住沥青颗粒,防止其重新聚集。
乳化剂还可以改变沥青的表面性质。
沥青是一种疏水性物质,难以与水发生作用。
乳化剂的加入可以使沥青表面变得亲水,从而与水更好地接触。
这样一来,沥青颗粒就能够更好地分散在水中,形成乳状液体。
乳化沥青的原理还涉及到乳化过程中的物理和化学变化。
在乳化过程中,乳化剂通过与沥青分子之间的相互作用,使沥青分子发生结构的改变。
这主要是因为乳化剂能够与沥青分子形成一种类似胶束的结构,将沥青分子包裹在其中。
这样一来,沥青分子就能够更好地分散在水中,并形成稳定的乳状液体。
乳化沥青的原理还与温度有关。
在乳化过程中,乳化剂的加入会引起沥青的温度升高。
这是因为乳化剂与沥青之间的相互作用会释放出热量。
温度的升高有助于乳化剂与沥青分子之间的相互作用,从而促进乳化反应的进行。
总的来说,乳化沥青的原理是通过乳化剂的作用,使沥青与水相溶,并形成稳定的乳状液体。
乳化过程中,乳化剂能够改变沥青的表面性质,并与沥青分子发生相互作用,使其形成稳定的乳状液体。
乳化剂的加入还会引起沥青的温度升高,促进乳化反应的进行。
乳化沥青在道路建设中具有重要的应用价值。
乳化沥青能够提高沥青的粘附性和稳定性,使其更好地与骨料结合。
乳化沥青还可以降低施工温度,减少环境污染。
此外,乳化沥青还可以在潮湿条件下使用,提高施工的灵活性。
因此,乳化沥青在道路建设中得到了广泛的应用。
总结起来,乳化沥青的原理是通过乳化剂的作用,使沥青与水相溶,并形成稳定的乳状液体。
乳化过程中,乳化剂能够改变沥青的表面性质,并与沥青分子发生相互作用,使其形成稳定的乳状液体。
乳化沥青的分裂机理
乳化沥青的分裂机理哎呀,乳化沥青这玩意儿,听起来就挺专业的,不过别急,让我给你慢慢道来。
首先,乳化沥青,简单来说,就是沥青和水混合在一起,但它们又不相溶,所以得靠乳化剂来帮忙。
乳化剂就像个和事佬,让沥青和水能暂时和平共处,形成一种看起来像牛奶一样的混合物。
那么,这个分裂机理是怎么回事呢?想象一下,你把油和水倒在一个杯子里,它们会自然分层,油浮在上面,水沉在下面。
乳化沥青也是这样,虽然乳化剂让它们暂时混在一起,但时间长了,或者条件变了,它们还是会想要“分手”。
这个“分手”的过程,就是乳化沥青的分裂机理。
首先,乳化剂形成的小液滴会慢慢变大,因为沥青和水之间的表面张力让它们想要合并。
然后,这些大液滴会因为重力作用,开始沉降或者上浮。
最后,沥青和水彻底分开,沥青聚集在一起,水则流走。
这个过程,其实挺像我们日常生活中的一些现象。
比如,你把油倒进汤里,一开始油会浮在汤面上,但过一会儿,油就会慢慢聚集成一大块,然后沉到锅底。
乳化沥青的分裂机理,也是这么一个过程。
不过,这个分裂过程也不是一蹴而就的,它会受到很多因素的影响。
比如温度、乳化剂的种类和用量、沥青和水的比例等等。
这些因素都会影响乳化沥青的稳定性,也就是它们能“和平共处”多久。
所以,研究乳化沥青的分裂机理,其实就是在研究如何让沥青和水更长时间地“和平共处”,或者在需要的时候,让它们更快地“分手”。
这对于道路建设、防水材料等领域都非常重要。
好了,乳化沥青的分裂机理,大概就是这么回事。
虽然听起来有点复杂,但其实就跟我们日常生活中的一些现象差不多。
希望这个解释能让你对乳化沥青有更深的理解。
混凝土中使用沥青乳化剂的方法与效果
混凝土中使用沥青乳化剂的方法与效果一、前言混凝土是现代建筑中最重要的建筑材料之一,它被广泛应用于各种建筑工程中。
但是,混凝土在使用过程中也会遇到一些问题,例如混凝土的耐久性不足、易开裂等问题。
为了解决这类问题,人们开始尝试使用沥青乳化剂来改善混凝土的性能。
本文将介绍混凝土中使用沥青乳化剂的方法与效果。
二、沥青乳化剂的介绍沥青乳化剂是由沥青、表面活性剂、乳化剂等组成的一种化学品。
它可以将沥青分散成微小的颗粒,使得沥青能够在水中均匀分散,从而形成一种乳状液体。
沥青乳化剂通常用于道路、桥梁等建筑工程中,但它也可以用于混凝土中。
三、使用沥青乳化剂的方法1. 沥青乳化剂的选择使用沥青乳化剂时,需要根据实际情况选择合适的沥青乳化剂。
在选择沥青乳化剂时,需要考虑以下因素:(1)混凝土的用途:不同的混凝土用途不同,需要选择不同的沥青乳化剂。
(2)混凝土的强度:不同的沥青乳化剂对混凝土的强度影响不同,需要根据实际情况选择合适的沥青乳化剂。
(3)混凝土的环境:不同的沥青乳化剂对混凝土的环境适应性不同,需要根据实际情况选择合适的沥青乳化剂。
2. 沥青乳化剂的添加量在混凝土中使用沥青乳化剂时,需要根据实际情况计算出合适的沥青乳化剂添加量。
沥青乳化剂的添加量一般为混凝土总重量的1%~5%。
3. 沥青乳化剂的混合在混凝土中使用沥青乳化剂时,需要将沥青乳化剂与混凝土进行混合。
混合的方法有以下几种:(1)机械混合法:将沥青乳化剂与混凝土一起放入混凝土搅拌机中进行混合。
(2)手工混合法:将沥青乳化剂与混凝土一起放入混合桶中进行混合。
(3)喷雾混合法:将沥青乳化剂喷洒在混凝土表面上,然后使用喷雾器将混凝土进行混合。
4. 沥青乳化剂的固化在混凝土中使用沥青乳化剂后,需要进行固化处理。
固化处理的方法有以下几种:(1)自然固化法:将混凝土放置在空气中进行固化。
(2)加热固化法:将混凝土进行加热处理,使其固化。
(3)添加固化剂法:在混凝土中添加固化剂,使其固化。
乳化沥青破乳的原因
乳化沥青破乳的原因聊城市汇通公路设备有限公司乳化沥青是将沥青热融,经过机械作用,以细小的微粒状态分散于含有乳化剂的水溶液之中,形成水包油状的沥青乳液。
在筑养路工程中,乳化沥青可用于路面的维修、路面层间的粘结、桥面铺装、水泥稳定碎石基础上的透层油、稀浆封层防水层等。
它具有冷施工、安全、环保、节约资源、节省能源、延长施工季节,改善施工条件等优点。
它在市政等道路建设和养护中起到了非常重要的作用,尤其是近些年来,乳化沥青生产水平的提高,积极推动了乳化沥青的技术进步和推广应用。
然而,在乳化沥青生产和使用过程中往往会出现结皮、絮凝、油水分层、凝聚成团等不良现象,给施工带来不必要的麻烦。
下文从沥青乳化设备、乳化剂、基质沥青、PH值、温度、储存温度、机械作用、冻结及熔化、长期放置等九个方面,总结出影响乳化沥青稳定性的因素,现分析如下:一、沥青乳化设备的影响衡量乳化沥青质量的一项重要指标是沥青微粒的均细化程度。
均细化程度越高,乳化沥青的使用性能及贮存稳定性越好。
均细化程度的高低与生产乳化沥青所用的核心设备一乳化机有直接关系,它是乳化设备的心脏。
用乳化机破碎、分散沥青液相的过程是一个很复杂的力学作用过程,一般都是利用剪切、挤压、摩擦、冲击和膨胀扩散等作用完成沥青液相的粉碎分散,其性能的优劣对乳液的质量和稳定性有重要影响。
目前,应用于沥青乳化的设备主要有三类。
按照生产乳化沥青均细化程度由高到低的顺序依次为:胶体磨类乳化机、均化器类乳化机、搅拌式乳化机。
因而,在购置乳化设备时应选择均细化程度高的乳化机,保证乳化沥青的生产质量和稳定性。
随着稀浆封层和微表处的施工工艺普遍应用,稀浆封层和微表处用的乳化沥青要求浓度及稳定性。
此两项性能影响到了施工质量,所以建议在选用乳化沥青生产设备的时候,应尽量选用质量好持久耐用的才好。
乳化沥青
第一部分: P或者B(喷洒施工或拌和施工)
第二部分: C或者A(阴离子或阳离子乳化剂)
第三部分: 1~3表示不同用途
种类
用处
PC-1 PA-1 表面处治及贯入式洒布用
贯入洒布用
PC-2 PA-2 透层油用
PC-3 PA-3 粘层油用
BC-1 BA-1 拌制粗粒式沥青混合料用
第一节 乳化沥青的制备、分裂和技术要求
稳定剂 作用:节省乳化剂用量,增加机械及泵送稳定性,提高乳化稳定性 和贮藏稳定性,增强与集料的粘附性,防止乳化设备腐蚀,延长乳 化设备的使用寿命。 分类 – 有机稳定剂 与阳离子型沥青乳化剂复合使用有良好的作用。 – 无机稳定剂 增强乳液微粒周围的双电层效应,增大电位,增强颗粒间的相 互排斥力,缓解颗粒间的凝结速度,提高乳化能力,改善乳液 的稳定性,增强与骨料的粘附能力。
集料物理-化学作用 乳化沥青中带电荷的微滴与不同化学性质的集料接触后作用。
机械的激发作用 施工过程中压路机的碾压和开放交通后汽车的行驶,机械力。
第二节 乳化沥青的分类和技术要求
一、乳化沥青的分类
壳牌沥青手册(英国BS434(9984))分类(三部分) 第一部分:A或者K表示(阴离子或阳离子乳化剂) 第二部分: 1~4表示破坏速率或稳定性,数字越大,稳定性越高 第三部分: 4 0~70表示乳化沥青的含量 例:K1-70
乳化剂降低界面张力
界面膜的保护作用 乳化剂的亲水亲油作用使得乳化剂在沥青微滴周围形成具有一定强 度的稳定的界面膜。
双电层的稳定作用 亲油基吸附于沥青微滴表面,亲水基伸入水中,使得沥青微滴表面 带电荷(阳离子乳化剂带正电荷,阴离子乳化剂带负电荷),沥青水界面上的电荷层结构,一般为双电层分布(吸附层,固定在沥青 界面上 ,电荷与微滴电荷相反;扩散层,由吸附层向外,电荷向水 介质中扩散。
乳化沥青
延长施工季节的重要意义在于加速公路建设,并有利 于沥青路面的及时养护,制止病害的加剧和扩大。关 于乳化沥青施工可延长施工的时间,随各地区气候条 件有不同,一般可延长施工时间一个月左右。
环保、安全
乳化沥青车间的生产过程都是在密封状态中进行,沥青的加热温度 (120-140度),加热时间短,污染程度较轻。热沥青车间由于沥青加 热温度高(160-180度)加热时间长,沥青蒸汽中的有害物质对于环境 污染严重。稀释沥青在掺加稀释剂时会产生大量的烟雾对于环境造成的 危害比热沥青还大。
使用方便
乳化沥青采用乳化的方法,
实现了普通沥青通过加热、 稀释沥青通过掺加大量轻质油
分才可以实现的低黏度流动状态,因此使用以来更加方便。
节省材料
由于乳化沥青中有40%的水,也就是相当于用水将沥 青稀释成了60%的浓度,因此施工时可以更加准确的 控制沥青用量。 用乳化沥青 筑养路一般 可节省沥青 10%~20% 可节约成本 20%~30%
乳化沥青的制作
把加热成液体的沥 青和与乳化剂,稳 定剂,酸或者碱用 胶体磨混合,这样 就得到乳化沥青了。
乳化沥青 乳化沥青有水
改性沥青 改性沥青没有水
乳化沥青和改性沥青的区别
7 、 、 、
路 用 效 果 理 想
环 保 、 安 全
、
、
、
延 长 施 工 季 节
节 省 材 料
此外,乳化沥青是在常温条件下进行施工的,避免了因热沥青而引起的 烧伤、烫伤,也避免了摊铺高温混合料的沥青蒸汽的熏烤。所有用乳化 沥青施工,可以改善不利的施工条件,降低工人的劳动强度,深受筑路 工人的欢迎。
பைடு நூலகம்
路用效果理想
沥青乳化剂、乳化沥青与热沥青的区别
沥青乳化剂、乳化沥青与热沥青的区别什么是沥青乳化剂?沥青乳化剂是便⾯活性剂的⼀种,在我们⽇常⽣活中可以见到的表⾯活性剂有洗⾐液、洗洁精、肥皂等。
简单来讲,沥青乳化剂实际上就是沥青可以溶于⽔的⼀种介质,没有这种介质沥青就不可能溶于⽔并且形成⼀种稳定的状态。
什么是乳化沥青?乳化沥青就是沥青、乳化剂和⽔在⼀定的⽣产⼯艺之下,形成⼀种稳定的⽔包油或者油包⽔的液态沥青。
⽤古⽉的理解来讲就是先将乳化剂溶于⽔中,形成皂液,然后通过设备的剪切与研磨后,使沥青分⼦被皂液中的⽔分⼦包住,从⽽使沥青在⽔中,并且在⼀定的时间内形成⼀种稳定的液体形态。
热沥青顾名思义就是加热后的沥青。
施⼯中将沥青加热是为了⽅便更好的利⽤沥青的⼀些性能,另外就是施⼯⽅便。
热沥青顾名思义就是加热后的沥青。
从应⽤上来说,沥青乳化剂是为了⽣产乳化沥青⽽发展起来的⼀种道路材料,属于化学品⼀类,也正是由于乳化剂等⼀些从应⽤上来说化学产品的发展从⽽推动了乳化沥青的⼴泛应⽤。
乳化沥青的发明与应⽤,国际上已有百余年的历史,第⼀批⼯⼚化乳化沥青产品是法国化学家Emile Feigel 1905年时在法国阿尔萨斯地区⽣产出来的,但它在道路⼯程中的应⽤,则始于1915年,英国⼈⽤它在砂⽯路表进⾏表⾯处置。
乳化沥青产品在早期公路建设中,主要是⽤于喷洒路⾯以减少灰尘。
阴离⼦乳化沥青为主。
在应⽤初期,主要是以阴离⼦乳化沥青20世纪50年代初,法国研制出阳离⼦沥青乳化剂,并发现许多阳离⼦乳化沥青的优越性能。
法国研制出阳离⼦沥青乳化剂,并发现许多阳离⼦乳化沥青的优越性能。
阳离⼦乳化沥青既发挥了阴离⼦乳化沥青的优点,同时弥补了阴离⼦乳化沥青与矿料的黏附性能不好,并且与酸性矿料的黏附性能更不好的缺点,使得乳化沥青的发展应⽤进⼊了⼀个新的就阶段。
我国乳化沥青发展起始于20世纪50年代初期,发展于70年代后期。
1978年,由交通部(现更名为交通运输部)组织成⽴了“阳离⼦乳化沥青及其路⽤性能研究”课题协作组,对这项技术进⾏攻关研究。
简述乳化原理的应用
简述乳化原理的应用1. 乳化原理简介乳化是指将不相溶的物质通过加入表面活性剂等辅助剂,在适当条件下分散在一起形成乳状液体的过程。
乳化原理主要涉及界面活性剂与液滴之间的相互作用,其中包括脂肪酸、柠檬酸、氨基酸等乳化剂。
2. 乳化原理的应用乳化原理在许多领域都有广泛的应用,下面是一些常见的应用示例:2.1 建筑工程行业•在建筑工程中,乳化原理经常被用于沥青乳化。
–沥青乳化是将沥青和水通过一定的乳化剂混合,形成乳状液体,为路面工程提供涂装材料。
乳化沥青具有便于施工、固化快、涂布均匀等优点,常用于路面施工、喷洒剂等工程中。
2.2 食品工业•乳化原理在食品工业中也有广泛的应用。
–例如,乳化剂可用于乳制品的生产,如奶油、黄油和冰淇淋等。
–乳化剂有助于将水和脂肪混合,使其在制作过程中保持稳定的乳化状态。
2.3 化妆品工业•乳化原理在化妆品工业中也起着重要的作用。
–乳化剂能够将油性成分和水性成分有效地混合,形成质地柔滑的乳液。
–许多乳液状的化妆品产品,如面霜、洗面奶、乳液等,都是通过乳化原理实现的。
2.4 医药工业•乳化原理也被应用于制药工业中。
–乳化剂可以用于药物的制剂过程中,使其更容易溶解、分散和吸收。
–例如,通过乳化剂,药物可以以乳剂的形式存在,有助于口服药物在肠道中的溶解和吸收。
2.5 农业领域•农业领域中也有乳化原理的应用。
–例如,乳化剂可以用于农药的制剂,使其更易于混合,提高施药效果。
–乳化技术还可以在农药喷洒过程中,使农药更加均匀地分布在植物表面上,提高农药的利用效率。
3. 总结乳化原理作为一种有力的工业应用技术,广泛应用于建筑工程、食品工业、化妆品工业、医药工业和农业领域等多个领域。
通过乳化原理,能够使不相溶的物质更好地混合,形成稳定的乳状液体。
乳化技术的应用,为这些领域的生产和研发提供了便利,并带来了许多优势和新的发展机遇。
乳化沥青乳化工艺和生产流程
乳化沥青乳化工艺和生产流程乳化沥青是通过将沥青与乳化剂和水混合后,在高速搅拌下形成胶体溶液的一种工艺。
乳化沥青具有易携带、易使用、不需加热和灵活性好等特点,被广泛应用于道路建设、铺装和施工工程中。
乳化沥青的生产流程大致可分为以下几个步骤:1.选材:选择适宜的沥青和乳化剂。
沥青应具有一定的粘度和胶凝性,常用的有6#和10#沥青。
乳化剂应具有良好的分散性和稳定性,常用的有阳离子和非离子两种。
2.配料:按照一定的配比将沥青、乳化剂和水加入到乳化沥青搅拌机中。
一般情况下,乳化剂占总重量的2-5%,水占总重量的55-65%,沥青占总重量的30-40%。
3.搅拌和乳化:在搅拌机中进行高速搅拌,将沥青、乳化剂和水充分混合并乳化。
乳化剂和沥青在高速搅拌下形成胶体溶液,并与水分散均匀。
4.过滤和调整:将乳化沥青通过过滤器进行过滤,去除其中的杂质和固体颗粒。
然后根据需要,调整乳化沥青的粘度和PH值,以满足不同道路建设的要求。
5.包装和存储:将乳化沥青装入密闭容器或罐车中进行包装和存储。
为了保持乳化沥青的稳定性,需密封容器和避光存储,防止其暴露在阳光和空气中。
在乳化沥青的生产过程中1.温度控制:乳化沥青的生产需要掌握合适的温度,一般在20-60℃之间。
过低的温度会导致沥青乳化不完全,过高的温度会降低乳化剂的活性。
2.搅拌时间:搅拌时间对乳化沥青的稳定性和质量有重要影响。
一般情况下,搅拌时间在5-10分钟左右,需要根据具体情况进行调整。
3.水质控制:水作为乳化剂的一部分,对乳化沥青的性能和稳定性有重要影响。
应使用清洁的水源,并控制水质的硬度和PH值,避免对乳化沥青产生负面影响。
总的来说,乳化沥青的生产流程包括选材、配料、搅拌和乳化、过滤和调整、包装和存储等环节。
在生产过程中需要控制温度、搅拌时间和水质,以保证乳化沥青的质量和稳定性。
乳化沥青封层施工工艺
乳化沥青封层施工工艺乳化沥青封层施工工艺是道路维护和修建中常用的一种方法。
它的主要作用是在原有的路面基础上增加一层保护层,以增强路面的耐久性和防水性,为车辆行驶提供更加平稳和安全的路面。
本文将介绍乳化沥青封层施工工艺的基本原理、施工步骤和注意事项。
一、基本原理乳化沥青封层是通过将水、乳化剂和沥青混合,形成乳化沥青混合料,再将其涂布在路面上,形成一层保护层。
乳化沥青的制作过程中,主要是将沥青通过加热和乳化剂的加入,使其转化为液态,与水混合形成乳化沥青。
乳化沥青封层的工艺则是将乳化沥青混合料均匀涂布在路面上,通过振动或压实等方式将其固化成为一层坚实的保护层,以提高路面的耐久性和防水性。
二、施工步骤1.路面清理:在施工前,需要对路面进行清理,去除杂物和灰尘等,确保路面干燥清洁。
2.底层处理:底层应平整、结实,如果存在坑洼或裂缝等问题,需要进行修补。
修补后的路面应等待至少24小时,以确保底层完全干燥。
3.乳化沥青混合料制备:将乳化剂和水按比例混合,然后将沥青加热至液态,与乳化剂和水混合,形成乳化沥青混合料。
4.涂布乳化沥青混合料:使用喷洒车或涂布机将乳化沥青混合料均匀地涂布在路面上。
5.碾压:通过碾压机或振动机将乳化沥青混合料压实,确保其均匀牢固。
三、注意事项1.施工前需要对路面进行严密检查,确保路面干燥清洁,底层结实平整。
2.在涂布乳化沥青混合料时,需要均匀涂布,确保其厚度均匀。
3.在碾压时,需要根据路面的情况选择适当的碾压机或振动机,以确保乳化沥青混合料能够均匀牢固。
4.在施工过程中,需要注意安全,穿戴好工作服、手套、口罩等防护用品。
5.施工完毕后,需要对设备进行清洗,以防止乳化沥青混合料在设备内固化。
乳化沥青封层施工工艺是一项比较常见的路面维护方法,其基本原理是将乳化沥青混合料涂布在路面上,再通过碾压等方式将其固化为一层保护层。
在施工过程中,需要注意安全和设备管理,以确保施工质量和安全。
乳化沥青
(一)乳化沥青的组成材料乳化沥青是将粘稠沥青加热至热熔状态,经机械的强力搅拌作用,使沥青以细微液滴(粒径2-5甲)状态分布在含有乳化剂的水溶液中,成为水包油(O/W)状的沥青乳液。
1.沥青沥青是乳化沥青中的基本成分,在乳化沥青中占55%-70%。
沥青的选择,应根据乳化沥青在路面工程中的用途而定。
一般来说,几乎各种标号的沥青都可以乳化,相同油源和工艺的沥青,针入度较大者易于形成乳液。
道路工程中用于配制乳化沥青的沥青针入度范围多在100-200之间。
沥青的原油基属、化学组成和结构对乳化沥青的制作和形成后的性质有重要的影响,含蜡量较高的沥青较难乳化,且乳化后储存稳定性欠佳。
2.水水是沥青分散的介质,其硬度和离子性对乳化沥青的形成和稳定性有较大的影响。
一般要求水不应太硬。
水中存在钙、镁等离子时,对于生产阳离子乳化沥青有利,但不利于生产阴离子乳化沥青;而碳酸离子和碳酸氢离子对两种乳化沥青的作用刚好相反。
水中的粒状物质通常带有负电荷,由于对阳离子乳化剂的吸附,对生产阳离子乳化沥青不利。
因此,应根据乳化沥青的离子类型、选择符合水质要求的水源。
3.乳化剂乳化剂在乳化沥青中所占的比例较低(一般为干分之几),但对乳化沥青的生产、贮存及施工起着关键性的作用。
4.稳定剂为了改善沥青乳液的均匀性、减缓沥青微粒之间的凝聚速度、提高乳液的稳定性、增强与石料的粘附能力,常在乳液中加入——定的稳定剂。
掺加稳定剂还可能降低乳化剂的使用剂量。
稳定剂分为无机和有机两类。
1)无机稳定剂常用的稳定效果最明显的无机盐类物质为氯化铵、氯化钙和氯化镁等。
如氯化钙可以降低季铵盐阳离子乳化剂的用量。
对于胺型阳离子乳化剂,由于不能直接溶解于水,需要用盐酸将水的PN值调节至2左右,或用醋酸调节至4左右方能使用。
但如果酸过量,则乳化性和稳定性将受到影响。
2)有机稳定剂常用的有聚乙烯醇,它与阳离子乳化剂复合使用对含蜡量高的沥青的乳化及储存稳定性起良好的作用。
乳化沥青
Ø 改性乳化沥青 Ø 100%破碎集料 Ø 填料 Ø 水 Ø 添加剂
9
16/5/20
五、乳化沥青应用技术-微表处特性
五、乳化沥青应用技术-微表处特性
VS
/ / 2~3 1h >65% Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ
+
五、乳化沥青应用技术-微表处特性
五、乳化沥青应用技术-微表处特性
1/2
使沥青微粒带点
电离的乳化剂分子在沥青与水两相界面上形成吸附层, 水相中的反离子行成扩散层,即“双电层”。
2
16/5/20
二、沥青的乳化-乳化剂类型
二、沥青的乳化-乳化剂与路用性能关系
影响破乳速度(主动破乳、被动破乳) 影响沥青指标
试验项目 1号 2号 53.7 50 79 3号 65.3 49 >150
在规定的容器和条件下储存规定的时间后,
四、乳化沥青的评价方法-低温储存稳定性
乳化沥青遭受冷冻后状态的变化。
以竖直方向上试件浓度的变化程度来判断 乳液在静置状态下的储存稳定性。
静置5d(如果计划5d内用完,也 可静置24h)
-5℃±0.5℃下30min 25℃±0.5℃下10min
重复一次
的粗集料,经碾压而形成的薄层封层。
分类:按层数——单层、双层、多层
按材料、施工工艺等——同步碎 石封层、应力吸收膜封层、应力吸收膜 粘结层等。
五、乳化沥青应用技术-碎石封层
五、乳化沥青应用技术-碎石封层
单层碎石封层
单层碎石封层分两次碾压
双层碎石封层
三明治封层
五、乳化沥青应用技术-碎石封层
碎石封层与石屑封层、沥青表处的区别 1)使用的集料不同; 2)使用的结合料不同; 3)使用场合不同; 4)使用寿命不同。
沥青乳化原理
沥青乳化原理
沥青乳化原理是指将沥青与乳化剂通过机械搅拌等方法混合,使其形成乳状液体。
乳化剂属于表面活性剂,具有使油水混合的能力。
乳化的过程主要涉及到乳化剂的作用机制。
乳化剂分为阴离子型、阳离子型、非离子型和自由基型等多种类型。
其中,常用的乳化剂是非离子型乳化剂,其分子结构中包含有亲油基团和亲水基团。
在乳化剂存在的条件下,沥青的亲水基团与乳化剂的亲油基团发生相互作用,形成沥青乳化剂复合物。
这种结构使沥青分子在水中分散均匀,形成乳状液体。
同时,乳化剂的表面活性作用还可以降低沥青颗粒的表面张力,使其更容易分散在水中。
沥青乳化的过程还受到其他因素的影响,如温度、搅拌速度、水质等。
较高的温度有利于乳化剂与沥青的相互作用,可以促进乳化的形成。
搅拌速度能够增加乳化剂与沥青的接触机会,促进乳化过程的进行。
沥青乳化的目的是为了提高沥青的应用性能,使其更加便于施工和使用。
沥青乳化后的乳状液体可以更好地与其他材料相混合,提高施工效率。
此外,乳化后的沥青还具有较好的稳定性和可存储性,能够延长使用寿命。
总的来说,沥青乳化原理是通过乳化剂的作用,使沥青形成乳
状液体,在改善沥青性质的同时提高了其应用性能。
这一技术在道路施工和沥青材料制备中有着广泛的应用。
乳化沥青作用
乳化沥青作用乳化沥青是指由沥青、乳化剂和水组成的混合物,它是一种常用的道路建设材料。
乳化沥青通过乳化剂的作用,将沥青细分为微小的颗粒悬浮在水中,从而形成乳化沥青。
乳化沥青具有许多优点,它可以在常温下进行施工,无需加热,简化了施工工艺,减少了能源消耗。
另外,乳化沥青可以与各种类型的矿料进行混合,适应不同的路面施工要求。
乳化沥青在路面施工中起着很重要的作用,下面我们将详细介绍一下乳化沥青的作用。
首先,乳化沥青可以提高路面的稳定性。
乳化沥青与矿料混合后,沥青中的细小颗粒会填充矿料间隙,增强矿料之间的粘结力,从而提高路面的抗剪强度和承载能力。
乳化沥青的使用可以有效地阻止路面松动,减少路面的磨损,提高路面的耐久性。
其次,乳化沥青可以改善路面的防水性能。
乳化沥青在路面施工后会生成一层均匀的沥青薄膜,这层沥青薄膜能够有效地防止雨水渗透到路面下层,保持路面的稳定性。
乳化沥青具有很好的抗水性能,可以防止水分对路面的侵蚀和损害,延长路面的使用寿命。
再次,乳化沥青可以改善路面的粘结性能。
乳化沥青与矿料混合后会形成一个均匀的胶结层,这个胶结层能够将矿料牢固地粘结在一起,形成一个整体的路面结构。
乳化沥青能够有效地提高路面的抗滑性能和抗剥离能力,防止路面发生起砂和龟裂等问题。
最后,乳化沥青可以提高路面的施工效率。
乳化沥青无需加热就可以直接施工,大大缩短了施工周期,节约了施工时间。
同时,乳化沥青的使用可以减少施工过程中产生的废料和污染物,对环境友好。
综上所述,乳化沥青在道路建设中具有重要的作用。
它可以提高路面的稳定性和耐久性,改善路面的防水性能和粘结性能,提高路面的施工效率。
乳化沥青的广泛使用促进了道路建设的快速发展,为人们的出行提供了更加安全和便利的条件。
沥青乳化剂乳化原理
沥青乳化剂乳化原理武城县博斯特筑路机械有限公司沥青乳化剂定义:沥青乳化剂是表面活性剂的一种类型。
它是能吸附在沥青颗粒与水界面,从而显著降低沥青与水界面的自由能,使其构成均匀而稳定的乳浊液的一种表面活性剂。
在水中加入沥青乳化剂以后,乳化剂的亲水基与水分子之间有很强的吸引力,乳化剂分子在液体表面上基本是无一定方向的,多处于平躺状态。
由于溶液中乳化剂的浓度由小变大,亲油基的烃基部分,因憎水性排斥于水体系之外,产生疏水效应。
这样就使乳化剂产生了一个方向性,水面上溶解的是亲水基,水面最远方向为亲油基,形成了乳化剂定向排列于界面上,使自由能趋于最小,保持了最稳定位置。
这样乳化剂与空气界面上形成了一层单分子膜。
这种有规则的分子排列现象称作分子定向排列或配位。
这种单分子定向排列现象称为单分子吸附膜。
沥青乳化剂分子在水溶液中定向排列的吸附现象,不仅在空气和水相之间,也可发生在空气以外的沥青相中。
这种吸附现象有物理吸附和化学吸附,以化学吸附为主,随着亲油基碳链长度增加吸附速度加快,分子定向排列的吸附速度加快,最后水的表面形成单分子层,使水的表面张力下降。
在乳化剂水溶液中加入过量的乳化剂,不仅可以形成单分子定向的吸附膜,而且能形成复杂的多层吸附膜和乳化剂分子集束,以尽量保持最小的自由能。
如果沥青液经高速剪切成细小微粒(0.01mm-0.001mm)而均匀的分散在水中,溶入水中的乳化液分子会立即在沥青微粒界面被吸附,从而产生新的吸附排列,亲油基一段吸附于沥青内部,亲水基一端吸附于水中,以钳形固定于界面上,从而降低了沥青与水的界面张力。
当吸附的乳化剂分子达到饱和状态时,在沥青微粒表面形成一层被乳化剂分子包封的有一定机械强度的坚固的分子薄膜,使沥青微粒具有亲水性,而均匀稳定地分散在水中,形成乳化沥青。
沥青乳液是一个多相分相体系,沥青是以微粒形式均匀分散于水中的稳定乳状液,其稳定度因乳化剂大大加强。
其中沥青为分散相,为不连续相或称内相;水为分散介质,为连续相或称外相,为水包油(O/W)型乳化沥青。
道路沥青用乳化剂
道路沥青用乳化剂 The document was finally revised on 2021道路沥青用乳化剂乳化剂是乳化沥青生产的关键原材料。
乳化剂一般占乳液总量的﹪~﹪.虽然乳化剂量并不多,但它所起的作用却是十分重要的。
众所周知,沥青与水是互不相溶的两种物质,是不能形成相对稳定的平衡体系的。
如果没有乳化剂就不能生产乳化沥青产品来。
根据乳化剂溶解于水中乳化剂分子亲水基是否带有电荷,把乳化剂分为离子型和非离子型。
离子型乳化剂由于在水中电离后亲水基所带电荷的不同,又分为阳离子型和阴离子型。
此外还有两性离子型。
这里仅对常用乳化剂做概括介绍。
阳离子乳化剂阳离子乳化剂根据破乳速度的快慢分为快裂、中裂、慢裂三种。
慢裂乳化剂根据混合料凝结时间的长短分为慢凝和快凝两种。
用中裂和快裂乳化剂生产的乳化沥青主要用于喷洒,铺筑表面处治路面和贯入式路面,其中以中裂型使用较多,快裂型使用很少,快裂型特别适合较低温度条件下喷洒使用。
用慢裂乳化剂生产的乳化沥青主要用于稀浆封层,其中慢裂快凝型适合用于高等级公路的养护,慢裂慢凝型适合用于普通道路的养护。
1.快裂乳化剂N—十六到十八烷基丙稀二胺是常用的快裂乳化剂,外观为白色固体。
也称为N—十六到十八烷基丙撑二胺,或N—十六到十八烷基丙二胺。
2、中裂乳化剂中裂乳化剂在国内有很多家生产,外观为黄色半固态,其中使用最多最普遍的是十八烷基双(氮)季铵盐,简称18331,标准名称为;N —(3—十八胺基—2—羟基)—丙基—三甲基氯化铵。
这种乳化剂合成生产工艺技术成熟,质量稳定,乳化能力强,乳液稳定性好。
中裂乳化剂还有烷基季铵盐类好烷基双(氮)季铵盐类。
烷基季铵盐类主要有;十六烷基三甲基溴化胺(1631),十八烷基三级基氯化胺(1831 OT,),十六到十九烷基三甲基氯化铵(NOT 1831).3.慢裂乳化剂我国最先使用的慢裂乳化剂是木素胺类,也被称之为木质素胺或木质胺。
这类乳化剂的最大特点是价格低。
沥青乳化剂
沥青乳化剂特征、作用及种类摘要:沥青乳化剂是表面活性剂的一种类型,它具有表面活性剂的基本特性。
由于带有亲油基与亲水基,在这两个基团作用下,使它能够吸附在沥青和水的相互排斥的界面上,从而降低它们之间的界面张力。
沥青乳化剂的分类方法很多,最常用的是按离子类型分类。
这种分类法是指沥青乳化剂溶解于水溶液时,凡能电离成离子或离子胶束的叫做离子型沥青乳化剂,凡不能电离成离子或离子胶束的叫非离子型乳化剂,离子型乳化剂又分为阴离子型、阳离子型和两性离子型。
关键词:沥青乳化剂;特征;作用;分类。
1引言在世界性的能源危机影响下,在筑路工程中要求节省能源、节省资源、减少污染的呼声越来越高,已引起人们的高度重视。
在这种形势下,人们经过长期筑路实践,发展应用乳化沥青铺筑路面是达到上述要求的可取途径。
采用乳化沥青铺路,现场施工简化,不需将沥青加热到170~180℃高温后再去使用,砂石等矿料也不需烘干加热,可以节省大量的燃料与热能。
由于沥青乳液具有良好的工作度,可以均匀地分布在骨料表面上,并与其产生较好的粘附性,因而可节省沥青用量,简化施工程序,改善施工条件,也减少对周围环境的污染。
由于这些优点,乳化沥青不仅适用于铺筑路面,而且在填方路堤的边坡保护,建筑屋面及洞库防水,金属材料表面防腐,农业土壤改良及植物养生,铁路的整体道床,沙漠固沙等许多工程中得到广泛的应用【1】。
既然乳化沥青这么重要,那么就让我们看看乳化沥青的关键成分——沥青乳化剂的一些情况。
21沥青乳化剂的特征沥青乳化剂是表面活性剂的一种其分子结构由亲油基、链接基和亲水基组成。
衡量表面活性剂亲水性大小的重要参数是表面活性剂的亲水亲油平衡值(HLB)。
作为水包油型乳化沥青所用的乳化剂,通常要求HLB在8~18之间。
HLB的计算公式为HLB=20(1-M0/M)式中M0—亲油基的分子量;M—乳化剂的总分子量。
在合成具有某一特性的乳化剂而进行分子设计时,由于亲油基通常为长链脂肪族基,分子量较大,在原料相对固定时,亲油基部分变化不大,而亲水基部分通常为小分子,容易进行改性和变换,因此上述计算公式有利于估计产品的亲水亲油平衡值。
关于改性乳化沥青的概述
关于改性乳化沥青的概述摘要针对改性乳化沥青一些性能指标符合道路施工应用,而且对环境不产生污染的要求。
建议改性乳化沥青的推广应用。
关键词原理;性能指标;前景0 引言随着国民经济的发展,人民的物质、精神生活、文化素质在逐步提高的同时,也认识到了生存环境的重要性,意识到保护环境是人类共同的使命,我们只有一个地球,保护环境是每个企业、每个公民必须尽到的社会责任。
目前对于道路热拌沥青混合料产生的污染,已经严重影响了人们的日常生活。
针对这一点,我公司研制了一种几乎零污染的能冷拌冷铺、喷洒型的改性乳化沥青。
此沥青施工简便,现场不需要加热,不污染大气环境,节省能源,效果显著。
以下是对改性乳化沥青的简单应用的介绍,如有不足之处还请指教.1 改性乳化沥青的原理所谓乳化沥青的研制也就是将热熔沥青倒入乳化机机械里经过高温机械研磨作用,使沥青以细小的微滴状态分散于含有乳化剂的水溶液中,形成水包油状的沥清乳液,在常温下这种乳液呈液状。
此种生产加工过程是在密闭的容器中进行的,不会对大气造成污染。
改性乳化沥青是用相同的原理在制作过程中对聚合物改性沥青进行乳化加工得到的乳化沥青产品。
其实也就是沥青乳化技术和沥青改性技术的结合。
改性乳化沥青施工简便不需要加热,在常温下可以进行喷洒或拌合摊铺,对于铺筑各种结构的路面适用性强,更值得一提的是,在常温下改性乳化沥青可以自由流动,并且可以根据添加剂的不同做出各种使用性很广的改性乳化沥青,做贯入式或透层容易达到所要求的沥青膜厚度,这一点是热沥青不可能达到的。
乳化沥青分阳离子和阴离子两种类型,根据选择的水质和乳化剂、添加剂不同,生产出来的乳化沥青就不同。
由于阴阳离子乳化沥青微粒周围所带的电荷不同,其与矿料接触时所产生的作用也不相同,因矿料表面也普遍带有阴离子电荷,所以就会产生阴离子乳化沥青与矿料排斥,阳离子乳化沥青与矿料相互吸附,也就进一步说明了阴离子乳化沥青与矿料的黏附力降低,而阳离子乳化沥青与矿料有较好的黏附力。
乳化沥青破乳的原因
乳化沥青破乳的原因聊城市汇通公路设备有限公司乳化沥青是将沥青热融,经过机械作用,以细小的微粒状态分散于含有乳化剂的水溶液之中,形成水包油状的沥青乳液。
在筑养路工程中,乳化沥青可用于路面的维修、路面层间的粘结、桥面铺装、水泥稳定碎石基础上的透层油、稀浆封层防水层等。
它具有冷施工、安全、环保、节约资源、节省能源、延长施工季节,改善施工条件等优点。
它在市政等道路建设和养护中起到了非常重要的作用,尤其是近些年来,乳化沥青生产水平的提高,积极推动了乳化沥青的技术进步和推广应用。
然而,在乳化沥青生产和使用过程中往往会出现结皮、絮凝、油水分层、凝聚成团等不良现象,给施工带来不必要的麻烦。
下文从沥青乳化设备、乳化剂、基质沥青、PH值、温度、储存温度、机械作用、冻结及熔化、长期放置等九个方面,总结出影响乳化沥青稳定性的因素,现分析如下:一、沥青乳化设备的影响衡量乳化沥青质量的一项重要指标是沥青微粒的均细化程度。
均细化程度越高,乳化沥青的使用性能及贮存稳定性越好。
均细化程度的高低与生产乳化沥青所用的核心设备一乳化机有直接关系,它是乳化设备的心脏。
用乳化机破碎、分散沥青液相的过程是一个很复杂的力学作用过程,一般都是利用剪切、挤压、摩擦、冲击和膨胀扩散等作用完成沥青液相的粉碎分散,其性能的优劣对乳液的质量和稳定性有重要影响。
目前,应用于沥青乳化的设备主要有三类。
按照生产乳化沥青均细化程度由高到低的顺序依次为:胶体磨类乳化机、均化器类乳化机、搅拌式乳化机。
因而,在购置乳化设备时应选择均细化程度高的乳化机,保证乳化沥青的生产质量和稳定性。
随着稀浆封层和微表处的施工工艺普遍应用,稀浆封层和微表处用的乳化沥青要求浓度及稳定性。
此两项性能影响到了施工质量,所以建议在选用乳化沥青生产设备的时候,应尽量选用质量好持久耐用的才好。
聊城市汇通公路设备有限公司研发的沥青乳化设备是我公司经过对各种国产、进口的沥青乳化设备综合性能分析对比,集众家所长,结合我公司三十年来在沥青加热、储存及深加工设备研发制造领域积累的丰富经验,经不断改进和完善后推出的一款高品质、高性能全自动沥青乳化设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沥青乳化剂乳化原理武城县博斯特筑路机械有限公司沥青乳化剂定义:沥青乳化剂是表面活性剂的一种类型。
它是能吸附在沥青颗粒与水界面,从而显著降低沥青与水界面的自由能,使其构成均匀而稳定的乳浊液的一种表面活性剂。
在水中加入沥青乳化剂以后,乳化剂的亲水基与水分子之间有很强的吸引力,乳化剂分子在液体表面上基本是无一定方向的,多处于平躺状态。
由于溶液中乳化剂的浓度由小变大,亲油基的烃基部分,因憎水性排斥于水体系之外,产生疏水效应。
这样就使乳化剂产生了一个方向性,水面上溶解的是亲水基,水面最远方向为亲油基,形成了乳化剂定向排列于界面上,使自由能趋于最小,保持了最稳定位置。
这样乳化剂与空气界面上形成了一层单分子膜。
这种有规则的分子排列现象称作分子定向排列或配位。
这种单分子定向排列现象称为单分子吸附膜。
沥青乳化剂分子在水溶液中定向排列的吸附现象,不仅在空气和水相之间,也可发生在空气以外的沥青相中。
这种吸附现象有物理吸附和化学吸附,以化学吸附为主,随着亲油基碳链长度增加吸附速度加快,分子定向排列的吸附速度加快,最后水的表面形成单分子层,使水的表面张力下降。
在乳化剂水溶液中加入过量的乳化剂,不仅可以形成单分子定向的吸附膜,而且能形成复杂的多层吸附膜和乳化剂分子集束,以尽量保持最小的自由能。
如果沥青液经高速剪切成细小微粒(0.01mm-0.001mm)而均匀的分散在水中,溶入水中的乳化液分子会立即在沥青微粒界面被吸附,从而产生新的吸附排列,亲油基一段吸附于沥青内部,亲水基一端吸附于水中,以钳形固定于界面上,从而降低了沥青与水的界面张力。
当吸附的乳化剂分子达到饱和状态时,在沥青微粒表面形成一层被乳化剂分子包封的有一定机械强度的坚固的分子薄膜,使沥青微粒具有亲水性,而均匀稳定地分散在水中,形成乳化沥青。
沥青乳液是一个多相分相体系,沥青是以微粒形式均匀分散于水中的稳定乳状液,其稳定度因乳化剂大大加强。
其中沥青为分散相,为不连续相或称内相;水为分散介质,为连续相或称外相,为水包油(O/W)型乳化沥青。
也就是我们平时使用的乳化沥青。
阴离子乳化剂阴离子乳化剂在水中溶解后,其活性部分倾向离解成负电离子的表面活性物质,其特征表现为具有一个大的有机阴离子,能与碱作用生成盐。
根据带负电离子部分的结构不同,可分为羧酸盐型、磺酸盐型及硫酸盐型三大类。
阴离子乳化剂的缺点是抗硬水能力较差;优点是来源广、种类多、价格便宜。
可用于碱性矿物集料。
一、羧酸盐型乳化剂,它是由大分子链的羧酸与碱作用而生成的阴离子沥青乳化剂。
常用的有脂肪酸盐和环烷酸盐。
其化学结构为:RCOOMR为憎水烃基,为长烃脂肪烃或环烷烃基,碳原子个数为9-21.M为金属离子,包括K+Na+在羧酸盐型沥青乳化剂中应用最多的为油酸钠、松香酸钠、月桂酸钠、环烷酸钠等。
脂肪酸的碳链越长,亲油性越强,凝固点越高,制成的脂肪酸皂越硬,在水中的溶解性越差。
脂肪酸的碳链越短在水中的溶解性越好,亲油性越差,对沥青的乳化效果越差。
选择脂肪酸盐乳化剂一般选择碳数为12-20之间,其中应用最多的碳原子为12-18.环烷酸存在于很多沥青中,可以从沥青中提取。
用作沥青乳化剂的环烷酸的酸值应在75-175之间,沥青酸值在0.75KOH/g左右或更高的环烷酸沥青,可简单的用碱性乳化剂所乳化,可获得较满意的环烷皂乳化沥青。
(一)油酸皂油酸皂是用天然油脂与氢氧化钠进行化学反应而生成的一种阴离子型乳化剂,学名为顺-9-十八碳烯酸盐,是含一个双键的不饱和脂肪皂。
其化学式为:CH3(CH2)7-CH=CH-(CH2)7COONa油酸是橄榄油、牛脂的主要成分,碳数均为18,由于分子中含有双键,增加了亲水性,在水中溶解性增强,具有极强的表面活性,是乳化沥青中常用的沥青乳化剂。
但在硬水中与铝、镁等离子形成不溶性的铝皂、镁皂,影响乳化效果。
(二)硬脂酸钠硬脂酸钠是由硬脂酸和碱作用而生成的硬脂酸皂。
其化学式为CH3(CH2)16Na硬脂酸钠多数是含有十八碳的饱和脂肪酸皂。
其碳链越长,憎水性越强,亲水性羧酸基仅为一个,亲水性不足,顾在冷水中溶解性较差,易溶于热水。
但对沥青亲和力较大,是沥青较好的乳化剂。
油酸皂虽与硬脂酸皂的碳链基本相等,均为18个碳组成,但因含有双键,其性质很不相同。
由于受双键的影响,亲水性较好,易溶于水,对沥青的乳化能力较硬脂酸皂好。
(三)月桂酸皂月桂酸皂是月桂酸油脂与氢氧化钠作用而生成的一种阴离子乳化剂。
其化学式为C11H23COONa月桂酸脂主要存在于椰子油中,由于碳数为12,疏水基较短,易溶于水,同样是沥青乳化中较好的乳化剂。
(四)松香油皂松香油皂是天然松香和碱作用而生成的一种阴离子乳化剂。
其化学式为C19H29COONa。
松香是从切开针叶树干渗出的粘稠性树脂类物质,在室温下呈半透明状态,主要成分是松香酸和松香酸酐,为不饱和化合物,活性较大,易于造化,形成松香酸皂。
在每个松香酸皂分子中含有两个不饱和双键,由于双键的存在可增强对水的亲和力,但影响沥青的乳化性能,通常是加氢除去双键。
松香皂易溶于水,有较好的水溶性和抗硬水能力,润湿能力较好,为沥青常用的阴离子乳化剂。
二、磺酸盐型乳化剂磺酸盐型阴离子乳化剂是直链烷烃、烷基苯、烷基萘等与硫酸或发烟硫酸经磺化和碱中和而制成的表面活性剂,其化学式为:R-SO3Na R为碳原子数为8-20中间的碳链。
在沥青乳化剂中常用的磺酸盐型乳化剂只要有烷基苯磺酸盐、烷基磺酸盐和植物油磺酸盐。
(一)烷基苯磺酸盐烷基苯磺酸盐又称石油苯磺酸盐,这是因为所用原料烷基和烯烃是由天然或人造石油的馏分制的。
其分子式为:R-3MR为CnH2n+1的长链烷基,以C10-C18应用最多;M为金属离子Na、K,以Na应用最多。
从烷基苯磺酸钠分子中可以看出,是由烷基苯磺化,直接引入磺酸基经碱中和而成。
其他亲油基(或称憎水剂、疏水基)为烷基苯(C12H2n+1-C6H4),亲水基为磺酸盐。
在个烷基苯链细长(链长为13-20Å,直径小于4.9Å)。
由于合成工艺与原料的不同烷基链的链长及支链情况不同,苯环和烷基连接位置不同,以及磺酸基引入苯环的多少和位置不同等,烷基苯磺酸钠不是单一成分,而是一个复杂的含异构体的体系。
在支链烷基苯磺酸盐中,表面张力以14碳最低,12碳次之,以直链18个碳乳化能力强。
各种不同异构体的C12,以n=12为最好。
苯核在烷基链上结合位置,以苯环移向中心的为好,以3-苯基异构体的最好。
烷基苯磺酸钠与羧酸盐相比,磺酸盐不易与酸及金属离子反应,可在宽的PH值范围内及相当的金属离子浓度下保持活性。
简单的苯基磺酸盐没有太大的表面活性,其核上有一个或几个短链的烷基取代基对界面活性就有不同程度的提高,取代的烷基使阴离子的非极性部分的憎水性增大。
烷基苯磺酸钠为白色或淡黄色粉末或片状固体,对酸、碱或硬水都比较稳定,但在240℃时极易发生分解,表面张力为0.3Mn/cm。
十二烷基苯磺酸钠、双十二烷基苯基醚二磺酸钠是乳化沥青中常用的阴离子乳化剂。
用平均分子量400-500单烷基和双烷基苯磺酸钠,可制得贮存稳定性好的沥青乳液。
如果与凝结剂(如氯化钙或水泥)混合,可控制其分裂速度。
与其他某些阴离子乳化剂混合使用时,所发挥的乳化效果比单独使用时,其乳化效果更好,具有选择性的协同效应,也是乳化沥青中常用的阴离子乳化剂。
在苯环上的烷基碳原子很少,甚至为零时(或仅有两个甲基),如苯磺酸钠、甲基磺酸钠、二甲基苯磺酸钠和异丙磺酸钠,能增大烷基苯磺酸钠及其他组分在水溶液中的溶解度,常作表面活性剂的助溶剂。
(二)烷基磺酸钠烷基磺酸钠又称为石油磺酸钠,俗称石油皂。
它是由高沸点石油馏分(230℃-320℃)先行氢化或用浓硫酸处理除去不饱和烃而得到的纯烷基,在紫外光照射下与氯和二氧化硫作用生成一氯化合物,再用烧碱皂化而成。
其化学式为:R-SO3NaR为C13-C18的烷基或烷基苯稠环结构。
烷基磺酸钠的表面活性与烷基苯磺酸钠接近,它在碱性、中性和弱酸性溶液中较为稳定,在硬水中仍具有较好的乳化能力。
支链烷基苯磺酸钠溶液的溶解度及临界胶束浓度、表面张力和碳原子数有关,乳化能力以C15-C16为好。
烷基磺酸钠为或淡黄色粉末,易溶于水,是乳化沥青中常用的乳化剂。
该产品有效物为28±1%,不皂化物(以100%有效物计)≦6%,1%水溶液PH 值为7-8,NaCl含量小于6%。
(三)拉开粉拉开粉的学名为二丁基萘磺酸钠,属于烷基萘基磺酸盐中的一种。
由醇、萘与发烟硫酸作用后即可得二丁基萘磺酸,再经烧碱处理而制得萘磺酸盐表面活性剂,拉开粉为俗名。
其化学结构式为:CH2CH2CH2CH3NaO3SCH2CH2CH2CH3拉开粉为白色或微黄色粉末,液体呈浅橙色透明液体,易溶于水。
固状物加热至100℃不熔化而磺化,并逸出碱性气体,对酸碱和硬水都稳定,活性物含量为60±1%,PH值为7-8.将两个烷基化的萘磺酸盐用亚烷基连接起来得到的化合物具有较大的分散效果,是良好的分散剂。
例如,亚甲基二异丙基萘磺酸钠、亚甲基二异丙基萘磺酸钾等。
(四)木质素磺酸盐木质素磺酸盐又称磺化木质素。
木质素是愈疮木基(4-羟基-3-甲氧基苯基)的多聚物,是从造纸工业废液中提取的沥青乳化剂,其基本化学结构单元为:αβγHO- CH=CH-CH2OH(OCH3)1-2在α-碳原子上引入磺酸基,则成为磺酸盐,它是由亚硫酸盐制浆废液经石灰乳沉淀酸溶,转化而制得的。
其分子式为:SO3NaHO- C=CH-CH2OH(OCH3)1-2针叶树含一个甲氧基,阔叶树含有两个甲氧基,侧链双键发生加合反应。
最普通的磺酸盐相对分子量约为4000.一般来说低分子量木质素磺酸盐多为直链,在水溶液中缔合在一起;高分子量木质素磺酸盐多为支链,在水溶液中显示出聚合电解质行为,并且高分子量部分很难生物降解。
木质素磺酸盐呈黄色固体,有良好的分散性,是固体在介质中的较好分散剂。
通常用来制造慢裂型乳化沥青。
此外,磺化妥尔油皂、磺化琥珀酸、α-烯烃磺酸盐、磺化松香、磺化棉籽油等,都可用作阴离子乳化沥青的乳化剂,有的还可改善沥青对矿物集料的粘附性。
三、硫酸酯盐硫酸酯盐是用硫酸与含烃基烷烃或烯烃发生硫酸化反应而在羟基上引入磺酸基(-Os3M)亲水基团的表面活性剂。
其化学式为:R-OsO3MR为含烃基的烷烃或烯烃,碳原子个数在C12-C18. M为金属离子(K+、Na+)。
从化学式中可以看出,硫酸酯盐阴离子乳化剂是一个具有ROsO3-离子的沥青乳化剂。
其主要性能取决于脂肪醇的链长及支链度。
具有较长碳链或支链的表面活性剂才具有较好的表面活性,且直链的表面活性比支链大,乳化能力强,不饱和的C16-C18链硫酸盐比饱和烷基硫酸盐有较大的溶解度。
一般碳原子数大于14时,在室温下,在水中的溶解度是很小的。