圆锥曲线的统一定义、焦半径公式

合集下载

圆锥曲线的统一定义焦半径公式PPT课件

圆锥曲线的统一定义焦半径公式PPT课件

a2 cx a x c2 y2
思考1. x c2 y2 a ex , 即为 MF2 a ex ;
若另一种移法可得: MF1 a ex . 这是焦半径公式
思考2.
x c2 y2 c
a2 x
. a
这是椭圆的第二定义.
c
若另一种移法可得:
xB2 3

y B,由2 1


得F1 A 5 F2 B x,A 2 5(xB
xA2 3

yA2
1
2) yA 5yB
,联立方程组可得 xA . 0
x 分析2:(数形结合)如果右准线与 轴的交点为 ,C可以证
明A、B、C三点共线,由定义可以知道 到A 左右准线距离相
等,所以 x。A 0
微课小结 回归课本、高于课本······
一个 背景 二种 结论
一次 探究
二类 思想
椭圆标准方程的推导 圆锥曲线的统一定义、焦半径公式 点坐标
数形结合、消元引参、
移项、两边平方得
x c2 y2 4a2 4a x c2 y2 x c2 y2
a2 cx a x c2 y2
方程形式
两边再平方,得 a4 2a2cx c2 x2 a2 x2 2a2cx a2c2 a2 y2
整理得 a2 c2 x2 a2 y2 a2 a2 c2
x c2
x a2
y2

c. a
c
1.圆锥曲线的统一定义 2.圆锥曲线的焦半径公式
材料1.

F1
,F2分



圆x2 3

(完整版)圆锥曲线的定义、方程和性质知识点总结

(完整版)圆锥曲线的定义、方程和性质知识点总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

简记为:左“+”右“-”。

由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。

22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。

有时为了运算方便,设),0(122n m m ny mx ≠>=+。

双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。

说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。

②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。

圆锥曲线的焦半径公式

圆锥曲线的焦半径公式
圆锥曲线的焦半径公式之袁州冬雪创作
圆锥曲线上任意一点到核心的间隔叫做圆锥曲线关于该点的焦半径.操纵圆锥曲线的第二定义很容易)为椭圆 + =1(a>b>0)上任意一点,F 、F 分别为椭圆的左、右核心,则 =a+e x , =a-e x .
(2)若P(x ,y )为椭圆 + =1(a>b>0)上任意一点,F 、F 分别为椭圆的上、下核心,则 =a+e y , =a-e y .
(4)若P(x ,y )为抛物线x =-2py(p>0)上任意一点,则 = -y +
不克不及,请说明来由.(答案:点P不存在)
(1)若P(x ,y )为双曲线 - =1(a>0,b>0)上任意一点,F 、F 分别为双曲线的左、右核心,则
①当点P在双曲线的左支上时, =-e x -a, =-e x +a.
②当点P在双曲线的右支上时, =e x +a, = e x -a.
(2)若P(x ,y )为双曲线 - =1(a>0,b>0)上任意一点,F 、F 分别为双曲线的上、下核心,则
①当点P在双曲线的下支上时, =-e y -a, = -ey +a.
②当点P在双曲线的上支上时, =ey +a, = ey -a.
(1)若P(x ,y )为抛物线y =2px(p>0)上任意一点,则 = x +
(2)若P(x ,y )为抛物线y =-2px(p>0)上任意一点,则 = -x +
(3)若P(x ,y )为抛物线x =2py(p>0)上任意一点,则 = y +

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)

圆锥曲线公式及知识点总结(详解)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如小学资料、初中资料、高中资料、大学资料、文言文、中考资料、高考资料、近义词、反义词、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides you with various types of practical materials, such as primary school materials, junior high school materials, senior high school materials, university materials, classical Chinese, senior high school examination materials, college entrance examination materials, synonyms, antonyms, other materials, etc. If you want to know different data formats and writing methods, please pay attention!圆锥曲线公式及知识点总结(详解)圆锥曲线的统一概念:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

圆锥曲线的焦半径(角度式)

圆锥曲线的焦半径(角度式)

-> 7圆锥曲线的焦半径一角度式一椭圆的焦半径设P是椭圆务+条“ S心。

)上任意-点,F为它的-个焦点,则■ 2乙PFO = e,则 |PF| = ------a-ccQsO上述公式定义ZPFO = &, P是椭圆上的点,F是焦点,0为原点,主要优点是焦点在左右上下均适用,无需再单独讨论证明:设PF另一个焦点为F,则PF = FF-FP 两边平方得:戸戶2=丽'-2両•帀+帀2即:(2a — ///)" = 4c" + 4cni cos & + nr得:叶—a-ccos01过椭圆手+宁】的右焦点F任作-直线交椭圆于A、B衲点,若的+阿=A AF BE .则>1的值为2(2002全国理)设椭圆壬+ ^1 (心心0)的-个焦点八过F作-条直线交椭圆于P、。

两点,求证:网+肉为定值,并求这个定值结论:椭圆的焦点弦所在的焦半径的倒数和为定值,即尙+侖=寻3< 2007 M庆理)在椭圆4 + 21 = 1 (a>h>0)上任取三个不同的点时,P「a~ Ir ■使= = 笃牛耳为右焦点,证明丽+丽+两为定值, 并求此定值结论^若过F作"条夹角相等的射线交椭圆于L …,吒,则na4 F是椭圆+ + r=l的右焦点,山F引出两条相互垂直的直线b,直线"与乙椭圆交于点A、C ,直线b与椭圆交于3、D ,若FA =/]fFCFD=i则下列结论一定成立的是(B zj + 坊 +Zj+r, =4血D - + - + - + - = 472 片「2 「3 「4F是椭圆手+牛]的右焦点,过点F作-条与坐标轴不垂直的直线交椭圆于八B,线段A〃的中垂细如轴于点M,则緡的值为6伽。

辽宇理)设椭圆C: 5 +壬"5">0)的左焦点为F,过点F的直线与椭圆C相交于A, 3两点,直线/的倾斜角为60° ,乔=2丽<1)求椭圆C 的离心率(2)如果|"=罟,求椭圆C 的方程7 <2010全国"理)已知椭圆G 召+石"的离心率为孚过右焦点F 且斜 率为£ («>0)的直线与C 相交于A, B 两点,若AF = 3FB,则《=(B 728已知椭圆C : ■ + *" S 心0)的右焦点为八过点F 的直线与椭圆C13’ )已知椭圆各+与=1的左右焦点分别为斤,耳,过斤的直线 交椭圆于D 两点,过人的直线交椭圆于A, C 两点,且AC 丄求四边■ 形4£3的面积的最小值210 (2005全国卷][理)P, 2,M, N 四点都在椭圆%-+^ = 1±, F 为椭圆2 在y 轴正半轴上的焦点,S 知丽与FS 共线,MF^FN 共线,且丽•丽=0,相交于A, B 两点, 若BF =2AF ,则椭圆的离心率f 的取值范ffl 是(9 (2007全国I 理)求四边形PQMN 面积的最大值和最小值11已知过椭圆余+壬=1左焦点片的弦(非长轴)交椭圆于A ,B 两点,场为 右焦点,求使AF/B 的面积最大时直线A8的方程二双曲线的焦半径设P 是椭圆》卡“ so,心0)上任意-点,F 为它的-个焦点,式中“土”记忆规律,同正异负,即当位于轴的同侧时取正,否则取 负,取ZPFO = &,无需讨论焦点位置,上式公式均适用2 21 (2009全国II 理)已知双曲线C :亠-厶> =1 («>0, h>0)的右焦点为F,a- b-过F 且斜率为^/5的直线交C 于A.B 两点,若乔=4而,则C 的离心率为(2 (2007重庆理)过双曲线%--/= 4的右•焦点F 作倾斜角为105°的直线交双 曲线于P 、e 两点,则\FP[\FQ\的值为贝lJZPFO = e,贝Ij PF =——ccQsO±a三抛物线的焦半径已知A 是抛物线C : r =2/zr (卩>0)上任意一点,F 为焦点,ZAFO = e.所以 AF =P-AFcos3】过抛物线宀2\的焦点F 作直线交抛物线于B 两点,若两-网 则直细的倾斜角八。

巧用圆锥曲线的焦半径

巧用圆锥曲线的焦半径

巧用圆锥曲线的焦半径圆锥曲线的焦半径为:二次曲线上任意一点Q到焦点的距离.圆锥曲线的焦半径概念,是圆锥曲线中的一个重要的概念.许多圆锥曲线的求解问题,往往都牵涉到它,且运用圆锥曲线的焦半径分析问题可给解题带来生机.因此,掌握它是非常重要的.圆焦半径:R f=" + xe, R,-; = a- xe,右支双曲线焦半径:R t =xe + th R = x e■- </ (x > 0),左支双曲线焦半径:R t = - (x e + a), R 6 = - (x e- a) (x <0),抛物线焦半径:Rw + f .art对于这些结论我们无须花气力去记,只要掌握相应的准线方程及标准方程的两种定义,可直接推得.如对双曲线而言:当P(xo,yo)是双曲线屁2_巧2 =局2(“>0">0)右支上的一点,Fl,F2是其左右焦点.则有左准线方程为.丫 =-必.C由双曲线的第二怎义得,左焦半径为IPF] 1=&(心+・)=5+^;c由IPFiF IPF2I =2r/,得IPF2I = IPF2I - 2a = ex0 - ・(IPF2I亦可由第二定义求得).例1已知Fi,F2是椭圆E的左、右焦点,抛物线C以Fi为顶点,F?为焦点,设P为椭圆与抛物线的一个交点,如果椭圆E的离心率e满足IPF,l = elPF2l.贝9 e的值为()(A)苹(C)斗(D)2-j2解法1 设F,(-c,0), F2(C,0), P(A O,yo),于是,抛物线的方程为^=2(4c)(x + c),抛物线的准线/: x=-3c,椭圆的准线m: x = - —, c设点P到两条准线的距离分別为d 1, di.于是,由抛物线定义,得J1 = IPF2I, ................ ①又由椭圆的定义得IPFil = ed2,而IPFil = elPF2l, ..................... ②由①②得t/2 = IPF2l,故山=鸟,从而两条准线重合.・•・—3c = _Xne2=_lne =週.故选(C).c 3 3解法2 由椭圆定义得IPF1l + IPF2l = 2a,又IPF|l = elPF2l, A I PF2I (l+e) = 2a, .. ①又由抛物线定义得IPF2I= AO +3C,即XO =IPF2I-3C,.......................... ②由椭圆定义得IPF2l = “—exo, ............................. ③由②③得IPF2l = "—elPF2l + 3ec,即I PF?I (1+e ) = “ + 3ec, ......... ④由①④得2a = a + 3ec,解得e =斗,故选(C).点评结合椭圆、抛物线的泄义,并充分运用焦半径是解答本题的基本思想.例2设椭圆E:+ (a> b> 0),的左、右焦点分别为Fi,氏,右顶点为A.如果点M为椭圆E上的任意一点,且IMF.I - IMF2I的最小值为4(1)求椭圆的离心率e:(2)设双曲线Q:是以椭圆E的焦点为顶点,顶点为焦点,且在第一象限内任取Q上一点P,试问是否存在常数X(X>0),使得ZPAF> = X ZPF>A成立?试证明你的结论.分析对于(1)可利用焦半径公式直接求解.而(2)是一探索型的命题,解题应注重探索.由于在解析几何中对角的问题的求解,往往要主动联想到斜率.而ZPFiA显然是一锐角,又易知ZPAFi是(0. 123)内的角,且90。

圆锥曲线的统一定义

圆锥曲线的统一定义

左焦点的距离为14,求P点到右准线的距离.
x2 y2 上一点P到 1 64 36
(2)椭圆
x2 y 2 1 25 9
的左右焦点分别为F1、F2
90° , 求ΔF1PF2的面积. 60 P为椭圆上一点,且∠F1PF2=90°
轨迹方程的思考:
例2.已知点P到定点F(1,0)的距离与它到定直线
l1
y
l2 M2 P
M1
P
O
d2
M2 x F1
d2
F1
.
.
F2
.
M1
O
.
F2 P′
x
d1
a 准线: x c
2
PF1 PF2 e 定义式: d1 d2
标准方程
x2 y2 2 1 2 a b ( a b 0)
图形
焦点坐标
准线方程
a2 x c a2 y c a2 x c
平面内到定点F的距离和到定直线的距离相等的点的 轨迹 表达式|PF|=d (d为动点到定直线距离)
平面内动点P到一个定点F的距离PF和到一条定 直线l (F不在l上)的距离d相等时,动点P的轨迹为抛 物线,此时PF/d=1.
探究与思考:
若PF/d≠1呢?
在推导椭圆的标准方程时,我们曾得到这样 一个式子:
2、左焦点与左准线对应,右焦点与右准线对应,不能混淆, 否则得到的方程不是标准方程。
3、离心率的几何意义:曲线上一点到焦点的距离与到相应 准线的距离的比。
x y 2 1(a b 0) 2 a b
l1 d1 y l2
2
2
x2 y2 2 1(a 0, b 0) 2 a b
l : x 5的距离的比是常数

高考圆锥曲线公式知识点总结

高考圆锥曲线公式知识点总结

高考圆锥曲线公式学问点总结高考圆锥曲线公式学问点总结导语:人生,没有过不去的坎,你不行以坐在坎边等它消逝,你只能想方法穿过它。

下面是为大家整理,数学学问。

词更多相关信息请关注CNFLA相关栏目!圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x/a+y/b=1,其中ab0,c=a-b2、中心在原点,焦点在y轴上的椭圆标准方程:y/a+x/b=1,其中ab0,c=a-b参数方程:x=acos;y=bsin(为参数,02)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的.双曲线标准方程:x/a-y/b=1,其中a0,b0,c=a+b.2、中心在原点,焦点在y轴上的双曲线标准方程:y/a-x/b=1,其中a0,b0,c=a+b.参数方程:x=asec;y=btan(为参数)圆锥曲线公式:抛物线参数方程:x=2pt;y=2pt(t为参数)t=1/tan(tan为曲线上点与坐标原点确定直线的斜率)特殊地,t可等于0 直角坐标:y=ax+bx+c(开口方向为y轴,a0)x=ay+by+c(开口方向为x轴,a0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当01时为双曲线。

圆锥曲线公式学问点总结圆锥曲线椭圆双曲线抛物线标准方程x/a+y/b=1(ab0) x/a-y/b=1(a0,b0) y=2px(p0) 范围x[-a,a] x(-,-a][a,+) x[0,+)y[-b,b] yR yR对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0) (0,0)焦点(c,0),(-c,0) (c,0),(-c,0) (p/2,0)准线x=a/c x=a/c x=-p/2渐近线y=(b/a)x离心率e=c/a,e(0,1) e=c/a,e(1,+) e=1焦半径∣PF∣=a+ex ∣PF∣=∣ex+a∣∣PF∣=x+p/2∣PF∣=a-ex ∣PF∣=∣ex-a∣焦准距p=b/c p=b/c p通径2b/a 2b/a 2p参数方程x=acos x=asec x=2pty=bsin,为参数y=btan,为参数y=2pt,t为参数过圆锥曲线上一点x0x/a+y0y/b=1 x0x/a-y0y/b=1 y0y=p(x+x0)(x0,y0)的切线方程斜率为k的切线方程y=kx(ak+b) y=kx(ak-b)y=kx+p/2k。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

圆锥曲线的统一焦半径公式

圆锥曲线的统一焦半径公式


l十eCOSU
应 线 距 ,椭 和 曲 中: 在 抛 物 线 中p就 是 焦 准 的 离 在 圆 双 线 pZ b

解 得 — :V3


点 到 准 线 的距 离 , 是 圆锥 曲线 焦 半 径 与 焦 点 所 在 的 对 称 轴 的 0 夹 角 。。 0 ] ∈( , 。过 圆 锥 曲线 的焦 点 F 一条 焦 点 弦 l I 作 AB , 得
例 1( 0 0 国 I .2 1 全 )设F 椭 圆 C 一个 焦 点 , 是 短 轴 的 一 是 的 B
●I
6于 点 D。 BF 且 =




2 D, C F 则 的离 心 率 为


AB
解 法 1 设 椭 圆 的方 程 为 : + :
1 e o0 + c s


1 e O0 - C S 2e p

, 由题 意 :00 cs:
= ,F eI B —


e p
l—eCOSU
说 明 : 中r e 别 是 对 应 圆 锥 曲 线 焦 半 径 , 是 焦 点 到 相 其 、分 p

1 一 1 .一

公 式 1r一 :=
1 c s +e o O

0 , l = c )一 = x c ) = ) 贝 (, ,D ( , , J F y由 2 而得: , , x3 y 代 =c =


入椭 圆 的方 程
4 - = ab, 孚 . j +l 4

解 法2: 图 , DI 如 I :— P 一 I I— F _ F : B

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则

圆锥曲线的焦半径巧用print

圆锥曲线的焦半径巧用print

圆锥曲线的焦半径巧用圆锥曲线的焦半径为:二次曲线上任意一点Q 到焦点的距离.圆锥曲线的焦半径概念,是圆锥曲线中的一个重要的概念.许多圆锥曲线的求解问题,往往都牵涉到它,且运用圆锥曲线的焦半径分析问题可给解题带来生机.因此,掌握它是非常重要的.椭圆焦半径: R 左 = a + x e , R 右 = a - x e ,右支双曲线焦半径:R 左 = x e + a ,R 右 = x e - a ( x > 0) ,左支双曲线焦半径:R 左 = - (x e + a ),R 右 = - (x e - a ) ( x < 0) ,抛物线焦半径:R 抛 = x +2P . 对于这些结论我们无须花气力去记,只要掌握相应的准线方程及标准方程的两种定义,可直接推得.如对双曲线而言:当P(x 0 , y 0)是双曲线b 2x 2 - a 2y 2 = a 2b 2 (a > 0, b > 0) 右支上的一点,F 1, F 2是其左右焦点. 则有 左准线方程为 ca x 2-=. 由双曲线的第二定义得,左焦半径为 a ex ca x e PF +=+=0201)(||; 由 |PF 1|- |PF 2| =2a ,得 |PF 2| = |PF 2| - 2a = ex 0 - a .( |PF 2|亦可由第二定义求得).例1 已知F 1,F 2是椭圆E 的左、右焦点,抛物线C 以F 1为顶点,F 2为焦点,设P 为椭圆与抛物线的一个交点,如果椭圆E 的离心率e 满足 |PF 1| = e | PF 2 |,则e 的值为 ( )22)( 33)( 32)( 22)(--D C B A解法1 设F 1(- c, 0 ),F 2(c , 0),P(x 0 , y 0),于是,抛物线的方程为 y 2= 2 (4 c )(x + c ) , 抛物线的准线 l :x =- 3 c ,椭圆的准线 m :c a x 2-=, 设点P 到两条准线的距离分别为d 1 , d 2.于是,由抛物线定义,得 d 1 = | PF 2 | , ……………………① 又由椭圆的定义得 |PF 1| = ed 2,而 |PF 1| = e | PF 2 |,………………………………②由①②得 d 2 = | PF 2 |, 故 d 1 = d 2,从而两条准线重合.∴ 3331322=⇒=⇒-=-e e c a c .故选 (C). 解法2 由椭圆定义得 |PF 1| + | PF 2 | = 2a ,又 |PF 1| = e | PF 2 |,∴ | PF 2 | (1+ e ) = 2a ,………① 又由抛物线定义得 | PF 2 | = x 0 + 3c , 即 x 0 = | PF 2 | - 3c ,……………………………②由椭圆定义得 | PF 2 | = a - ex 0 , ………………………………………③由②③ 得 | PF 2 | = a - e | PF 2 | + 3ec ,即 | PF 2 | (1+ e ) = a + 3ec , ………………… ④由①④得 2a = a + 3ec ,解得 33=e ,故选 (C). 点评 结合椭圆、抛物线的定义,并充分运用焦半径是解答本题的基本思想.例2 设椭圆E :b 2x 2 + a 2y 2 = a 2b 2 (a> b> 0),的左、右焦点分别为 F 1, F 2,右顶点为A, 如果点M 为椭圆E 上的任意一点,且 |MF 1|·|MF 2| 的最小值为243a .(1) 求椭圆的离心率e ;(2) 设双曲线Q :是以椭圆E 的焦点为顶点,顶点为焦点,且在第一象限内任取Q 上一点P ,试问是否存在常数λ(λ> 0),使得∠PAF 1 =λ∠PF 1A 成立?试证明你的结论.分析 对于(1)可利用焦半径公式直接求解.而 (2) 是一探索型的命题,解题应注重探索.由于在解析几何中对角的问题的求解,往往要主动联想到斜率.而∠PF 1A 显然是一锐角,又易知∠PAF 1是(0, 120o ) 内的角,且90o 是斜率不存在的角.于是,抓住90o 这一特殊角试探,可得解法1,若注重斜率的研究,考查所两角差的正切,可得解法2;若转变角的角度来观察,将∠PF 1A 变为∠PNF 1,使∠PAF 1变成△PNA 的外角,可得解法3;若考查角平分线的性质可得解法4;若从图像与所求式的特点分析得知,所求的λ必须是大于1的正数,从常规看来可以猜想到它可能是二倍角或三倍角的关系.由此先探索一下二倍角的情形,考查角平分线定理,可得解法5;若是考查∠PF 1A 与∠PAF 1的图形位置,直接解三角形PAF 1,可得到解法6.(1) 解 设M(x 0, y 0), 由椭圆的焦半径定义得|MF 1| = a + ex 0,|MF 2| = a - ex 0,|MF 1|·|MF 2| = (a + ex 0)(a - ex 0) = a 2- e 2x 02,∵ |MF 1|·|MF 2| 的最小值为243a , 且 |x 0|≤a ,∴ a 2- e 2x 02 ≥a 2- e 2a 2 =243a ,解得 21=e .(2) 解法1 由题意得 双曲线的离心率e = 2, 且双曲线的实半轴长为c ,半焦距为2c ,故 设双曲线Q 的方程为 132222=-c y c x ,假设存在适合题意的常数λ(λ> 0),① 考虑特殊情形的λ值.当PA ⊥x 轴时,点P 的横坐标为2c ,从而点P 的纵坐标为y = 3c ,而 |AF 1| = 3c ,∴ △PAF 1是等腰直角三角形,即 ∠PAF 1 =2π, ∠PF 1A =4π, 从而可得 λ= 2.② PA 不与x 轴垂直时,则要证∠PAF 1 = 2∠PF 1A 成立即可.由于点P(x 1, y 1)在第一象限内,故PF 1 , PA 的斜率均存在,从而,有A PF c x y k PF 111tan 1∠=+=, 111tan 2PAF cx y k PA ∠-=-=,且有 ))((31121c x c x y -+=,………… ※ 又∵21211121)()(2122tan 11y c x y c x k k A PF PF PF -++=-=∠, 将※代入得PA k c x y y c x y c x A PF -=--=-++=∠2)()(22tan 112121111, 由此可得 tan2∠PF 1A = tan ∠PA F 1,∵ P 在第一象限,A(2c , 0), ∴ )32,2()2,0(1πππ⋃∈∠PAF ,又∵ ∠PF 1A 为锐角,于是,由正切函数的单调性得 2∠PF 1A =∠PA F 1.综合上述得,当λ= 2时,双曲线在第一象限内所有点均有∠PAF 1 = 2∠PF 1A 成立.解法2 由题意得 双曲线的离心率e = 2, 且双曲线的实半轴长为c , 半焦距为2c ,故 设双曲线Q 的方程为 132222=-c y c x ,由于点P(x 1, y 1)在第一象限内,故PF 1 , PA 的斜率均存在.且∠PF 1A 为锐角.又∵ ))((31121c x c x y -+=, …………………………………………………… ※设∠PF 1A =β,则 ,tan 111c x y k PF +==β设∠PAF 1=λβ, λβ≠90o 时, 则 tan(λβ)c x y k PA 211--=-=,而 tan(λβ-β)βλββλβtan )tan(1tan )tan(+-=))(2(1211111111cx y c x y c x y c x y +--++---=212121112)2(y c cx x c x y -----= ))((3))(2()2(111111c x c x c x c x c x y -+-+---=)()2)(()2(111111c x y x c c x c x y +=-+--=.∴ tan(λβ-β) = tan β.∵ ∠PF 1A =β为锐角,又 ∠P A F 1 =λβ∈)32,0(π, ∴ tan(λβ-β) = tan β > 0, 故λβ-β是锐角,由正切函数的单调性得 λ= 2.显然,当λβ= 90o 时亦成立.故存在λ= 2,使得双曲线在第一象限内所有点均有2∠PF 1A =∠PA F 1成立.解法3 由上述①,得λ= 2,设P ′是射线PA 上的一点, 其横坐标为x 0 ( x 0 > c ),在x 轴上取一点N (2 x 0 +c , 0),使△P ′F 1N 为等腰三角形,∴∠P ′F 1N =∠P ′NF 1.故当∠P ′AF 1 = 2∠P ′F 1A 时,有∠P ′AF 1 = 2∠P ′NA ,从而∠AP ′N =∠P ′NA, 则 |AN| = |AP ′|,又 A(2c ,0),于是 |AN| = |AP ′| = 2x 0-c . 过P ′作P ′H 垂直于准线l 于H ,如图9-5.则 |P ′H| = x 0-c 21. 故 22||||00c x c x H P A P --='' = 2 = e . 故 点P ′是双曲线上的点,且与P 重合.由x 0 > c 的任意性得,当λ= 2时,双曲线在第一象限内所有点均有2∠PF 1A =∠PAF 1成立.解法4 由题意得,设点P(x 1 , y 1),∵ 点P 是双曲线在第一象限内的点,又A(2c , 0)是一焦点,∴ |AP| = 2x 1- c ,|AF 1| = 3c ,设AD 为∠F 1AP 的平分线, ……… ※由角平分线性质及定比分点公式,得 222)32(23123111111c c x x c x c cx c x c x c c x D =+++-=-+-+-=, 由此可得,点D 在双曲线的右准线上,从而可得准线是AF 1故△AF 1D 为等腰三角形,且∠PF 1A =∠DAF 1,又由※得∠PAF 1 = 2∠PAD =2∠DAF 1, ∴ ∠PA F 1 = 2∠PF 1A ,故λ=2.解法5 由题意得,设点P(x 1 , y 1),因为点P 又A(2c , 0)是一焦点,于是,有|AP| = 2x 1- c ,|AF 1| = 3c ,| PF 1| 2 = (x 1 + c )2 + y 12 = x 12 + 2 x 1c+ c 2 + 3 x 12- 3 c 2 = 4 x 12 + 2 x 1c - 2 c 2, 在△APF 1中有 21212121212122432)2(2249cos c c x x c c x c c x x c F -+⨯⨯---++=∠)2(2))(2(26)(611111c x c x c x c x c c x c -+=+-+=, )2(32)224()2(9cos 12121212c x c c c x x c x c A -⨯⨯-+--+=∠cx x c c x c c x c --=-⨯⨯--=111122)2(32)2(6, 于是,有 2()2(211c x c x -+)2- 1 =cx x c --1122, 即 2(co s ∠F 1)2- 1 = cos 2∠F 1 = cos ∠A, ∵ ∠A 、∠F 1是△APF 1中的内角,且∠F 1是锐角,故有 2∠F 1 =∠A, 即 ∠PA F 1 = 2∠PNF 1, 所以λ= 2时,能使得双曲线在第一象限内所有点均有 ∠PA F 1 = 2∠PF 1A .解法6 设点P(x 1 , y 1)是双曲线第一象限的点.∵ A(2c , 0),F 1(- c , 0),连AP ,F 1P ,如图 9-5. 由双曲线的焦半径定义得 |AP| = 2x 1- c ,又设点N 是点F 1关于直线x = x 1的对称点,则有 |PF 1| = |PN|, 且N (2x 1+ c , 0),从而 ∠PF 1N =∠PNF 1.又 |AN| = 2x 1 + c - 2c = 2x 1- c = |AP| , ∠APN =∠PNF 1.由此可得 ∠F 1AP = 2∠PNF 1 ,即 ∠F 1AP = 2∠PNF 1 = 2∠PF 1N ,所以 λ= 2.故存在λ= 2,使得双曲线在第一象限内所有点均有2∠PF 1A =∠PA F 1成立.点评 对于(1),利用焦半径公式求解是解题的常规方法;对于(2),方法1、先由特殊情形探求出λ的值,然后再证明它对一般的情形也成立,这种方法是解决有关探索性问题的常用方法;方法2巧用了斜率与正切函数的性质直接求得λ;方法6与方法3、思维独到,都是通过变换角,把∠PF 1N 变为∠PNF 1,利用三角形的内角外角的关系,发现到|AN| = |AP|,从而也就发现了相应的解法.且解法3与解法6是不同,解法6事先不知道λ的值是2,它具有探索性.而解法3是先知道λ的值,后推证P 点在双曲线上,它是具有目的的推证.解法4,具有猜想性,是我们分析问题时常用的一种思想方法;解法5,注重对两角所在的三角形的探索,坚定不移地解三角形PAF 1,抓住了问题的本质特征分析,这种方法也是使问题获得巧解的常用一种思想方法.例3 已知抛物线 y 2 = 2P x 的焦点弦AB 被焦点分成长度为m 、n 的两段,求证:P n m 211=+.证明 设A 、B 在该抛物线的准线上的射影为C 、D ,连AD 交x 轴与E ,如图9-6.由抛物线的焦半径的定义得 |AC| = |AF| = m , |BD| = |BF| = n ,由相似三角形性质知 ||||||||AB AF BD EF =,∴ n m mn EF +=||, 同理 n m mnEH +=||,故 |EF| = |EH|, 即 E 与O 重合. 故A 、O 、D 三点共线.同理B 、O 、C 三点共线. ∴ |EF| + |EH| = P =n m mn+2, 故 P n m 211=+. 图9-6点评 本题有一个特殊的几何模型,即直角梯形ABCD .由此还可发现许多有用的结论:①∠CFD = 90o ;②∠CAB 的平分线与∠DBA 的平分线交于一点N ,则NA 、NB 为抛物线的切线,且∠ANB= 90o ; ③在准线上任取一点向抛物线引两条切线,则两切线互相垂直;④若M 为AB 中点,则N M 被抛物线平分;⑤若A(x 1 , y 1), B(x 2, y 2),则 |AB| =||2121y y P -,当AB ⊥x 轴时, |AB| = 2 P;⑥以AB 为直径的圆与抛物线的准线相切;⑦NF ⊥AB; y 1y 2 = - P 2; ….。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌一、圆锥曲线的极坐标方程椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K,以FK 的 向延长线为极轴建立极坐标系.椭圆、 曲线、抛物线统一的极坐标方程为 θρcos 1e ep −=. 其中p 是定点F 到定直线的距离,p>0 .当0 e 1时,方程表示椭圆当e>1时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允许ρ 0,方程就表示整个 曲线当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线的右支、抛物线) 任一点,则 PQ e PF =, )cos (p PF e PF +=θ,其中FH p =,=θ x 轴,FP 焦半径θcos 1e ep PF −=. 当P 在 曲线的左支 时,θcos 1e ep PF +−=. 推论 若圆锥曲线的弦MN 过焦点F,则有epNF MF 211=+.、圆锥曲线的焦点弦长若圆锥曲线的弦MN 过焦点F, 1、椭圆中,cb c c a p 22=−=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−=. 2、 曲线中,若M、N 在 曲线同一支 ,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−= 若M、N 在 曲线 同支 ,2222cos 2cos 1cos 1a c ab e ep e ep MN −=−−+−=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =−−+−=. 四、直角坐标系中的焦半径公式设P x,y 是圆锥曲线 的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF −=22、若1F 、2F 分别是 曲线的左、右焦点,当点P 在 曲线右支 时,a ex PF +=1,a ex PF −=2 当点P 在 曲线左支 时,ex a PF −−=1,ex a PF −=23、若F 是抛物线的焦点,2p x PF +=.。

初中数学-圆锥曲线焦半径体系-公式与证明-

初中数学-圆锥曲线焦半径体系-公式与证明-

规定半通径p =b 2a圆锥曲线焦半径体系1.椭圆的焦点弦:若过焦点的直线与椭圆相交于两点A 和B ,∠AF1F 2为α,则称线段AB 为焦点弦。

AF 1 =b 2a −c cos α=p 1−e cos αBF 1 =b 2a +c cos α=p 1+e cos α1AF 1 +1BF 1=2p ①如图,当焦点弦过左焦点时,焦点弦的长度AB =2ab 2a 2−c 2cos 2α=2p 1−e 2cos 2α;当焦点弦过右焦点时,焦点弦的长度AB =2ab 2a 2−c 2cos 2α=2p 1−e 2cos 2α.② 过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为AB =2b 2a.③4a 体:过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F 1的弦AB 与右焦点F 2围成的三角形△ABF 2的周长是4a ;证明:(1)AF 1 +AF 2 =2a ;BF 1 +BF 2 =2a ,故AB +AF 2 +BF 2 =4a ;(2)设AF 1 =m ;BF 1 =n ;AF 2 =2a -m ;BF 2 =2a -n ;由余弦定理得m 2+2c 2-2a -m 2=2m ⋅2c cos α;整理得AF 1 =b 2a -c cosα=p 1−e cos α同理:n 2+2c 2-2a -n 2=2n ⋅2c cos 180°-α ;整理得BF 1 =b2a +c cos α=p 1+e cos α两式相加得,则过焦点的弦长:AB =m +n =2ab2a 2-c 2cos 2α=2p 1−e 2cos 2α2.双曲线的焦点弦问题:双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1、F 2,弦AB 过左焦点F 1(A 、B 都在左支上),AB =l ,则△ABF 2的周长为4a +2l (如下图左)AF 1 =b 2a −c cos α=p 1−e cos αBF 1 =b 2a +c cos α=p 1+e cos α1AF 1 +1BF 1=2p 焦半径公式:当AB 交双曲线于一支时,与椭圆公式一样。

圆锥曲线精讲

圆锥曲线精讲

圆锥曲线圆锥曲线圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

圆锥曲线分类圆锥曲线包括椭圆,双曲线,抛物线椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。

早在两千多年前,古希腊数学家对它们已经很熟悉了。

古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。

用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。

阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。

1)椭圆参数方程:X=acosθ Y=bsinθ (θ为参数)直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 12)双曲线参数方程:x=asecθ y=btanθ (θ为参数)直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴)y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)3)抛物线参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 )x=ay^2+by+c (开口方向为x轴, a<> 0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

圆锥曲线的定义、概念与定理

圆锥曲线的定义、概念与定理

圆锥曲线的定义、概念与定理圆锥曲线包括椭圆,抛物线,双曲线。

那么你对圆锥曲线的定义了解多少呢?以下是由店铺整理关于圆锥曲线的定义的内容,希望大家喜欢!圆锥曲线的定义几何观点用一个平面去截一个二次锥面,得到的交线就称为圆锥曲线(conic sections)。

通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。

具体而言:1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4) 当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

5) 当平面只与二次锥面一侧相交,且过圆锥顶点,结果为一点。

6) 当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。

7) 当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

代数观点在笛卡尔平面上,二元二次方程的图像是圆锥曲线。

根据判别式的不同,也包含了椭圆、双曲线、抛物线以及各种退化情形。

焦点--准线观点(严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。

但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。

给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。

根据e的范围不同,曲线也各不相同。

具体如下:1) e=0,轨迹为圆(椭圆的特例);2) e=1(即到P与到L距离相同),轨迹为抛物线 ;3) 0<e<1,轨迹为椭圆;4) e>1,轨迹为双曲线的一支。

圆锥曲线的概念(以下以纯几何方式叙述主要的圆锥曲线通用的概念和性质,由于大部分性质是在焦点-准线观点下定义的,对于更一般的退化情形,有些概念可能不适用。

)考虑焦点--准线观点下的圆锥曲线定义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
2
c2 x2 a2 y2 a2 a2 c2
a cx a x c y
2 2
2
思考1. x c
2
y 2 a ex , 即为 MF2 a ex ;
若另一种移法可得: MF1 a ex . 这是焦半径公式
思考2. x c
2
2a
移项、两边平方得
x c
2
y 2 4a 2 4a
x c
2
y2 x c y2
2
a cx a
x c
2
y2
方程形式
两边再平方,得 a4 2a2cx c2 x2 a2 x2 2a2cx a2c2 a2 y2
整理得
人教版高中数学(高三 )
圆锥曲线定义
——探索及应用
浙江省湖州中学 姚恒
集合形式 椭圆就是集合 P M MF1 MF2 2a 因为
MF1 x c y 源自 MF2 2 2选修2-1.P39(节选)
几何形式
2
x c
y2
得方程
x c 2 y 2 x c 2 y 2
2 2
y2
a x c
c . a
这是椭圆的第二定义.
c . a
2 2 x c y 若另一种移法可得:
a2 x c
1.圆锥曲线的统一定义 2.圆锥曲线的焦半径公式
x2 材料1. 设F1 ,F2 分别为椭圆 y 2 1的左,右焦点,点A,B 3 在椭圆上,若 F1 A 5 F2 B,求点A的坐标.
分析1:(方程思想)设 A( x A , y A ) , B ( x B , y B ) ,则 xB 2 2 y B 1 ,由F1 A 5 F2 B 得x A 2 5( xB 2 ) , y A 5 y B 3 ,联立方程组可得 xA 0 . 分析2:(数形结合)如果右准线与 轴的交点为C,可以证 B、 C 三点共线,由定义可以知道 A 到左右准线距离 明A、 相等,所以 x A 0 。
xA2 y A2 1 , 3
x
微课小结
回归课本、高于课本· · · · · ·
一个 背景 二种 结论 一次 探究 椭圆标准方程的推导 圆锥曲线的统一定义、焦半径公式 点坐标 数形结合、消元引参、
二类 思想
谢谢观赏
相关文档
最新文档