条件分式求值的方法与技巧
分式运算的八种技巧
分式运算综合题1、先化简,再求值:(1-x x -11+x )÷112-x ,其中x=22、先化简,再求值:21+-a a ·12422+--a a a ÷112-a ,其中a 满足a 2-a=12。
3、计算:223y x y x -+-222y x y x -++2232y x yx --。
4、化简:12+x x -1422-+x x ÷1222+-+x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。
5、已知M=222y x xy -,N=2222y x y x -+,P=224x y xy-,用“+”或“-”连接M ,N ,P 有多种不同的形式,如M+N-P 。
请你任选一种进行计算,并化简求值,其中x :y=5:2。
6、已知abc ≠0且a+b+c=0,求a(b 1+c 1)+b(c 1+a 1)+c(a 1+b1)的值。
7、已知两个式子:A=442-x ,B=21+x +x-21,其中x ≠±2,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B8、已知1<x <2,则式子|2|2--x x -1|1|--x x +xx ||化简的结果是( )A.-1B.1C.2D.39、已知a2+3ab+b2=0(a ≠0,b ≠0),则式子a b +ba= 。
10、已知a 1+b 21=3,则式子b a ab b ab a 634452--+-= 。
11、已知3-x m -2+x n =)2)(3(17+-+x x x ,求m 2+n 2的值。
12、已知a,b 为实数,且ab=1,设M=1+a a +1+b b ,N=11+a +11+b ,试确定M ,N 的大小关系。
13、先化简,再求值:(x-13+x x )÷1222++-x x x ,其中x 满足x 2+x-2=0.14、已知A=(x-3)÷4)96)(2(22-+-+x x x x -1,(1)化简A; 2x-1<x,(2)若x 满足不等式组 且x 为整数,求A 的值。
【八年级】有条件的分式的化简与求值
【八年级】有条件的分式的化简与求值给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化筒后求值是解有条件的分式的化简与求值的基本策略.解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:1.恰当导入参数;2.取倒数或利用倒数关系;3.拆毁项变形或分拆变形;4.整体代入;5.利用比例性质等.例题求解【基准1】若,则的值就是.(“希望杯”邀请赛试题)思路指点导入参数,利用参数找寻a、b、c、d的关系.注:解数学题是运用巳知条件去探求未知结论的一个过程.如何运用已知条件是解题顺畅的重要前提,对巳知条件的运用有下列途径:(1)轻易运用条件;(2)变形运用条件;(3)综合运用条件;(4)挖掘隐含条件.在求解某些不含多个字母的代数式问题时,如果未知与未明之间的联系不显著,为了沟通交流未知与未明之间的联系,则可以考量导入一个参数,参数的导入,可以起著沟通交流变元、消元的功能.【例2】如果,,那么等于()a.1b.2c.3d.4(全国初中数学联赛武汉选拔赛)思路指点把c、a用b的代效式则表示.【例3】已知,,,求代数式的值.(北京市竞赛题)思路指点轻易通在分后,似乎较繁,由x+y+z=2,得z=2-x-y,x=2-y-z,z=2-x-y,从变形分母抓起.【例4】不等于0的三个数a、b、c满足,求证a、b、c中至少有两个互为相反数.(天津市竞赛题)思路指点必须证a、b、c中至少存有两个互为相反数,即为必须证明(a+b)(b+c)(c+a)=0,并使证明的目标更加明晰.【例5】(1)已知实数a满足a2-a-1=0,求的值.河北省竞赛题)(2)汜知,求的值.(“北京数学科普日”组内赛试题)思路点拨(1)由条件得a2=a+1,,通过不断平方,把原式用较低的多项式表示是解题的关键.(2)已知条件是、、三个数的乘积,探求这三个数的和与这三个数的积之间的关系,从而求出++的值是解本例的关键.学历训练1.已知,那么=.(淄博市中考题)2.已知,则=.3.若a、b、c满足用户a+b+c=0,abc>0,且,y=,则=.(“祖冲之杯”邀请赛试题)4.已知,则=.(“五羊杯”竞赛题)5.已知a、b、c、d都是正数,且,给出下列4个不等式:①;②;③;④,其中正确的是()a.①③b.①④c.②④d.②③(山东省竞赛题)6.设a、b、c就是三个互不相同的正数,如果,那么()a.3b=2cb.3a=2bc.2b=cd.2a=b(“祖冲之杯”邀请赛试题)7.若4x?3y一6z=0,x+2y-7z=0(xyz≠0),则代数式的值等于().a.c.-15d.-13(全国初中数学竞赛题)8.设立轮船在静水中速度为,该船在流水(速度为<)中从上游a驶向下游b,再回到a,所用时间为t,假设=0,即为河流改成静水,该船从a至b再回到b,所用时间为t,则()a.t=tb.ttd.无法确认t、t的大小关系9.(1)化简,求值:,其中满足;(山西省中考题)(2)设,求的值.10.未知,其中x、y、z互不成正比,澄清:x2y2z2=1.11.若,且,则=.12.未知a、b、c满足用户,,那么a+b+c的值.13.已知,,,则x的值为.14.未知x、y、z满足用户,,,则xyz的值.(全国初中数学竞赛题)15.设a、b、c满足用户abc≠0,且,则的值a.-1b.1c.2d.3(2021年南通市中考题)16.未知abc=1,a+b+c=2,,则的值()a.-1b.c.2d.(大原市竞赛题)17.已知?列数、、、、、、,且=8,=5832,,则为()a.648b.832c.1168d.194418.已知,则代数式的值为()a.1996b.1997c.1998d.199919.(1)已知,求的值;(2)未知x、y、z满足用户,谋代数式的值.(北京市竞赛题)20.设a、b、c满足用户,澄清:当n为奇数时,(波兰竞赛题)21.已知,且,求x的值.(上海市高中理科班录取试题)22.某企业有9个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有a,b两组检验员,其中a组有8名检验员,他们先用2天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再检验第三、四两个车间的所有成品,又用去了3天时间,同时,用这5天时间,b组检验员也检验完余下的5个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.。
分式求值的技巧点拨
分式求值的技巧点拨胡伟在分式运算中,常遇到求值问题,这类问题题型多样,技巧性强,若根据题目中分式的结构特点,采用适当方法,则可巧妙获解。
一、巧用配方法求值例1 已知01x 5x 2=+-求44x 1x +的值。
解:由0x 01x 5x 2≠=+-知,由此得5x 1x =+∴2)x1x (x 1x 22244-+=+ 5272]2)x1x [(22=--+= 说明:在求解有关分式中两数(或两式)的平方和问题时,可考虑用完全平方公式进行解答。
二、巧用因式分解法求值例2 先化简,再求值:1n mn )n m n mn n mn 2m n m (22222--+-+--。
其中231m -=,231n +=。
解:原式=1n mn ])n m )(n m ()n m (n )n m (n m [2--++--- n m mn 1n mn n m n 11n mn )n m n n m 1(--=-⋅--=----= ∵23231m --=-=,23231n +-=+=∴1)23)(23(mn -=+---=,4)23()23(n m -=+----=- ∴41n m mn -=--=原式 说明:因式分解法是一种重要的数学方法,解决很多数学问题都要用到它,尤其是在分式化简和分式的四则运算中运用较多。
因此,希望同学们对因式分解的各种方法熟练掌握。
三、巧用整体代入法求值例3 已知3b 1a 1=-,求bab 2a b 2ab 3a 2---+的值。
解:由3b1a 1=-变形得ab 3b a -=-,代入所求式得: 原式ab 2)b a (ab 3)b a (2--+-= 53ab 2ab 3ab3ab 6=--+-=说明:在解答给定条件下求分式的值这类问题时,需要把待求值的分式进行恒等变形,转化成能用已知条件表示的形式,再代入计算,或先把条件进行化简再采用上述方法求值。
四、巧设参数(辅助未知数)求值例4 已知实数x 、y 满足x:y=1:2,则=+-yx y x 3__________。
分式方程知识点归纳总结
分式方程知识点归纳总结1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即坟墓中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
C B C A B A ⋅⋅=C B C A B A ÷÷=411=+b a bb a b ab a 7223-++-例:已知 ,则求2)参数法:当出现连比式或连等式时,常用参数法。
浅析有条件的分式化简与求值问题
浅析有条件的分式化简与求值问题342800 江西宁都三中 李雪樱 解有条件的分式化简与求值问题时,既要瞄准目标,又要抓住条件;既要根据目标变换条件,又要依据条件来调整目标,常常用到如下解题技巧.1 引入参数法此法的运用特点是当题目所给条件为连比等式的形式时,采用引入参数法进行转换1例1 已知a+b2=b-2c3=3c-a4,求5a+6b-7c8a+9b的值.分析 审视条件和待求式,设连比值为k,则a,b,c 分别能用参数k的倍数来表示,问题可迎刃而解.解 设a+b2=b-2c3=3c-a4=k,则a+b=2k,b-2c=3k,3c-a=4k,三式联立解方程组,得a=-115k,b=21 5k,c=35k.所以,5a+6b-7c8a+9b=5×(-11k5)+6×21k5-7×3k58×(-11k5)+9×21k5=50101.点评 通过引入参数k,将条件转化为方程组,然后用k分别表示a,b,c,代入分式中求解.通过引入参数,实现将多元(a,b,c)转变为一元(k)来求解,既有条不紊又方便快捷.例2 已知abc≠0,且a+bc=b+ca=c+ab,求(a+b)(b+c)(c+a)abc的值.分析 审视条件和待求式,设连比值为k,则待求式等于k3,若能求出k,问题获解.解 设a+bc=b+ca=c+ab=k,则a+b=kc,b+c=ka,c+a=kb,三式相加得2(a+b+c)=k(a+b+c),即(a+b+c)(k-2)=0,所以k=2或a+b+c=01当k=2时,(a+b)(b+c)(c+a)abc=2c2a2babc=8;由a+b+c=0,得出k=a+bc=-1.∵a+bc=k,∴k=-11当k=-1时,(a+b)(b+c)(c+a)abc=(-c)(-a)(-b)abc=-1. 所以∠H MD=∠H MP+∠PMD=∠QBP+∠MBD +∠ACB=∠ABC+∠ACB=180°-∠A,易证∠QO P=180°-∠A,所以∠QO P=∠HMD1又因为△COP∽△BOQ,所以CPBQ =O POQ=MDH M1所以△QO P∽△HMD,由此可得∠OQ P=∠MH D,因为OQ⊥A B,∠OQ P+∠A Q P=90°,由H M∥BQ 得到∠A Q P=∠MHQ,所以∠MHD+∠MHQ=90°,即DH⊥PQ.从而问题得证.这种证明的方法是利用三角形的中位线和相似变换,简洁明了,方法更具有创新性,思维也更周密通过对问题证法的探求,我们不但发现了新的证法,而且对题目有了更深刻、更本质的认识和把握.不仅沟通了相似变换、全等变换、三角形、四边形等知识之间的联系,更可贵的是我们形成了解决中点类问题的方法和策略,体悟了运用数学方法解决规律性探索问题的策略,可谓一举多得1笔者想借用罗增儒教授的话结束本文:对“解题过程的反思”继续把解题活动作为认识的对象,不仅关注如何获得解,而且寄希望于对“解”进一步分析,增强数学能力、优化认知结构、提高思维素质,学会“数学地思维”,重点在学会怎样解题.参考文献罗增儒.中学数学解题的理论与实际[M].广西:广西教育出版社,2008,9(收稿日期3)22 (2009年第6期初中版) 解题研究.:2009040 点评 本题引进参数k表示比值,一方面使已知条件便于使用,另一方面使待求式简化,一箭双雕.2 折项相消法此法的运用特点是题目中待化简式的全部或部分分式中,其分子或分母可以通过分解因式分拆为两项,使待化简式产生容易相抵消的某些项,从而简化求解过程.例3 化简分式2a 2+3a+2a+1-a2-a-5a+2-3a2-4a-5a-2+2a2-8a+5a-31分析 直接通分,则分子中a的次数最高可达到5次,运算将十分繁杂,显然不可取.审视各分式的结构,分子a的最高次数是分母次数的2倍,可将每一个分式拆分为两项,一项含其分母中的因式,一项为常数,以简化运算.解 原式=(2a+1)(a+1)+1a+1-(a-3)(a+2)+1a+2-(3a+2)(a-2)-1a-2+2(a-1)(a-3)-1a-3=[(2a+1)+1a+1]-[(a-3)+1a+2]-[(3a+2)-1a-2]+[2(a-1)-1a-3]=1a+1-1a+2+1a-2-1a-3=1(a+1)(a+2)+-1(a-2)(a-3)=-8a+4(a+1)(a+2)(a-2)(a-3).点评 拆分时要依据分母和分子中二次项的系数和一次项的系数进行;消减有关项后,巧用分组(两式相减且分母相差1)进而再通分,通过这种分步通分来简化运算.例4 化简1(x+2005)(x+2006)+1(x+2006)(x+2007)+1(x+2007)(x+2008)1分析 审视需要化简的式子结构,每个分式具有(+)的特征,而(+)=+,问题则迎刃而解解 原式=(1x+2005-1x+2006)+(1x+2006-1x+2007)+(1x+2007-1x+2008)=1x+2005-1x+2008=3(x+2005)(x+2008).点评 利用每个分式具有同一结构特征,通过裂项(拆项),使待化简式中出现若干对“相反数”,相消某些项从而得解.这种拆项相消法是分式化简中的常用技巧.3 取倒数变形法例5 化简b-c(a-b)(a-c)+c-a(b-c)(b-a)+a-b(c-a)(c-b)-2a-b-2c-a-2b-c1分析 审视需要化简的式子的结构特征,直接通分虽然也可行,但运算量比较大.利用a-b,b-c,c-a,对分子进行添项减项的恒等变形,使分式进行简化拆分相消,进而获解.解 原式=(a-c)-(a-b)(a-b)(a-c)+(b-a)-(b-c)(b-c)(b-a)+(c-b)-(c-a)(c-a)(c-b)-2a-b-2c-a-2b-c=1a-b-1a-c+1b-c-1b-a+1c-a-1c-b-2a-b-2c-a-2b-c=01点评 根据问题的特点,对分子进行某种变形,旨在优化解题过程.4 整体代入法此法的运用特点是所给的条件式的左端,或者待求式,取倒数后可变为几项之和,使条件与待求容易沟通.例6 已知aba+b=13,bcb+c=14,aca+c=15,求abcab+bc+ca的值.分析 审查条件式的结构和待求式的结构,取倒数后由分式变为和式,通过方程组的形式可求得1a+1b+1的值,再取倒数则可得待求式的值.若瞄准目标(待求式),设法将++用表示出,考察条件,不难实现32解题研究 (2009年第6期初中版)1n n11n n11n-1n1.cab bc c a abc .解 由已知条件取倒数,得1a +1b =3,1b +1c =4,1a +1c=5,三式相加得1a+1b +1c=6.所以abc ab +bc +ca =11a +1b +1c=16.点评 瞄准目标,抓住条件,对待求式变形和对条件变形,加以灵活运用,是顺畅解题的常用策略.例7 已知x x 2+x +1=a,a ≠0且a ≠12,求x2x 4+x 2+1的值.分析 若由条件式求出x,代入待求式求值,显然繁琐.若将条件式取倒数,则可以用x +1x这个整体来关联条件与待求,化难为易.解法1 由x x 2+x +1=a 及a ≠0,得x 2+x +1x =1a ,即x +1x =1a-1,所以x 4+x 2+1x 2=x 2+1x2+1=(x +1x )2-1=(1a-1)2-1=1-2aa2.又a ≠12,所以x 2x 4+x 2+1=a 21-2a(a ≠12).若注意到x 4+x 2+1=(x 2+x +1)(x 2-x +1),也可以形成另一种巧妙解法.解法2 由xx 2+x +1=a 及a ≠0,得x 2+x +1=x a ,x 2-x +1=x (1-2a )a ,所以当a ≠12时,x 2x 4+x 2+1=a21-2a.点评 观察是解题的门户,仔细观察,善于联想,在条件与结论之间寻找最便捷的桥梁,是学习数学的理想追求.5 整体运用法此法的运用特点是待求式通过变形可用某个“整体”来表示,而所给条件通过变形又可以求出这个“整体”例 若,都是正实数,且+=,求(ba)3+(ab)3的值.分析 由待求式的特征,联想到公式a 3+b 3=(a +b)3-3ab (a +b),即可知(ba )3+(a b)3=(b a +a b)3-3ba ab (b a+a b ),若能求出b a +a b这个整体,原问题即可获解.由条件可得b a -a b =1,进而b a +ab可求.解 因为1a -1b -1a +b=0,所以1a -1b =1a +b ,a +b a -a +b b =1,即b a -a b =1,所以(b a +a b)2=(b a -ab)2+4=5,即b a +ab=5,所以(b a )3+(a b)3=(b a +a b)3-3ba ab (b a +a b)=(5)3-35=25.点评 解答数学问题,应先紧扣待求问题寻觅解题途径,然后对照条件审视该途径是否通畅,若不通畅则继续寻觅,直到条件与寻觅的途径能够有效沟通.例9 如果a 是方程x 2-3x +1=0的根,试求2a 5-5a 4+2a 3-8a2a 2+1的值.分析 由条件得a 2-3a +1=0,显然求出a 值(2个)代入待求式求值十分繁琐,此路不可取.关注待求式,分母可以化为3a,分子则以整体(a 2-3a +1)来表示它,从而降次简化分子,便可简化待求式.解 由题意a 2-3a +1=0,用长除法,得到:2a 5-5a 4+2a 3-8a2=(a 2-3a +1)(2a 3+a 2+3a )-3a,所以,原式=(a 2-3a +1)(2a 3+a 2+3a)-3a3a=-3a3a=-1.点评 在解题时,细察题目的外形,把握问题的特征,展开联想,创设整体常常会使解题思路豁然开朗.运用整体方法的具体操作中常常有:整体构造、整体观察、整体换元、整体变形、整体代入等灵活而闪耀智慧光芒的变形是学习数学所要追求的理想境界之一(收稿日期3)42 (2009年第6期初中版) 解题研究.8a b 1a -1b -1a b0..:2009027。
初中数学分式学习技巧
初中数学分式学习技巧初中数学分式学习技巧主要包括以下几点:1.理解分式的基本概念:首先要清楚分式的定义,即分式是两个整式的商。
理解分子、分母的概念,以及分式有意义的条件(分母不能为0)。
2.掌握分式的基本性质:包括分式的约分、通分、乘除法和加减法。
理解这些性质并熟练掌握它们的运算方法,是分式学习的关键。
3.多做练习:通过大量的练习,可以加深对分式性质的理解和掌握,提高解题速度和准确性。
在做题时,要注意分式的化简,避免结果出现最简公分母为0的情况。
4.学会观察和分析:在解决分式问题时,需要观察分式的结构,分析是否有公因式、是否可以用公式法等。
这需要一定的数学素养和逻辑思维能力。
5.善于总结和归纳:在学习的过程中,要善于总结和归纳各种分式运算的方法和技巧,形成自己的解题思路和方法体系。
此外,还有一些特殊的学习技巧可以帮助更好地掌握分式:1.整体通分法:将后两项看作一个整体,进行整体通分,可以简捷求解。
2.逐项通分法:通过观察各分母的特点,联想乘法公式,从左到右依次通分。
3.先约分,再通分:分子、分母先分解因式,约分后再通分求值进行计算。
4.裂项相消法:通过观察,题目中的后两个分式的分母都是两个因数之积,而分子又是一个定值,要以将每一个分式先拆成两项之差,前后相约后再进行通分。
5.整体代入法:把条件时整理一下,然后整体代入求值。
6.公式变形法:把条件式进行变形,利用乘法公式再对要求的式子变形,然后代入。
7.设辅助参数法:利用条件式设一个辅助参数,再代入到所求的式子中去,达到化简的目的。
8.倒数变换法:把条件式整体取倒数,使条件更简单,所求的式子也取倒数,求出值后再倒过来。
9.特殊值法:由已知条件无法求出a、b、c的值,可根据已知条件取字母的一组特殊值,然后代入所求的式子求出结果。
这种方法多用在填空题、选择题中。
以上这些技巧和方法可以帮助你更好地掌握初中数学分式的学习。
同时,还需要注意学习方法和学习态度的调整,保持积极的学习态度和良好的学习习惯。
八年级数学上册专题突破讲练:分式化简求值及有条件求值试题
m3 3m 6m
2
(m 2
5 2 ) ,其中 m 是方程 x + 3x - 1 = 0 m2
2
解析:先通分计算括号里的,再计算括号外的,化为最简,由于 m 是方程 x
+ 3x - 1 = 0 的根,那么
m + 3m - 1 = 0 ,可得 m + 3m
2
2
的值,再把 m
2
+ 3m 的值整体代入化简后的式子,计算即可。
2
1
x
2
+ 1 = (x +
1
x
) - 1= 4- 1= 3
2
即:
x
4
x + x +1
=
6. 把未知数当成已知数法
如:已知 3a-4b-c=0,2a+b-8c=0,计算:
a 2 b2 c2 ab bc ac
解:把 c 当作已知数,用 c 表示 a,b 得,a=3c,b=2c ∴
a 2 b 2 c 2 14c 2 14 = = 。 ab bc ac 11c 2 11
1 x 如:已知: = ,则 4 的值为 ______。 2 2 x + x+ 1 3 x + x +1
x
2ቤተ መጻሕፍቲ ባይዱ
x + x+ 1 1 1 解:由题意得 x ¹ 0 ,由 得: = 3 , 即得: x + = 2, = 2 x x 3 x + x+ 1 x
所以
2
x +x +1 x
2 2 2
4
2
= x + 1 3
a 1 a 1
分式求值方法与技巧集锦
龙源期刊网
分式求值方法与技巧集锦
作者:农树新
来源:《中学教学参考·理科版》2009年第07期
分式求值运算是中学数学的一个基础内容,它涉及的知识点多、覆盖面广、综合性强,需要学生有扎实的基础;同时它题型多样,技巧性强,富于变化,需要学生有敏锐的观察力,较强的分析
判断能力和思维能力,以及灵活的解题方法技巧.本文就这个问题作了总结归纳,希望对同学们有所启示.
一、直接法
直接法就是从已知条件出发,运用概念、公式、定理等进行推理或运算,求出未知数的值并代入所求式获解的方法.。
分式运算的技巧(精心整理,非常好用!)
分式运算的几点技巧(精心整理,非常好用!)一、分式运算的几点技巧1、分段分步通分若一次通分,计算量太大,观察各分母之间的关系,采用分段通分。
2、利用除法运算当算式的分子次数与分母次数相同或高于分母次数时,一般要先利用除法或约分对分子降次后再通分。
3、拆项后再通分分式的分子相同,分母是相邻两个连续整数的积,分式加减的项又是无法通分计算的,这类题可用列项的方法计算。
4、约分后再通分若算式中的分式不是最简分式,可先约分,再用适当方法通分,可能较简便。
5、恰当地选择运算顺序6、约分后再通分二、巧解分式求值问题1、活用公式变形2、整体代入法3、设参法4、巧代换典例1、分段分步通分例1、计算:4214111111a a a a ++++++-2、利用除法运算例2、计算:34452312-----+++-++x x x x x x x x3、拆项后再通分例3、计算:127165123112222++++++++++x x x x x x x x4、灵活运用乘法公式例4、计算:)1)(1)(1)(1)(1)(1)(1(21616884422±≠-+++++x x xx x x x x x x x x5、恰当地选择运算顺序 例5、计算:222222)1()1(b a a b a b b a b ---+++-6、约分后再通分例6、计算:343622322222+--+--+-+--x x x x x x x x x二、巧解分式求值问题1、活用公式变形例7、 已知0152=+-x x ,求221x x +2、整体代入法例8、已知分式831332=++x x ,求36212-+x x 的值。
3、设参法例9、已知c b a b a c a c b +=+=+,求))()((a c c b b a abc +++4、巧代换例10、设1=abc ,求111++++++++c ac c b bc b a ab a。
分式运算的常用技巧与方法
分式运算的常用技巧与方法分式运算是数学中常见的运算形式,掌握一些常用的技巧和方法可以帮助我们更快、更准确地进行计算。
以下是一些分式运算的常用技巧和方法:一、化简与约分:化简和约分是分式运算的基本操作,可以简化分式,使其更容易处理。
化简分式的方法有:1.因式分解:将分子和分母同除以其最大公因数,化简为最简形式的分式。
2.合并同类项:对于分子或分母中含有多项的情况,将同类项相加或相减,化简为简单的形式。
3.分解为部分分式:一些分式可以通过分解为部分分式的形式进行化简,如等式两端分别乘以一个分子时。
二、通分:当两个分式的分母不同时,我们需要将分母化为相同的公分母,这个过程称为通分。
通分的方法有:1.找到两个分母的最小公倍数,在分子和分母同时乘上适当的倍数,使得两个分母相等。
2.当两个分式的分母为一次因式的幂指时,可以将较高次幂的分母分解为较低次幂的分母,再进行通分。
三、分式的加减运算:分式的加减运算可以通过通分和合并同类项来进行。
具体的步骤如下:1.找到两个分式的最小公倍数作为通分的分母。
2.将两个分式的分子乘以一个适当的倍数,使得它们的分母相同。
乘上的倍数可以通过最小公倍数与原分母的比值得到。
3.合并同类项,将分子进行相加或相减。
四、分式的乘除运算:分式的乘除运算可以通过相乘或相除的方式进行。
具体的步骤如下:1.乘法:将两个分式的分子相乘,分母相乘,得到新的分子和分母后化简。
2.除法:将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,得到新的分子和分母后化简。
五、分式的倒数和幂运算:分式的倒数就是将分子和分母互换的操作。
分式的幂运算可以通过将分子和分母同时进行幂运算来进行。
六、一些特殊的分式运算:除了以上常见的分式运算方法,还有一些特殊的分式运算,如:1.分式的比较大小:将两个分式的分子和分母相乘后进行比较。
2.分式的求值:将分式中的变量替换为具体的数值进行计算。
例谈分式计算求值的16种技巧
)
一
.
、
丁
, =
c
。
.
15
D
一
.
13
解析
视
,
z
与 Y 为 主元
z
=
为 常数 解 由两 条件 式 组
,
值 ;( 2 ) 已 知
解析
÷
+
五
1
=
5
y
求
琶 筹
= ,
一
石 十 二髫, 十 ' , ,
的值
成 的方 程 组 得
. .
3 z ,Y
2z
.
原式
5
=
( )
1
一
z
+
Y
=
2
互 √ xy
1
,
故原 式
=
生 ±L
”
,
x
+
2y
一
7z
=
0
(x yz
# 0
0 ) 贝
,
不 得 要 领 常常 无 功 而 返 为 此 本 文 归 纳介 绍
,
,
16
种 常用
方 法 与 技 巧 供参 考
,
代数 式
A
.
技巧
1
整 体 代换 法
-
.
例
1
( 1 ) 已知
x
=
万
,
一
1 Y
,
=
A
+
1
,
求生
了
.
+
上
互
的
丢 糍 ÷
一
的值 等 于 (
B
19
分式求值的方法与技巧
分式专题三---分式求值的方法与技巧一.求值;1.已知()224++=+-x B x A x x x ,求A,B 的值; 2.已知:22)2(2)2(3-+-=-+x B x A x x ,则A= 、B = 3.若()()212112+++=+++x B x A x x x 恒成立,则A +B =_______________;二.将条件式变形后代入求值;1.已知432z y x ==,z y x z y x +--+22求的值. 提示:已知连比,常设比值k 为参数,这种解题方法叫参数法2. 二、将求值变形代入求值.1.已知31=+xx ,的值求1242++x x x . 2.已知的值求ba b a b ab a +-=-+,0622. 3.已知0132=+-a a ,求142+a a 的值; 4. 已知yxy x y xy x y x ---+=-2232,311则分式的值为__________. 5.已知231=-x x ,求分式221xx +的值.6.已知b a 43=,则222232b a b ab a -+-=_______________;7.2007赤峰已知114a b +=,则3227a ab b a b ab-+=+- . 8.已知311=+b a ,则bab a b ab a +++-23的值是_________. 9.如果a+a 1=3,则=+221a a __________. 10.已知错误!- 错误!=3,求分式错误!的值.11.若ab=2,a+b=-1,则ba 11+ 的值为 12.若0152=+-x x ,则x x x x 1122+++=_______________; 13.已知02322=-+y xy x x ≠0,y ≠0,求xy y x x y y x 22+--的值; 三、将条件式和求值式分别变形后代入求值.14.已知a 2+2a -1=0,求分式24)44122(22+-÷++--+-a a a a a a a a 的值. 注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入.15.已知abc =1,则111++++++++c ca c b bc b a ab a 的值为________. 16.已知)11()11()11(,0c b a a c b b a c c b a +++++=++求的值.17.若.1,11,11的值求bab a c c b +=+=+ 18.若7=+b a ,12=ab ,则ab b a 22+=_______________;19.若b a a b -=-111,则b a a b +=_______________; 20.如果n 222108++为完全平方数,则n =_______________;21.已知0199752=--x x ,则代数式()()211223-+---x x x 的值是多少22.已知:A=xy-x 2,B=xy y xy x 222+-,C=y x x -2,若A ÷B=C ×D,求D . 24.已知ac c b b a 111+=+=+,且c b a ≠≠,你能否求出222c b a 的值请说出理由 25.2008四川省达州市符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bad bc c d =-,请你根据上述规定求出下列等式中x 的值. 2111111x x =--26.已知b a b a b a ab b a -+>>=+则且,0622的值为 27.3213213232y x y x x y x y -+--+ 28.143)1(2111=-+-x 29.已知01342=+++x x x ,先化简后求xx x -+-3932的值. 30.化简求值43326512222-+---+÷+--a a a a a a a a ,其中a =-3.。
分式的运算技巧
分式概念形如(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:(A,B,C为整式,且B、C≠0)运算法则约分根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法则:(1)两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
专题09 分式方程(归纳与讲解)(解析版)
专题09 分式方程【专题目录】技巧1:分式的意义及性质的四种题型 技巧2:分式运算的八种技巧技巧3:巧用分式方程的解求字母的值或取值范围 技巧4:分式求值的方法 【题型】一、分式有意义的条件 【题型】二、分式的运算 【题型】三、分式的基本性质 【题型】四、解分式方程 【题型】五、分式方程的解 【题型】六、列分式方程 【考纲要求】1、理解分式、最简分式、最简公分母的概念,掌握分式的基本性质,能熟练地进行约分、通分.2、能根据分式的加、减、乘、除的运算法则解决计算、化简、求值等问题,并掌握分式有意义、无意义和值为零的约束条件.3、理解分式方程的概念,会解可化为一元一次(二次)方程的分式方程(方程中的分式不超过两个)。
4、了解解分式方程产生增根的原因,会检验和对分式方程出现的增根进行讨论. 【考点总结】一、分式形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.A A【考点总结】二、分式方程【注意】1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式 分式混合运算的运算运算顺序:1.先把除法统一成乘法运算;2.分子、分母中能分解因式的多项式分解因式;3.确定分式的符号,然后约分;4.结果应是最简分式.【技巧归纳】分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a b ·c d =acbd .分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a b ÷c d =a b ·d c =adbc在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.技巧1:分式的意义及性质的四种题型 【类型】一、分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个. 【类型】二、分式有无意义的条件3.若代数式1a -4在实数范围内有意义,则实数a 的取值范围为( )A .a =4B .a>4C .a<4D .a≠4 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.【类型】三、分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x≠1D .x >1 7.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.【类型】四、分式的基本性质及其应用 9.下列各式正确的是( )A .a b =a 2b 2B .a b =ab a +bC .a b =a +c b +cD .a b =ab b 2 10.要使式子1x -3=x +2x 2-x -6从左到右的变形成立,x 应满足的条件是( ) A .x >-2 B .x =-2 C .x <-2 D .x≠-2 11.已知 x 4=y 6=z7≠0,求 x +2y +3z 6x -5y +4z 的值.12.已知x +y +z =0,xyz≠0,求x |y +z|+y |z +x|+z|x +y|的值. 参考答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式. 3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1. 7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722.12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值. 技巧2:分式运算的八种技巧 【类型】一、约分计算法 1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.【类型】二、整体通分法 2.计算:a -2+4a +2.【类型】三、顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.【类型】四、换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m3m -2n -1.【类型】五、裂项相消法⎝⎛⎭⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).【类型】六、整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abcab +bc +ac 的值.【类型】七、倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.【类型】八、消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.参考答案1.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程. 2.解:原式=a -21+4a +2=a 2-4a +2+4a +2 =a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减. 3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1=x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x(x +1)(x -1)=4n -6m(3m -2n +1)(3m -2n -1).5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n (n +1)=1n -1n +1进行裂项,然后相加减,这样可以抵消一些项. 6.解:1a +1b =16,1b +1c =19,1a +1c =115,上面各式两边分别相加,得⎝⎛⎭⎫1a +1b +1c ×2=16+19+115, 所以1a +1b +1c =31180.易知abc≠0,所以abc ab +bc +ac =11c +1a +1b =18031.7.解:由xx 2-3x +1=-1,知x≠0,所以x 2-3x +1x =-1.所以x -3+1x =-1.即x +1x =2.所以x 4-9x 2+1x 2=x 2-9+1x 2=⎝⎛⎭⎫x +1x 2-11=22-11=-7. 所以x 2x 4-9x 2+1=-17.8.解:以x ,y 为主元,将已知的两个等式化为⎩⎪⎨⎪⎧4x -3y =6z ,x +2y =7z.解得x =3z ,y =2z. 因为xyz≠0,所以z≠0.所以原式=5×9z 2+2×4z 2-z 22×9z 2-3×4z 2-10z 2=-13.点拨:此题无法直接求出x ,y ,z 的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.技巧3:巧用分式方程的解求字母的值或取值范围 【类型】一、利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.【类型】二、利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=mx -3+2有解,求m 的取值范围.【类型】三、利用分式方程有增根求字母的值 3.如果解关于x 的分式方程m x -2-2x 2-x=1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-44.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.【类型】四、利用分式方程无解求字母的值5.若关于x 的分式方程x -ax +1=a 无解,则a =________.6.已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1.(1)若方程的增根为x =2,求a 的值; (2)若方程有增根,求a 的值; (3)若方程无解,求a 的值. 参考答案1.解:解分式方程32x =1x -1,得x =3.经检验,x =3是该方程的解. 将x =3代入2x +4=mx ,得27=m 3.解得m =67. ∴m 2-2m =⎝⎛⎭⎫672-2×67=-4849.2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解, ∴x =4-m 不能为增根. ∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解. 3.D4.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3. 当x =3时,m +2×(3-3)=3+3,解得m =6; 当x =-3时,m +2×(-3-3)=-3+3, 解得m =12.综上所述,原方程的增根是x =3或x =-3. 当x =3时,m =6; 当x =-3时,m =12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m 的值.5.1或-16.解:原方程可化为(m +3)x =4m +8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3;(2)若整式方程的根是原方程的增根,则4m +8m +3=3,解得m =1.经检验,m =1是方程4m +8m +3=3的解.综上所述,m 的值为-3或1.7.解:原方程去分母并整理,得(3-a)x =10.(1)因为原方程的增根为x =2,所以(3-a)×2=10.解得a =-2. (2)因为原分式方程有增根,所以x(x -2)=0.解得x =0或x =2.因为x =0不可能是整式方程(3-a)x =10的解,所以原分式方程的增根为x =2.所以(3-a)×2=10.解得a =-2.(3)①当3-a =0,即a =3时,整式方程(3-a)x =10无解,则原分式方程也无解; ②当3-a≠0时,要使原方程无解,则由(2)知,a =-2.综上所述,a 的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解. 技巧4:分式求值的方法 【类型】一、直接代入法求值 1.先化简,再求值:⎝⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.【类型】二、活用公式求值2.已知实数x 满足x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.【类型】三、整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.【类型】四、巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x 的值.【类型】五、设参数求值6.已知x 2=y 3=z4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.参考答案1.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,3a +1=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x +1x=5.∴⎝⎛⎭⎫x +1x 2=25.∴x 2+1x 2=23. ∴x 4+1x 4=⎝⎛⎭⎫x 2+1x 22-2=232-2=527 点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答. 3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以(x +y )2+xy xy (x +y )=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘x +y +z ,得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想. 5.解:∵4x 2-4x +1=0,∴(2x -1)2=0.∴2x =1. ∴2x +12x =1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k 226k 2=2726. 【题型讲解】【题型】一、分式有意义的条件例1x 的取值范围是( ) A .x≥4 B .x >4C .x≤4D .x <4【答案】D【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4 即x 的取值范围是:x <4故选D . 【题型】二、分式的运算 例2、分式222111a a a a++---化简后的结果为( ) A .11a a +-B .31a a +-C .1a a --D .2231a a +--【答案】B【分析】根据异分母分式相加减的运算法则计算即可.异分母分式相加减,先通分,再根据同分母分式相加减的法则计算. 【详解】解:222111a a a a++--- ()()()()()21221111a a a a a a ++=-+--+ ()()()222111a a a a +++=+-()()2222111a a a a a ++++=+-()()()()3111a a a a +=++- 31a a +=- 故选:B .【题型】三、分式的基本性质 例3、若b a b -=14,则ab的值为( ) A .5B .15C .3D .13【答案】A 【解析】因为b a b -=14, 所以4b=a -b .,解得a=5b① 所以a b ①55b b=. 故选A.【题型】四、解分式方程 例4、方程2152x x =+-的解是( ) A .1x =- B .5x =C .7x =D .9x =【答案】D【分析】根据题意可知,本题考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解. 【详解】 解:方程可化简为()225x x -=+ 245x x -=+9x =经检验9x =是原方程的解 故选D【题型】五、分式方程的解 例5、关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2, 由分式方程有增根,得到x ﹣2=0,即x =2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.【题型】六、列分式方程例6、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.3000420080x x=-B.3000420080x x+=C.4200300080x x=-D.3000420080x x=+【答案】D【分析】设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x=+,故选:D.分式方程(达标训练)一、单选题1.(2022·广西·富川瑶族自治县教学研究室模拟预测)关于x的分式方程3122m xx x++=--有解,则实数m应满足的条件是()A.m=-1B.m≠-1C.m=1D.m≠1【答案】D【分析】解分式方程得:m + x-3=2-x即x=52m,由题意可知x≠2,即可得到m.【详解】解:31 22m xx x++= --方程两边同时乘以2-x得:m+x-3=2-x, 2x=5-m,x=52m①分式方程有解① x ≠2, 即52m≠2, ①m ≠1. 故选D .【点睛】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.2.(2022·海南省直辖县级单位·二模)分式方程211x =+的解为( ) A .1- B .0 C .1 D .2【答案】C【分析】按照分式方程的解法求解判断即可. 【详解】①211x =+, 去分母,得2=x +1, 移项,得 x =2-1=1,经检验,x =1是原方程的根 故选C .【点睛】本题考查了分式方程的解法,熟练掌握分式方程的解法是解题的关键. 3.(2022·天津南开·二模)化简2222432x y x yx y y x -----的结果是( )A .5x y- B .5x y+ C .225x y -D .223x yx y +-【答案】B【分析】利用同分母分式的加法法则计算,约分得到最简结果即可.【详解】解:2222432x y x yx y y x ----- 2222432x y x yx y x y --=+--55()()x yx y x y -=+-5()()()x y x y x y -=+-5x y=+,【点睛】本题主要考查了分式的加减,解题的关键是掌握分式混合运算顺序和运算法则. 4.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .【点睛】本题考查了分式的减法,正确运算是解题关键,注意运算后需要约分化简. 5.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B【点睛】本题考查分式有意义的条件,掌握分式有意义的条件是解题的关键.二、填空题6.(2022·四川省遂宁市第二中学校二模)分式方程31311x x x -=-+的解为 ______. 【答案】x =-2【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:3x (x +1)-(x -1)=3(x +1)(x -1), 解得:x =-2,经检验x =-2是分式方程的解, 故答案为x =-2.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.三、解答题8.(2022·浙江丽水·一模)解方程:13233x x-=--. 【答案】=5x【分析】这是一道可化为一元一次方程的分式方程,根据解分式方程的一般步骤:去分母,转化为求解整式方程,然后检验得到的解是否符合题意,最后得出结论. 【详解】两边同时乘以(3)x -,得132(3)x +=-, 去括号,得426x =-, 化简,得=5x ,检验:当=5x 时,30x -≠, ∴原分式方程的解为=5x .【点睛】此题考查可化为一元一次方程的分式方程,熟练掌握解分式方程的方法与步骤是解此题的关键,但是要特别注意:检验是不可少的环节.分式方程(提升测评)一、单选题1.(2022·辽宁葫芦岛·一模)2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外朋友的喜爱.某特许零售店准备购进一批吉祥物销售.已知用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同,已知购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“冰墩墩”的单价为x 元,则列出方程正确的是( )A .60050010x x=+ B .60050010x x =+ C .60050010x x=- D .60050010x x =- 【答案】D【分析】设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元,然后根据用600元购进“冰墩墩”的数量与用500元购进“雪容融”数置相同即可列出方程.【详解】解:设“冰墩敏”的销售单价为x ,则 “雪容融”的销售单价为(x -10)元, 根据题意,得60050010x x =-。
分式的运算技巧
分式概念形如〔A、B是整式,B中含有字母〕的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
且当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。
无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件:1.分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
分式的根本性质分式的分子和分母同时乘以〔或除以〕同一个不为0的整式,分式的值不变。
用式子表示为:〔A,B,C为整式,且B、C≠0〕运算法那么约分根据分式根本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
约分步骤:单项式或者是几个因式乘积的形式,将它们的公因式约去。
多项式,将分子和分母分别分解因式,再将公因式约去。
公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
最简分式:一个分式不能约分时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的乘法法那么:〔1〕两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
(2)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
用字母表示为:分式的加减法法那么:同分母分式的加减法法那么:同分母的分式相加减,分母不变,把分子相加减。
专题08分式的条件求值
专题08 分式的条件求值考点点拨典例精选1.(富阳市校级自主招生)如果1m +1n>2,那么有可能的是()A.m>1,n>1B.m<0,n<0C.m>1,n>0D.m<0,n>1【点拨】此题可以通过分式的性质分别进行分析得出符合要求的答案即可.【解析】解:由1m +1n>2,得A.当m>1,n>1时,1m <1,1n<1,∴1m +1n<2,故此选项错误;B.当m<0,n<0时,1m <0,1n<0,∴1m +1n<0,故此选项错误;C.当m>1,1>n>0时,1m<1,1<1n,∴1m +1n >2,故此选项可能正确; D .当m <0,n >1时,1m <0,1n <1, ∴1m +1n <1,故此选项错误.故选:C .【点睛】此题主要考查了分式的性质,利用分式的性质得出m ,n 与1m ,1n的取值范围是解题关键. 精准预测 1.当x ≠2且x ≠5时,等式4x+1x 2−7x+10=A x−2+Bx−5总能成立,那么有理数A = ﹣3 ,B = 7 .【点拨】首先根据通分的方法,把右边异分母分式的加减法转化为同分母分式的加减法,然后根据左右两边分式的分子相同,列出关于A ,B 的二元一次方程组,再解方程组,求出A ,B 的值是多少即可.【解析】解:A x−2+Bx−5=A(x−5)+B(x−2)(x−2)(x−5)=(A+B)x+(−5A−2B)(x−2)(x−5)=4x+1x 2−7x+10, 则{A +B =4−5A −2B =1, 解得{A =−3B =7. 故答案为:﹣3,7.【点睛】此题主要考查了异分母分式加减法的运算法则,要熟练掌握,解答此题的关键是熟练掌握通分的方法,把异分母分式的加减法转化为同分母分式的加减法.还考查了二元一次方程组的求解方法,要熟练掌握.2.已知a、b、c满足ab+c +bc+a+ca+b=1,则a2b+c+b2c+a+c2a+b的值为多少?【点拨】设a+b+c=d,则有a=d﹣(b+c),b=d﹣(a+c),c=d﹣(a+b),然后把它们代入到所求分式,化简后就可解决问题.【解析】解:设a+b+c=d,则有a=d﹣(b+c),b=d﹣(a+c),c=d﹣(a+b).∵ab+c +bc+a+ca+b=1,∴a2b+c +b2c+a+c2a+b=ab+c⋅a+ba+c⋅b+ca+b•c=a b+c•[d﹣(b+c)]+b a+c•[d﹣(a+c)]+c a+b•[d﹣(a+b)] =a b+c•d﹣a+b a+c•d﹣b+c a+b•d﹣c=(ab+c +ba+c+ca+b)•d﹣(a+b+c)=d﹣d=0.【点睛】本题考查了求分式的值,有一定的技巧性,而解决本题的关键是把a+b+c看成一个整体,从而把所求分式与条件联系起来.。
分式条件下的整式求值方法
分式条件下的整式求值方法
黄细把
【期刊名称】《数理天地:初中版》
【年(卷),期】2016(000)003
【摘要】解答分式条件的整式求值问题,要注意从分式条件人手,利用一定的方法和技巧.现举例如下:
【总页数】3页(P10-11,13)
【作者】黄细把
【作者单位】江西省上高县第四中学,336400
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.轮换对称分式的求值方法
2.轮换对称分式的求值方法
3.分式求值方法与技巧集锦
4.分式求值的代入策略和方法
5.化整式为分式证明整式不等式
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科: 奥数
教学内容:条件分式求值的方法与技巧
求条件分式的值是分式化简、计算的重要内容,解题主要有以下三个方面:
一、将条件式变形后代入求值
例1已知432z y x ==,z
y x z y x +--+22求的值. 解:设4
32z y x ===k , 则x =2k ,y =3k ,z =4k . ∴ 原式=
545443224322==+-⨯-⨯+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法.
例2已知的值求
b a b a b ab a +-=-+,0622. 解:由0622=-+b ab a 有(a +3b )(a -2b )=0,
∴ a +3b =0或a -2b =0,
解得a =-3b 或a =2b .
当a =-3b 时,原式=
233=+---b
b b b ; 当a =2b 时,原式=3122=+--b b b b .
二、将求值变形代入求值.
例3已知)1
1()11()11(,0c
b a a
c b b a
c c b a +++++=++求的值. 解:原式=1)111(1)111(1)111(-+++-+++-++a
c b a b a c b c b a c =3))(111(-++++a b c c b a ∵ a +b +c =0,
∴ 原式=-3.
例4已知31=+x x ,的值求1
242
++x x x .
分析:∵ 1)1(111222224-+=++=++x x x
x x x x , ∴ 可先求值式的倒数,再求求值式的值.
解:∵ 1)1(12224-+=++x x x
x x 8132=-=,
∴ 8
11242=++x x x .
三、将条件式和求值式分别变形后代入求值.
例5 已知y
xy x y xy x y x ---+=-2232,311则分式的值为__________. 解法一:∵ 311=-y
x , ∴ y -x =3xy ⇒x -y =-3xy .
∵ 原式=xy
y x xy y x 2)(3)(2--+- 5
3233)3(2=--+-=xy xy xy xy . 解法二:将分子、分母同除以xy (≠0). ∴原式=x
y x y 121232---+ 5
332323)11(2)11(23=--⨯-=-----=y
x y x 分析:∵ 填空题不需要写出解题过程,故可取满足已知等式的特殊值求解. 解法三:取x =2
1,y =-1,
)31211(=+=-y
x . ∴原式
.532/52/3)1()1(2
1221)1(2)1(213212==---⨯⨯--⨯--⨯⨯+⨯
= 注意:特殊值法是解填空题或选择题常用的解题方法或技巧.取特殊值要注意满足条件等式,其原则是要便于计算.
例6 已知a 2+2a -1=0,求分式24)44122(
22+-÷++--+-a a a a a a a a 的值. 解:原式=4
2])2(1)2(2[2-+⋅+--+-a a a a a a a 42)
2()1()2)(2(2-+⋅+--+-=a a a a a a a a 4
2)2(42-+⋅+-=a a a a a a
a a a 21)2(12+=+= ∵ 0122=-+a a ,
∴ 122
=+a a ,
∴ 原式=1.
注意:本例是将条件式化为“122=+a a ”代入化简后的求值式再求值,这种代入的技巧叫做整体代入.
1.已知231=-x x ,求分式221x
x +的值.
2.已知01342=+++x x x ,先化简后求x
x x -+-3932的值. 3.化简求值4
3326512222-+---+÷+--a a a a a a a a ,其中a =-3. 4.已知abc =1,则
1
11++++++++c ca c b bc b a ab a 的值为________.
参考答案
1.4
17; 2.0(原式=x +3); 3.)42(522--=-
a 原式; 4.1(取a =
b =
c =1).。