统计推断 —参数估计课件
合集下载
第四讲参数估计PPT课件
0.50
均数 的均 数
4.99
5.00
均数标准差
0.2212 0.1580
5.00 0.0920
n
0.2236 0.1581 0.0913
由表1可见,从同一总体中随机抽取样本含 量n=10的若干样本,各样本算得的样本均 数并不等于相应的总体均数,且各样本均 数也不完全相同。这种由于随机抽样而造 成的来自同一总体的样本均数之间及样本 均数与相应的总体均数之间的差异,称之 为均数的抽样误差。
总体均数可信区间的计算
Hale Waihona Puke 总体均数可信区间的计算 需考虑: (1)总体标准差 是否已知, (2)样本含量n的大小 通常有两类方法: (1)t分布法
(2)u分布法
1. 单一总体均数的可信区间 (1) 未 知 : 按 t 分 布 。
双 侧 1 可 信 区 间 则 为 :
X t 2 , S X < X t 2 , S X ( X t S 2 , X , X t 2 , S X )
由于样本均数与相应的总体均数之间存在着 差异,由数理统计推理可知:从正态总体中 随机抽取样本含量为n的样本,每抽取一个 样本可计算一个样本均数,重复100次抽样可 得到100个样本均数。
这些样本均数服从均数为
,方差为
2 x
的正态分布.其中 x 为样本均数的总
体标准差,计算公式为: / n X
2. 两总体均数之差的可信区间: 从相 等,但 不等的两个正态总体 N(1, 2)和 N(2, 2)进行随机抽样。则两总体均数之差
( 1 2 )的双侧1 可信区间为
(X 1X2)t/2,SX1X2
( n 1 1 ) ( n 2 1 ) n 1 n 2 2
S X1X 2
均数 的均 数
4.99
5.00
均数标准差
0.2212 0.1580
5.00 0.0920
n
0.2236 0.1581 0.0913
由表1可见,从同一总体中随机抽取样本含 量n=10的若干样本,各样本算得的样本均 数并不等于相应的总体均数,且各样本均 数也不完全相同。这种由于随机抽样而造 成的来自同一总体的样本均数之间及样本 均数与相应的总体均数之间的差异,称之 为均数的抽样误差。
总体均数可信区间的计算
Hale Waihona Puke 总体均数可信区间的计算 需考虑: (1)总体标准差 是否已知, (2)样本含量n的大小 通常有两类方法: (1)t分布法
(2)u分布法
1. 单一总体均数的可信区间 (1) 未 知 : 按 t 分 布 。
双 侧 1 可 信 区 间 则 为 :
X t 2 , S X < X t 2 , S X ( X t S 2 , X , X t 2 , S X )
由于样本均数与相应的总体均数之间存在着 差异,由数理统计推理可知:从正态总体中 随机抽取样本含量为n的样本,每抽取一个 样本可计算一个样本均数,重复100次抽样可 得到100个样本均数。
这些样本均数服从均数为
,方差为
2 x
的正态分布.其中 x 为样本均数的总
体标准差,计算公式为: / n X
2. 两总体均数之差的可信区间: 从相 等,但 不等的两个正态总体 N(1, 2)和 N(2, 2)进行随机抽样。则两总体均数之差
( 1 2 )的双侧1 可信区间为
(X 1X2)t/2,SX1X2
( n 1 1 ) ( n 2 1 ) n 1 n 2 2
S X1X 2
第七章 参数估计PPT资料77页
最先出现的事件是发生概率最大的事件。或者说, 小概率事件在一次试验中几乎不可能发生。
10
以总体X为连续型随机变量为例说明参数的 最大似然估计。 定 义 (似 然 函 数 ) 设 总 体 X 的 概 率 密 度 函 数 为 f X (, ) ( 为 未 知 参 数 ), 若 的 取 值 使 样 本 ( X 1 , X 2 ,L , X n )的 联 合 密 度 函 数 在 样 本 观 测 值 ( x1, x2 ,L , xn ) 处 取 得 最 大 , 记 样 本 的 联 合 密 度 函 数 为 L ( x1 , x 2 ,L , x n , ), 由 样 本 的 特 性 (独 立 同 分 布 — 简 单 随 机 样 本 ), 有
本章引言
统计推断的基本问题可以分为两大类:
一类是估计问题;另一类是假设检验问题。
在实际问题中,往往已知总体X的分布函数的形式,
但其一个或几个参数未知,因此只有在确定这些参数后,
才能通过其分布来计算概率。如何确定这些参数的数值呢?
这就是统计推断中的“参数估计”问题。
借助总体X的一个样本来估计总体未知参数的值的问
2
12
a
EX
3V a r X
b E X 3V a r X
用
X
代
替
EX
,
用
S
2 n
代
替
Var
X
,
再
用
aˆ 代
替
a,
bˆ代
替
b,
aˆ M bˆM
X X
3 S n ,
3
S
。
n
1
其
中
Sn
(
S
2 n
)
10
以总体X为连续型随机变量为例说明参数的 最大似然估计。 定 义 (似 然 函 数 ) 设 总 体 X 的 概 率 密 度 函 数 为 f X (, ) ( 为 未 知 参 数 ), 若 的 取 值 使 样 本 ( X 1 , X 2 ,L , X n )的 联 合 密 度 函 数 在 样 本 观 测 值 ( x1, x2 ,L , xn ) 处 取 得 最 大 , 记 样 本 的 联 合 密 度 函 数 为 L ( x1 , x 2 ,L , x n , ), 由 样 本 的 特 性 (独 立 同 分 布 — 简 单 随 机 样 本 ), 有
本章引言
统计推断的基本问题可以分为两大类:
一类是估计问题;另一类是假设检验问题。
在实际问题中,往往已知总体X的分布函数的形式,
但其一个或几个参数未知,因此只有在确定这些参数后,
才能通过其分布来计算概率。如何确定这些参数的数值呢?
这就是统计推断中的“参数估计”问题。
借助总体X的一个样本来估计总体未知参数的值的问
2
12
a
EX
3V a r X
b E X 3V a r X
用
X
代
替
EX
,
用
S
2 n
代
替
Var
X
,
再
用
aˆ 代
替
a,
bˆ代
替
b,
aˆ M bˆM
X X
3 S n ,
3
S
。
n
1
其
中
Sn
(
S
2 n
)
参数估计PPT课件
如何根据数据选择合适的模型,以及如何进行有效的假设检验是 参数估计面临的重要挑战。
高维数据问题
随着数据维度的增加,参数估计的准确性和稳定性面临更大的挑战 。
异方差性和非线性问题
在实际应用中,数据往往存在异方差性和非线性关系,这增加了参 数估计的难度。
参数估计的发展趋势与未来研究方向
1 2 3
贝叶斯推断
区间估计是一种统计推断方法, 它利用样本信息来估计未知参数 的可能取值范围。
区间估计的性质
区间估计给出的是未知参数的一 个可能取值范围,而不是一个具 体的点估计值。
区间估计的优缺点
优点
区间估计能够给出未知参数的一个可能取值范围,从而为决 策者提供更多的信息,有助于理解参数的不确定性。
缺点
由于区间估计给出的范围较宽,可能会引入较大的误差。此 外,对于某些复杂模型,构造有效的区间估计可能比较困难 。
在贝叶斯估计中,先验分布代表了我们对未知参数的先验知识或信念,而后验分布 则是结合先验信息和样本数据后对未知参数的更新信念。
贝叶斯估计的核心思想是将参数看作随机变量,并利用概率论来描述我们对参数的 认知不确定性。
贝叶斯估计的优缺点
优点
贝叶斯估计能够综合考虑先验信息和样本数据,给出参数的后验分布,从而为决 策提供更全面的信息。此外,贝叶斯估计方法灵活,可以适用于不同类型的数据 和问题。
点估计的优缺点
总结词
点估计的优缺点
详细描述
点估计的优点在于它提供了一个简洁的表示未知参数的方法,并且可以利用各种统计方法进行推断和分析。然而 ,点估计也存在一些缺点,如它可能会受到样本误差的影响,导致估计结果不够准确;另外,当样本容量较小时 ,点估计的效果可能会较差。
点估计的常见方法:矩估计、最小二乘法等
高维数据问题
随着数据维度的增加,参数估计的准确性和稳定性面临更大的挑战 。
异方差性和非线性问题
在实际应用中,数据往往存在异方差性和非线性关系,这增加了参 数估计的难度。
参数估计的发展趋势与未来研究方向
1 2 3
贝叶斯推断
区间估计是一种统计推断方法, 它利用样本信息来估计未知参数 的可能取值范围。
区间估计的性质
区间估计给出的是未知参数的一 个可能取值范围,而不是一个具 体的点估计值。
区间估计的优缺点
优点
区间估计能够给出未知参数的一个可能取值范围,从而为决 策者提供更多的信息,有助于理解参数的不确定性。
缺点
由于区间估计给出的范围较宽,可能会引入较大的误差。此 外,对于某些复杂模型,构造有效的区间估计可能比较困难 。
在贝叶斯估计中,先验分布代表了我们对未知参数的先验知识或信念,而后验分布 则是结合先验信息和样本数据后对未知参数的更新信念。
贝叶斯估计的核心思想是将参数看作随机变量,并利用概率论来描述我们对参数的 认知不确定性。
贝叶斯估计的优缺点
优点
贝叶斯估计能够综合考虑先验信息和样本数据,给出参数的后验分布,从而为决 策提供更全面的信息。此外,贝叶斯估计方法灵活,可以适用于不同类型的数据 和问题。
点估计的优缺点
总结词
点估计的优缺点
详细描述
点估计的优点在于它提供了一个简洁的表示未知参数的方法,并且可以利用各种统计方法进行推断和分析。然而 ,点估计也存在一些缺点,如它可能会受到样本误差的影响,导致估计结果不够准确;另外,当样本容量较小时 ,点估计的效果可能会较差。
点估计的常见方法:矩估计、最小二乘法等
统计学--参数估计 ppt课件
误差是Δ,即:
PPT课件
5
• 极限误差是根据研究对象的变异程度和分析任务的性质来 确定的在一定概率下的允许误差范围。
• 参数估计的两个要求:
– 精度:估计误差的最大范围,通过极限误差来反映。显然,Δ越小, 估计的精度要求越高,Δ越大,估计的精度要求越低。极限误差的 确定要以实际需要为基本标准。
• 3.上面的公式计算结果如果带小数,这时样本容量不 按四舍五入法则取整数,取比这个数大的最小整数代 替。例如计算得到:n=56.03,那么,样本容量取57, 而不是56。
PPT课件
32
例:对某批木材进行检验,根据以往经验,木材长度的标准 差为0.4米,而合格率为90%。现采用重复抽样方式,要 求在95.45%的概率保证程度下,木材平均长度的极限误 差不超过0.08米,抽样合格率的极限误差不超过5%,问 必要的样本单位数应该是多少?
PPT课件
22
总体成数估计区间估计总结
• 总体成数估计区间的上下限
只考虑大样本情况(请记住大样本条件)
P1 P
P z 2
n
P1 P N n
P z 2
n
N 1
PPT课件
23
对总量指标的区间估计
• 在对总体平均数进行区间估计的基础 上,可进一步推断相应的总量指标, 即用总体单位总数N分别乘以总体平均 数的区间下限和区间上限,便得到相 应总量(Nμ)的区间范围。
P
91 100
91%
P
p(1 n
p)
(总体成数未知,用样本成数代替)
P(1 n
P)
2.86%
F(z) 95%,z 1.96 zP 1.962.86%5.61%
PPT课件
5
• 极限误差是根据研究对象的变异程度和分析任务的性质来 确定的在一定概率下的允许误差范围。
• 参数估计的两个要求:
– 精度:估计误差的最大范围,通过极限误差来反映。显然,Δ越小, 估计的精度要求越高,Δ越大,估计的精度要求越低。极限误差的 确定要以实际需要为基本标准。
• 3.上面的公式计算结果如果带小数,这时样本容量不 按四舍五入法则取整数,取比这个数大的最小整数代 替。例如计算得到:n=56.03,那么,样本容量取57, 而不是56。
PPT课件
32
例:对某批木材进行检验,根据以往经验,木材长度的标准 差为0.4米,而合格率为90%。现采用重复抽样方式,要 求在95.45%的概率保证程度下,木材平均长度的极限误 差不超过0.08米,抽样合格率的极限误差不超过5%,问 必要的样本单位数应该是多少?
PPT课件
22
总体成数估计区间估计总结
• 总体成数估计区间的上下限
只考虑大样本情况(请记住大样本条件)
P1 P
P z 2
n
P1 P N n
P z 2
n
N 1
PPT课件
23
对总量指标的区间估计
• 在对总体平均数进行区间估计的基础 上,可进一步推断相应的总量指标, 即用总体单位总数N分别乘以总体平均 数的区间下限和区间上限,便得到相 应总量(Nμ)的区间范围。
P
91 100
91%
P
p(1 n
p)
(总体成数未知,用样本成数代替)
P(1 n
P)
2.86%
F(z) 95%,z 1.96 zP 1.962.86%5.61%
统计学第七章-参数估计-PPT
(例题分析)
解:已知X~N(,102),n=25, 1- = 95%,z/2=1.96。根
据样本数据计算得:x 105.36
总体均值在1-置信水平下的置信区间为
x z 2
n
105.36 1.96
10 25
105.36 3.92
101.44,109.28
该食品平均重量的置信区间为101.44g~109.28g
The two confidence intervals that are used extensively are the 95% and the 90%.
常用的置信水平及Z值为: Z=1.96
Z=1.65
Interpretation of Confidence Intervals
For a 95% confidence interval about 95% of the similarly constructed intervals will contain the parameter being estimated.
n
36
39.5 2.13
37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
总体均值的区间估计
(正态总体、 未知、小样本)
总体均值的区间估计
(小样本)
1.假定条件
– 总体服从正态分布,且方差(2) 未知
– 小样本 (n < 30)
2. 使用 t 分布统计量
t x ~ t(n 1)
t (df = 5)
z
t
不同自由度的t分布
t 值表
横坐标:自由度, df 纵坐标:概率, p, 即曲线下阴影部分的面积; 表中的数字:相应的 |t | 界值。
解:已知X~N(,102),n=25, 1- = 95%,z/2=1.96。根
据样本数据计算得:x 105.36
总体均值在1-置信水平下的置信区间为
x z 2
n
105.36 1.96
10 25
105.36 3.92
101.44,109.28
该食品平均重量的置信区间为101.44g~109.28g
The two confidence intervals that are used extensively are the 95% and the 90%.
常用的置信水平及Z值为: Z=1.96
Z=1.65
Interpretation of Confidence Intervals
For a 95% confidence interval about 95% of the similarly constructed intervals will contain the parameter being estimated.
n
36
39.5 2.13
37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
总体均值的区间估计
(正态总体、 未知、小样本)
总体均值的区间估计
(小样本)
1.假定条件
– 总体服从正态分布,且方差(2) 未知
– 小样本 (n < 30)
2. 使用 t 分布统计量
t x ~ t(n 1)
t (df = 5)
z
t
不同自由度的t分布
t 值表
横坐标:自由度, df 纵坐标:概率, p, 即曲线下阴影部分的面积; 表中的数字:相应的 |t | 界值。
统计学参数估计PPT课件
实际应用中需要注意的问题
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。
统计学(参数估计)ppt课件
相应地,用最大似然法求得的估计量称为 最大似然估计量,简记为MLE。
13
令最大似然估计的求法
14
3、矩法和最大似然法的比较
令矩估计法是采用样本矩替换总体矩来估 计参数,相当于使用了分布函数的部分信息;
令最大似然估计法是采用似然函数来求得 参数的估计,理论上相当于使用了分布函数的 全部信息;
在已知总体分布的前提下,采用最大似然 估计法的理由更充分,而在总体分布函数未知 但有关的总体矩已知的情况下,采用矩估计法 更合适。
通常可以认为,区间估计是在点估计的基 础上,给出未知总体参数的一个取值范围,及 这个范围的可靠程度。
24
区间估计——就是用一个区间去估计未知 总体参数,把未知总体参数值界定在两个数值 之间。即根据样本估计量,以一定的置信度估 计和推断总体参数的区间范围。
令总体参数的估计区间,通常是由样本统 计量加减抽样极限误差而得到的。
44
【解】 本题的总体方差未知,但属于大样本 抽样极限误差为: 所以,在90%的置信水平下,置信区间为:
表明在90%的置信水平下,投保人的平均年龄在 37.37至41.63岁之间。
45
【练习2】在大兴安岭林区,随机抽取了100块面 积为1公顷的样地,根据调查测量求得每公顷林 地平均出材量为88m3 ,标准差为10m3。
17
一、无偏性
无偏性——是指样本估计量抽样分布的均 值等于被估总体参数的真实值。
无偏性实际是指:不同的样本,会有不同 的估计值。虽然从某一个具体样本来看,估计 值有时会大于 θ ,有时会小于 θ ,有误差。但 从所有可能样本的角度来看,估计值的平均水 平等于总体参数的真实值,即平均说来,估计 是无偏的。
令样本均值、样本方差和样本比率,分别 是总体均值、总体方差和总体比率的无偏、有 效和一致的优良估计量;
13
令最大似然估计的求法
14
3、矩法和最大似然法的比较
令矩估计法是采用样本矩替换总体矩来估 计参数,相当于使用了分布函数的部分信息;
令最大似然估计法是采用似然函数来求得 参数的估计,理论上相当于使用了分布函数的 全部信息;
在已知总体分布的前提下,采用最大似然 估计法的理由更充分,而在总体分布函数未知 但有关的总体矩已知的情况下,采用矩估计法 更合适。
通常可以认为,区间估计是在点估计的基 础上,给出未知总体参数的一个取值范围,及 这个范围的可靠程度。
24
区间估计——就是用一个区间去估计未知 总体参数,把未知总体参数值界定在两个数值 之间。即根据样本估计量,以一定的置信度估 计和推断总体参数的区间范围。
令总体参数的估计区间,通常是由样本统 计量加减抽样极限误差而得到的。
44
【解】 本题的总体方差未知,但属于大样本 抽样极限误差为: 所以,在90%的置信水平下,置信区间为:
表明在90%的置信水平下,投保人的平均年龄在 37.37至41.63岁之间。
45
【练习2】在大兴安岭林区,随机抽取了100块面 积为1公顷的样地,根据调查测量求得每公顷林 地平均出材量为88m3 ,标准差为10m3。
17
一、无偏性
无偏性——是指样本估计量抽样分布的均 值等于被估总体参数的真实值。
无偏性实际是指:不同的样本,会有不同 的估计值。虽然从某一个具体样本来看,估计 值有时会大于 θ ,有时会小于 θ ,有误差。但 从所有可能样本的角度来看,估计值的平均水 平等于总体参数的真实值,即平均说来,估计 是无偏的。
令样本均值、样本方差和样本比率,分别 是总体均值、总体方差和总体比率的无偏、有 效和一致的优良估计量;
第六章---参数估计ppt课件
50
1、条件分析:总体分布为正态,且总体方差已 知,用正态法进行估计。 2、计算标准误 3、确定置信水平为0.95,查表得
51
4、计算置信区间 D=0.95时 D=0.99时
52
解释:总体均数μ落在75.61-84.39之间的可 能性为95%,超出这一范围的可能只有5%。而 作出总体μ落在74.22-85.78之间结论时的正 确概率为99%,犯错误的可能性为1%。
38
( 二)、 分布法, 未知 1、前提条件: 总体正态分布, n不论大小,
2、使用 t分布统计量
D=0.95时 D=0.99时
39
例:总体正态, 未知,
,
,
,
,
平均数0.95的置信区间是多少?
,
,试问总体
40
解: 1、条件分析:总体正态, 未知,
小
于30,只能用 分布
2、计算标准误
3、计算自由度
9
一、点估计
(一)意义 含义:直接用样本统计量的值作为总体参数的估 计值 无偏估计量:恰好等于相应总体参数的统计量。
例8-1;假设某市六岁男童平均身高110.7cm,随机 抽取113人测得平均身高110.70cm.总体的平均数, 标准差是多少
10
(二)良好点估计的条件
无偏性: 一致性: 有效性: 无偏估计量的变异性问题。
47
1 、条件分析:总体分布为非正态, 未知, >30,只能用近似正态估计法。
2、计算标准误
3、确定置信水平为0.95,查表得
48
4、计算置信区间
5、结果解释:该校的平均成绩有95%的可能落 在50.2~54.0之间。
49
课堂练习
已知某总体为正态分布,其总体标准差为10。 现从这个总体中随机抽取n1=20的样本,其平 均数分别80。试问总体参数μ在0.95和0.99的 置信区间是多少。
1、条件分析:总体分布为正态,且总体方差已 知,用正态法进行估计。 2、计算标准误 3、确定置信水平为0.95,查表得
51
4、计算置信区间 D=0.95时 D=0.99时
52
解释:总体均数μ落在75.61-84.39之间的可 能性为95%,超出这一范围的可能只有5%。而 作出总体μ落在74.22-85.78之间结论时的正 确概率为99%,犯错误的可能性为1%。
38
( 二)、 分布法, 未知 1、前提条件: 总体正态分布, n不论大小,
2、使用 t分布统计量
D=0.95时 D=0.99时
39
例:总体正态, 未知,
,
,
,
,
平均数0.95的置信区间是多少?
,
,试问总体
40
解: 1、条件分析:总体正态, 未知,
小
于30,只能用 分布
2、计算标准误
3、计算自由度
9
一、点估计
(一)意义 含义:直接用样本统计量的值作为总体参数的估 计值 无偏估计量:恰好等于相应总体参数的统计量。
例8-1;假设某市六岁男童平均身高110.7cm,随机 抽取113人测得平均身高110.70cm.总体的平均数, 标准差是多少
10
(二)良好点估计的条件
无偏性: 一致性: 有效性: 无偏估计量的变异性问题。
47
1 、条件分析:总体分布为非正态, 未知, >30,只能用近似正态估计法。
2、计算标准误
3、确定置信水平为0.95,查表得
48
4、计算置信区间
5、结果解释:该校的平均成绩有95%的可能落 在50.2~54.0之间。
49
课堂练习
已知某总体为正态分布,其总体标准差为10。 现从这个总体中随机抽取n1=20的样本,其平 均数分别80。试问总体参数μ在0.95和0.99的 置信区间是多少。
第七章 参数估计ppt课件
ˆ lim P ( ) 1
n
0 ,则称 ˆ 为θ的一致估计量
31
随着样本容量增大,估计量会越来越接近 被估计的参数。即对任意的>0,有
n
ˆ l i m{ P | | } 1
则称 ˆ 是参数θ的一致估计量。 一致估计量是大样本所呈现的性质。若某
是总体X 的一个容量
1 ˆ X X X ) 1 ( 1 2 3 3
1 ˆ 2 X 3 X X ) 2 ( 1 2 3 6
是总体均值 的估计量,它们是无偏估计 量吗?若是,哪一个更有效。
30
三、一致性
设 ˆ 为未知参数θ的估计量,当 n 时, ˆ按 概率收敛于θ。即
n
2 ( x ) i 2 2
1n X X , ˆ 解方程组,得 i i 1 n
1n 2 2 X X ˆ i i 1 n 20
2
21
7.1.4 评价估计优良的准则
无偏性 有效性 一致性
22
一、无偏性
设 ˆ 为未知参数θ的估计量,若
离 散 型 (, ) x ( X x ) j 1 , k i p i
j i 1
j
n
8
例如0-1分布的数学期望(一阶原点矩)为p, x , x , , x ) 在总体中抽出随机样本 ( , 则样本平均数 1 2 n (样本的一阶原 点矩)
为
1n p xi n i1
26
, 2 , ,X 设 XX 1 n 是总体X的样本
ˆ X 1 1
1 ˆ 2 xi n
ห้องสมุดไป่ตู้ ,ˆ
《统计学参数估计》课件
4
点估计例子及应用
点估计可应用于各种领域,如经济学、医学研究和市场调查中的参数估计。
区间估计
区间估计的定义和原理
区间估计是用一个区间来估计总 体参数值,表示对参数的估计有 一定的不确定性。
置信区间的计算方法
置信区间的计算方法通常基于样 本统计量和抽样分布的特性。
区间估计例子及应用
区间估计可用于估计总体均值、 比例和方差等参数,并提供参数 估计的可信区间。
《统计学参数估计》PPT 课件
统计学参数估计PPT课件。介绍统计学中参数估计的基本概念和方法。本课 程将帮助您深入了解参数估计的重要性和应用前景。
参数估计概述
什么是参数估计?
参数估计是根据样本数据推 断总体参数的过程。
参数的概念和含义
参数是总体分布中的数值特 征,可以用于描述总体的中 心位置和离散程度。
参数估计的意义和应用
参数估计可以帮助我们了解 总体,并作出统计推断和预 测。
点估计
1
点估计的定义和原理
点估计是通过一个点估计总体参数值的方法,通常使用样本统计量来估计。
2
最大似然估计法
最大似然估计法是一种常用的点估计方法,根据样本数据选择使似然函数最大化的参数值。
3
最小乘法
最小乘法是一种点估计方法,通过最小化预测值与真实值之间的差距来估计参数。
参数估计是统计学中重要的工具,可以帮助我们 了解总体和做出合理的推断。
统计学参数估计的应用前景
统计学参数估计在各个领域都有广泛的应用,可 以提供实用的数据分析和决策支持。
假设检验
1 假设检验的基本概念和原理
假设检验是通过对统计数据进行检验来评估关于总体参数的假设。
2 假设检验的步骤和方法
《统计推断》课件
01
单因素方差分析用于比较一个分类变量对数值型因 变量的影响。
02
它通过分析不同组之间的均值差异,判断各组之间 是否存在显著差异。
03
通常使用F统计量进行检验,并结合显著性水平判断 结果的可靠性。
双因素方差分析
1
双因素方差分析用于比较两个分类变量对数值型 因变量的影响。
2
它通过分析两个因素不同水平组合下的均值差异 ,判断各组合之间是否存在显著差异。
非参数回归分析
总结词
一种回归分析方法,不假设响应变量和 解释变量之间的关系形式,而是通过数 据驱动的方法来探索变量之间的关系。
VS
详细描述
非参数回归分析是一种回归分析方法,它 不假设响应变量和解释变量之间的关系形 式,而是通过数据驱动的方法来探索变量 之间的关系。这种方法能够适应各种复杂 的回归模型,并且能够有效地处理解释变 量和响应变量之间的非线性关系。
非参数秩次检验
总结词
一种不依赖于总体分布假设的统计检验方法,通过对观察值进行排序并比较秩次来推断统计显著性。
详细描述
非参数秩次检验是一种不依赖于总体分布假设的统计检验方法,它通过对观察值进行排序并比较秩次 来推断统计显著性。这种方法适用于总体分布未知或不符合正态分布的情况,能够提供稳健和可靠的 统计推断结果。
02
03
04
社会学
在调查研究中,统计推断用于 估计人口特征和趋势,如性别
比例、年龄分布等。
医学
统计推断用于临床试验和流行 病学研究,以评估治疗效果、
疾病发病率和死亡率等。
经济学
统计推断用于预测市场趋势、 评估政策效果和评估经济指标
等。
商业
统计推断用于市场调查、消费 者行为分析、产品质量控制等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计推断 —参数估计
统计推断的思路
总体
个体、个体变异
随机 抽样
样本
代表性、抽样误差
总体参数
未知
统计 推断
样本统计量
已知
风 险
统计推断的内容
• 统计推断(statistical inference),是指
如何用样本性质推断总体特征。
– 参数估计(parameter estimation)
– 假设检验(hypothesis test)
概 自由度 1 2 3 4 5 100 200 500 1000 单侧 双侧 0.25 0.50 1.000 0.816 0.765 0.741 0.727 0.677 0.676 0.675 0.675 0.6745 0.20 0.40 1.376 1.061 0.978 0.941 0.920 0.845 0.843 0.842 0.842 0.8416 0.10 0.20 3.078 1.886 1.638 1.533 1.476 1.290 1.286 1.283 1.282 1.2816 0.05 0.10 6.314 2.920 2.353 2.132 2.015 1.660 1.653 1.648 1.646 1.6449
• 即该地正常成年男子脉搏总体均数的 95%可信区间为:
70.9~76.3(次/分) 。用该区间估计该地正常成年男子脉
搏总体均数的可信度为95%。
例4.2
• 某市 2001 年 120 名 7 岁男孩身高均数为 123.62cm,标准差为4.75cm,计算该市
7岁男童总体均数90%的可信区间。
附表2
例4.1
• 本例自由度=12-1=24,经查表得t0.05,24=2.064,则
X t0.05,24 sX 73.6 2.064 6.5/ 25 70.9(次 / 分) X t0.05,24 sX 73.6 2.064 6.5/ 25 76.3(次 / 分)
均数的可信区间
P(t , t t , ) 1
P(t , X t , ) 1 sX
P( X t , sX X t , sX ) 1
• 总体均数的(1- )可信区间定义为:
X t
,
sX , X t , s X
单侧 双侧
概 率,P 0.25 0.20 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.50 0.40 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 1.000 1.376 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619 0.816 1.061 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599 0.765 0.978 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924 0.741 0.941 1.533 2.132 2.776 3.747 4.604 5.598 0.727 0.920 1.476 2.015 2.571 3.365 4.032 4.773 … … … … … … … … 0.686 0.859 1.323 1.721 2.080 2.518 2.831 3.135 0.686 0.858 1.321 1.717 2.074 2.508 2.819 3.119 0.685 0.858 1.319 1.714 2.069 2.500 2.807 3.104 0.685 0.857 1.318 1.711 2.064 2.492 2.797 3.091 0.684 0.856 1.316 1.708 2.060 2.485 2.787 3.078 7.173 5.893 … 3.527 3.505 3.485 3.467 3.450 8.610 6.869 … 3.819 3.792 3.768 3.745 3.725
s X , X u s X
例4.1
• 随机抽取某地 25 名正常成年男子,测得 该样本的脉搏均数为 73.6 次 / 分,标准差
为6.5次/分,求该地正常成年男子脉搏总
体均数95%的可信区间。
附表2 t 界值表
自由度
-t
0
t
1 2 3 4 5 … 21 22 23 24 25
• 可信区间(CL, CU )是一开区间 CL、CU 称为
可信限
可信区间的两个要素
• 可信度(1-), 可靠性
– 一般取90%,95%。
–Hale Waihona Puke 可人为控制。• 精确性– 是指区间的大小(或长短)
• 兼顾可靠性、精确性
可信区间的确切涵义
• 可信度为95% 的可信区间的确切涵义是: 每100个样本所算得的100个可信区间, 平均有95个包含了总体参数 。
参数估计
• 由样本统计量估计总体参数
–点估计(point estimation) –区间估计(interval estimation)
点估计
• 直接用样本统计量作为总体参数的估计值
–方法简单,但未考虑抽样误差的大小 –在实际问题中,总体参数往往是未知的,但
它们是固定的值,并不是随机变量值。而样本
统计量随样本的不同而不同,属随机的。
区间估计
• 按一定的概率或可信度(1- )用一个区间 估计总体参数所在范围,这个范围称作可
信 度 为 1- 的 可 信 区 间 (confidence
interval, CI),又称置信区间 。这种估计
方法称为区间估计。
区间估计
• 预先给定的概率(1-α)称为可信度或者置信 度(confidence level),常取95%或99%。
影响可信区间大小的因素
• 可信度
– 可信度越大,区间越宽
• 个体变异
– 变异越大,区间越宽
• 样本含量
– 样本含量越大,区间越窄
• 当样本含量较大时,例如n>100,t分布 近似标准正态分布,此时可用标准正态
分布代替t分布,作为可信区间的近似计
算。相应的100(1-)%可信区间为:
•
X u
统计推断的思路
总体
个体、个体变异
随机 抽样
样本
代表性、抽样误差
总体参数
未知
统计 推断
样本统计量
已知
风 险
统计推断的内容
• 统计推断(statistical inference),是指
如何用样本性质推断总体特征。
– 参数估计(parameter estimation)
– 假设检验(hypothesis test)
概 自由度 1 2 3 4 5 100 200 500 1000 单侧 双侧 0.25 0.50 1.000 0.816 0.765 0.741 0.727 0.677 0.676 0.675 0.675 0.6745 0.20 0.40 1.376 1.061 0.978 0.941 0.920 0.845 0.843 0.842 0.842 0.8416 0.10 0.20 3.078 1.886 1.638 1.533 1.476 1.290 1.286 1.283 1.282 1.2816 0.05 0.10 6.314 2.920 2.353 2.132 2.015 1.660 1.653 1.648 1.646 1.6449
• 即该地正常成年男子脉搏总体均数的 95%可信区间为:
70.9~76.3(次/分) 。用该区间估计该地正常成年男子脉
搏总体均数的可信度为95%。
例4.2
• 某市 2001 年 120 名 7 岁男孩身高均数为 123.62cm,标准差为4.75cm,计算该市
7岁男童总体均数90%的可信区间。
附表2
例4.1
• 本例自由度=12-1=24,经查表得t0.05,24=2.064,则
X t0.05,24 sX 73.6 2.064 6.5/ 25 70.9(次 / 分) X t0.05,24 sX 73.6 2.064 6.5/ 25 76.3(次 / 分)
均数的可信区间
P(t , t t , ) 1
P(t , X t , ) 1 sX
P( X t , sX X t , sX ) 1
• 总体均数的(1- )可信区间定义为:
X t
,
sX , X t , s X
单侧 双侧
概 率,P 0.25 0.20 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.50 0.40 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001 1.000 1.376 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619 0.816 1.061 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599 0.765 0.978 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924 0.741 0.941 1.533 2.132 2.776 3.747 4.604 5.598 0.727 0.920 1.476 2.015 2.571 3.365 4.032 4.773 … … … … … … … … 0.686 0.859 1.323 1.721 2.080 2.518 2.831 3.135 0.686 0.858 1.321 1.717 2.074 2.508 2.819 3.119 0.685 0.858 1.319 1.714 2.069 2.500 2.807 3.104 0.685 0.857 1.318 1.711 2.064 2.492 2.797 3.091 0.684 0.856 1.316 1.708 2.060 2.485 2.787 3.078 7.173 5.893 … 3.527 3.505 3.485 3.467 3.450 8.610 6.869 … 3.819 3.792 3.768 3.745 3.725
s X , X u s X
例4.1
• 随机抽取某地 25 名正常成年男子,测得 该样本的脉搏均数为 73.6 次 / 分,标准差
为6.5次/分,求该地正常成年男子脉搏总
体均数95%的可信区间。
附表2 t 界值表
自由度
-t
0
t
1 2 3 4 5 … 21 22 23 24 25
• 可信区间(CL, CU )是一开区间 CL、CU 称为
可信限
可信区间的两个要素
• 可信度(1-), 可靠性
– 一般取90%,95%。
–Hale Waihona Puke 可人为控制。• 精确性– 是指区间的大小(或长短)
• 兼顾可靠性、精确性
可信区间的确切涵义
• 可信度为95% 的可信区间的确切涵义是: 每100个样本所算得的100个可信区间, 平均有95个包含了总体参数 。
参数估计
• 由样本统计量估计总体参数
–点估计(point estimation) –区间估计(interval estimation)
点估计
• 直接用样本统计量作为总体参数的估计值
–方法简单,但未考虑抽样误差的大小 –在实际问题中,总体参数往往是未知的,但
它们是固定的值,并不是随机变量值。而样本
统计量随样本的不同而不同,属随机的。
区间估计
• 按一定的概率或可信度(1- )用一个区间 估计总体参数所在范围,这个范围称作可
信 度 为 1- 的 可 信 区 间 (confidence
interval, CI),又称置信区间 。这种估计
方法称为区间估计。
区间估计
• 预先给定的概率(1-α)称为可信度或者置信 度(confidence level),常取95%或99%。
影响可信区间大小的因素
• 可信度
– 可信度越大,区间越宽
• 个体变异
– 变异越大,区间越宽
• 样本含量
– 样本含量越大,区间越窄
• 当样本含量较大时,例如n>100,t分布 近似标准正态分布,此时可用标准正态
分布代替t分布,作为可信区间的近似计
算。相应的100(1-)%可信区间为:
•
X u