高一数学 函数与方程(2)教案

合集下载

【教案】二次函数与一元二次方程、不等式+教学设计高一上学期数学人教A版(2019)必修第一册

【教案】二次函数与一元二次方程、不等式+教学设计高一上学期数学人教A版(2019)必修第一册

二次函数与一元二次方程、不等式教学设计课题名称二次函数与一元二次方程、不等式姓名学校年级教材版本人教版A版一、教学目标1.使学生能够运用一元二次方程以及二次函数图像、性质解决实际问题。

2.渗透数形结合思想,进一步培养学生综合解题能力。

经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图像探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法。

3.激发学生学习数学的热情,培养学生勇于探索的精神,同时体会事物之间普遍联系的辩证思想。

二、教学重难点重点:一元二次不等式的应用。

难点:一元二次方程的根的情况与二次函数图像与x轴的位置关系的联系,数形结合的运用。

三、教学方法讲授法、讨论法、练习法四、教学过程一、导入(复习导入)师生活动复习解一元二次不等式步骤:1、a变正,(二次项系数化为正数)2、判别式。

(利用一元二次方程,求出判别式的值)3、求根。

(根据判别式情况求出一元二次方程的根)4、画草图。

(利用二次函数绘制图像)5、求解集。

(根据数形结合的思想求不等式解集)复习上节课所学内容,检测学生学习情况。

二、新指探究利用一元二次不等式求解实际问题。

【例1】一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:辆)与创造的价值y(单位:元)之间有如下关系:y=−2y2+220y若这家工厂希望在一个星期内利用这条流水线创收6000元以上,则在一个星期内大约应该生产多少辆摩托车?解:设这家工厂在一个星期内大约应该利用整条流水线生产x辆摩托车,根据题意得:−2y2+220y>6000移项整理,得:y2−110y+3000<0对于方程y2−110y+3000=0,∆=100>0,方程有两个实数根y1=50,y2=60画出二次函数y=y2−110y+3000的图像(图2.3-6),结合图象得不等式y2−110y+3000<0的解集为{y|50<y<60},从而原不等式的解集为:{y|50<y<60}。

高中数学老教材教案

高中数学老教材教案

高中数学老教材教案
第一课:函数与方程
1.1 学习目标:了解函数的概念,掌握基本的函数图像与性质,能够解决简单的函数方程。

1.2 教学内容:
(1)函数的定义与符号表示
(2)函数的图像与性质
(3)函数方程的解法
1.3 教学重点与难点:
重点:函数的定义、函数图像与性质、函数方程的解法
难点:函数的概念理解、函数方程的解法
1.4 教学过程:
(1)引入:通过举例引入函数的概念,让学生了解什么是函数。

(2)讲解:介绍函数的定义和符号表示,然后讲解函数的图像与性质。

(3)练习:让学生进行简单的函数图像绘制和性质分析。

(4)总结:对函数的概念和性质进行总结,并让学生进行相关练习。

1.5 作业布置:
(1)课后完成相关练习题目
(2)预习下节课的内容
1.6 教学反思:
通过本节课的教学,学生理解了函数的概念和性质,掌握了相关的解题方法。

但在教学过
程中,应该注意让学生更加深入地理解函数的概念,加强与实际问题的联系,提高学生的
学习兴趣和主动性。

以上是一份高中数学教案范本,希望对您有所帮助。

高中优秀教案高一数学教案:《函数与方程》

高中优秀教案高一数学教案:《函数与方程》

高一数学教案:《函数与方程》高一数学教案:《函数与方程》一、教材分析本节是一般高中课程规范试验教科书数学必修1的第三章第一节,是在同学学习函数的基本性质和指、对、幂三种基本初等函数基础上的后续,呈现函数图象和性质的应用。

本节重点是通过"二分法'求方程的近似解,使同学体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识。

本课是本章节的第一节课,结合函数图象和性质向同学介绍零点概念及其存在性,为后面"二分法'的学习打下伏笔,也为后来的算法学习作好基础。

二、学情分析通过学校的学习,同学已经娴熟把握了一次方程、二次方程求根的方法、描点作图法和一次函数、二次函数、反比例函数的图象;通过高中前两章的学习,强化了描点作图法,初步把握了对勾函数、指数函数、对数函数、幂函数的图象及基本性质,具备肯定的看图识图力量,这为本节课利用函数图象,推断方程根的存在性供应了肯定的学问基础。

但是,同学对函数与方程之间的联系缺乏了解,因此我们有必要点明函数的核心地位。

三、教学目标的确定1.学问与技能:(1)能够结合详细方程(如二次方程),说明方程的根、相应函数图象与x轴的交点横坐标以及相应函数零点的关系;(2)正确理解函数零点存在性定理:了解图象连绵不断的意义及作用;知道定理只是函数存在零点的一个充分条件;(3)能利用函数图象和性质推断某些函数的零点个数;(4)能顺当将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会推断存在零点的区间(可使用计算器)。

2.过程与方法:通过同学活动、商量与探究,体验函数零点概念的形成过程,引导同学学会用转化与数形结合思想方法讨论问题,提高数学学问的综合应用力量。

3.情感看法价值观:让同学初步体会事物间相互转化以及由特别到一般的辨证思想,充分体验数学语言的严谨性,数学思想方法的科学性,让同学进一步受到数学思想方法的熏陶,激发同学的学习热忱。

3.2函数与方程、不等式之间的关系(2课时)高一数学同步精讲课件(人教B版2019必修第一册)

3.2函数与方程、不等式之间的关系(2课时)高一数学同步精讲课件(人教B版2019必修第一册)
这种解决问题的方法,就是二分法.
试求函数f(x) = x 2 − 2x + 2在区间(−2,0)内的近似零点x1 ,使
|x1 − x0 | <
1
.
8
(−) >
(−) <
−2
E
D
−1
取中点
() >
0
参考维修工人的维修
方法来解决这个问题
追问1:如果在区间(−2,0)中任取一个数作为0
{−5, −3, −1,2,4,6}
() > 0的解集为
(−5, −3) ∪ (2,4) ∪ (4,6)
() ≤ 0的解集为
[−6, −5] ∪ [−3,2] ∪ {4,6}
因此,解不等式() > 0,
可以先解对应方程 () = 0 ,
再根据函数性质得到解集.
例2 (课本例5)求函数() = ( + 2)( + 1)( − 1)的零点,并
的近似值,那么误差小于多少? 误差小于2
追问2:如果取区间(−2,0)的中点作为0 的近似
值,那么误差小于多少? 误差小于1
怎样才能不断缩小误差?
误差小于区间长度
通过计算区间中点函数值,从而不断缩小零点所在的区间
【解析】列表如下:
零点所在区间
(−2,0)
(−2, −1)
3
(−2, − )
2
7
(−2, − )
x1
0
y
y
x2
x
(x1,0),(x2,0)
0
x1
(x1,0)
x
0
没有交点
x
例3 利用函数求下列不等式的解集:
(1) 2 − − 6 < 0;

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

高一数学函数的教案优秀5篇

高一数学函数的教案优秀5篇

高一数学函数的教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!高一数学函数的教案优秀5篇作为一位不辞辛劳的人·民教师,往往需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。

高中数学专题函数方程教案

高中数学专题函数方程教案

高中数学专题函数方程教案
一、教学目标
1. 了解函数方程的定义和基本概念;
2. 掌握函数方程的解法和计算方法;
3. 提高学生对函数方程的理解和运用能力。

二、教学重点和难点
重点:函数方程的定义和基本概念;
难点:解决函数方程的方法及计算过程。

三、教学准备
1. 教材:高中数学教材;
2. 工具:黑板、彩色粉笔、教学PPT等。

四、教学过程
1. 引入:通过几个实际问题引导学生认识函数方程的概念,引出本节课的主题;
2. 学习:结合具体例题,介绍函数方程的定义和基本性质,讲解解决函数方程的常见方法;
3. 练习:组织学生进行练习,巩固所学知识,培养学生的解题能力;
4. 拓展:引导学生应用函数方程解决更复杂的问题;
5. 总结:对本节课的内容进行总结,强调重点和难点,梳理知识结构,加深学生印象。

五、课后作业
1. 完成课后习题,巩固所学知识;
2. 总结本节课的重点内容,准备下节课的学习。

六、教学反思
教师根据学生学习情况和反馈,及时调整教学方法和内容,确保教学效果。

第二章一元二次函数、方程和不等式+小结+教学设计高一上学期数学人教A版(2019)必修第一册

第二章一元二次函数、方程和不等式+小结+教学设计高一上学期数学人教A版(2019)必修第一册

教学设计课程基本信息学科数学年级高一学期秋季课题第二章一元二次函数、方程和不等式小结教科书书名:普通高中教科书数学必修第一册A版教材出版社:人民教育出版社教学目标1. 掌握不等式性质、基本不等式和二次不等式的知识框架和逻辑联系。

2. 通过具体的例子,复习巩固比较两数(式)大小的方法、分析法证明不等式、二次不等式的解法和利用基本不等式求最值的方法。

3. 在回顾知识和具体问题的求解过程中,体会并应用类比的研究方法,用联系的观点看待不同问题并解决简单的最值问题和不等式问题。

教学内容教学重点:1.不等式的性质。

2.基本不等式及利用基本不等式求最值。

3.一元二次不等式。

教学难点:1.利用基本不等式求最值。

2.用函数的思想统领方程和不等式。

教学过程一、情景引入展示火星细节照片,介绍天问一号突破发射速度大于第二宇宙速度的关键技术和我国航空航天取得辉煌成就。

【设计意图】1.通过发射速度大于第二宇宙速度,引入不等关系和不等式;2.激发学生学习兴趣;3.增强学生爱国主义情感!二、知识结构展示知识结构图,并解释:不等关系和不等式的数学表达即为等式(方程)和不等式,初中学习了简单方程的求解,理论依据为等式的性质。

类比等式的性质,研究不等式的性质。

本章主要研究了一元二次方程和二次不等式,依然类比初中一元一次不等式的解法,得到利用二次函数的观点理解二次方程和不等式,得到一元二次不等式的一般解法。

本章还学习了一个具体的不等式即基本不等式。

在本章的学习中利用了类比的研究方法和联系的观点去研究问题。

【设计意图】1.帮助学生建立知识的逻辑关系和联系,便于学生从整体把握本章的知识。

2.回顾本学学习中的思想方法,帮助学生梳理学习新知识的一般性方法,以形成学生的创新能力,发展学科素养。

三、知识应用和总结(一)不等式性质的应用园艺师打算在绿地上用栅栏围成一个矩形区域种植花卉.设该矩形的长为x米,宽为y米(x >y).若后期修改方案:把长增加1米,宽减少1米.比较修改前后的矩形面积大小.分别展示作差法、利用不等式性质比较大小,其中第二种方法证明过程采用分析法。

2-2-3二次函数与一元二次方程、不等式(第2课时)教学设计-高一上学期数学人教A版必修第一册

2-2-3二次函数与一元二次方程、不等式(第2课时)教学设计-高一上学期数学人教A版必修第一册
答案:恒小于零就是相应的二次函数的图像在给定的区间上全部在x轴下方,从而确定 的取值范围,进而求参数. (若二次项系数带参数,考虑参数等于零、不等于零)
3.解决恒成立问题,不等式中有两个字母,怎样分析哪个字母是主元,哪个字母是参数?
答案:解决恒成立问题,一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.
通过例题让学生理解一元二次不等式恒成立问题的解决策略,并能达到灵活运用的目的
实践练习有利于学生更能深刻理解应用一元二次不等式恒成立问题的解决方法
通过例题让学生理解形式上的一元二次不等式恒成立问题,必须讨论二次项系数是否为0的情况
通过练习,让学生熟练形式上的一元二次不等式恒成立问题的分类讨论思想,数形结合思想
课题
2.2.3二次函数与一元二次方程、不等式(第2课时)
教材分析
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
通过例题让学生感知生活中的数学,理解利用一元二次不等式解决实际问题的方法
探究二、一元二次不等式的实际应用问题
思考:怎样利用一元二次不等式解决实际应用问题?
答案:(1)根据题意列出相应的一元二次函数;
(2)由题意列出相应一元二次不等式;
(3)求出解集;
(4)结合实际情况写出最终结果.
题型一、一元二次不等式恒成立问题
例1.若关于x的不等式4x2+ax+4>0的解集为R,则实数a的取值范围是()

2019-2020学年高一数学人教A版(2019)必修一教案:第二章一元二次函数、方程和不等式等式性质与不等式性质

2019-2020学年高一数学人教A版(2019)必修一教案:第二章一元二次函数、方程和不等式等式性质与不等式性质

第二章一元二次函数、方程和不等式2.1等式性质与不等式性质教学设计学过程二.知识探究【师】某钢铁厂要把长度为4000mm的钢管截成500mum和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根.根据题意,应有如下的不等关系:归纳小结:数运算性质与大小顺序之间的关系2比较两个实数a,b大小的方法;(1)作差a-b-—变形—与0比较—得出结论,1.(2)作商ab———变形-一与1比较一得出结论(作商的前提是两个数同号)三、典例分析:试比较下列各组数的大小,其中x R∈(1)61x+与42x x+61x+42()x x-+6421x x x=--+422(1)(1)x x x=---24(1)(1)x x=--222(1)(1)x x=-+当1x=±时, 61x+42()x x=+;当1x≠±,61x+42()x x>+.(2) a ba b与b aa b(1)解得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)解得两钟钢管的数量都不能为负.1.由以上不等关系,可得不等式组:学生分组讨论自主探究,教师巡视指导,作出评价。

培养学生分析,抽象能力、感受不等式发现和推导过程。

引导学生共同分析解决问题,熟悉并强化理解。

分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <.引导学生学会自己总结,让学生进一步体会知识的形成、发展、完善的过程.板书设计等式性质与不等式性质引入知识探究方法归纳不等式和基本性质典例分析小结课堂练习。

一元二次函数的教案

一元二次函数的教案

一元二次函数的教案【篇一:高一数学二次函数与一元二次方程教案】高一数学二次函数与一元二次方程教案知识目标:(1)会用判别式的符号解释二次函数图象与x轴交点及一元二次方程的根。

(2)理解解函数的零点与方程根的联系及判断函数的零点所在的大致区间。

能力目标:体验并理解函数与方程相互转化的数学思想培和数形结合的数学思想。

情感目标:培养学生积极探索,主动参与,大胆创新,勇于开拓的精神教学过程: 一、引入等式ax2+bx+c=0(a≠0)是关于x的一元二次方程,关系式y=ax2+bx+c(a≠0)则是关于自变量x的二次函数。

今天我们将进一步研究它们之间的关系。

二、新授观察思考:1、几个具体的一元二次方程及其对应的二次函数,如①方程x-2x-3=0与函数y=x2-2x-3;2②方程x-2x+1=0与函数y=x2-2x+1;2③方程x2-2x+3=0与函数y=x2-2x+3。

研讨探究问题:一元二次方程的根与二次函数图象和x轴交点坐标有什么关系?探究点一:二次函数图象与一元二次方程根的关系。

⑴以①为例(幻灯片)结论:一元二次方程x-2x-3=0的判别式?>0 ?一元二次方程x-2x-3=0有两个不相等的实数根?对应的二次函数y=x2-2x-3的图象与x轴有两个交点为(3,0),(–1,0)。

(2)再研究②③,能得类似的结论吗?22结论:一元二次方程x-2x+1=0判别式?=0一元二次方程x-2x+1=0?有两22等根?对应的二次函数y=x-2x+1的图象与x轴有唯一的交点为(1,0)。

22一元二次方程判别式x-2x+3=0?﹤0 ?一元二次方程x-2x+3=02方程无实数根?对应的二次函数y=x2-2x+3的图象与x轴没有交点。

联想发散22、一元二次方程ax+bx+c=0(a>0)根的个数及其判别式与二次函数y=ax2+bx+c(a>0)图象与x轴的位置之间有什么联系?)思考:当二次函数y=ax2+bx+c(a﹤0)时,是否也有类似的结论呢?探究点二:函数的零点一元二次方程ax2+bx+c=0(a≠0)的的实数根就是二次函数y=ax2+bx+c的值为零时自变量的x的值,也就是二次函数y=ax2+bx+c的图象与x轴交点的横坐标,因2此一元二次方程ax+bx+c=0(a≠0)的的实数根也称为二次函数y=ax2+bx+c(a≠0)的零点。

高一数学必修一-教案-2.3-二次函数与一元二次方程、不等式

高一数学必修一-教案-2.3-二次函数与一元二次方程、不等式

高一数学必修一-教案-2.3-二次函数与一元二次方程、不等式(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2.3 二次函数与一元二次方程、不等式第1课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x <x 1,或x >x 2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-b 2a Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2} ? ?预习小测 自我检验1.下面所给关于x 的几个不等式:①3x +4<0;②x 2+mx -1>0;③ax 2+4x -7>0;④x 2<0.其中一定为一元二次不等式的有________.(填序号) 答案 ②④解析 一定是一元二次不等式的为②④. 2.不等式x (2-x )>0的解集为________. 答案 {x |0<x <2}解析 原不等式可化为x (x -2)<0,∴0<x <2. 3.不等式4x 2-9<0的解集是________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x <32 解析 原不等式可化为x 2<94,即-32<x <32.4.已知一元二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________. 答案 {a |a <-1}解析 由题意知⎩⎪⎨⎪⎧a <0,Δ<0,∴⎩⎪⎨⎪⎧a <0,4+4a <0,∴a <-1.一、解不含参数的一元二次不等式 例1 解下列不等式:(2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .反思感悟 解一元二次不等式的一般步骤第一步:把一元二次不等式化为标准形式(二次项系数为正,右边为0的形式);第二步:求Δ=b 2-4ac ;第三步:若Δ<0,根据二次函数图象直接写出解集;若Δ≥0,求出对应方程的根写出解集. 跟踪训练1 解下列不等式: (1)4x 2-4x +1>0;解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0, ∴方程x 2-6x +10=0无实根, ∴原不等式的解集为?.二、三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎪⎨⎪⎧-3+2=-b -8a ,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512.所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .反思感悟 三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:特别提醒:由于忽视二次项系数的符号和不等号的开口易写错不等式的解集形式.跟踪训练2 已知关于x 的不等式ax2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎪⎨⎪⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x +1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤1. 三、含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}.(2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a.①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x <2; ②当a =-12时,不等式无解,即原不等式的解集为?;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1a 或x >2. 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算. 跟踪训练3 (1)当a =12时,求关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1≤0的解集;(2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎪⎫a +1a x +1≤0的解集.解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎪⎫a +1a x +1≤0?⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,①当0<a <1时,a <1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a. 综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a≤x ≤a.1.不等式9x 2+6x +1≤0的解集是( ) C .?答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.2.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a等于( ) A .-81 B .81 C .-64 D .64 答案 B解析 不等式x 2<ax +b 可化为x 2-ax -b <0, 其解集是{x |1<x <3},那么,由根与系数的关系得⎩⎪⎨⎪⎧1+3=a ,1×3=-b ,解得a =4,b =-3;所以b a=(-3)4=81.故选B. 3.不等式x 2-2x >0的解集是( ) A .{x |x ≥2或x ≤0} B .{x |x >2或x <0} C .{x |0≤x ≤2} D .{x |0<x <2}答案 B解析 解x 2-2x >0,即x (x -2)>0, 得x >2或x <0,故选B.4.不等式x 2-3x -10<0的解集是________. 答案 {x |-2<x <5}解析 由于x 2-3x -10=0的两根为-2,5,故x 2-3x -10<0的解集为{x |-2<x <5}. 5.若方程x 2+(m -3)x +m =0有实数解,则m 的取值范围是________________. 答案 {m |m ≥9或m ≤1}解析 由方程x 2+(m -3)x +m =0有实数解, ∴Δ=(m -3)2-4m ≥0, 即m 2-10m +9≥0, ∴(m -9)(m -1)≥0, ∴m ≥9或m ≤1.1.知识清单:解一元二次不等式的常见方法 (1)图象法:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.方法归纳:数形结合,分类讨论.3.常见误区:当二次项系数小于0时,需两边同乘-1,化为正的.1.(2019·全国Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )答案 D解析 ∵0<m <1,∴1m>1>m , 故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( )A .{x |x >3或x <-2}B .{x |x >2或x <-3}C .{x |-2<x <3}D .{x |-3<x <2}答案 C解析 由题意知-2+3=-b a ,-2×3=c a ,∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0,又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0,∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( )A .5B .-5C .-25D .10答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根,∴-1+3=b 5,-3=c 5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是() A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2}C .{m |m <-2或m >2}D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R ,∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B.6.不等式x 2-4x +4≤0的解集是________.答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2.7.不等式x 2+3x -4<0的解集为________.答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1m <x <2,则m 的取值范围是________.答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1m <x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m和2, 且⎩⎪⎨⎪⎧ m <0,1m <2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B .(1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集.解 (1)由x 2-2x -3<0,得-1<x <3,∴A ={x |-1<x <3}.由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.(2)由题意,得⎩⎪⎨⎪⎧ 1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧ a =-1,b =-2. ∴-x 2+x -2<0,∴x 2-x +2>0,∵Δ=1-8=-7<0,∴不等式x 2-x +2>0的解集为R .10.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R?解 (1)由题意知1-a <0,且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧ 1-a <0,41-a=-2,61-a =-3,解得a =3. ∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0,解得x <-1或x >32. ∴所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式解集为R ,则Δ=b 2-4×3×3≤0,∴-6≤b ≤6.11.下列四个不等式:①-x2+x+1≥0;②x2-25x+5>0;③x2+6x+10>0;④2x2-3x+4<1.其中解集为R的是( )A.① B.② C.③ D.④答案C解析①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R;③中Δ=62-4×10<0.满足条件;④中不等式可化为2x2-3x+3<0,所对应的二次函数开口向上,显然不可能.故选C.12.在R上定义运算“⊙”:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为( ) A.{x|0<x<2} B.{x|-2<x<1}C.{x|x<-2或x>1} D.{x|-1<x<2}答案B解析根据给出的定义得,x⊙(x-2)=x(x-2)+2x+(x-2)=x2+x-2=(x+2)(x-1),又x⊙(x-2)<0,则(x+2)(x-1)<0,故不等式的解集是{x|-2<x<1}.13.若关于x的方程(a-2)x2-2(a-2)x+1=0无实数解,则a的取值范围是________.答案2≤a<3解析若a-2=0,即a=2时,原方程为1=0不合题意,∴a=2满足条件,若a-2≠0,则Δ=4(a-2)2-4(a-2)<0,解得2<a<3,综上有a的取值范围是2≤a<3.14.已知不等式x2-2x+5≥a2-3a对?x∈R恒成立,则a的取值范围为________.答案 {a |-1≤a ≤4}解析 x 2-2x +5=(x -1)2+4≥a 2-3a 恒成立,∴a 2-3a ≤4,即a 2-3a -4≤0,∴(a -4)(a +1)≤0,∴-1≤a ≤4.15.在R 上定义运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若不等式⎪⎪⎪⎪⎪⎪x -1 a -2a -1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.答案 32解析 原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54, 所以-54≥a 2-a -2,解得-12≤a ≤32. 16.已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.解 ∵ax 2+2ax +1≥0对任意x ∈R 恒成立.当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧ a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[x -(1-a )]<0.∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解; ③当1-a <a ,即12<a ≤1时,1-a <x <a . 综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为?;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。

3.2函数与方程不等式之间的关系(第2课时)(教学课件)高一数学(人教B版2019)【04】

3.2函数与方程不等式之间的关系(第2课时)(教学课件)高一数学(人教B版2019)【04】

课堂总结 二分法的概念 对于在区间[a,b]上连续不断且 f(a)·f(b)<0 的函数 y=f(x), 通过不断地把函数 f(x)的零点所在的区间一分为二,使区 间的两个端点逐步逼近零点,进而得到零点近似值的方法 称为二分法.
课堂总结 二分法求函数近似零点的步骤
在函数零点存在定理的条件满足时(即 f(x)在区间[a,b]上 的图像是连续不断的,且 f(a)f(b)<0),给定近似的精度ε, 用二分法求零点 x0 的近似值 x1,使得|x1-x0|<ε的一般步骤 如下:
是否存在以及求零点, 都不是容易的事 (事实上, 数学家们已经证明:
次数大于 4 的多项式方程,不存在通用的求根公式). 因此, 我们有必要探
讨什么情况下一个函数一定存在零点.
新知探索 知识点一:零点存在定理
尝试与发现
如图所示, 已知
都是函数
图像上的点,
而且函数图像是连接
两点的连续不断的线, 作出 3
课堂练习
【训练 3】(多选)在用二分法求函数 f(x)零点的近似值时,第一次所取的区间是[-2,
4],则第三次所取的区间可能是( )
A.
-2,-1 2
B.[-2,1]
C.
5,4 2
D.
-1,1 2
【 解 析 】 ∵第一次所取的区间是[-2,4],
∴第二次所取的区间可能是[-2,1],[1,4],
∴第三次所的区间可能为
新知探索 知识点一:零点存在定理 一次函数、二次函数的零点是否存在, 并不难判别, 这是因为一元一次方 程、一元二次方程实数解的情况, 都可以根据它们的系数判别出来, 而且 有实数根的时候, 都能够写出求根公式.
但是, 对于次数大于或等于 3 的多项式函数 (例如

高一数学教案23二次函数与一元二次方程不等式

高一数学教案23二次函数与一元二次方程不等式

第二章一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式教学设计一、教学目标1.知识与技能理解二次函数、一元二次方程与不等式之间的关系,学会运用二次函数解一元二次不等式,掌握一元二次不等式在实际问题中的应用。

2.过程与方法通过探索,使学生学会解决问题的方法,感悟数学知识的重要性以及知识之间的关联性。

3.情感态度与价值观通过实际问题的解决,激发学生的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与美,激发学生的学习兴趣,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养。

二、教学重难点1.教学重点二次函数、一元二次方程与不等式三者之间的关系及实际问题中的应用2.教学难点数形结合理解二次函数、一元二次方程与不等式关系,解一元二次不等式三、教学过程1.新课导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好的解决相关问题。

对于二次函数、一元二次方程和一元二次不等式,是否也有这样的联系呢?学生阅读课本P50的问题并思考。

2.探索新知一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式。

一元二次不等式的一般形式是或,其中a,b,c均为常数,a≠0.学生思考:(1)不等式是一元二次不等式吗?提示:不是,一元二次不等式一定为整式不等式.(2)一元二次不等式的一般形式中“a≠0”可以省略吗?提示:不可以,若a=0,就不是二次不等式了.学生试着在平面直角坐标系中画出二次函数的图象,图象与x轴有两个交点,这两个交点的横坐标就是方程的两个实数根。

根据图象,你还发现了什么?一般地,对于二次函数,我们把使的实数x叫做二次函数的零点。

推广到求一般的一元二次不等式 (a>0)和 (a>0)的解集.因为一元二次方程的根是相应一元二次函数的零点,所以先求出一元二次方程的根,再根据二次函数图象与轴的相关位置确定一元二次不等式的解集。

高中高一数学上册《函数关系的建立》教案、教学设计

高中高一数学上册《函数关系的建立》教案、教学设计
(5)布置课后作业,巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的函数关系建立的知识,特布置以下作业:
1.请同学们结合课堂所学,选择一个生活中的实际问题,尝试建立函数模型,并运用函数的性质进行分析。例如,可以选择交通工具的油耗问题、商品的定价问题等。请将问题、模型建立过程以及分析结果撰写成作业报告。
二、学情分析
本章节主要面向高中一年级学生,他们在之前的学习中已经掌握了基本的代数运算和方程求解,具备了一定的数学基础。然而,在函数概念的理解和运用方面,学生可能还存在以下问题:对函数定义的理解不够深入,难以从实际问题中抽象出函数关系;对函数性质的分析和运用不够熟练,解题过程中容易忽视图像的辅助作用。此外,学生的自主学习能力和合作交流能力有待提高。因此,在教学过程中,教师应关注以下方面:
(二)过程与方法
1.探索与实践:引导学生通过观察、分析、归纳等探究活动,发现并理解函数关系及其性质。
2.合作交流:鼓励学生在小组内或班级内进行讨论、分享,培养团队协作能力和表达能力。
3.问题解决:培养学生运用函数知识解决实际问题的能力,提高学生的应用意识和实践能力。
4.反思与评价:引导学生对自己的学习过程进行反思,形成自我评价和同伴评价的能力。
(五)总结归纳
1.教学内容:对本节课所学内容进行总结,梳理函数的定义、性质、表示方法等。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结函数的定义、性质、表示方法等。
(2)提问:本节课我们学习了哪些函数的性质?它们在生活中的应用有哪些?
(3)学生回答,教师点评、补充。
(4)强调函数在数学及其他学科中的重要性,激发学生学习函数的兴趣。
高中高一数学上册《函数关系的建立》教案、教学设计

3.2函数与方程不等式之间的关系(第二课时)高一数学精讲课件(人教B版2019)(1)

3.2函数与方程不等式之间的关系(第二课时)高一数学精讲课件(人教B版2019)(1)
函数与方程、不等式之间的关系 (2)
1.会用零点存在定理判断函数是否有零点.(重点) 2.体会二分法的思想,掌握二分法求方程近似解的一般 步骤.(难点) 3.会用二分法思想解决其他的实际问题.
探究点1 零点存在定理
有零点的区间,函数在端点 处的函数值异号,那么这两 者之间有什么必然关系吗?
y
y
x
x
零点存在定理
即时训练:
探究点2 二分法 思考1:情境中的问题要把故障可能发生的范围缩小到50~
100m左右,即两三根电杆附近,最多查几次就可以了?
7次 设闸房和指挥部的所在处为点A,B,
A
(闸房)
C
ED
取中点
B
(指挥部)
这样每查一次,就可以把待查的线路长度缩减一半
这种解决问题的方法,就是二分法.
y
y
Байду номын сангаас
x
x
O
O
1
2
y
y
x
x
O
O
3
4
y 3
o1
x 3
零点所在区间
区间中点
中点对应的函数 取中点作为近似值

时误差小于的值
取为零点近似值, 此时误差小于
二分法
三种思想
定义 求函数零点近 逼近思想 函数思想 似值的步骤
定区间,找中点,中值计算两边看. 口 诀 同号去,异号算,零点落在异号间.
周而复始怎么办? 精确度上来判断.
ED
取中点
误差小于2
误差小于1
参考维修工人的维修 方法来解决这个问题
误差小于区间长度
通过计算区间中点函数值,从而不断缩小零点所在的区间
【解析】列表如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泰州市第二中学 高一数学教案 函数与方程(2)
教学目标:会利用函数图象判断简单方程根的个数;
初步体会方程的解与两曲线交点的关系;
进一步熟悉数形结合的思想。

教学过程:
一、复习引入:
1、讨论关于x 的方程a x =2
的根的个数?
探究:①可以从∆的角度
②还有什么角度?
感悟生成:
方程0)()(=-x g x f 的根就是函数)(x f 和函数)(x g 图象交点的横坐标,根的个数就是它们图象交点的个数.
二、例题分析:
1、(1)解方程|x-1|=2x
(2)不解方程,判断方程|x-1|=2x 的解的个数
(3)若方程|x-1|=kx 有两个不同的实根,求k 的范围.
2、已知函数b a x f x +=)(,(1)若其图象不经过第二象限,求b a ,的取值范围;
(2)若其图象经过点)1,1)(0,0(,设)()(x f x F =,若方程m x F =)(有两根,求m 的取值范围。

三、当堂练习:
1、若函数f(x+1)是偶函数,则函数f(x)的图象关于直线 对称,又f(x)有5个零点,则这5个零点的和为 .
2、二次函数y=ax 2
+bx+c 的图象如图,确定下列各式的正负:b , ac , a-b+c .
3、讨论关于x 方程|x 2-3|=a 的实根个数.
三、小结:
方程f(x)=g(x)的解为函数f(x)与g(x)的图象的交点横坐标;
方程的解的个数为两图象的交点个数。

中国书法艺术说课教案
今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:
本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:
使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:
(一)教学重点
了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:
如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:
粉笔,钢笔,书写纸等。

4、课时:一课时
二、教学方法:
要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!
(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:
(一)组织教学
让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,
通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!
(三)讲授新课
1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!
A书法文字发展简史:
①古文字系统
甲古文——钟鼎文——篆书
早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。

②今文字系统
隶书——草书——行书——楷书
到了秦末、汉初这一时期,各地交流日见繁多而小篆书写较慢,不能满足需要,隶书便在这种情况下产生了,隶书另一层意思是平民使用,同时还出现了一种草写的章草(独草),这时笔墨纸都已出现,对书法的独立创作起到了积极的推动作用。

狂草在魏晋出现,唐朝的张旭、怀素将它推向顶峰;行书出现于晋,是一种介于楷、行之间的字体;楷书也是魏晋出现,唐朝达到顶峰,著名的书法家有欧阳询、颜真卿、柳公权。

(请学生谈一下对今文
字是怎样理解的?),教师进行归纳:它们的共同特点是已经摆脱了象形走向抽象化。

B主要书体的形式特征
①古文字:甲骨文,由于它处于文明的萌芽时期,故字形错落有致辞,纯古可爱,目前发现的总共有3000多字,可认识的约1800字。

金文,处在文明的发展初期,线条朴实质感饱满而丰腴,因它多附在金属器皿上,所以保存完整。

石鼓文是战国时期秦的文字,记载的是君王外出狩猎和祈祷丰年,秦篆是一种严谨刻板的纯实用性的字体,艺术价值很小。

②今文字:隶书是在秦篆严谨的压抑下出现的一种潇洒开放型的新字体,课本图例《张迁碑》结构方正,四周平稳,刚劲沉着,是汉碑方笔的典范,章草是在隶书基础上更艺术化,实用化的字体,索靖《急就章》便是这种字体的代表作,字字独立,高古凝重,楷书有两大部分构成:魏碑、唐楷魏碑是北魏时期优秀书法作品的统称。

《郑文公碑》和《始平公造像》是这一时期的代表,前者气势纵横,雄浑深厚,劲健绝逸是圆笔的典型;唐楷中的《醴泉铭》法度森严、遒劲雄强,浑穆古拙、浑厚刚健,《神策军碑》精练苍劲、风神整峻、法度谨严,以上三种书体分别代表了唐楷三个时期的不同特点。

《兰亭序》和《洛神赋》作者分别是晋代王羲之、王献之父子是中国书法史
上的两座高峰,前者气骨雄骏、风神跌宕、秀逸萧散的境界,后者在技法上达到了由拙到巧、笔墨洗练、丝丝入扣的微妙的境界。

他们都是不拘泥于传统的章法和技能,对后世学书者产生了深远的影响;明代文征明的书法文雅自如,现代书家沈尹默在继承传统书法方面起到了不可魔灭的作用。

3、欣赏要点:
先找几位同学说一下自己评价书法作品的标准或原则是什么?[或如何来欣赏一幅书法作品?]学生谈完后,对他们的观点进行归纳总结。

然后自己要谈一下自己的观点:书法艺术的欣赏活动,有着不同于其它艺术门类的特征,欣赏书法伤口不可能获得相对直接的印象、辨识与教益,也不可能单纯为了使学生辨识书写的内容,去探讨言词语汇上的优劣。

进而得出:书法主要是通过对抽象的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受(结合讲授出示古代书法名作的图片,并与一般的书法作品进行比较,让学生在比较中得出什么是格调节器高雅,什么是粗庸平常)。

书法可以说是无声的音乐,抽象的绘画,线条流动的诗歌。

四、课堂评价:
根据本节课所学的内容结合板书。

让学生体会到祖国书法艺术的博大精深,着重分析学生在书体形式特点和审美欣赏方面表现出的得失。

让学生懂得在欣赏书法时主要是通过对抽像的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受。

相关文档
最新文档