高中物理选修3-2前三章知识点总结学习资料

合集下载

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。

2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。

3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。

4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。

【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。

变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。

再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。

断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。

在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。

断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。

虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

高中物理选修3-2:自感现象知识点总结

高中物理选修3-2:自感现象知识点总结

高中物理选修3-2:自感现象知识点总结理物高中考点/易错点1自感现象1、自感:由于线圈本身的电流发生变化而产生的电磁感应现象.2、自感电动势:由于自感现象而产生的电动势.3、自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.4、实验与探究考点/易错点2自感系数1、物理意义:描述线圈本身特性的物理量,简称自感或电感.2、影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.3、单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.考点/易错点3日光灯1、主要组成:灯管、镇流器和启动器.2、灯管(1)工作原理:管中气体导电时发出紫外线,荧光粉受其照射时发出可见光.可见光的颜色由荧光粉的种类决定.(2)气体导电的特点:灯管两端的电压达到一定值时,气体才能导电;而要在灯管中维持一定大小的电流,所需的电压却低得多.3、镇流器的作用日光灯启动时:提供瞬时高压;日光灯启动后:降压限流.4、启动器(1)启动器的作用:自动开关.(2)启动器内电容器的作用:减小动、静触片断开时产生的火花,避免烧坏触点.考点/易错点4自感现象的理解1、对自感电动势的进一步理解(1)自感电动势产生的原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在原线圈中产生感应电动势.(2)自感电动势的作用阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.(3)自感电动势的方向当原电流增大时,自感电动势方向与原电流方向相反,电流减小时,自感电动势方向与原电流方向相同.2、自感现象的分析思路(1)明确通过自感线圈的电流怎样变化(是增大还是减小).(2)判断自感电动势方向.电流增强时(如通电),自感电动势方向与原电流方向相反;电流减小时(如断电),自感电动势方向与原电流方向相同.(3)分析电流变化情况,电流增强时(如通电),自感电动势方向与原电流方向相反,阻碍增加,电流逐渐增大.电流减小时(如断电),由于自感电动势方向与原电流方向相同,阻碍减小,线圈中电流方向不变,电流逐渐减小.特别提醒自感电动势阻碍原电流的变化,而不是阻止,电流仍在变化,只是使原电流的变化时间变长.考点/易错点5自感现象中灯泡亮度变化在处理通断电灯泡亮度变化问题时,不能一味套用结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗.要具体问题具体分析,关键要搞清楚电路连接情况.自感现象的分析技巧在求解有关自感现象的问题时,必须弄清自感线圈的工作原理和特点,这样才能把握好切入点和分析顺序,从而得到正确答案.1.自感现象的原理当通过导体线圈中的电流变化时,其产生的磁场也随之发生变化.由法拉第电磁感应定律可知,导体自身会产生阻碍自身电流变化的自感电动势.2.自感现象的特点(1)自感电动势只是阻碍自身电流变化,但不能阻止.(2)自感电动势的大小跟自身电流变化的快慢有关.电流变化越快,自感电动势越大.(3)自感电动势阻碍自身电流变化的结果,会给其他电路元件的电流产生影响.①电流增大时,产生反电动势,阻碍电流增大,此时线圈相当于一个阻值很大的电阻;②电流减小时,产生与原电流同向的电动势,阻碍电流减小,此时线圈相当于电源.3.通电自感与断电自感自感现象中主要有两种情况:即通电自感与断电自感.在分析过程中,要注意:(1)通过自感线圈的电流不能发生突变,即通电过程中,电流是逐渐变大;断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.特别提醒线圈对变化电流的阻碍作用与对稳定电流的阻碍作用是不同的.对变化电流的阻碍作用是由自感现象引起的,它决定了要达到稳定值所需的时间;对稳定电流的阻碍作用是由绕制线圈的导线的电阻引起的,决定了电流所能达到的稳定值.考点/易错点6日光灯的工作原理1、构造日光灯的电路如图所示,由日光灯管、镇流器、开关等组成.2、日光灯的启动当开关闭合时,电源把电压加在启动器的两极之间,使氖气放电而发出辉光,辉光产生的热量使U 形动触片膨胀伸长,从而接通电路,于是镇流器的线圈和灯管的灯丝中就有电流通过,电路接通后,启动器中的氖气停止放电,U形动触片冷却收缩,两个触片分开,电路自动断开,通过镇流器的电流迅速减小,会产生很高的自感电动势,方向与原来电压方向相同,形成瞬间高压加在灯管两端,使灯管中的气体开始导电,于是日光灯管就成了通路开始导电发光.3、日光灯正常工作时镇流器的作用由于日光灯使用的是交流电源,电流的大小和方向做周期性变化,当交流电的大小增大时,镇流器上的自感电动势阻碍原电流增大,自感电动势与原电压反向,当交流电减小时,镇流器上的自感电动势阻碍原电流的减小,自感电动势与原电压同向,可见镇流器的自感电动势总是阻碍电流的变化,镇流器起降压、限流的作用.四、课程小结1、自感现象●自感:由于线圈本身的电流发生变化而产生的电磁感应现象.●自感电动势:由于自感现象而产生的电动势.●自感电动势对电流的作用:电流增加时,感应电动势阻碍电流的增加;电流减小时,感应电动势阻碍电流的减小.2、自感系数●物理意义:描述线圈本身特性的物理量,简称自感或电感.●影响因素:线圈的形状、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.●单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.1H=103mH1H=106μH一、自感现象的四个要点和三个状态要点一:电感线圈产生感应电动势的原因是通过线圈本身的电流变化引起穿过自身的磁通量变化。

高中选修3-1,2电与磁物理知识点

高中选修3-1,2电与磁物理知识点

第一章、电 场一、电荷 :1、自然界中有且只有两种电荷:丝绸摩擦过的玻璃棒带正电,毛皮摩擦过的橡胶棒带负电。

电荷间的相互作用:同种电荷相互排斥,异种电荷相互吸引。

2、电荷守恒定律:电荷既不会创造,也不会消灭,只能从一个物体转移到另一个物体,或从物体的一个部分转移到另一个部分。

“起电”的三种方法:摩擦起电,接触起电,感应起电。

实质都是电子的转移引起:失去电子带正电,得到电子带等量负电。

3、电荷量Q :电荷的多少元电荷:带最小电荷量的电荷。

自然界中所有带电体带的电荷量都是元电荷的整数倍。

密立根油滴实验测出:e=1.6×10—19C 。

点电荷:与所研究的空间相比,不计大小与形状的带电体。

库仑定律:真空中两个点电荷之间相互作用的静电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比。

公式: k = 9×109 N ·m 2/C 2二、电场:1、电荷间的作用通过电场产生。

电场是一种客观存在的一种物质。

电场的基本性质是对放入其中的电荷有力的作用。

2、电场强度E :放入电场中的电荷所受电场力与它的电荷量q 的比。

E=F/q 单位:N/C 或V/mE 是电场的一种特性,只取决于电场本身,与F 、q 等无关。

普通电场场强点电荷周围电场场强匀强电场场强公式 E=F/qE=U/d 方向 与正电荷受电场力方向相同 与负电荷受电场力方向相反沿半径方向背离+Q 沿半径方向指向—Q由“+Q ”指向 “—Q ” 大小电场线越密,场强越大各处场强一样大3、电场线:形象描述场强大小与方向的线,实际上不存在。

疏密表示场强大小,切线方向表示场强方向。

一率从“+Q ”指向“—Q ”。

正试探电荷在电场中受电场力顺电场线,负电荷在电场中受电场力逆电场线。

电场线的轨迹不一定是带电粒子在电场中运动的轨迹。

只有电场线为直线,带电粒子初速度为零时,两条轨迹才重合。

任意两根电场线都不相交。

4、静电平衡时的导体净电荷只分布在外表面上,内部合场强处处为零。

高中物理选修三 新教材 学习笔记第3章 2 热力学第一定律-3 能量守恒定律

高中物理选修三 新教材 学习笔记第3章 2 热力学第一定律-3 能量守恒定律

2热力学第一定律3能量守恒定律[学习目标] 1.理解热力学第一定律,并会运用于分析和计算.2.理解并会运用能量守恒定律.3.知道什么是第一类永动机及其不可能制成的原因.一、热力学第一定律1.改变内能的两种方式:________与________.两者对改变系统的内能是________.2.热力学第一定律:一个热力学系统的内能变化量等于外界向它传递的________与外界对它所________的和.3.热力学第一定律的表达式:ΔU=________.4.热力学第一定律的应用:(1)W的正负:外界对系统做功时,W取______值;系统对外界做功时,W取______值.(均选填“正”或“负”)(2)Q的正负:外界对系统传递的热量Q取____值;系统向外界传递的热量Q取______值.(均选填“正”或“负”)二、能量守恒定律1.探索能量守恒的足迹2.能量守恒定律能量既不会凭空______,也不会凭空________,它只能从一种形式________为其他形式,或者从一个物体________到别的物体,在转化或转移的过程中,能量的总量____________.3.永动机不可能制成(1)第一类永动机:不需要任何动力或燃料,却能不断地____________的机器.(2)第一类永动机由于违背了______________,所以不可能制成.1.判断下列说法的正误.(1)一个系统的内能增加量等于外界向它传递的热量.()(2)物体与外界没有热交换,物体的内能也可能是增加的.()(3)运动的物体在阻力作用下会停下来,说明机械能凭空消失了.()(4)违背能量守恒定律的过程是不可能发生的.()2.气体膨胀对外做功80 J,同时从外界吸收了100 J的热量,则它的内能()A.减小20 J B.增大20 JC.减小220 J D.增大220 J一、热力学第一定律导学探究如图所示,快速推动活塞对汽缸内气体做功10 J,气体内能改变了多少?若保持气体体积不变,汽缸向外界传递10 J的热量,气体内能改变了多少?若推动活塞对汽缸内气体做功10 J 的同时,汽缸向外界传递10 J的热量,气体的内能改变了多少?知识深化1.对公式ΔU=Q+W符号的规定符号W Q ΔU+体积减小,外界对热力学系统做功热力学系统吸收热量内能增加-体积增大,热力学系统对外界做功热力学系统放出热量内能减少2.气体状态变化的几种特殊情况(1)绝热过程:Q=0,则ΔU=W,系统内能的增加(或减少)量等于外界对系统(或系统对外界)做的功.(2)等容过程:W=0,则ΔU=Q,系统内能的增加量(或减少量)等于系统从外界吸收(或系统向外界放出)的热量.(3)等温过程:一定质量理想气体的内能不变,即ΔU=0,则W=-Q(或Q=-W),外界对系统做的功等于系统向外界放出的热量(或系统从外界吸收的热量等于系统对外界做的功).3.判断气体是否做功的方法一般情况下看气体的体积是否变化.(1)若气体体积增大,表明气体对外界做功,W<0.(2)若气体体积减小,表明外界对气体做功,W>0.例1(2021·舟曲县第一中学高二期末)一定质量的气体在某一过程中,外界对气体做了8×104 J的功,气体的内能减少了1.2×105 J,则下列各式正确的是()A.W=8×104 J,ΔU=1.2×105 J,Q=4×104 JB.W=8×104 J,ΔU=-1.2×105 J,Q=-2×105 JC.W=-8×104 J,ΔU=1.2×105 J,Q=2×104 JD.W=-8×104 J,ΔU=-1.2×105 J,Q=-4×104 J例2(2021·济南市期中)如图所示,内壁光滑的绝热汽缸固定在水平面上,其右端由于有挡板,厚度不计的绝热活塞不能离开汽缸,汽缸内封闭着一定质量的理想气体,活塞距汽缸右端的距离为0.2 m.现对封闭气体加热,活塞缓慢移动,一段时间后停止加热,此时封闭气体的压强变为2×105 Pa.已知活塞的横截面积为0.04 m2,外部大气压强为1×105 Pa,加热过程中封闭气体吸收的热量为2 000 J,则封闭气体的内能变化量为()A.400 J B.1 200 JC.2 000 J D.2 800 J二、能量守恒定律永动机不可能制成导学探究如图为一种所谓“全自动”的机械手表,既不需要上发条,也不用任何电源,却能不停地走下去.这是不是一种永动机?如果不是,维持表针走动的能量是从哪儿来的?知识深化1.能量的存在形式及相互转化(1)各种运动形式都有对应的能:机械运动有机械能,分子的热运动有内能,还有电磁能、化学能、核能等.(2)各种形式的能,通过某种方式可以相互转化.例如:利用电炉取暖或烧水,电能转化为内能;煤燃烧,化学能转化为内能;列车刹车后,轮子温度升高,机械能转化为内能.2.能量守恒的两种表达(1)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.3.第一类永动机不可能制成的原因分析如果没有外界供给热量而对外做功,由ΔU=W+Q知,系统内能将减小.若想源源不断地做功,在无外界能量供给的情况下是不可能的.例3(多选)下列对能量守恒定律的认识正确的是()A.某种形式的能量减少,一定存在其他形式的能量增加B.某个物体的能量减少,必然有其他物体的能量增加C.不需要任何外界的动力而持续对外做功的机器——第一类永动机是不可能制成的D.石子从空中落下,最后停止在地面上,说明机械能消失了例4如图所示,上端开口、粗细均匀的U形管的底部中间有一阀门,开始阀门关闭,两管中的水面高度差为h.现将阀门打开,最终两管水面相平,则这一过程中()A.大气压做正功,重力做负功,水的内能不变B.大气压不做功,重力做正功,水的内能增大C.大气压不做功,重力做负功,水的内能增大D.大气压做负功,重力做正功,水的内能不变三、气体实验定律和热力学第一定律的综合应用导学探究如图所示,一定质量的理想气体由a状态变化到b状态,请在图像基础上思考以下问题:(1)在变化过程中是气体对外界做功,还是外界对气体做功?(2)在变化过程中气体吸热,还是向外放热?气体内能如何变化?知识深化热力学第一定律与理想气体状态方程结合问题的分析思路:(1)利用体积的变化分析做功情况.气体体积增大,气体对外界做功;气体体积减小,外界对气体做功.(2)利用温度的变化分析理想气体内能的变化.一定质量的理想气体的内能仅与温度有关,温度升高,内能增加;温度降低,内能减少.(3)利用热力学第一定律判断是吸热还是放热.由热力学第一定律ΔU=W+Q,则Q=ΔU-W,若已知气体的做功情况和内能的变化情况,即可判断气体状态变化是吸热过程还是放热过程.例5一定质量的理想气体,状态从A→B→C→D→A的变化过程可用如图所示的p-V图线描述,其中D→A为等温线,气体在状态A时温度为T A=300 K,试求:(1)气体在状态C时的温度T C;(2)若气体在A→B过程中吸热1 000 J,则在A→B过程中气体内能如何变化?变化了多少?例6(2021·南京市高二期末)如图所示,一个开口向下内壁光滑的汽缸竖直吊在天花板上.汽缸口设有卡口,厚度不计的活塞横截面积S=2×10-3 m2,质量m=4 kg,活塞只能在汽缸内活动,活塞距汽缸底部h1=20 cm,距缸口h2=10 cm.汽缸内封闭一定质量的理想气体.已知环境的温度为T1=300 K,大气压强p0=1.0×105 Pa,g=10 m/s2,汽缸与活塞导热性能良好.升高环境温度使活塞缓慢下降到缸口,继续升高温度至T2=900 K时.(1)求此时气体压强;(2)在此过程中气体从外界吸收Q=30 J的热量,求气体内能的增加量ΔU.针对训练1(2021·盐城市高二期末)如图所示,粗细均匀的玻璃管,长为L、内横截面积为S,将其固定在水平面上并保持平衡状态,A端封闭,B端开口,在B端用厚度不计的轻质活塞进行封闭,用力推活塞缓慢向里移动x时停止,该过程推力对活塞做功为W F.设整个过程管内气体温度不变,管内气体视为理想气体,活塞与玻璃管壁间的摩擦不计,外界大气压强为p0.求:(1)活塞移动x时,管内气体压强p x;(2)活塞移动x过程,气体与外界传递的热量Q.针对训练2(2022·南通市高二期末)如图所示,一绝热汽缸质量m=20 kg、深度H=25 cm,放在水平地面上,汽缸与地面的动摩擦因数μ=0.5.轻质绝热活塞面积S=100 cm2与轻杆连接固定在竖直墙上,轻杆保持水平,光滑活塞与汽缸内壁密封一定质量的理想气体,气体温度为t0=27 ℃,活塞到汽缸底的距离为h=22 cm,杆中恰无弹力.现用缸内的加热装置对缸内气体缓慢加热,气体的内能满足关系式U=aT(a=2.0 J/K),汽缸与地面的最大静摩擦力等于滑动摩擦力,外界大气压强p0=1.0×105 Pa,取g=10 m/s2.求:(1)汽缸相对地面刚开始滑动时,缸内气体的温度T;(2)汽缸滑动后,继续缓慢加热,汽缸缓慢移动,直至活塞恰到汽缸口,求这个过程气体吸收的热量Q.。

物理选修3 2知识点总结

物理选修3 2知识点总结

物理选修3 2知识点总结第一章电荷与电场1.1 电荷的基本性质1.1.1 电荷的定义电荷是构成物质的一种基本性质,有正负之分。

相同电荷相斥,不同电荷相吸。

1.1.2 电荷的守恒封闭系统中的总电荷守恒,即电荷不会增加或减少。

1.1.3 电荷的离散化电荷是离散的,它们只能是整数倍的基本电荷。

1.2 电场的产生1.2.1 电荷产生电场电荷周围存在电场,电场由正电荷指向负电荷,大小与电荷的大小和距离有关。

1.2.2 电场的定义电场是空间中某一点单位正电荷所受的力,大小为F=qE。

1.2.3 电场的叠加原理多个电荷产生的电场可以叠加,合成电场为各个电场矢量和。

1.2.4 电场的三种表达形式电场可以用电场线、电场强度分布图和电场力线图来表示。

1.3 电荷在电场中的运动1.3.1 电荷在电场中受力电荷在电场中受到电场力F=qE。

1.3.2 电荷在电场中的加速度电荷在电场中受到的电场力会导致电荷产生加速度a=qE/m。

1.3.3 电荷在电场中的运动轨迹电荷在电场中运动的轨迹依赖于开始的初速度和角度,可以是直线、椭圆、抛物线或者双曲线。

1.4 高中物理常见问题探究1.4.1 电场强度的方向问题1.4.2 电势能公式的导出1.4.3 电势差和电势能的关系第二章电容器2.1 电容的定义2.1.1 电容的概念电容是指某两导体之间存储电荷的能力,记为C。

2.1.2 电容的基本单位电容的基本单位是法拉(F)。

2.2 平行板电容器2.2.1 平行板电容器的构成平行板电容器由两块平行金属板组成。

2.2.2 平行板电容器的电容公式平行板电容器的电容公式为C=ε0S/d。

2.2.3 平行板电容器的等效电容连接在串联或并联平行板电容器的等效电容可以根据串联与并联的原理求出。

2.3 圆板电容器2.3.1 圆板电容器的构成圆板电容器由两块圆形金属板组成。

2.3.2 圆板电容器的电容公式圆板电容器的电容公式为C=πε0R。

2.3.3 圆板电容器的等效电容串联或并联连接的圆板电容器的等效电容可以根据串联与并联的原理求出。

(完整版)高中物理选修3-2知识点总结

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。

③电源内部的电流从负极流向正极。

3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。

8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。

这种现象叫互感。

9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。

另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。

10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

物理选修3知识点总结

物理选修3知识点总结

物理选修3知识点总结物理选修3知识点总结物理知识点光(除此之外复习练习册题目)1,海市蜃楼是由于光的(全反射)发生的;水底看起来变浅是由于光的(折射)发生的;光导纤维利用了光的(全反射)出现;水中放一空试管,空试管很亮是由于(全反射);阳光透过树叶间隙产生的圆形亮斑是光的(直进性)体现2,光导纤维的内芯折射率比外芯(大),光传播时,在(内心与外套)的界面发生全反射3,增透膜利用了光的(相干性),厚度等于透过光在增透膜中波长的(1/4),光在增透膜前后表面的反射光相互(抵消)4,最先观测到光的干涉现象的是(托马斯〃杨)5,若采用白光进行双缝干涉,中央亮纹是(白)色的,两侧明条纹的外侧是(红)色的,是由于红光波长较(大)的缘故6,光的衍射中条纹中央亮纹(亮)(宽),两侧亮纹(暗)(窄);采用光栅之后,条纹变(窄)变(亮)7,光的偏振现象说明光是一种(横波),电磁波是(横波)8,天空是蓝的是由于光的(色散);天空是亮的是由于光的(散射)9,泊松光板是指(圆屏做障碍物,在影子中心有一个明亮的斑点),说明了光的(波动性)10,偏振片利用了光的(偏振性),用来(减弱)周围景物反射光的强度;对于偏振片都有特定的振动方向,只有振动方向(平行)这个方向的光波才可以透过偏振片;太阳、电灯等普通光源发出的光(不是)偏振光,在经历了玻璃、水面、木质平面反射后,产生的光(是)偏振光;(电子表的液晶显示)用到了偏振光11,利用激光传递信息利用了激光的(相干性),由于激光的频率(较高),可以用激光传递更多信息;激光精确测距利用了激光的(平行度好);利用激光切割利用了激光的(亮度高)的特点;利用激光刻录磁盘、记录信息利用了激光的(平行度好)的特点;全息照相利用了光的(相干性好)12,光线发生全反射的条件是光从(玻璃)射到与(空气)的分界面上,入射角足够(大);光从空气摄入玻璃,(不会发生)全反射13,水下的人可以看到水面上的(全部景象)14,光的衍射中狭缝变窄时条纹间距变(宽)15,若地球周围不存在大气层,则人们观察到的日出时刻将(延后)16,光的直进性和反射性说明了光的(粒子性);光的反射折射同时存在说明光具有(波动性)17,测定光的折射率的时候四个大头针之间的距离应当尽量(大)些,入射角应当适当(大)些,绘制玻璃瓶面的时候(不可以)用铅笔比着玻璃砖画18,干涉实验中所用的光源是(想干)光源,因此(不可以用)自然光1/6电磁波1,麦克斯韦的电磁场理论是指(变化的磁场产生电场,变化的电场产生磁场)2,最早证明电和磁有密切关联的是(奥斯特);证明电磁波存在的是(赫兹);电磁感应现象是(法拉第);建立完整电磁场理论的科学家是(麦克斯韦)3,为了让需要传递的信息加载在电磁波上发射到远方,需要对高频振荡电流进行(调制);FM是指(调频),AM是指(调幅);无线电波中波长最小的是(微波),无线电波频率较高时,可近似认为(按直线)传播;频率较高的无线电波采用(天波)传递方式;频率较低的是采用(地波)传递;雷达传递用的是(微波)4,提高振荡电路辐射电磁波的本领应该让周期尽量变(小),电容变(小),电感变(小);在充电过程中,线圈中的电流逐渐变(小),线圈两端的电压逐渐变(大),线圈的自感作用逐渐变(大);电流为零的时候,磁场能为(零),通过电感线圈的磁通量变化率(最大),电场能为(最大值);电流增大的过程中,电流变化率变(小),电感的磁通量变化率变(小)5,太阳辐射的能量多集中在(可见光)范畴,其中(黄绿光)能量最大波粒二象性一,能量量子化1,热辐射的主要成分是(波长较长的电磁波)2,物体温度升高时,热辐射中(较短波长)的成分越来越强。

高中物理必刷题系列物理狂K重点——高二物理选修选修3-2 知识讲解(共44页)

高中物理必刷题系列物理狂K重点——高二物理选修选修3-2 知识讲解(共44页)

3、使闭合回路面积有扩大或缩小的趋势一一“增缩减扩”.如图 所示,P、Q 是光滑固定导轨,a、b 是可动金属棒,当磁铁下移时,a、 b 将靠近.
4、阻碍原电流的变化“增反减同”.如图所示,开关 S 闭合时,B 灯先亮, A 灯后亮,即原电流增大时,感应电流的方向与原电流的方向 相反;开关 S 断开时,灯逐渐熄灭,A 灯中电流方向向右,B 灯中电流方向向左,线圈中电流方向不变,即原电流减小时,
◀非接触式 IC 卡内部有线 圈,在靠近刷卡机的过程中 磁通量发生变化,产生感应 电流,最终实现信息交换
◀注意磁通量的正负. 设向下为正方向,如图所示, 此时穿过线圈 abcd 的磁通 量为 BS ,若将线圈 abcd 翻 转 180°,则穿过线圈 abcd 的磁通量为 BS .
第 1 页 共 44 页
第一学习单元 电磁感应
印象笔记
1.划时代的发现探究感应电流的产生条件
k 知识深层理解 1、奧斯特梦圆“电生磁”,法拉第心系“磁生电” (1)丹麦物理学家奥斯特发现载流导体能使小磁针转动,这种作用称为电 流的磁效应,揭示了电现象与磁现象之间存在密切联系. (2)英国物理学家法拉第发现了电磁感应现象,即“磁生电”现象,他把 这种现象命名为电磁感应,产生的电流叫做感应电流. 2、磁通量 (1)定义:闭合回路的面积与垂直穿过它的磁感应强度的乘积叫做磁通量. (2)公式: BS ,其中 S 为平面在垂直于磁场方向上的投影面积. (3)磁通量大小与线圈的匝数无关.磁通量的变化量 2 1 . 3、磁通量发生变化的三种常见情况 (1)磁场强弱不变,回路面积改变. (2)回路面积不变,磁场强弱改变. (3)回路面积和磁场强弱均不变,但二者的相对位置发生改变. 4、产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,闭合电路 中就会产生感应电流. 理解 1 如何理解磁通量 在磁感应强度为 B 的匀强磁场中,垂直于磁感线放置一 面积为 S 的平面,则穿过该平面的磁通量为 BS . 1、如果磁感线与平面不垂直,如图甲所示,公式中的 S 应理解为该平面在垂直磁场方向上的投影面积,如果该平面 与垂直磁场方向间的夹角为 ,则投影面积应为 Scos ,穿 过该平面的磁通量为 BS cos . 2、S 指闭合回路中包含磁场的那部分有效面积,如图乙所示,闭合回路 abcd 和闭合回路 abcd 虽然面积不同,但穿过它们的磁通量却相同, BS2 . 3、某闭合回路内有不同方向的磁场时,应分别计算 不同方向的磁场的磁通量,然后规定某个方向的磁通量为 正,反方向的磁通量为负,求其代数和. 4、磁通量与线圈的匝数无关,只要 n 匝线圈的面积相 同,放置情况也相同,穿过 n 匝线圈与穿过单匝线圈的磁 通量就相同.

高中物理选修三的知识点

高中物理选修三的知识点

高中物理选修三的知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中物理选修三的知识点学习知识容易,转化成为能力很难;提出问题容易,得到圆满答复很难;点评别人容易,身临其境去做很难;指责同事容易,正确评价自己很难。

最新人教版高中物理选修3-2:5.4变压器 知识点总结及课时练习

最新人教版高中物理选修3-2:5.4变压器 知识点总结及课时练习

4变压器记一记变压器知识体系辨一辨1.变压器只能改变交变电流的电压,不能改变直流电的电压.(√)2.电流通过铁芯从原线圈流到副线圈.(×)3.理想变压器原、副线圈的电压之比等于两个线圈的匝数之比.(√)4.理想变压器是一个理想化模型.(√)5.学校中用的变压器工作时没有能量损失.(×)6.理想变压器不仅可以改变交变电流的电压和电流,还可以改变交变电流的功率和频率.(×)想一想1.什么是理想变压器?理想变压器原、副线圈中的功率有什么关系?提示:理想变压器是理想化的物理模型,忽略原、副线圈内阻上的分压,忽略原、副线圈磁通量的差别,忽略变压器自身的能量损耗.所以理想变压器的输入功率等于输出功率,即P入=P出.2.如果将变压器的原线圈接到直流电源上,在副线圈上还能输出电压吗?提示:不能.变压器的工作原理是互感现象,在原线圈上接直流电源,在铁芯中不会形成变化的磁场,所以在副线圈上不会有感应电动势产生.3.根据能量守恒推导有多个副线圈时原、副线圈中的电流与匝数的关系.提示:若有多个副线圈,则P1=P2+P3+…,即U1I1=U2I2+U3I3+…,将U1:U2:U3:…=n1:n2:n3:…代入得n1I1=n2I2+n3I3+….思考感悟:练一练1.关于理想变压器的工作原理,以下说法正确的是()A.通有正弦交变电流的原线圈产生的磁通量不变B.穿过原、副线圈的磁通量在任何时候都不相等C.穿过副线圈磁通量的变化使得副线圈产生感应电动势D.原线圈中的电流通过铁芯流到了副线圈解析:通有正弦交变电流的原线圈产生的磁场是变化的,由于面积S不变,故磁通量Φ变化,A项错误;因理想变压器无漏磁,故B项错误;由互感现象知C项正确;原线圈中的电能转化为磁场能又转化为电能,原、副线圈通过磁场联系在一起,故D 项错误.答案:C2.(多选)如图所示,将额定电压为60 V的用电器,通过一理想变压器接在正弦交变电源上.闭合开关S后,用电器正常工作,交流电压表和交流电流表(均为理想电表)的示数分别为220 V和2.2 A.以下判断正确的是()A .变压器输入功率为484 WB .通过原线圈的电流的有效值为0.6 AC .通过副线圈的电流的最大值为2.2 AD .变压器原、副线圈匝数比n 1n 2=11 3解析:变压器的输入功率等于输出功率P 1=P 2=I 2U 2=2.2×60 W =132 W ,A 项错误;由U 1U 2=n 1n 2得n 1n 2=U 1U 2=22060=113,D 项正确;由I 1I 2=n 2n 1得I 1=n 2n 1I 2=311×2.2 A =0.6 A ,B 项正确;根据I =I m 2得通过副线圈的电流的最大值I 2m =2I 2=115 2 A ≈3.1 A ,C 项错误.答案:BD3.如图所示,理想变压器原、副线圈匝数比n 1:n 2=2:1,和Ⓐ均为理想电表,灯泡电阻R L =6 Ω,AB 两端电压u 1=12 2 sin 100 πt (V).下列说法正确的是( )A .电流频率为100 HzB.的读数为24 VC .Ⓐ的读数为0.5 AD .变压器输入功率为6 W 解析:根据u 1=122sin 100πt (V)及U =U m 2知U 1=12 V ,f =ω2 π=50 Hz ,A 项错误;根据U 1U 2=n 1n 2得U 2=n 2n 1U 1=12×12 V =6 V ,即的读数为6 V ,B 项错误;又I 2=U 2R L=66 A =1 A ,即Ⓐ的读数为1 A ,C 项错误;根据P 入=P 出及P 出=U 22R L=626 W =6 W ,D 项正确.答案:D4.(多选)如图所示,L1、L2是高压输电线,图中两电表示数分别是220 V和10 A,已知甲图中原、副线圈匝数比为1001,乙图中原、副线圈匝数比为110,则()A.甲图中的电表是电压表,输电电压为22 000 VB.甲图是电流互感器,输电电流是100 AC.乙图中的电表是电压表,输电电压为22 000 VD.乙图是电流互感器,输电电流是100 A解析:根据U1U2=n1n2,有U1=n1n2U2=1001×220 V=22 000 V,故A项正确;题图甲是电压互感器,故B项错误;题图乙是电流互感器,电表是电流表,故C项错误;只有一个副线圈的变压器,电流比等于匝数的反比I1I2=n4n3,有I1=n4n3I2=101×10 A=100 A,故D项正确.答案:AD要点一变压器的原理和电压、电流关系1.(多选)关于变压器,下列说法正确的是()A.变压器的工作原理是电磁感应B.一切变压器的工作基础都是互感现象C.各种电流接入变压器的输入端,变压器都能持续正常工作D.只有交变电流接入变压器的原线圈中,变压器才能持续正常工作解析:变压器的原线圈接交流电源时,有交变电流流过,引起穿过原、副线圈的磁通量发生变化,在原、副线圈中都产生了感应电动势,所以变压器的工作原理是电磁感应,A项正确;有一种变压器叫自耦变压器,它只有一个线圈绕在铁芯上,但有三个抽头,可升压、也可降压,这种变压器的工作基础是自感,B 项错误;变压器要想持续正常工作,原线圈必须接交变电流,若接直流,原、副线圈中不可能出现持续的感应电动势,变压器不能持续正常工作,C 项错误,D 项正确.答案:AD2.理想变压器原、副线圈匝数比为10:1,下列说法中正确的是( )A .穿过原、副线圈每一匝磁通量之比是10:1B .穿过原、副线圈每一匝磁通量的变化率相等,但穿过每匝线圈的磁通量并不相等C .原、副线圈每一匝产生的电动势瞬时值之比为10:1D .正常工作时,原、副线圈的输入、输出功率之比为1:1 解析:对理想变压器,无磁通量损失,因而穿过两个线圈的磁通量相同,磁通量变化率相同,因而每匝线圈产生的感应电动势相等,才导致电压与匝数成正比,A 、B 、C 三项错误;理想变压器可以忽略各种损耗,故输入功率等于输出功率,D 项正确.答案:D 3.如图所示,一理想变压器原、副线圈的匝数比为1:2,副线圈电路中接有灯泡,灯泡的额定电压为220 V ,额定功率为22 W ,原线圈电路中接有电压表和电流表.现闭合开关,灯泡正常发光.若用U 和I 分别表示此时电压表和电流表的读数,则( )A .U =110 V ,I =0.2 AB .U =110 V ,I =0.05 AC .U =110 2 V , I =0.2 AD .U =110 2 V ,I =0.2 2 A解析:在副线圈电路中,I 2=P U 2=0.1 A ,再根据U 1U 2=n 1n 2,及I 1I 2=n 2n 1,得U 1=110 V ,I 1=0.2 A ,故B 、C 、D 错,A 项正确. 答案:A4.用理想变压器给负载电阻R 供电,变压器输入电压一定时,在下列四个办法中,哪种可以使变压器输出功率增加( )A .增加变压器原线圈匝数,而副线圈匝数及负载电阻R 保持不变B .减小负载电阻的阻值,而变压器原、副线圈匝数不变C.增加负载电阻的阻值,而变压器原、副线圈匝数不变D.减小变压器副线圈匝数,而原线圈匝数和负载电阻保持不变解析:由U1U2=n1n2,当n1增加时,U2减小,P2=U22R,P2减小,A项错误;U1、n1、n2不变,则U2不变,R减小时,P2=U22 R,P2增大,B项正确,C项错误;当n1、U1、R不变,n2减小时,则U2减小,由P2=U22R,P2会减小,D项错误.答案:B要点二变压器的动态分析5.如图所示,理想变压器原线圈输入电压u=U m sin ωt,副线圈电路中R 0为定值电阻,R是滑动变阻器.和是理想交流电压表,示数分别用U 1和U2表示;和是理想交流电流表,示数分别用I1和I2表示.下列说法正确的是()A.I1和I2表示电流的平均值B.U1和U2表示电压的最大值C.滑片P向下滑动过程中,U2不变、I1变大D.滑片P向下滑动过程中,U2变小、I2变大解析:电路中的电压表和电流表表示的都是有效值,选项A、B两项错误.根据U1U2=n1n2得U2=n2n1U1,U1不变,则U2不变,滑片P向下滑动过程中,滑动变阻器接入电路中的电阻变小,由闭合电路欧姆定律知I2变大,根据I1I2=n2n1得I1=n2n1I2,I1变大,故C项正确,D项错误.答案:C6.(多选)如图所示,T为理想变压器,电流表Ⓐ、电压表均为理想交流电表.R1、R2为定值电阻,R3为滑动变阻器,L为电感线圈,A、B两点间接正弦交流电,则()A.只将滑片P1下移时,电流表Ⓐ示数变小B.只将滑片P 2下移时,电压表示数变大C.只增大交流电的电压时,电流表Ⓐ示数变大D.只增大交流电的频率时,电压表示数不变解析:只将滑片P1下移时,变压器副线圈输出电压U2减小,由U1I1=U22R可知,U1、R不变,I1减小,电流表Ⓐ示数变小,A项正确;只将滑片P2下移时,副线圈电路中的总电阻减小,U2不变,因此副线圈电路中的电流增大,R1两端的电压增大,R3两端的电压减小,电压表的示数减小,B项错误;只增大交流电的电压时,根据变压比公式可知,副线圈两端的电压增大,因此副线圈的电流增大,根据变流比公式可知,原线圈的电流增大,故电流表Ⓐ示数增大,C项正确;只增大交流电的频率时,电感线圈的感抗增大,副线圈电路中的总电阻增大,总电流减小,R1两端的电压减小,R3两端的电压增大,电压表示数增大,D项错误.答案:AC要点三几种常见的变压器7.(多选)图甲、乙是配电房中的互感器和电表的接线图,下列说法中正确的是()A.线圈匝数n1<n2,n3<n4B.线圈匝数n1>n2,n3>n4C.甲图中的电表是电压表,输出端不可短路D.乙图中的电表是电流表,输出端不可断路解析:题图甲中的原线圈并联在电路中,为电压互感器,是降压变压器,n1>n2,其中的电表为电压表;题图乙中的原线圈串联在电路中,为电流互感器,是升压变压器,n3<n4,其中的电表为电流表,故选项C、D两项正确.答案:CD8.如图所示为物理实验室某风扇的风速挡位变换器电路图,它是一个可调压的理想变压器,其中接入交流电的电压有效值U0=220 V,n0=2 200匝,挡位1、2、3、4对应的线圈匝数分别为220匝、500匝、1 100匝、2 200匝.电动机M的内阻r=4 Ω,额定电压为U=220 V,额定功率P=110 W.下列判断正确的是() A.当选择挡位3时,电动机两端电压为110 VB.当挡位由3变换到2时,电动机的功率增大C.当选择挡位2时,电动机的热功率为1 WD.当选择挡位4时,电动机的输出功率为110 W解析:由电压与匝数的关系U0U3=n0n3,解得U3=110 V,A项正确;当挡位由3变换到2时,输出电压减小,电动机的功率减小,B项错误;当选择挡位4时,电动机两端电压为额定电压,达到额定功率,在额定功率的情况下,电动机的额定电流为I=PU=0.5 A,热功率P r=I2r=1 W,输出功率为P-P r=(110-1) W =109 W,D项错误;当选择挡位2时,电动机没有达到额定功率时,热功率小于1 W,C项错误.答案:A基础达标1.理想变压器正常工作时,原、副线圈中不相同的物理量为()A.每匝线圈中磁通量的变化率B.交变电流的频率C.原线圈的输入功率和副线圈的输出功率D.原线圈中的感应电动势和副线圈中的感应电动势解析:理想变压器是没有能量损失的变压器,铁芯中无磁漏现象,所以每匝线圈中磁通量相等,其变化率相等,故A、C不符合题意;根据变压器的工作原理及用途可知,B不符合题意,D 符合题意.答案:D2.下列图中可以将电压升高供给家用电灯的变压器是()解析:电压升高,原线圈的匝数要少于副线圈的匝数,原线圈要接交流电,接直流电时变压器不工作,故C项正确.答案:C3.如图所示,理想变压器原线圈的匝数为n1,副线圈的匝数为n2,原线圈的两端a、b接正弦交流电源,电压表V的示数为220 V,负载电阻R=44 Ω,电流表A1的示数为0.2 A.下列判断正确的是()A.原线圈和副线圈的匝数比为2:1B.原线圈和副线圈的匝数比为5:1C.电流表A2的示数为0.1 AD .电流表A 2的示数为0.4 A解析:由电压表V 示数和电流表A 1的示数可得原线圈中的功率P 1=U 1I 1,P 1=P 2=I 22R ,所以电流表A 2的示数为I 2=U 1I 1R =220×0.244 A =1 A ,C 、D 两项错误;原线圈和副线圈的匝数比n 1n 2=I 2I 1=51,A 项错误,B 项正确.答案:B4.如图所示,理想变压器的原线圈接入u =11 000 2sin 100πt V的交变电压,副线圈通过电阻r =6 Ω的导线对“220 V ,880 W ”的电器R L 供电,该电器正常工作.由此可知( )A .原、副线圈的匝数比为50:1B .交变电压的频率为100 HzC .副线圈中电流的有效值为4 AD .变压器的输入功率为880 W解析:根据接入电压u =11 0002sin 100πt V ,输入电压有效值为11 000 V ,要使“220 V ,880 W ”的电器正常工作,则通过用电器的电流为I =P U =4 A ,副线圈输出电压为U 出=Ir +U =4×6 V+220 V =244 V ,原、副线圈匝数比等于输入电压与输出电压之比为2 75061,A 项错误,C 项正确;交流电的频率f =ω2π=100 π2 πHz =50 Hz ,B 项错误;变压器的输出功率P 出=P R L +P r =880 W +42×6 W =976 W ,D 项错误.答案:C5.如图所示,理想变压器原、副线圈回路中的输电线的电阻忽略不计.当S 闭合时( )A .电流表A 1的读数变大,电流表A 2的读数变小B.电流表A1的读数变大,电流表A2的读数变大C.电流表A1的读数变小,电流表A2的读数变小D.电流表A1的读数变小,电流表A2的读数变大解析:当S闭合后,变压器副线圈电路中的总电阻R减小,而输出电压不变.由I2=U2R得I2变大,即电流表A2的读数变大,变压器的输出功率变大.由U1I1=U2I2可知,I1变大,即电流表A1的读数也变大,B项正确.答案:B6.如图所示,理想变压器原、副线圈的匝数比n1:n2=4:1,当导体棒在匀强磁场中向左做匀速直线运动切割磁感线时,电流表A1的示数为12 mA,则电流表A2的示数为()A.3 mA B.0C.48 mA D.与负载R的值有关解析:当导体棒做匀速直线运动切割磁感线时,在原线圈中产生恒定不变的电流,铁芯中产生的磁场是不变的,穿过副线圈的磁通量不变,不能在副线圈中产生感应电流,即A2的示数为0,B项正确.答案:B7.一理想变压器原、副线圈匝数之比n1:n2=11:5,原线圈与正弦交变电源连接,输入电压U如图所示.副线圈仅接入一个10 Ω的电阻,则()A.流过电阻的电流是20 AB.与电阻并联的电压表的示数是100 2 VC.经过1 分钟电阻发出的热量是6×103 JD.变压器的输入功率是1×103 W解析:由电压的有效值和最大值的关系得U1=U m2=220 V.根据理想变压器电压与匝数的关系U1U2=n1n2,得U2=n2n1U1=511×220 V=100 V,故电压表的示数是100 V,B项错误;I2=U2R=10010A=10 A,A项错误;1 分钟内电阻发出的热量Q=I2Rt=102×10×60 J=6×104 J,C项错误;变压器的输入功率等于输出功率,即P入=P出=U2I2=100×10 W=1×103 W,故D项正确.答案:D8.如图所示,理想变压器的副线圈上通过输电线接有两个相同的灯泡L1和L2,输电线的等效电阻为R.开始时,开关S断开.当开关S接通时,以下说法中不正确的是()A.副线圈两端M、N的输出电压减小B.副线圈输电线等效电阻R上的电压增大C.通过灯泡L1的电流减小D.原线圈中的电流增大解析:由于输入电压不变,所以当S接通时,理想变压器副线圈M、N两端输出电压不变.并联灯泡L2,总电阻变小,由欧姆定律I2=U2R2知,流过R的电流增大,电阻上的电压U R=IR增大.副线圈输出电流增大,根据输入功率等于输出功率I1U1=I2U2得,I2增大,原线圈输入电流I1也增大.U MN不变,U R变大,所以U L1变小,流过灯泡L1的电流减小.综上所述,应选A.答案:A9.自耦变压器铁芯上只绕有一个线圈,原、副线圈都只取该线圈的某部分.一升压式自耦调压变压器的电路如图所示,其副线圈匝数可调.已知变压器线圈总匝数为1 900;原线圈为1 100,接在有效值为220 V 的交流电源上.当变压器输出电压调至最大时,负载R 上的功率为2.0 kW.设此时原线圈中电流有效值为I 1,负载两端电压的有效值为U 2,且变压器是理想的,则U 2和I 1分别约为( )A .380 V 和5.3 AB .380 V 和9.1 AC .240 V 和5.3 AD .240 V 和9.1 A解析:对理想变压器,原、副线圈功率相同,故通过原线圈的电流I 1=P U 1=2 000220 A ≈9.1 A ,负载两端电压即为副线圈电压,由U 1U 2=n 1n 2,即220 V U 2=1 1001 900,可得U 2=380 V ,故B 项正确. 答案:B10.如图所示,为四种亮度可调的台灯的电路示意图,它们所用灯泡相同,且规格都是“220 V ,40 W ”,当灯泡所消耗的功率都调为20 W 时,哪种台灯消耗的功率最小( )解析:C 图为理想变压器调节电压,而理想变压器不消耗能量,A 、B 、D 三图中均利用电阻来调节灯泡上的电压,故一定会多消耗能量.C 项正确.答案:C11.某变压器原、副线圈匝数比为 55:9,原线圈所接电源电压按如图所示规律变化,副线圈接有负载.下列判断正确的是( )A .输出电压的最大值为36 VB .原、副线圈中电流之比为55:9C .变压器输入、输出功率之比为55:9D .交流电源有效值为220 V ,频率为50 Hz解析:由U 1U 2=n 1n 2得,输出电压的最大值为36 2 V ,A 项错误;原、副线圈中电流之比I1I2=n2n1=955,故B项错误;理想变压器输入功率与输出功率相等,C项错误;由图象易知D项正确.答案:D能力达标12.如图甲、乙所示电路中,当A、B接10 V交变电压时,C、D间电压为4 V,M、N接10 V直流电压时,P、Q间电压也为4 V.现把C、D接4 V交变电压,P、Q接4 V直流电压,下面哪个选项可表示A、B间和M、N间的电压()A.10 V10 V B.10 V 4 VC.4 V10 V D.10 V0解析:题图甲是一个自耦变压器,当A、B作为输入端,C、D作为输出端时,是一个降压变压器,两边电压之比等于两边线圈的匝数之比,当C、D作为输入端,A、B作为输出端时,是一个升压变压器,电压比也等于匝数比,所以C、D接4 V交变电压时,A、B间将得到10 V交变电压.题图乙是一个分压电路,当M、N作为输入端时,上、下两个电阻上的电压跟它们的电阻的大小成正比.但是当把电压加在P、Q两端时,电流只经过下面那个电阻,上面的电阻中没有电流,两端也就没有电势差,即M、P 两点的电势相等.所以当P、Q接4 V直流电压时,M、N两端的电压也是4 V,故B项正确.答案:B13.如图甲所示,一理想变压器给一个小灯泡供电.当原线圈输入如图乙所示的交变电压时,额定电压为U0的小灯泡恰好正常发光,已知灯泡的电阻为R,图中电压表为理想电表.下列说法正确的是()A .变压器输入电压的瞬时值为u =U m sin ⎝ ⎛⎭⎪⎫2πT t VB .电压表的示数为 2 U 0C .变压器的输入功率为U 20RD .变压器的匝数比为U m U 0 解析:由题图乙知,变压器输入电压的瞬时值为u =U m sin ⎝ ⎛⎭⎪⎫2 πT t V ,A 项正确;电压表的示数为U 0,B 项错误;变压器的输入功率为U 20R ,C 项正确;由变压器变压公式,变压器的匝数比为U m 2U 0,D 项错误.答案:AC14.如图所示,理想变压器三个线圈的匝数之比为n 1:n 2:n 3=10:5:1,其中n 1接到220 V 的交流电源上,n 2和n 3分别与电阻R 2、R 3组成闭合回路.已知通过电阻R 3的电流I 3=2 A ,电阻R 2=110 Ω,求通过电阻R 2的电流I 2和通过原线圈的电流I 1.解析:由变压器原、副线圈电压比等于其匝数比可得,加在R 2上的电压U 2=n 2n 1U 1=510×220 V =110 V 通过电阻R 2的电流I 2=U 2R 2=110110 A =1 A 加在R 3上的电压U 3=n 3n 1U 1=110×220 V =22 V 根据输出功率等于输入功率得:U 1I 1=U 2I 2+U 3I 3代入数据解得通过原线圈的电流为:I 1=0.7 A.答案:1 A 0.7 A15.如图所示,理想变压器B 的原线圈跟副线圈的匝数比n 1n 2=21,交流电源电压u=311sin 100πt V,F为熔断电流为I0=1.0 A的保险丝,负载R为一可变电阻.(1)当电阻R=100 Ω时,保险丝能否被熔断?(2)要使保险丝不被熔断,电阻R的阻值应不小于多少?变压器输出的电功率不能超过多少?解析:原线圈电压的有效值为U1=3112V≈220 V由U1U2=n1n2得副线圈两端的电压U2=n2n1U1=12×220 V=110 V.(1)当R=100 Ω时,副线圈中电流I2=U2R=110100A=1.10 A.由U1I1=U2I2得原线圈中的电流为I1=U2U1I2=110220×1.10 A=0.55 A,由于I1<I0(熔断电流),故保险丝不会被熔断.(2)设电阻R取某一值R0时,原线圈中的电流I′1刚好到达熔断电流I0,即I′1=1.0 A,则副线圈中的电流为I′2=U1U2I′1=n1n2·I′1=2×1.0 A=2.0 A变阻器阻值为:R0=U2I′2=1102.0Ω=55 Ω此时变压器的输出功率为P2=I′2U2=2.0×110 W=220 W可见,要使保险丝F不被熔断,电阻R的阻值不能小于55 Ω,输出的电功率不能大于220 W.答案:(1) 保险丝不会被熔断(2)55Ω220 W。

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-2全册知识点总结第四章电磁感应4.1划时代的发现一、奥斯特的“电生磁”1820年,丹麦物理学家奥斯特发现了电流的磁效应它揭示了电现象与磁现象之间存在着某种联系。

二、法拉第的“磁生电”(1)、“磁生电”的发现英国物理学家法拉第经过10年的不懈努力,在1831年8月29日发现由磁场得到电流的现象,叫做电磁感应。

(2)、产生电流的原因在电磁感应现象中产生的电流叫做感应电流。

法拉第把产生这种电流的原因概括为五类:变化的电流,变化的磁场,运动的恒定的电流,运动的磁铁,在磁场中运动的导体。

4.2探究电磁感应的产生条件一、相关实验及分析论证实验名称闭合电路的部分导体切割磁感线向线圈中插入磁铁,把磁铁从线圈中拔出模拟法拉第的实验实验装置运动方式部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化)磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变)线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变)只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。

4.3楞次定律一. 相关实验相关实验规律总结:(1)、原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用 (2)、原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用即:(增反减同)二、楞次定律——感应电流的方向(1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)、理解:①、阻碍既不是阻止也不等于反向(增反减同)“阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化..②、注意两个磁场:原磁场和感应电流磁场强调: a 、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

b 、从导体和磁体的相对运动的角度来看,感应电流总要阻碍相对运动。

③、阻碍的过程中,即一种能向另一种转化的过程例:若条形磁铁是自由落体,则磁铁下落过程中受到向上的阻力,即机械能→电能→内能(3)、应用楞次定律步骤:①、确定原磁场的方向;②、搞清穿过闭合回路的磁通量是增加还是减少; ③、根据楞次定律判定感应电流的磁场方向; ④、利用感应电流的磁场方向判定感应电流的方向。

高中物理 选修3-2 变压器 知识点及方法总结 题型分类总结 变压器电路分析

高中物理 选修3-2  变压器  知识点及方法总结 题型分类总结   变压器电路分析

高中物理选修3-2变压器1、理想变压器(1)构造:如图所示,变压器是由闭合铁芯和绕在铁芯上的两个线圈组成的。

①原线圈:与交流电源连接的线圈,也叫初级线圈。

②副线圈:与负极连接的线圈,也叫次级线圈。

③闭合铁芯(2)原理:电流磁效应、电磁感应(3)基本公式①功率关系:P入=P出无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率纸盒②电压关系:U1U2=n1n2即对同一变压器的任意两个线圈,都有电压和匝数成正比。

有多个副线圈时,U1n1=U2n2=U3n3③电流关系:只有一个副线圈时I1I2=n2n1由P入=P出及P=UI推出有多个副线圈时,U1I1=U2I2+U3I3+⋯+U n I n当原线圈中U1、I1代入有效值时,副线圈对应的U2、I2也是有效值,当原线圈中U1、I1为最大值或瞬时值时,副线圈中的U2、I2也对应最大值或瞬时值④原副线圈中通过每匝线圈的磁通量的变化率相等⑤原副线圈中电流变化规律一样,电流的周期频率一样(4)几种常用的变压器①自耦变压器-调压变压器如图是自耦变压器的示意图。

这种变压器的特点是铁芯上只绕有一个线圈。

如果把整个线圈作原线圈,副线圈只取线圈的一部分,就可以降低电压;如果把线圈的一部分作原线圈,整个线圈作副线圈,就可以升高电压。

调压变压器:就是一种自耦便要,它的构造如图所示。

线圈AB绕在一个圆环形的铁芯上。

AB之间加上输入电压U1。

移动滑动触头P的位置就可以调节输出电压U2。

②互感器{电压互感器:用来把高电压变成低电压电流互感器:用来把大电流变成低电流交流电压表和电流表都有一定的量度范围,不能直接测量高电压和大电流。

用变压器把高电压变成低电压,或者把大电流变成小电流,这个问题就可以解决了。

这种变压器叫做互感器。

a、电压互感器电压互感器用来把高电压变成低电压,它的原线圈并联在高电压电路中,副线圈接入交流电压表。

根据电压表测得的电压U2和铭牌上注明的变压比(U1U2),可以算出高压电路中的电压。

新课标人教版高中物理选修3-2知识点总结

新课标人教版高中物理选修3-2知识点总结

选修3-2知识点56.电磁感应现象Ⅰ只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

57.感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。

58.法拉第电磁感应定律 楞次定律Ⅱ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

∴ε=BIv ,M 点电势高,N 点电势低。

此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。

εφ=n t·∆∆, 公式 。

注意: 1)该式普遍适用于求平均感应电动势。

【1】高三物理一轮复习,知识点提要(选修3-1,3-2,3-3,3-4,3-5)

【1】高三物理一轮复习,知识点提要(选修3-1,3-2,3-3,3-4,3-5)

第五章:交变电流
5.4变压器(理想) 5.5电能的输送
U1 n1 I2
U2
n2
I1
P入 P出
I1n1 I2n2 I3n3 ...
P损
I
2 线
R线
( P2 U2
)2 R线
U2 R线
P1 P4
P1=P2
P3=P4
P2=P损+P3
U1 n1 U 2 n2
I1 n2
I2
n1
U3 n3 U 4 n4 I3 n4 I4 n3
tan
vy
at
qU偏 md
L v0
vy 2tan 2 y
v0
L
y侧
1 at2 2
1 qE t2 2m
1 qU偏 2 md
t2
qU偏L2 2mdv02
U偏L2 4U加d
第二章:恒定电流
2.1电源和电流 2.2电动势 2.3欧姆定律 2.4串联电路和并联电路(重) 2.5焦耳定律 2.6导体的电阻
v
qB
E km
1 2
mv
2 m
q 2B2R 2 2m
⑥回旋加速器
F安 左手定则
F洛
B
I
①速度选择器
②磁流体发电机
③电磁流量计
④霍尔效应(见第六章)
同向电流相吸, 反向电流相斥
组合场 复合场 临界、极值、几何知识
第四章:电磁感应
4.1划时代的发现 4.2探究感应电流的条件 4.3楞次定律 4.4法拉第电磁感应定律
q
q It Ι
E W非
t
q
I nqSv
I U R
电势差=电压
RU I

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总

高中物理选修3-2知识点详细汇总电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3. 磁通量变化的常见情况 (Φ改变的方式):①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:成闭合回路,四指指向高电势.⑤“因电而动”用左手定则.“因动而电”用右手定则.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.2.楞次定律(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。

(定语) 主语 (状语) 谓语 (补语) 宾语(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.(3)楞次定律另一种表达:感应电流的效果总是要阻碍..(.或反抗...).产生感应电流的原因. (F安方向就起到阻碍的效果作用)即由电磁感应现象而引起的一些受力、相对运动、磁场变化等都有阻碍原磁通量变化的趋势。

高中物理选修三知识要点总结

高中物理选修三知识要点总结

⾼中物理选修三知识要点总结 ⾼中选修三的物理⽐较难学,需要理解和记忆的知识点和公式都很多,但是这部分的知识点⼜⾮常重要。

下⾯是百分⽹店铺为⼤家整理的⾼中物理选修三知识点的归纳,希望对⼤家有⽤! ⾼中物理选修三知识 ⼀、电场 1.库仑定律电荷⼒,万有引⼒引场⼒,好像是孪⽣兄弟,kQq与r平⽅⽐。

2.电荷周围有电场,F⽐q定义场强。

KQ⽐r2点电荷,U⽐d是匀强电场。

电场强度是⽮量,正电荷受⼒定⽅向。

描绘电场⽤场线,疏密表⽰弱和强。

场能性质是电势,场线⽅向电势降。

场⼒做功是qU ,动能定理不能忘。

4.电场中有等势⾯,与它垂直画场线。

⽅向由⾼指向低,⾯密线密是特点。

⼆、恒定电流 1.电荷定向移动时,电流等于q⽐ t。

⾃由电荷是内因,两端电压是条件。

正荷流向定⽅向,串电流表来计量。

电源外部正流负,从负到正经内部。

2.电阻定律三因素,温度不变才得出,控制变量来论述,r l⽐s 等电阻。

电流做功U I t ,电热I平⽅R t 。

电功率,W⽐t,电压乘电流也是。

3.基本电路联串并,分压分流要分明。

复杂电路动脑筋,等效电路是关键。

4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。

路端电压内压降,和就等电动势,除于总阻电流是。

三、磁场 1.磁体周围有磁场,N极受⼒定⽅向;电流周围有磁场,安培定则定⽅向。

2.F⽐I l是场强,φ等B S 磁通量,磁通密度φ⽐S,磁场强度之名异。

3.BIL安培⼒,相互垂直要注意。

4.洛仑兹⼒安培⼒,⼒往左甩别忘记。

四、电磁感应 1.电磁感应磁⽣电,磁通变化是条件。

回路闭合有电流,回路断开是电源。

感应电动势⼤⼩,磁通变化率知晓。

2.楞次定律定⽅向,阻碍变化是关键。

导体切割磁感线,右⼿定则更⽅便。

3.楞次定律是抽象,真正理解从三⽅,阻碍磁通增和减,相对运动受反抗,⾃感电流想阻挡,能量守恒理应当。

楞次先看原磁场,感⽣磁场将何向,全看磁通增或减,安培定则知i 向。

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结

高中物理选修3-2全册知识点总结第四章电磁感应4.1划时代的发现一、奥斯特的“电生磁”1820年,丹麦物理学家奥斯特发现了电流的磁效应它揭示了电现象与磁现象之间存在着某种联系。

二、法拉第的“磁生电”(1)、“磁生电”的发现英国物理学家法拉第经过10年的不懈努力,在1831年8月29日发现由磁场得到电流的现象,叫做电磁感应。

[(2)、产生电流的原因在电磁感应现象中产生的电流叫做感应电流。

法拉第把产生这种电流的原因概括为五类:变化的电流,变化的磁场,运动的恒定的电流,运动的磁铁,在磁场中运动的导体。

4.2探究电磁感应的产生条件一、相关实验及分析论证实验装置运动方式部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化):磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变)线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变)磁通量是否发生变化磁通量发生变化实验结论有感应电流产生只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。

;4.3楞次定律一.相关实验相关实验规律总结:(1)、原磁通变大,则感应电流磁场与原磁场相反,有阻碍变大作用(2)、原磁通变小,则感应电流磁场与原磁场相同,有阻碍变小作用!即:(增反减同)二、楞次定律——感应电流的方向(1)、内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)、理解:①、阻碍既不是阻止也不等于反向(增反减同)“阻碍”又称作“反抗”,注意不是阻碍原磁场而阻碍原磁场的变化..②、注意两个磁场:原磁场和感应电流磁场强调: a、从磁通量变化的角度看:感应电流总要阻碍磁通量的变化。

]b、从导体和磁体的相对运动的角度来看,感应电流总要阻碍相对运动。

③、阻碍的过程中,即一种能向另一种转化的过程例:若条形磁铁是自由落体,则磁铁下落过程中受到向上的阻力,即机械能→电能→内能(3)、应用楞次定律步骤:①、确定原磁场的方向;②、搞清穿过闭合回路的磁通量是增加还是减少;③、根据楞次定律判定感应电流的磁场方向;④、利用感应电流的磁场方向判定感应电流的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 电磁感应知识点总结1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁2.感应电流的产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则(2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同)④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律:A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

B 、表达式:tnE∆∆=φ (2)磁通量发生变化情况①B 不变,S 变,S B ∆=∆φ ②S 不变,B 变,BS ∆=∆φ ③B 和S 同时变,12φφφ-=∆ (3)计算感应电动势的公式①求平均值:tn E ∆∆=φ ②求瞬时值:BLv E =(导线切割类)③导体棒绕某端点旋转:ω221BL E =5.感应电流的计算: 瞬时电流:总总R BLvR E I==(瞬时切割) 6.安培力的计算:瞬时值:rR vL B BIL F +==227.通过截面的电荷量:rR n t I q +∆=∆=φ注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。

另外,有铁芯的线圈自感系数比没有铁芯时大得多。

(3)类型:通电自感和断电自感(4)单位:亨利(H )、毫亨(mH)、微亨(H ) (5)涡流及其应用①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。

一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流②应用:a.电磁炉 b.金属探测器,飞机场火车站安全检查、扫雷、探矿第五章 交变电流知识点总结一、交变电流的产生 1、原理:电磁感应2、两个特殊位置的比较: 中性面:线圈平面与磁感线垂直的平面。

①线圈平面与中性面重合时(S ⊥B ):磁通量φ最大,0=∆∆tφ,e=0,i=0,感应电流方向改变。

②线圈平面平行与磁感线时(S ∥B ):φ=0,t∆∆φ最大,e 最大,i 最大,电流方向不变。

3、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面:磁通量:t BS t m ωωφφcos cos == 电动势表达式:t NBS t E e m ωωωsin sin == 路端电压:t r R RE t U um m ωωsin sin +== 电流:t rR Et I i m m ωωsin sin +== 接通电源的瞬间,灯泡A 1较慢地亮起来。

断开开关的瞬间,灯泡A 逐渐变暗。

角速度、周期、频率、转速关系:n f Tπππω222===二、表征交变电流的物理量1、瞬时值、峰值(最大值)、有效值、平均值的比较物理量 物理含义重要关系适用情况及说明瞬时值交变电流某一时刻的值t E e m ωsin =t I i m ωsin =计算线圈某时刻的受力情况最大值 最大的瞬时值 ωNBS E m = ωφm m N E =rR E I m m +=讨论电容器的击穿电压(耐压值)有效值跟交变电流的热效应等效的恒定电流值对正(余)弦交流电有:2m E E =,2mU U = 2m I I =(1)计算与电流的热效应有关的量(如功、功率、热量)等(2)电气设备“铭牌”上所标的一般是有效值(3)保险丝的熔断电流为有效值 平均值交变电流图像中图线与时间轴所夹的面积与时间的比值计算通过电路截面的电荷量三、电感和电容对交变电流的作用电感电容对电流的作用 只对交变电流有阻碍作用直流电不能通过电容器,交流电能通过但有阻碍作用影响因素自感系数越大,交流电频率越大,阻碍作用越大,即感抗越大 电容越大,交流电频率越大,阻碍作用越小,即容抗越小应用低频扼流圈:通直流、阻交流 高频扼流圈:通低频、阻高频 隔直电容:通交流、隔直流旁路电容:通高频、阻低频四.变压器:1、原、副线圈中的磁通量的变化率相等。

2121n n U U =,1221n n I I =,入出P P =,即2211I U I U = 2、变压器只变换交流,不变换直流,更不变频。

原、副线圈中交流电的频率一样:f 1=f 2五、电能输送的中途损失:(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3 (2)输电导线损失的电压:U 损=U 2-U 3=I 线R 线(3)输电导线损耗的电功率:线线线线损损(R U P R I I U P P P 222232)===-=六、变压器工作时的制约关系(1)电压制约:当变压器原、副线圈的匝数比(n 1/n 2)一定时,输出电压U 2由输入电压决定,即U 2=n 2U 1/n 1,可简述为“原制约副”.(2)电流制约:当变压器原、副线圈的匝数比(n 1/n 2)一定,且输入电压U 1确定时,原线圈中的电流I 1由副线圈中的输出电流I 2决定,即I 1=n 2I 2/n 1,可简述为“副制约原”.(3)负载制约:①变压器副线圈中的功率P 2由用户负载决定,P 2=P 负1+P 负2+…;②变压器副线圈中的电流I 2由用户负载及电压U 2确定,I 2=P 2/U 2;③总功率P 总=P 线+P 2. 动态分析问题的思路程序可表示为:222221211I R U I U n n U U U 决定负载决定−−−−−→−=−−−−→−=11111221121)(P U I P I U I U I P P 决定决定−−−−→−=−−−−−−−−→−== 选修3-2 综合检测tn E ∆∆=φ__一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对得5分,选不全的得2分,有选错或不答的得0分)1.如图所示,当穿过闭合回路的磁通量均匀增加时,内外两金属环中感应电流的方向为( )A .内环逆时针,外环顺时针B .内环顺时针,外环逆时针C .内环逆时针,外环逆时针D .内环顺时针,外环顺时针2.如图所示是测定自感系数很大的线圈L 直流电阻的电路,L 两端并联一只电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路解体时应( )A .先断开S 1B .先断开S 2C .先拆除电流表D .先拆除电阻R3.如图所示,边长为L 的正方形闭合导线框置于磁感应强度为B 的匀强磁场中,线框平面与磁感线的方向垂直.用力将线框分别以速度v 1和v 2匀速拉出磁场,比较这两个过程,以下判断正确的是( )A .若v 1>v 2,通过线框导线的电荷量q 1>q 2B .若v 1>v 2,拉力F 1>F 2C .若v 1=2v 2,拉力作用的功率P 1=2P 2D .若v 1=2v 2,拉力所做的功W 1=2W 2 4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1s 时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( )A.12B .1C . 2D .4 5.如图所示边长为L 的正方形闭合线框在磁感应强度为B 的匀强磁场中,以一条边为轴以角速度ω匀速转动,转轴与B 垂直,线圈总电阻为R ,导线电阻不计,下列说法正确的是( )A .电压表示数为BL 2ω/8B .电压表示数为2BL 2ω/8C .线圈转一周产生热量为πB 2L 4ω/RD .线圈转一周产生热量为2πB 2L 4ω/R6.某电站用11 kV 交变电压输电,输送功率一定,输电线的电阻为R ,现若用变压器将电压升高到330 kV 送电,下面哪个选项正确( )A .因I =U R ,所以输电线上的电流增为原来的30倍B .因I =PU,所以输电线上的电流减为原来的1/30C .因P =U 2R,所以输电线上损失的功率为原来的900倍D .若要使输电线上损失的功率不变,可将输电线的半径减为原来的1/308.两金属棒和三根电阻丝如图连接,虚线框内存在均匀变化的匀强磁场,三根电阻丝的电阻大小之比R 1R 2R 3=123,金属棒电阻不计.当S 1、S 2闭合,S 3断开时,闭合的回路中感应电流为I ,当S 2、S 3闭合,S 1断开时,闭合的回路中感应电流为5I ;当S 1、S 3闭合,S 2断开时,闭合的回路中感应电流是( )A .0B .3IC .6ID .7I9.一理想变压器原、副线圈的匝数比为101,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P 为滑动变阻器的触头.下列说法正确的是( )A .副线圈输出电压的频率为50 HzB .副线圈输出电压的有效值为31 VC .P 向右移动时,原、副线圈的电流比减小D .P 向右移动时,变压器的输出功率增加10.如图所示,ABCD 为固定的水平光滑矩形金属导轨,处在方向竖直向下,磁感应强度为B 的匀强磁场中,AB 间距为L ,左右两端均接有阻值为R 的电阻,质量为m 、长为L 且不计电阻的导体棒MN 放在导轨上,与导轨接触良好,并与轻质弹簧组成弹簧振动系统.开始时,弹簧处于自然长度,导体棒MN 具有水平向左的初速度v 0,经过一段时间,导体棒MN 第一次运动到最右端,这一过程中AB 间R 上产生的焦耳热为Q ,则( )A .初始时刻棒所受的安培力大小为2B 2L 2v 0RB .从初始时刻至棒第一次到达最左端的过程中,整个回路产生的焦耳热为2Q3C .当棒第一次到达最右端时,弹簧具有的弹性势能为12m v 02-2QD .当棒再一次回到初始位置时,AB 间电阻的热功率为B 2L 2v 02R二、填空题(每题5分,共15分)11.如图所示,四根金属棒搭成一个井字,它们四个接触点正好组成一个边长为a 的正方形.垂直于它们所在的平面,有磁感应强度为B 的匀强磁场,假如四根金属棒同时以相同速率v 沿垂直棒的方向向外运动,则在由它们围成的正方形回路中,感生电动势与速率之间的关系是__________.12.金属线圈ABC 构成一个等腰直角三角形,腰长为a ,绕垂直于纸面通过A 的轴在纸面内匀速转动,角速度ω,如图所示.如加上一个垂直纸面向里的磁感应强度为B 的匀强磁场,则B 、A 间的电势差U BA =____________,B 、C 间的电势差U BC =__________.13.某交流发电机,额定输出功率为4000 kW ,输出电压为400 V ,要用升压变压器将电压升高后向远处送电,所用输电线全部电阻为10 Ω,规定输电过程中损失功率不得超过额定输出功率的10%,所选用的变压器的原、副线圈匝数比不得大于__________.三、论述计算题(本题共4小题,65分,解答时应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不得分,有数值计算的题,答案中必须明确写出数值和单位)14.如图所示,线圈面积S =1×10-5m 2,匝数n =100,两端点连接一电容器,其电容C =20 μF.线圈中磁场的磁感应强度按ΔBΔt=0.1 T/s 增加,磁场方向垂直线圈平面向里,那么电容器所带电荷量为多少?电容器的极板a 带什么种类的电荷?15.如图所示为交流发电机示意图,匝数为n =100匝的矩形线圈,边长分别为10 cm 和20 cm ,内阻为5 Ω,在磁感应强度B =0.5 T 的匀强磁场中绕OO ′轴以502rad/s 的角速度匀速转动,线圈和外部20 Ω的电阻R 相接.求:(1)S 断开时,电压表示数;(2)开关S 合上时,电压表和电流表示数; (3)为使R 正常工作,R 的额定电压是多少?(4)通过电阻R 的电流最大值是多少?电阻R 上所消耗的电功率是多少?16.如图所示为检测某传感器的电路图.传感器上标有“3 V 0.9 W ”的字样(传感器可看做是一个纯电阻),滑动变阻器R 0上标有“10 Ω 1 A ”的字样,电流表的量程为0.6 A ,电压表的量程为3 V .求:(1)传感器的电阻和额定电流.(2)为了确保电路各部分的安全,在a 、b 之间所加的电源电压的最大值是多少?17.如图甲所示,一对平行光滑的轨道放置在水平面上,两轨道间距l =0.2 m ,电阻R =1.0 Ω;有一导体静止地放在轨道上,与轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向向右拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示,求杆的质量m 和加速度a .。

相关文档
最新文档