数学北师大版七年级上册有理数的加法(一)
北师大版数学七年级上册2.6有理数的加减混合运算(第1课时)课件
=-40-27+19-24+32 =-40; (2)原式=-9 +(+2)+(-3)+(-4 )
=-9+2-3-4 =-14.
典例精析 有理数的加减混合运算
例 计算:(1)
(2)
解:(1)原式=
=
=
解:(2)原式=
=
= = = 方法点拨:有理数的加减混合运算可以按照运算顺序 从左向右逐一进行.
于是我们可以将加减法统一成加法: 例如:(-8)-(-10)+(-6)-(+4)可写成:
(-8)+(+10)+(-6)+(-4). 再将各个加数的括号和它前面的加号省略不写,得: -8 + 10 - 6 - 4 ,看作和式,读作“负8、正10、负6、负4的和”, 按运算意义可读作“负8加10减6减4”.
(2)(-7)-(+5)+(-4)-(-10); 解:原式=-6
(4)635+24-18+425-16+18-6.8-3.2.
解:原式=9
17.某粮食仓库管理员统计10袋面粉的总质量.以100千克为标准,超过的 记为正,不足的记为负.通过称量的记录如下:+3,+4.5,-0.5,-2,- 5,-1,+2,+1,-4,+1.请问:
北师大版 · 数学· 七年级(上)
第二章 有理数及其运算
2.6 有理数的加减混合运算
第1课时 有理数的加减混合运算
学习目标
1.能进行简单的有理数的加减混合运算。 2.能根据具体问题,运用加减混合运算解决问题。 3.理解有理数的加减法可以转化为加法,并感受、 体会“代数和”的思想。
北师大版七年级数学上册《有理数的加减混合运算》第一课时课件
答案:B
5.计算(2-3)+(-1)的结果是( )
A.-2
B.0
C.1
D.2
答案:A
6.下列计算中正确的是( )
A.-6+(-3)+(-2)=-1
B.7+(-0.5)+2+3=5.5
C.(-12)+(-515)-1=-4170 D.(-12)-(-34)+4=147 答案:D
7.把(-23)+(-5)-(-4)-(+9)写成省略加号和括号的和的形 式为____________,可读作__________________.
答案:-23-5+4-9 负23、负5、正4、负9的和 (或“负23减5加4减9”)
8.如果四个有理数的和是12,其中三个数是-5,+3,9,则第 四个数是______.
答案:5
9.-2,+8,-6的和是________,它们的绝对值的和是 ________.
答案:0 16
10.(-12)与(-14)的差是________,它们的和是________. 答案:-14 -34
11.计算: (1)(-6)-(+5)+(-9)+(-4)-(-9);
(2)(-0.5)-(-214)+3.75-(+512).
解:(1)原式=-6-5-9-4+9=-15; (2)原式=-0.5+2.么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。
能
2021/11/72021/11/72021/11/72021/11/7
力
提
升
名 师 导 学
上页 下页 返回
1.算式“-5+3-9+7-8”的读法是( ) A.5,3,9,7,8的和 B.减5正3负9加7减8 C.负5、正3、负9、正7、负8的和 D.负5、正3、负9、正7加8
课件有理数的加法PPT_北师大版七年级数学上册PPT精品课件[完整版]
则:
(千米).
答:第二天勘察队在出发点的下游 千米处.
重难易错
7.计算:
(1)(+1.2)+(-0.3)=
(2)(-3.5)+
=
(3)
=
(4)
=
0.9 ; ;
; .
8.下列各式运算正确的是( D ) A. (-7)+(-7)=0 B. C. 0+(-101)=101 D.
三级检测练
一级基础巩固练 9. 下列运算过程正确的是( D ) A. (-3)+(-4)=-3+-4=… B. (-3)+(-4)=-3+4=… C. (-3)+(-4)=3+(-4)=… D. (-3)+(-4)=-(3+4)=…
;
第7课 知识点2 有理数加法的应用
(2)(-19)+(-3)=-(19+3)=-22.
(3)
=
;
有理数的加法(1)
(2)
=
;
(2)绝对值相等的两个数的和等于0.
.
(1)若x的相反数是3,y=5,则x+y=
;
(2)(-19)+(-3)=-(19+3)=-22.
新课学习
知识点1 借助数轴比较有理数的大小 1.(1)同号两数相加,取相同的符号,并把绝对值相加.
解:-35+50=15(℃).
两个点分别在原点的两侧,这两个点表示的有理数的和是2+(-3)=-1或-2+3=1.
答:求得的和中最小的是-12.
(4) 李老师在4张纸条上分别写上4个有理数:|-3|,-(+4),+|-9|,-8,他让同学们从中抽取2张,并求出其和.
【北师大版】七年级数学上册 教案2.4 有理数的加法
2.4 有理数的加法(第1课时)一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题.符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一.学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力.学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点.二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算.为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力.教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算.本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则.教学方法是“引导——分类——归纳”.本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法.三、教学过程设计本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)复习引入,提出问题活动内容:1.复习提问:(1)下列各组数中,哪一个较大?(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.2.提出问题:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.如果我们用1个表示+1,用1个,那么就表示0,同样也表示0.(1)计算(-2)+(-3).在方框中放进2个和3个:因此,(-2)+(-3)= -5.用类似的方法计算(2)(-3)+ 2323330143----+--与;与;与;-2与;与(3) 3 +(-2)(4) 4+(-4)思考:两个有理数相加,还有哪些不同的情形?举例说明.引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0.活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.进而讨论如何进行一般的有理数加法的运算.活动的实际效果:实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.(二)活动探究,猜想结论:上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.对“一起探究”,教师可引导学生按以下步骤思考:1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0.2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?3、从中归纳概括出规律在学生探究的基础上,教师引出规定的加法法则.在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助.同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳.活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程.理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力.(三)验证明确结论:例1计算下列算式的结果,并说明理由:(1) 180 +(-10); (2) (-10)+(-1);(3)5+(-5);(4) 0+(-2)活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.活动的实际效果:通过习题,加深了学生对有理数加法法则的理解.(四)运用巩固:活动内容:1.口答下列算式的结果(1) (+4)+(+3); (2) (-4)+(-3); (3) (+4)+(-3);(4) (+3)+(-4); (5) (+4)+(-4); (6) (-3)+0;(7) 0+(+2); (8) 0+0.活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.2.请同学们完成书上的随堂练习:(1)(-25)+(-7); (2)(-13)+5; (3)(-23)+0;(4)45+(-45)全班学生书面练习,四位学生板演,教师对学生板演进行讲评.活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展.活动的实际效果:通过练习进一步熟悉有理数的加法法则.通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种问题.(五)课堂小结:活动内容:师生共同总结.1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值2. 有理数加法法则及其应用.3. 注意异号的情况.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.活动的实际效果:学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标.(六)布置作业:1.课本习题2.4 1、2、3、4、5、 62.拓展练习:(1)(-0.9)+(-2.7); (2)3.8+(-8.4); (3)(-0.5)+3;(4)3.29+1.78;(5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77); (9)(-0.78)+0.四、教学设计反思本节课是在前面学习了有理数的意义的基础上进行的,运用数形结合的思想,探索出有理数加法法则.在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的.“有理数加法法则”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,加法的训练则贯穿在今后的教学活动中进行.故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法.2.4 有理数的加法(第2课时)一、学生起点分析学生在小学学过加法运算,知道加法的交换律和结合律,学生在上一课时已经探索总结出了有理数的加法法则,并进行了一定量的练习,但熟练程度还不够,并且对过去的加法交换律和结合律是否对有理数适用未进行探讨.二、教学任务分析和有理数的加法法则一样,有理数加法运算律的得出也是要学生自主探索,同时通过具体运算体会运算律对计算的简便之处.本课时教学重点是有理数加法运算律,并能运用加法运算律简化运算;教学难点是灵活运用运算律简化运算.具体教学目标如下:知识与技能:1.进一步熟练掌握有理数加法的法则;2.掌握有理数加法的运算律,并能运用加法运算律简化运算.过程与方法:启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法.情感、态度与价值观:1.培养学生的分类与归纳能力.2.强化学生的数形结合思想.3.提高学生的自学以及理解能力,激发学生学习数学的兴趣.三、教学过程设计本节课设计了六个教学环节:第一环节:情境引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业.(一)情境引入,提出问题活动内容:1.叙述有理数的加法法则.2.计算并比较每组的两个算式的结果:(1)(-8)+(-9),(-9)+(-8);(2) 4 +(-7),(-7) + 4;(3)[2+(-3)]+(-8), 2+[(-3)+(-8)];(4) [10+(-10)]+(-5),10+[(-10)+(-5)].活动目的:复习旧知识,为新的知识内容做准备.活动的实际效果:学生知道了小学的加法运算和有理数加法运算的联系与区别:进行有理数加法运算,先要根据具体情况正确地选用法则,确定“和”的符号,这与小学里学过的数的加法是不同的,而计算“和”的绝对值,用的是小学里学过的加法或减法运算;同时巩固了有理数的加法运算.(二)活动探究,猜想结论活动内容:通过上面练习,引导学生得出:交换律——两个有理数相加,交换加数的位置,和不变.用代数式表示:a + b = b + a.运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用代数式表示:(a + b) + c = a +(b + c).这里a、b、c表示任意三个有理数.活动目的:通过特例归纳有理数的加法交换律、结合律.活动的实际效果:让学生自己总结,参与教学活动,从而使学生积极主动地学习,并且营造了良好的学习氛围.(三)验证明确结论活动内容:例1计算:(1)16+(-25)+24+(-32).(2)31 +(-28)+ 28 + 69解:(1) 16+(-25)+24+(-32)=16+24+(-25)+(-32) (加法交换律)=(16+24)+[(-25)+(-32)] (加法结合律)=40+(-57) (同号相加法则)=-17 (异号相加法则) (2)31 +(-28)+ 28 + 69=31 + 69 + [(-28)+ 28 ] (加法交换律和结合律)=100+0=100提出问题引起学生反思:此题你是抓住数的什么特点使计算简化的?依据是什么?引导学生发现,在本例(1)中,把正数与负数分别结合在一起再相加,计算比较简便.在本例(2)中,把互为相反数的两个数结合在一起,计算比较简便.总结常用的三个规律:1、一般地,总是先把正数或负数分别结合在一起相加.2、有相反数的可先把相反数相加,能凑整的可先凑整.3、有分母相同的,可先把分母相同的数结合相加.活动目的:体会加法运算律对运算的简化作用,并且根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.活动的实际效果:本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:消去互为相反数的两数(其和为0)、同号结合或凑整数.例2.有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克)7这10听罐头的总质量是多少?解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(克)解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表(单位:克):这10听罐头与标准质量差值的和为(-10)+ 5 + 0 + 5 + 0 + 0 +(-5)+ 0 + 5 + 10=[(-10)+10]+[(-5)+5]+5+5=10(克)因此,这10听罐头的总质量为454×10 + 10 = 4540 + 10 = 4550(克)活动目的:通过这个应用题,让学生初步体会有理数加法运算律对加法运算的简便作用,同时让学生感受解决问题的方法的多样性.活动的实际效果:加法运算怎么由繁到简?“解法二”让学生感到很新奇,同时为今后平均数、数据的处理的学习奠定了基础.(四)运用巩固活动内容:1.完成书上随堂练习:(要求注理由)(1)(-3)+ 40+(-32)+(-8);(2) 13 +(-56)+47+(-34);(3) 43+(-77)+27+(-43).2.某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?3.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?活动目的:通过习题,加深学生对有理数加法运算律的理解.活动的实际效果:教师指定4名学生板演练习1,第2、3两题分别指定两名学生板演,并引导学生发现解题过程中出现的问题,及时解决.(五)课堂小结活动内容: 请同学们谈一谈这节课的体会和收获.1、通过具体有理数的计算,把加法运算律从非负数范围扩大到有理数的范围.2、掌握加法运算律的法则及公式,并适当的运用运算律进行简化计算.3、有理数加法解决实际问题,体会求简意识.(六)布置作业课本习题2.5: 1、2、3、4、5、6、7.四、教学设计反思1.课堂上应当把更多的时间留给学生在课堂教学中应当把更多时间交给学生.本节课中有理数运算律的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导.这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力.2.不要忽视代数推理对学生的思维训练作用我们一向会错误地认为,推理训练是几何教学的目的,代数可以不讲推理.其实,计算本身就是推理,计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有根有据.这样通过运算就能逐步培养学生的逻辑思维能力.。
北师大版数学七年级上册2.4《有理数的加法》(第1课时)说课稿
北师大版数学七年级上册2.4《有理数的加法》(第1课时)说课稿一. 教材分析《有理数的加法》是北师大版数学七年级上册第二章第四节的内容。
本节内容是在学生已经掌握了有理数的概念、运算法则的基础上进行学习的。
有理数的加法是数学中基本的运算之一,它在日常生活和工农业生产中有着广泛的应用。
通过学习有理数的加法,可以培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析面对的是一群刚刚接触初中数学的七年级学生,他们对有理数的概念和运算法则有一定的了解,但还需要进一步的巩固和提高。
学生的学习习惯和思维方式各有不同,因此,在教学过程中,需要关注每一个学生的学习情况,引导他们积极思考,培养他们的抽象思维能力。
三. 说教学目标根据新课程标准的要求,本节课的教学目标分为三个维度:知识与技能、过程与方法、情感态度与价值观。
1.知识与技能:使学生掌握有理数的加法法则,能够正确进行有理数的加法运算。
2.过程与方法:通过观察、分析、归纳等方法,让学生体会数学知识的形成过程,提高他们的抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们克服困难的勇气,增强他们的自信心。
四. 说教学重难点1.教学重点:有理数的加法法则,有理数的加法运算。
2.教学难点:理解并掌握有理数加法的运算规律,能够灵活运用加法法则进行计算。
五. 说教学方法与手段本节课采用自主探究、合作交流的教学方法,让学生在探究中发现问题、解决问题,培养他们的合作意识。
同时,利用多媒体教学手段,为学生提供丰富的学习资源,提高他们的学习兴趣。
六. 说教学过程1.导入新课:通过复习有理数的概念和运算法则,引出本节课的内容——有理数的加法。
2.自主探究:让学生自主研究有理数的加法法则,引导学生发现加法的运算规律。
3.合作交流:学生分组讨论,分享各自的研究成果,互相解答疑问。
4.讲解演示:教师对学生的研究成果进行讲解,并通过多媒体演示有理数的加法运算过程。
5.练习巩固:让学生进行有针对性的练习,检验他们对有理数加法法则的掌握情况。
北师大版七年级数学上册《有理数的加法》优质课件
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月下午9时49分21.11.721:49November 7, 2021
• 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观 察是思考和识记之母。”2021年11月7日星期日9时49分12秒21:49:127 November 2021
有理数的加法
英超2003-2004赛季,中国球 员李铁效力的埃弗顿首轮以2:1输 给阿森纳,第2轮3:1战胜富勒姆, 该队这两轮比赛的净胜球是多少?
我们把应1个球记作“+1”, 输1个球记作“-1”,埃弗顿两场 比赛的净胜球分别是多少?这两 场比赛最终的净胜球是大小?
两个有理数相加,和的符号 怎样确定?和的绝对值怎样确 定?一个有理数同0相加,和是 多少?
土星表面的夜间平均温是 多少度?
请你设计一个运动的情景, 并用有理数加法算式表示这个 情景。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
北师大版七年级数学上册2.11有理数的加减混合运算[1](共33张PPT)
解答
• (1)(a+b)-(a-c) = a+b-a+c = b+c
当a=7,b=-5,c=-1时 333
原 式 = - 5 +(- 1 )= -2 33
(2)2(a-b)+(b+c)-IcI
=2a-2b+b+c- IcI=2a-b+c-IcI
当 a=7,b=-5,c=-1时
333
原式=
2×73 -- 53+-
(减法转为加法,再运用交换律结合律)
4
(
-4
7 9
)-(-
3
1 6
)-(+
2
2 9
)+(
-6
3 4
)
=
-
43 9
+
+
19 6
+
-
20 9
+
-
27 4
= - 43 + 19 - 20 - 27 = - 43 - 20 + 19 - 27 9694 9964
= -7 - 43 = - 127 12 12
•(2)有理数的减法法则是怎样的?
有理数的减法法则: 减去一个数,等于加上这个数的相反数. 即 a -b = a +(-b)
• 一架飞机做特技表演,起飞后的高度变化 如下表:
此时飞机比起飞点高了多少千米?
方法一: 4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4) =2.4+(-1.4) =1(千米)
12,8,6,5的和 〃;
二是按运算的意义,读作 负12,减8,减6,加5
广东省深圳市宝安实验中学七年级数学上册 有理数的加法课件1 北师大版
你能用数学式子表示出来吗?
小结
同号两数相加,取相同的符号,并把绝 对值相加。
异号两数相加,绝对值相等时和为0;绝对值 不相等时,取绝对值较大的数的符号,并用较 大的绝对值减去较小的绝对值。
如何进行两个 有理数相加?
(3) |0|=___0___;
前提补偿
5、绝对值等于5的数是____±__5___; 6、绝对值最小的数是____0_____;
7、若|a|=8,则a=___±__8__;
8、比较大小:
(1)8__>___9, (2)0.68_<___3_;
9
10
5
(3)7_<___|_9|, (4)|8|_=__|_8|.
(解2):((-1)1080)++((--101) )(异号(同两号数两相数加相)加) ===+- -(1(181100-1+0)1) (取(相取同绝的对符值号较,大并的把数绝的对符值号相,加) =170; 并用较大的绝对值减去较小的绝对值)
达标测试
计算下列各题:
(1) ( - 10)+( - 1) -10)
达标测试
计算 : 1、(1) (-5)+( -7);
(2) (-11)+5;
(3) ( -2)+0;
(4) 4.5+( -4.5)
2、(1)(3.7)( 2.4);
(2)( 4)( 1);
5
2
(3) ( 3) ( 5).
46
达标测试
判断下列各题:
1.两个负数的和一定是负数; √ 2.两个数的和一定大于每个加数; × 3·绝对值相等的两个数的和等于零;×
北师大七年级数学上册《有理数的加法》课件
1.有理数加法法则: (1)同号两数相加,取__相__同____的符号,并把绝对值__相__加____ ; (2)绝对值不相等的异号两数相加,取绝对值较___大_____的加 __小__的__绝__对__值_,互为相反数 的两个数相加得____0____. (3)一个数同0相加,仍得_这__个__数___.
谢谢观赏
You made my day!
我们,还在路上……
21.0.3+(-0.4)+0.25+(-0.2)+(-0.7)+1.1+(-1)=- 0.65(千克),7×15+(-0.65)=104.35(千克),称得的总质 量与总标准质量不足0.65千克,7箱橘子共有104.35千克
22.已知|a|=23,|b|=32,且a>b,求a+b的值.
22.根据题意得 ①a=23,b=-32,a+b=-9 ②a=-23,b=-32,a+b=-55
(1)收工时距A地多远? (2)若每千米耗油0.2 L,从A地出发到收工时,共耗油多少 升?
24.(1)(+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+ (+12)+(+8)+(+5)=41(km)
(2)|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-2|+|+12|+| +8|+|+5|=67(km),0.2×67=13.4(L)
11.计算:(-7)+(+11)+(-13)+9=( B )
A.-1 B.0 C.1 D.3
12.有理数a,b在数轴上的对应位置如图所示,则a+b的值 为( B )
A.大于0 B.小于0 C.等于0 D.大于a
13.若两个有理数的和为正数,则这两个数( D ) A.均为正数 B.均不为零 C.至少有一个为负数 D.至少有一个为正数
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
有理数的加法北师大七年级数学上PPT课件
1、一个不等于0的有理数可看作由哪 两个部分组成? (符号、绝对值)
+7 +3.2 -4
-2
2、比较下列各组数绝对值哪个大?
(1)-22与15; (2)- (3)2.7与- 3 .5
21与
1 3
第1页/共24页
问题情境
本赛季,凯旋足球队第 一场比赛赢了1个球, 第二场比赛输了1个球, 该队这两场比赛的净胜 球数是多少?
第5页方框中放进3个 + 和2个 ,移 走所有的 + .
+ +
++ +
+
+
因此,3+(-2)=1
第6页/共24页
计算(-4)+4.
+
+
+ +
++ ++
因此,(-4)+4=0.
第7页/共24页
如果向东5米记为+5米,那
么向西3米记为
。
第8页/共24页
我们也可能利用数轴表示上述加法 运算过程,以原点为起点规定向东的方 向为正方向,向西的方向为负方向 (1)先向西移动2个单位,再向西移 动3个单位,一共向西移动了5个单位. 即(-3)+(-2)=-5
一个数同0相加,仍得这个数
第17页/共24页
2、两个有理数相加,首先判断 加法类型,再确定和的符号,最 后确定和的绝对值。
第18页/共24页
(-2)+(-3)=-5
第19页/共24页
(-3)+2 =-1
第20页/共24页
3+(-2)=1
第21页/共24页
(-4)+4 =0
北师大版七年级上册数学《有理数的加法》有理数及其运算教学说课复习课件
有理数的加法法则
从上述①- ⑥所写出的算式中 ,你能总结出一些规律吗 ?
① ( + 20) + ( + 30) = + 50 ② ( - 20) + ( - 30) = - 50 ③ ( + 20) + ( - 30) = -10 ④ ( - 20) + ( + 30) = +10 ⑤ ( + 30) + ( - 30) = 0 ⑥ ( -30) + 0 = -30
情境导入
在小学里我们知道,数的加法满足交换律: 例如: 5+3. 5 =3. 5+5; 结合律: 例如:(5+3.5) +2.5 = 5 + (3.5 +2.5).
思考
引进了负数以后,这些运算律是否还成立呢? 例如:将上面两个等式中,5、3.5和2. 5换成任意的有理数, 是否仍然成立呢?
新课讲解
解法一:这10听罐头的总质量为 444+ 459+ 454+ 459+ 454+ 454+ 449+ 454+ 459+ 464 = 4 550(g). 解法二:把超过标准质量的克数用正数表示,不足的用负数表示, 列出 10听罐头与标准质量的差值表:
听号
1
234
5
与标准质量的差/g -10 +5 0 +5 0
有理数的加法法则
●
●
-20 -10 0 10 20 30 40 50 60
第一次向西走20米 ,第二次向东走 30米,由数轴表示运动过程可知: 小明位于原来位置的东边10米处即(+10米)
∴( -20) + ( + 30) = + 10,
北师大版-数学-七年级上册-《有理数的加减混合运算》第一课时名校教案
2.6有理数的加减混合运算(1)教学目标:1、能进行包括小数或分数的有理数的加减混合运算;2、能根据具体问题,适当运用运算律简化运算;3、能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.教学重点:省略括号和加号会正确地进行有理数加减混合运算.教学难点:小数或分数的加减混合运算.教学方法引导、探索相结合教具准备投影片三张第一张:第二张:第三张:教学过程:一、通过复习回顾,课前小活动引入课题[师]上节课,我们探讨了有理数的减法,现在来共同回顾一下:在有理数减法中,重点研究了什么呢?[生]研究了有理数减法的法则及其运用.[师]好,那有理数减法的法则是什么呢?共同背一下.[生齐声背]减去一个数,等于加上这个数的相反数.[师]很好,这节课我们首先做一个小活动,请同学们拿出准备好的卡片[生](拿出事先准备好的红绿卡片各10张,上面写着不同的数字,有分数、整数)[师](板书要求:收到红卡片“+”,抽到绿卡片“—”)现在同桌两个一组,每人各抽一轮,一轮抽四张,并把卡片上的数字按要求记录下来[生]小组活动,记录数据[师]同学们都做得很认真,现在我们抽几组交流一下答案。
教师拿几组同学的结论投影,师生共同交流做法。
如果有其他问题及时纠正。
结论:同级运算按从左到右的顺序计算同样适用于有理数运算二、新授*有理数运算:按从左到右的顺序计算[师]下面我们来看一个例题(多媒体展示)例1、(1)545153-+⎪⎭⎫ ⎝⎛- (2)()377215-+⎪⎭⎫ ⎝⎛--- 板书第(1)题:(1)545153-+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-5452 =56- 同学练习第(2)题,并找同学板书:(2)()377215-+⎪⎭⎫ ⎝⎛--- =377215-++- =⎪⎭⎫ ⎝⎛-+-37729 =3725- =614615-=61 交流结论注:在一个式子中,如果第一个数带有负号,通常不必把这个数括起来。
北师大版七年级数学上册一课一练附答案:2.4 有理数的加法 (1)
2.4 有理数的加法一、选择题(共16小题)1. 如果,,,那么下列关系式中正确的是A. B.C.2. 下列交换律使用正确的是A. B.D.3. 某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:米):,,,,,该运动员跑的路程共为A. 米B. 米C. 米D. 米4. 下面的计算:其中运用到的加法运算律是A. 交换律B. 结合律C. 先用交换律,再用结合律D. 先用结合律,再用交换律5. 小天家冰箱冷冻室的温度为,调高后的温度为A. B. C. D.6. 气温由上升后是A. B. C. D.7. 水池中的水位在某天八个不同时间测得的记录如下:(规定与前一天相比上升为正,单位:),,,,,,,池中水位的最终变化情况是A. 上升B. 下降C. 没升没降D. 下降8. 下列各式运算正确的是A. B.C. D.9. 数轴上的点和点所表示的数互为相反数,且点对应的数是,是数轴上到点或点的距离为的点,则所有满足条件的点所表示的数的和为A. B. C. D.10. 比大的数是A. C. D.11. 七年级(1)班第一学期班费收支情况如下(开始时为元,收入为正):元,元,元,元.该班期末时,班费结余为A. 元B. 元C. 元D. 元12. 计算的结果等于A. C. D.13. 的值为A. B. C. D.14. 下列计算结果是负数的是A.15. 假定一个球从任一高度落下都会反弹到一半高度,若一个球从高处落下,在它第次着地时一共运动了A. B. C. D.16. 采摘杨梅时,每筐杨梅以为基准,超过的千克数记为正数,不足的千克数记为负数,记录数据如下图所示,则这筐杨梅的总质量是A. B. C. D.二、填空题(共10小题)17. 在答题线上填上这一步所根据的运算律.18. 和的和取号,和的和取号,和的和取号.19. 最大的负整数与最小的正整数的和是.20. 黄山主峰一天早晨气温为,中午上升了,夜间又下降了,那么这天夜间黄山主峰的气温是.21. 上周五某股民小王买进某公司股票股,每股元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是元.22. 绝对值大于而小于的所有整数的和是.23. 计算:①;②.24. 李老师的储蓄卡中有元,取出元,又存入元,又取出元,这时储蓄卡中还有元钱.25. 利用运算律,使运算简化:(1;(2);(3) .26. 下边横排有个方格,每个方格中都只有一个数字,且任何相邻三个数字之和都是.(1)以上方格中,;(2)利用你在解决(1)时发现的规律,设计一个在本题背景下相关的拓展问题,或给出设计思路(可以增加条件,不用解答).你所设计的问题(或设计思路)是: .三、解答题(共5小题)27. 小王上周五在股市以收盘价(收市时的价格)每股元买进某公司股票股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况如下表所示:(单位:元)根据上表回答问题;(1)星期二收盘时,该股票每股多少元?(2)一周内该股票收盘时的最高价,最低价分别是多少?28. 用简便方法计算:(1;(2).29. 计算:(1);(2);(3).30. 计算:(1);(2).31. 随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤).(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按元出售,每斤冬枣的运费平均元,那么小明本周一共收入多少元?答案1. D2. C3. B 【解析】4. C5. C【解析】.6. B 【解析】气温上升,.7. B8. C9. A10. C11. A12. A13. D 【解析】14. B15. C【解析】我们可以数出一共运动了.16. C 【解析】由题意知总质量为.17. 加法交换律,加法结合律18. ,,19.20.21.22.23. ,24.25. ,,,,,,26. ,,信用卡上的号码由位数字组成,每一位数字写在下面方格中,如果任何相邻三个数字之和都等于,则的值等于() .27. (1)星期二收盘价为(元/股).(2)收盘最高价为(元/股).收盘最低价为(元/股).28. (1)(2)29. (1).(2).(3).30. (1).(2).31. (1)【解析】(斤).答:根据记录的数据可知前三天共卖出斤.(2)【解析】(斤).答:根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤.(3),故本周实际销量达到了计划数量.(4)答:小明本周一共收入元.。
七年级数学上册2.4有理数的加法课件北师大版
+1
+1
轻松解释(5)
(-2) +(-3)= 演示
-1
-1
-1
-1
-1
议一议
两个有理数相加,和的符号怎样确定?和的绝对值 如何确定?
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓↓
同号两数相加 取相同符号
两个加数的绝对 值相加
( - 9 ) + (+ 2) = - ( 9 - 2) = -7
绝对值
同号
相同符号
相加
异号(绝对值 取绝对值较大 不相等) 的加数的符号
相减
异号(互为相 反数)
结果是0
与0相加
仍是这个数
有理数加法的运算律
学习目标
1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简化运算
(重点、难点)
导入新课
情境引入
学习了有理数的加法运算法则后,爱探索的小 明发现,(-3)+(-6)与(-6)+(-3)相等,8+(-3) 与(-3)+8也相等,于是他想:是不是任意的两个加 数,交换它们的位置后,和仍然相等呢?同学们你 们认为呢?
=(16+24)+[(-25)+(-32)] (加法结合律)
=40+(-57 )
(同号相加法则)
=-17.
(异号相加法则)
(2)31 +(-28)+ 28 + 69 =31 + 69 + [(-28)+ 28 ] (加法交换律和结合律 ) =100+0 =100.
小组讨论:你是抓住数的什么特点使计算简化的? 依据是什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课本习题2.4知识技能1,2
2.4有理数的加法(一)导学案
教学目标:
1.使学生掌握有理数加法法 则,并能运用法则进行计算;
2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.
教学重点和难点:
重点:有理数加法法则.难点:异号两数相加的法则.
教学过程:
3;7)=________(-8) +(-3)=________
(5)56+( -56)(6)(+15)+(–6)
(7)(–1.1)+(–3.9);
5.下列运算正确的个数为()
①(-3)+(-3)=0;②(-5)+(+3)=-8;③0+(-2)=+2;
④ ;⑤ .
A.3个B.2个C.1个D.0个
四、课堂总结:
1.掌握有理数加法法则
2.会用有理数加法法则进行有理数加法运算
=______________=____________
将下列各式和的符号填在题后的括号里
(1) ();(2) ();(3) ();
(4) ();(5) ( );(6) ()
三、课堂检测:
1.计算(-8)+(-12)=______, (-16)+2=______, 0+(-100)=______,
15+(-10)=______, -6+9=______, -5+5=.
计算:(-6)+(+6)=________ 8+(-1)=________(-9)+(+5)=________
(+7)+0=________(-7)+0=________
二、新课讲解:
在上面的计算中,思考:两个有理数相加,和的符号怎样确定?和的 绝对值怎样确定?一个有理数同0相加,和是多少?归纳有理数加法法则:
2.同号两数相加,取的符号,并把绝对值;绝对值相等的异号两数相加,绝对值不相等的异号两数相加,取的符号,并用较大的绝对值较小的绝对值;一个数同零相加,仍得这个数.
3.下列计算中,正确的是()
A. B. C. D.
4. 计算:
(1)(-32)+(-6)(2)(-15)+7
(3)24+(-9)(4)(-22)+0
(1)同号两数相加:_________________________
(2)异号两数相加:__________________________
(3)一个数同0相加:_____________________(4)互为相反数的两个数相加:____________________
例1.(1)150+(-20)
解:150+(-20)(异号两数相加)
=+(150-20)(取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值)
=130
(2)(-13)+(-2)
解:(-13)+(-2)()
=____________()
=______________
(3)10+(-10)(4)0+(- 7)
解:10+(-10)()解:0+(-7)( )