江西外语外贸职业学院数学单招测试题(附答案解析)资料讲解
高职单独招生考试数学试卷(答案解析) (1)
2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-2.在空间中,下列结论正确的是( ) A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块3.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-6.cos78cos18sin18sin102⋅+⋅=( )A.C.12-D.127.在复平面内,复数z 满足(1)2i z -⋅=,则(z = ) A .2i +B .2i -C .1i -D .1i +6.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为( ) A.16B. 0.25C.19D.5187.已知圆锥底面半径为4,侧面面积为60,则母线长为( ) A. 8B. 16C.152D. 158.函数y = sin2x 的图像如何平移得到函数sin(2)3y x的图像( )A. 向左平移6个单位B. 向右平移6个单位C. 向左平移3个单位D. 向右平移3个单位9.设动点M 到1(13 0)F ,的距离减去它到2(13 0)F ,的距离等于4,则动点M 的轨迹方程为( ) A. 22 1 (2)49x y x ≤ B. 22 1 (2)49x y x ≥ C.22 1 (2)49y x y ≥D.22 1 (x 3)94x y ≥10.已知函数()3sin 3cos f x xx ,则()12f ( ) A.6B.23C.22D.2611.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( ) A. 280种B. 240种C. 360种D. 144种12.如下图20图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( ) A. A ′C ⊥平面DBC ′ B. 平面AB ′D ′//平面BDC ′ C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC13. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1}B. {-1}C. {1,3}D. ∅14. 不等式x2-4x ≤0的解集为( ) A. [0,4]B. (1,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)15. 函数f (x )=ln(x −2)+1x−3的定义域为( )A. (5,+∞)B. [5,+∞)C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)16. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗B. DB⃗⃗⃗⃗⃗C. AC⃗⃗⃗⃗⃗D. CA⃗⃗⃗⃗⃗ 17. 下列函数以π为周期的是( ) A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x18. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 180B. 380C. 190D. 12019. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B.2 C . √3 D.√3320. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限B. 第二象限C. 第三象限D.第四象限二、填空题(共10小题,每小题3分;共计30分) 1、执行以下语句后,打印纸上打印出的结果应是:_____.2、角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.3、过点)1,2(-p 且与直线0102=+-y x 平行的直线方程是______4、在∆ABC 中,已知∠B=︒30,∠C=︒135,AB=4,则AC=______5、已知函数bx y +-=sin 31的最大值是97,则b=______6、75sin 15sin +的值是______.7、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______. 8、已知2tan -=α,71tan =+)(βα,则βtan 的值为______ .9、三个数2,x ,10成等差数列,则=x ______10、已知b kx x f +=)(,且1)1(=-f ,3)2(=-f ,则=k ______,=b ______ 三、大题:(满分30分) 1、已知函数3()x x b f x x ++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.2、某学校组织"一带一路”知识竞赛,有A ,B 两类问题・每位参加比赛的同学先在两类问题中选择类并从中随机抽収一个问题冋答,若回答错误则该同学比赛结束;若 回答正确则从另一类问题中再随机抽取一个问題回答,无论回答正确与否,该同学比赛 结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题 回答正确得80分,否则得0分。
2023年单招考试数学+英语试卷及含答案 (4)
2023年单独招生考试招生文化考试数学卷(含答案)(满分120分,考试时间90分钟)一.选择题:(共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知命题,命题恒成立。
若为假命题,则实数的取值范围为( )A. B. C. D.2.函数()2-+=x e x f x 的零点所在的一个区间是( )A.)1,2(--B.)0,1(-C.)1,0(D.)2,1(3.已知集合,,则( )A. B. C. D.4.设集合, , 则A ∩B=( )A. B. C. D.5.设全集U=R ,A=,则右图中阴影部分表示的集合为( )A. B. C.D.6.若y x ,是正数,且141x y +=,则xy 有 ( )A.最大值16 B.最小值116 C.最小值16 D.最大值1167.函数( )A. B. C. D.8.已知方程有一负根且无正根,则实数的取值范围是( ) A.1->a B.1=a C.1≥a D.1≤a01,:≤+∈∃m R m p 01,:2>++∈∀mx x R x q q p ∧2≥m 2-≤m 22≥-≤m m 或22≤≤-m {}2,R A x x x =≤∈{}4,Z B x x =≤∈A B =()0,2[]0,2{}0,2{}0,1,2{}R x x x A ∈≥-=,914⎭⎬⎫⎩⎨⎧∈≥+=R x x xx B ,03]2,3(--]25,0[]2,3( --),25[]3,(+∞--∞ ),25[)3,(+∞--∞ (2){|21},{|ln(1)}x x x B x y x -<==-{|1}x x ≥{|12}x x ≤<{|01}x x <≤{|1}x x ≤2()f x x x =-[0,1]1(,]2-∞1[,1]21[0,]21||+=ax x9.命题“存在R ,0”的否定是( ) A.不存在R, >0 B.存在R, 0C.对任意的R, 0D.对任意的R, >010.若不等式4)2(2)2(2<-+-x a x a 的解集为,则实数的取值范围是( ) A )2,2(- B ]2,2(- C ),2()2,(+∞--∞ D )2,(-∞11.已知平行四边形ABCD ,则向量AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A.BD ⃗⃗⃗⃗⃗ B.DB ⃗⃗⃗⃗⃗ C.AC ⃗⃗⃗⃗⃗ D.CA⃗⃗⃗⃗⃗ 12.下面函数以π为周期的是( )A.y =sin (x −π8) B.y =2cos x C.y =sin x D.y =sin 2x 13.本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法总数是( )A.420B.200C.190D.24014.已知直线的倾斜角为60°,则此直线的斜率为( )A.−√33B.−√3C.√3D.√33 15.若sin α>0且tan α<0,则角α终边所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限16.在等比数列{}n a 中,543=⋅a a ,那么=⋅61a a ( )A.5B.10C.15D.2517.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) A.172 B.192 C.10 D.1218.在等差数列}{n a 中,若,2,442==a a 则=6a ( )A.-1B.0C.1D.619.设n S 是等差数列{}n a 的前项和,若1353a a a ++=,则5S =( )A.5B.7C.9D.110x ∈02x 0x ∈02x 0x ∈02x x ∈2x x ∈2x n20.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A.)22cos(π+=x y B.)22sin(π+=x y C.x x y 2cos 2sin += D.x x y cos sin +=二.填空题:(本题共5小题,每小题6分,共30分.)1.对于在区间[a ,b ]上有意义的两个函数)(x f 和)(x g ,如果对任意],[b a x ∈,均有1)()(≤-x g x f ,那么我们称)(x f 和)(x g 在[a ,b ]上是接近的.若函数232+-=x x y 与32+=x y 在[a ,b ] 上是接近的,则该区间可以是________.2.在等差数列{}n a 中,已知前20项之和17020=S ,则=+++161196a a a a ________.3.如图,一广告气球被一束入射角为α的平行光线照射,其投影是长半轴长为 5米的椭圆,则制作这个广告气球至少需要的面料为________.4.由2≤y 及1+≤≤x y x 围成几何图形的面积是________.5.从A={a1,a2,a3,a4}到B={b1,b2,b3,b4}的一一映射中,限定a1的象不能是b1,且b4的原象不能是a4的映射有___________个.三.解答题:(本题共4小题,共50分.解答应写出文字说明.证明过程或演算步骤.)1.由这些数据,推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数.一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度应该在哪个范围内选择?请算出结果.2.求经过点),(24-,且与直线033=+-y x 平行的直线方程。
江西单独招生考试数学卷+答案 (5)
江西单独考试招生考试数学(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分)1.已知命题:p “[]0,1,x x a e ∀∈≥”,命题:q “2,40x R x x a ∃∈-+=”,若命题,p q 均是真命题,则实数的取值范围是()A.[4,)+∞B.[1,4]C.[,4]e D.(,1]-∞2.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是()A.25-B.25C.5-D.53.在ABC ∆中,1AB =,2BC =,为AC 的中点,则()BE BA BC ∙-=()A.3B.32C.-3D.32-4.用一个平面去截正方体,所得的截面不可能是()(A)六边形(B)菱形(C)梯形(D)直角三角形5、化简3a a 的结果是()A.a B.12a C.41aD.83a 6.“032>x ”是“0<x ”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件7.下列不等式(组)解集为{}0x x <的是()A.2x -3<3x-3B.20231x x ⎧⎨⎩-<->C.2x -2x>0D.12x -<8.已知数列}{n a 的各项均为正数,其前项和为n S ,若}{log 2n a 是公差为-1的等差数列,且,836=S则1a 等于()A.214B.316C.218D.31129.已知函数,log 31()(2xx x f -=实数c b a ,,满足),,,0(0)()()(c b a c f b f a f <<⋅⋅若实数0x 为方程0)(=x f 的一个解,那么下列不等式中,不可能成立的是()A.0x <B.0x >bC.0x <D.0x >10.已知向量(2,1)=-a ,(0,3)=b ,则2-=a b ()A.(2,7)- C.7二、填空题:(共20分.)1.不等式06||2<--x x (R x ∈)的解集是___________________;2.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________;3.若不等式2229x x a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________;4、计算:a·a²=_____.三、解答题:(共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.如图1,矩形ABCD 中,AB=12,AD=6,E、F 分别为CD、AB 边上的点,且DE=3,BF=4,将△BCE 沿BE 折起至△PBE 位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A 到平面PBE 的距离. 2.已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 是椭圆C 上的两个动点,且使∠PAQ 的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.3.已知函数f(x)=x 2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x 2+x+2.参考答案:一、选择题1-5题答案:ADBDB 6-10题答案:AADCB 二、填空题1.)3,3(-;2.]1,(-∞;3.⎥⎦⎤⎢⎣⎡1,132;4、【答案】【解析】解:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即计算即可.本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键,三、解答题1.如图1,矩形ABCD 中,AB=12,AD=6,E、F 分别为CD、AB 边上的点,且DE=3,BF=4,将△BCE 沿BE 折起至△PBE 位置(如图2所示),连结AP、PF,其中PF=2.(1)求证:PF⊥平面ABED;(2)求点A到平面PBE的距离.【解答】解:(1)连结EF,由翻折不变性可知,PB=BC=6,PE=CE=9,在△PBF中,PF2+BF2=20+16=36=PB2,所以PF⊥BF…(2分)在图1中,利用勾股定理,得EF==,在△PEF中,EF2+PF2=61+20=81=PE2,∴PF⊥EF…(4分)又∵BF∩EF=F,BF⊂平面ABED,EF⊂平面ABED,∴PF⊥平面ABED.…(6分)(2)解:由(1)知PF⊥平面ABED,∴PF为三棱锥P﹣ABE的高.…(8分)设点A到平面PBE的距离为h,由等体积法得VA﹣PBE =VP﹣ABE,…(10分)即∴h=,即点A到平面PBE的距离为.…(14分)2.已知椭圆C:的离心率为,且过点A(2,1).(Ⅰ)求椭圆C的方程;(Ⅱ)若P,Q是椭圆C上的两个动点,且使∠PAQ的角平分线总垂直于x轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.【解答】解:(Ⅰ)因为椭圆C的离心率为,且过点A(2,1),所以,.…因为a2=b2+c2,解得a2=8,b2=2,…(3分)所以椭圆C的方程为.…(Ⅱ)解法一:因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.设直线PA的斜率为k,则直线AQ的斜率为﹣k.…(5分)所以直线PA的方程为y﹣1=k(x﹣2),直线AQ的方程为y﹣1=﹣k(x﹣2).设点P(xP ,yP),Q(xQ,yQ),由,消去y,得(1+4k2)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0.①因为点A(2,1)在椭圆C上,所以x=2是方程①的一个根,则,…所以.…同理.…所以.…又.…所以直线PQ的斜率为.…所以直线PQ的斜率为定值,该值为.…解法二:设点P(x1,y1),Q(x2,y2),则直线PA的斜率,直线QA的斜率.因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以kPA =﹣kQA,即,①…因为点P(x1,y1),Q(x2,y2)在椭圆C上,所以,②.③由②得,得,④…同理由③得,⑤…(由①④⑤得,化简得x1y2+x2y1+(x1+x2)+2(y1+y2)+4=0,⑥…由①得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0,⑦…⑥﹣⑦得x1+x2=﹣2(y1+y2).…(10分)②﹣③得,得.…所以直线PQ的斜率为为定值.…解法三:设直线PQ的方程为y=kx+b,点P(x1,y1),Q(x2,y2),则y1=kx1+b,y2=kx2+b,直线PA的斜率,直线QA的斜率.…因为∠PAQ的角平分线总垂直于x轴,所以PA与AQ所在直线关于直线x=2对称.所以kPA =﹣kQA,即=,…(6分)化简得x1y2+x2y1﹣(x1+x2)﹣2(y1+y2)+4=0.把y1=kx1+b,y2=kx2+b代入上式,并化简得2kx1x2+(b﹣1﹣2k)(x1+x2)﹣4b+4=0.(*)…(7分)由,消去y得(4k2+1)x2+8kbx+4b2﹣8=0,(**)则,…(8分)代入(*)得,整理得(2k﹣1)(b+2k﹣1)=0,所以或b=1﹣2k.…(10分)若b=1﹣2k,可得方程(**)的一个根为2,不合题意若时,合题意.所以直线PQ的斜率为定值,该值为3.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),f′(x)=2x﹣(a﹣2)﹣=…(2分)当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,所以,函数f(x)在区间(0,+∞)单调递增;…(4分)当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x满足e x0=,当x变化时,g′(x)和g(x)变化情况如下表x(0,x0)x(x,∞)g′(x)﹣0+g(x)递减递增g(x)min =g(x)=e x0﹣lnx﹣2=+x﹣2,因为x0>0,且x≠1,所以g(x)min>2﹣2=0,因此不等式得证.。
江西单独招生考试数学卷+答案 (3)
江西单独考试招生考试数学(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分)1.函数sin 2y x =的图象向左平移4π个单位再向上平移1个单位,所得图象的函数解析式是()A.cos 2y x =B.22cos y x=C.)42sin(1π++=x y D.22sin y x=2.已知*112,1,()2nn n a a a n N a +==∈+,则n a 的通项为()A.321n a n =+B.21n a n =+C.11n a n =+D.221n a n =+3.两非零向量a 和b ,若a b a b ==-,则a 与a b + 的夹角为()A.30︒B.45︒C.60︒D.90︒4.等差数列{}n a 的前项和为n S ,当1a ,d 变化时,若2811a a a ++是一个定值,那么下列各数中也为定值的是()A.13S B.15S C.20S D.8S 5、方程43)22(log =x 的解为()A .4=x B .2=x C .2=x D .21=x 6.在ABC ∆中,为BC 中点,,,a b c 成等差数列且38,cos ,5a c B a c +==>,则AD BC ⋅ 等于()A.252B.252-C.72D.72-7.抛掷一枚骰子,落地后面朝上的点数为偶数的概率等于()A.0.5B.0.6C.0.7D.0.88.已知函数,1)1ln()(-+-=x x x f 则()A.没有零点B.有唯一零点C.有两个零点,,21x x 并且21,0121<<<<-x x D.有两个零点,,21x x 并且3121<+<x x 9.定义在R 上的函数)(x f 满足),(21)5(,1)1()(,0)0(x f x f x f x f f ==-+=且当1021≤<≤x x 时,)()(21x f x f ≤,则=)20081(f ()A.21B.161C.321D.64110.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π二、填空题:(共20分)1.函数()()0010cos 520sin 3-++=x x y 的最大值是____________;2.若224sin 2cos -=⎪⎭⎫ ⎝⎛-παα,则ααsin cos +的值为___________;3.若()51cos =+βα,()53cos =-βα,则=⋅βαtan tan ___________;三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.在如图所示的圆台中,AB,CD 分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE 为圆台的一条母线,且与底面ABE 成角.(Ⅰ)若面BCD 与面ABE 的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD 的与平面ABE所成锐二面角的余弦值.2.如图为2017届淮北师范大学数学与应用数学专业N 名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N 和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n 名毕业生随机的分配往A、B、C 三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n 名毕业生中恰有两女生,设随机变量ξ表示n 名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.3.已知椭圆C:+=1(a>b>0),其左右焦点为F1,F 2,过F 1直线l:x+my+=0与椭圆C交于A,B 两点,且椭圆离心率e=;(Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l 的方程.参考答案:一、选择题1-5题答案:BAACA 6-10题答案:CACAD 二、填空题1.7;1;2.21;3.2三、解答题1.在如图所示的圆台中,AB,CD分别是下底面圆O,上底面圆O′的直径,满足AB⊥CD,又DE为圆台的一条母线,且与底面ABE成角.(Ⅰ)若面BCD与面ABE的交线为l,证明:l∥面CDE;(Ⅱ)若AB=2CD,求平面BCD的与平面ABE所成锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在圆台OO′中,∵CD⊂圆O′,∴CD∥平面ABE,∵面BCD∩面ABE=l,∴l∥CD,∵CD⊂平面CDE,l⊄平面CDE,∴l∥面CDE;(Ⅱ)解:连接OO′、BO′、OE,则CD∥OE,由AB⊥CD,得AB⊥OE,又O′B在底面的射影为OB,由三垂线定理知:O′B⊥OE,∴O′B⊥CD,∴∠O′BO就是求面BCD与底面ABE所成二面角的平面角.设AB=4,由母线与底面成角,可得OE=2O′D=2,DE=2,OB=2,OO′=,∴cos∠O′BO=.2.如图为2017届淮北师范大学数学与应用数学专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人.(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数n;(Ⅱ)现欲将90~95分数段内的n名毕业生随机的分配往A、B、C三所学校,若每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有多少种不同的分配方法?(Ⅲ)若90~95分数段内的这n名毕业生中恰有两女生,设随机变量ξ表示n名毕业生中分配往乙学校的两名学生中女生的人数,求ξ的分布列和数学期望.【解答】解:(Ⅰ)80~90分数段的毕业生的频率为:=(0.04+0.03)×5=0.35,p1此分数段的学员总数为21人,∴毕业生的总人数N为N==60,90~95分数段内的人数频率为:=1﹣(0.01+0.04+0.05+0.04+0.03+0.01)×5=0.1,p2∴90~95分数段内的人数n=60×0.1=6.(Ⅱ)将90~95分数段内的6名毕业生随机的分配往A、B、C三所学校,每所学校至少分配两名毕业生,且甲乙两人必须进同一所学校,共有:=18不同的分配方法.(Ⅲ)ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,所以ξ的分布列为:ξ012P所以随机变量ξ数学期望为E(ξ)==.3.已知椭圆C:+=1(a>b>0),其左右焦点为F1,F 2,过F 1直线l:x+my+=0与椭圆C交于A,B 两点,且椭圆离心率e=;(Ⅰ)求椭圆C 的方程;(Ⅱ)若椭圆存在点M,使得2=+,求直线l 的方程.【解答】解:(Ⅰ)过F 1直线l:x+my+=0,令y=0,解得x=﹣,∴c=,∵e==,∴a=2,∴b 2=a 2﹣c 2=4﹣3=1,∴椭圆C 的方程为+y 2=1;(Ⅱ)设A(x 1,y 1),B(x 2,y 2),M(x 3,y 3),由2=+,得:x3=x 1+x 2,y 3=y 1+y 2代入椭圆方程可得:(x 1+x 2)2+(y 1+y 2)2﹣1=0,∴(x 12+y 12)+(x 22+y 22)+(x 1x 2+4y 1y 2)=1,∴x 1x 2+4y 1y 2=0联立方程消x 可得(m 2+4)y 2+2my﹣1=0,∴y 1+y 2=,y 1y 2=,∴x 1x 2+4y 1y 2=(my 1+)(my 2+)+4y 1y 2=(m 2+4)4y 1y 2+m(y 1+y 2)+3=0,即m 2=2,解得m=±所求直线l 的方程:x±y+=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016江西外语外贸职业学院数学单招测试题(附答案解析)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知全集{}11,7,5,3,2=I ,{}7,5,2-=a A ,{}11,5=A C I ,则a 的值为( )A .2B .8C .2或8D .2-或8(2)设)(x f =⎪⎩⎪⎨⎧〈+≥--11112|2|2x x x x 则=)]21([f f ( )A .21B .134C .59-D .4125(3)下列各组函数中,表示同一函数的是( )A .55x y =与2x y =B .x y =与 33x y =C .1)3)(1(-+-=x x x y 与3+=x y D .1=y 与0x y =(4) 若x x f 2)(=的反函数为)(1x f -,且4)()(11=+--b f a f ,则ba 11+的最小值是( ).A .1B .21 C .31 D .41(5)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 ( )A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7(6)已知)(x f 的定义域是]1,1[-,则)(log 21xf 的定义域是( )A .]2,21[B .]2,0(C .),2[+∞D .)21,0((7)若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是 ( )A .)2,(-∞B .),2(+∞C .(-2,2)D .),2()2,(+∞--∞(8)当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是( )A B C D(9)已知函数))((R x x f y ∈=满足)1()1(-=+x f x f ,且]1,1[-∈x 时,2)(x x f =,则函数)(x f y =与x y 5log =的图象的交点个数为 ( ) A .0个 B .2个 C .3个 D .4个(10)实系数方程220x ax b ++=的两根为1x 、2x ,且12012x x <<<<则21b a -- 的取值范围是 ( ) A.1(,1)4B.1(,1)2C.11(,)24- D.11(,)22-第二部分 非选择题(共100分)二、填空题:本大题共4小题,每小题5分,共20分。
(11)设f (x )是R 上的函数,且f (-x )=-f (x ),当x ∈[0,+∞)时,f (x )=x (1+),那么当x ∈(-∞,0)时,f (x )=_____ ___; (12)函数21432-+--=x x x y 的定义域是(13)函数x x y 21-+=的值域是(14)若函数213ln()1xy x x+=+-的最大值与最小值分别为M,m ,则M+m = 三、解答题:本大题共6小题,共80分,解答应写出文字说明、演算步骤或推证过程。
(15)(本题满分12分)已知函数)0(22)(2≠++-=a b ax ax x f ,在区间[]3,2上有最大值5,最小值2。
(1)求a ,b 的值。
(2)若[]42,)2()()(,1在x x f x g b m ⋅-=<上单调,求m 的取值范围。
(16) (本题满分12分) 函数6)1(3)1()(22+-+-=x a x a x f , (1)若)(x f 的定义域为R ,求实数a 的取值范围. (2)若)(x f 的定义域为[-2,1],求实数a 的值. (17)(本题满分14分)某饮料公司经市场调研,发现该饮料的日销售额(y 万元)与天气气温(x ℃)之间有密切联系。
现知,当气温分别为25℃、27℃、29℃时,日销售额分别为1万元、1.1万元、1.3万元。
为了调节生产,需估测气温升高后对日销售额的影响,以这三个气温下的日销售额为依据,用一个函数模拟日销售额(y 万元)与天气气温(x ℃)关系。
模拟函数考虑选用二次函数c x b x a y +-+-=)25()25(2或函数c ba y x +⋅=-25(其中c b a ,,为常数)。
现已知气温为33℃时,该饮料的日销售额为2.2万元, 请问用以上哪个函数作为模拟函数较好,并说明理由。
(18)(本题满分14分)设()f x 是定义在(0,)+∞上的增函数,对任意,(0,)x y ∈+∞,满足()()()f xy f x f y =+。
(1)求证:①当(1,)()0()()()xx f x f f x f y y∈+∞>=-时,② (2)若(5)1f =,解不等式(1)(2) 2.f x f x +->(19)(本题满分14分) 已知函数xxx f -+=11lg)( (Ⅰ)求证:对于)(x f 的定义域内的任意两个实数b a ,,都有)1()()(abba fb f a f ++=+;(Ⅱ)判断)(x f 的奇偶性,并予以证明.(20). (本题满分14分) 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数.(1) 若函数()f x 为理想函数,求(0)f 的值;(2)判断函数()21x g x =-])1,0[(∈x 是否为理想函数,并予以证明; (3) 若函数()f x 为理想函数,假定∃[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证00()f x x =.参考答案11.)1(3x x - 12.),4[]1,3()3,(+∞⋃--⋃--∞13.]1,(-∞ 14.6 三、解答题:(本大题共6小题,共80分)15.。
(12分)解析:(1)a b x a x f -++-=2)1()(2 --------------------1分①当0>a 时,[]3,2)(在x f 上为增函数 故⎩⎨⎧==⇒⎩⎨⎧=++-=++-⇒⎩⎨⎧==01224452695)2(2)3(b a b a a b a a f f ----------------4分②当[]3,2)(0在时,x f a <上为减函数 故⎩⎨⎧=-=⇒⎩⎨⎧=++-=++-⇒⎩⎨⎧==31524422692)2(2)3(b a b a a b a a f f --------------7分(2)011==∴<b a b即22)(2+-=x x x f --------------------8分2)22()2(22)(22++-=-+-=x x xx x x g mm ------------9分分)(或分)(分)(或分)(1 62 1 221 4222 1 2222≥≤∴≥+≤+m m m m -------------11分即62log 1≥≤m m 或 ------------ 12分16.(12分)解:(1)①若1,012±==-a a 即,1)当a =1时,6)(=x f ,定义域为R ,适合;2)当a =-1时,66)(+=x x f ,定义域不为R ,不合; ②若6)1(3)1()(,01222+-+-=≠-x a x a x g a 为二次函数, )(x f 定义域为R ,R x x g ∈≥∴对0)(恒成立,11150)511)(1(110)1(24)1(901222<≤-⇒⎩⎨⎧≤+-<<-⇒⎪⎩⎪⎨⎧≤---=∆>-∴a a a a a a a ; 综合①、②得a 的取值范围]1,115[- ------------6分(2)命题等价于不等式06)1(3)1(22≥+-+-x a x a 的解集为[-2,1], 显然012≠-a20112-=<-∴x a 且、12=x 是方程06)1(3)1(22=+-+-x a x a 的两根,⎪⎩⎪⎨⎧==+->-<⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=⋅-=--=+>-<∴4023*******)1(31122221221a a a a a a x x a a x x a a 或或,解得a 的值为a =2. ------12分17(14分)、模拟函数为1)25(401)25(8012+-+-=x x y 和9.021.025+⋅=-x y 当x=33时,y 1=2, y 2=2.5与日销售额2.2相比,显然二次函数模拟更好一点 ---14分 18(14分)、(1) ① ()()()()11110f f f f =+∴= 又()f x 在(0 ,+∞)上是增函数,所以()f x >0②由 ()()x x f f y f y f x y y ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭ 得()()x f f x f y y ⎛⎫=- ⎪⎝⎭-----7分(2) ∵ ()()()2115525f ff =+=+=()()()()125250f x f f x f x ∴+>+= 且()f x 在(0 ,+∞)上是增函数1020150x x x x+>⎧⎪∴>⎨⎪+>⎩解得 1049x << -------------14分19.(14分函数定义域为{}11<<-x x )1,1(-= …………………………………2分(Ⅰ)证明:=+-∈∀)()(),1,1(,b f a f b a b b a a -++-+11lg 11lg )1)(1()1)(1(lg b a b a --++=,…4分b a ab b a ab ab b a ab ba ab b a f --++++=++-+++=⎪⎭⎫ ⎝⎛++11lg 1111lg 1)1)(1()1)(1(lg b a b a --++=, 所以=+)()(b f a f ⎪⎭⎫⎝⎛++ab b a f 1.……………………………………7分(Ⅱ)=+--∈∀)()(),1,1(x f x f x 0lg11111lg 11lg 11lg==⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+-=-+++-x x x x x x x x 即)()(x f x f -=-,所以()f x (14)分20(14分)解:(1)取021==x x 可得0)0()0()0()0(≤⇒+≥f f f f .---------------1分又由条件①0)0(≥f ,故0)0(=f .---------------3分(2)显然12)(-=x x g 在[0,1]满足条件①0)(≥x g ;---------------4分也满足条件②1)1(=g .---------5分 若01≥x ,02≥x ,121≤+x x ,则)]12()12[(12)]()([)(21212121-+---=+-++x x x x x g x g x x g0)12)(12(1222122121≥--=+--=+x x x x x x ,即满足条件③,---------------8分故)(x g 理想函数. ---------------9分(3)由条件③知,任给m 、∈n [0,1],当n m <时,由n m <知∈-m n [0,1],)()()()()(m f m f m n f m m n f n f ≥+-≥+-=∴. --------------11分若)(00x f x <,则000)]([)(x x f f x f =≤,前后矛盾.若)(00x f x >,则000)]([)(x x f f x f =≥,前后矛盾.--------------14分。