《全等三角形》典型例题

合集下载

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)全等三角形是指两个三角形的所有对应边和对应角都相等。

判断两个三角形是否全等的条件有三种:SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)。

下面介绍几个经典的全等三角形例题:例题一:已知△ABC和△DEF,已知AB=DE,AC=DF,∠C=∠F,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。

解析:根据题目可知,已知△ABC和△DEF的所有对应边和对应角都相等,即满足ASA条件。

因此,可以断定△ABC≌△DEF。

因为已知条件满足△ABC和△DEF的全等条件。

例题二:已知△ABC和△DEF,已知AB=DE,BC=EF,AC=DF,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。

解析:根据题目可知,已知△ABC和△DEF的所有对应边都相等,即满足SSS条件。

因此,可以断定△ABC≌△DEF。

因为已知条件满足△ABC和△DEF的全等条件。

例题三:已知△AB C和△DEF,已知∠A=∠D,∠C=∠F,BC=EF,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。

解析:根据题目可知,已知△ABC和△DEF的对应角相等,BC=EF,但没有给出第三边的长度。

无法判断是否满足SSS或SAS条件,因此无法断定△ABC≌△DEF。

例题四:已知△ABC和△DEF,已知AB=DE,BC=EF,∠B=∠E,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。

解析:根据题目可知,已知△ABC和△DEF的对应边和对应角相等,即满足SAS条件。

因此,可以断定△ABC≌△DEF。

因为已知条件满足△ABC和△DEF的全等条件。

例题五:已知两个全等的三角形ABC和DEF,若∠A=60°,AC=6,DF=9,求BC和EF的长度。

解析:由于△ABC≌△DEF,根据全等三角形的性质可知BC=EF。

全等三角形判定经典

全等三角形判定经典

11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。

表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。

例1. 如图所示,AB =CD ,AC =DB 。

求证:△ABC ≌△DCB 。

A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。

证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。

“ASA ”。

表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。

例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。

ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。

事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。

证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。

三角形全等例题+练习(常用方法)

三角形全等例题+练习(常用方法)

B
DE C
7
典型例题 5.翻折法 若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形.
例 5.如图(8)已知:在△ABC 中,∠A=45º, AD⊥BC,若 BD=3,DC=2, 求:△ABC 的面积.
A
E
F
B DC
G
针对练习 1:如图2所示,已知 ABC 中, AC BC , ACB 90 , BD 平分 ABC , 求证: AB BC CD 。

0
60

C

400
,P,Q
分别在
BC,CA
上,并且
AP
、BQ 分别是 BAC , ABC 的角平分线。求证:BQ+AQ=AB+BP
A
B Q
P
C
截长补短 4、如图,在四边形 ABCD 中,BC>BA,AD=CD,BD 平分 ABC , 求证: A C 1800
A D
B
C
截长补短 5、如图在△ABC 中,AB>AC,∠1=∠2,P 为 AD 上任意一点,求证;AB-AC>PB-PC
∠MBN 60 ,∠MBN 绕 B 点旋转,它的两边分别交 AD,DC (或它们的延长线)于
E,F . 当∠MBN 绕 B 点旋转到 AE CF 时(如图 1),易证 AE CF EF . 当∠MBN 绕 B 点旋转到 AE CF 时,在图 2 和图 3 这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,线段 AE,CF , EF 又有怎样的数量关系?请写出你的 猜想,不需证明.
A
B
EM
A
B
EM
A B
CF

八年级全等三角形专题练习(解析版)

八年级全等三角形专题练习(解析版)

一、八年级数学全等三角形解做题压轴题〔难〕1. 〔1〕如图〔1〕,:在△ ABC中,N BAC=90.,AB二AC,直线m经过点A, 8口,直线m, CE J_直线m,垂足分别为点D、E.证实:DE=BD+CE.〔2〕如图〔2〕,将〔1〕中的条件改为:在△ ABC中,AB=AC, D、A、E三点都在直线m 上,并且有N BDA=Z AEC=Z BAC=.,其中.为任意锐角或钝角.请问结论DE=BD+CE是否成立? 如成立,请你给出证实;假设不成立,请说明理由.〔3〕拓展与应用:如图〔3〕 , D、E是D、A、E三点所在直线m上的两动点〔D、A、E 三点互不重合〕,点F为N BAC平分线上的一点,且△ ABF和^ ACF均为等边三角形,连接BD、CE,假设N BDA=Z AEC=Z BAC,试判断△ DEF 的形状.【答案】(1)见解析(2)成立(3) 4DEF为等边三角形【解析】解:(1)证实:BDL直线m, CEJ_直线m,,N BDA=N CEA=900.: Z BAC=90°, /. Z BAD+Z CAE=90°.•/ Z BAD+Z ABD=90°, /. Z CAE=Z ABD.又AB二“AC〞,「・△ ADB合△ CEA (AAS) . /. AE=BD, AD=CE./. DE=,,AE+AD=H BD+CE.(2)成立.证实如下:: Z BDA =Z BAC=a , /. Z DBA+Z BAD=Z BAD+Z CAE=180°-O r . /. Z DBA=Z CAE.Z BDA=Z AEC=., AB=AC,「・△ AD於△ CEA (AAS). /. AE=BD, AD=CE.DE二AE+AD=BD+CE.(3)△ DEF为等边三角形.理由如下:由(2)知,△ ADB合△ CEA, BD=AE, Z DBA =Z CAE,: △ ABF 和^ ACF 均为等边三角形,J Z ABF=Z CAF=60°.・•, Z DBA+Z ABF=Z CAE+Z CAF. /. Z DBF=Z FAE.; BF=AF,,•・丛DBF合△ EAF (AAS) . /. DF=EF, Z BFD=Z AFE.・•, Z DFE=Z DFA+z AFE=Z DFA+Z BFD=60°.・•.A DEF为等边三角形.(1)由于DE=DA+AE,故由AAS证△ ADB合4 CEA,得出DA=EC, AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证实△ ADB2 J CEA,得出BD=AE, AD=CE,所以DE=DA+AE=EC+BD.(3)由△ ADB2△ CEA得BD=AE, NDBA=N CAE,由△ ABF和△ ACF均等边三角形,得Z ABF=Z CAF=60°, FB=FA,所以N DBA+N ABF=N CAE+N CAF,即N DBF二N FAE,所以△ DBF^ △ EAF,所以FD=FE, Z BFD=Z AFE,再根据N DFE=Z DFA+Z AFE=Z DFA+Z BFD=60°得到△ DEF是等边三角形.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE, PE 交CD 于 F〔1〕证实:PC=PE;〔2〕求N CPE的度数:〔3〕如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当N ABC=12〔T时,连接【答案】(1)证实见解析(2) 90° (3) AP=CE【解析】【分析】(1)、根据正方形得出AB=BC, ZABP=ZCBP=45%结合PB=PB得出aABP g^CBP,从而得出结论:⑵、根据全等得出NBAP=NBCP, ZDAP=ZDCP,根据PA=PE得出NDAP=NE,即ZDCP=ZE,易得答案;(3)、首先证实4ABP和^CBP全等,然后得出PA=PC, NBAP=NBCP,然后得出NDCP二NE,从而得出NCPF=NEDF=60°,然后得出AEPC是等边三角形,从而得出AP=CE.【详解】⑴、在正方形ABCD 中,AB=BC, ZABP=ZCBP=45%在ZkABP 和4CBP 中,XV PB=PB AAABP^ACBP (SAS) , ,PA=PC, VPA=PE>:.PC=PE;⑵、由(1)知,A ABP^ACBP,.\ZBAP=ZBCP, JNDAP=NDCP,VPA=PE, .\ZDAP=ZE> /. ZDCP=ZE. VZCFP=ZEFD (对顶角相等), A180° - ZPFC - ZPCF=1800 - ZDFE - NE, BPZCPF=ZEDF=90<>:⑶、AP = CE理由是:在菱形ABCD 中,AB=BC, NABP二NCBP,在2\ABP ^lACBP 中,XV PB=PB /.△ABP^ACBP (SAS),,PA二PC, NBAP=NDCP,VPA=PE,,PC=PE,,NDAP=NDCP, V PA=PC,/DAP=NE, A ZDCP=ZE V ZCFP=ZEFD (对顶角相等),A180°- ZPFC - ZPCF=180° - ZDFE - NE, RPZCPF=ZEDF=180° - ZADC=180° - 120°=60°, AAEPC 是等边三角形,,PC=CE, AAP=CE考点:三角形全等的证实3.如图,在AA8C中,NAC8为锐角,点£>为射线8C上一动点,连接AO.以AO为直角边且在AD的上方作等腰直角三角形ADF.图①图②图③〔1〕假设A3 = AC, ABAC = 90°①当点.在线段BC上时〔与点3不重合〕,试探讨CF与8.的数量关系和位置关系:②当点O在线段C的延长线上时,①中的结论是否仍然成立,请在图2中而出相应的图形并说明理由;〔2〕如图3,假设ABwAC, ABAC90° , ZBC4 = 45°,点.在线段8C上运动,试探究CF与8.的位置关系.【答案】〔1〕①CF_LBD,证实见解析:②成立,理由见解析:〔2〕 CF1BD,证实见解析.【解析】【分析】〔1〕①根据同角的余角相等求出NCAF=NBAD,然后利用"边角边"证实4ACF和4ABD全等,②先求出NCAF=NBAD,然后与①的思路相同求解即可:〔2〕过点A作AE_LAC交BC于E,可得4ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE, NAED=45.,再根据同角的余角相等求出NCAF=NEAD,然后利用“边角边〞证实4ACF 和4AED全等,根据全等三角形对应角相等可得NACF=NAED,然后求出ZBCF=90°,从而得到CFJ_BD.【详解】解:〔1〕①•••NBAC=90°, 4ADF是等腰直角三角形,.\ZCAF+ZCAD=90% ZBAD+ZACD=90°,.\ZCAF=ZBAD,在4ACF和4ABD中,VAB=AC, ZCAF=ZBAD, AD=AF,.,.△ACF^AABD〔SAS〕,.・.CF=BD, ZACF=ZABD=45",ZACB=45",AZFCB=90°,.-.CF±BD:②成立,理由如下:如图2:VZCAB=ZDAF=90%,ZCAB+ ZCAD= ZDAF+ ZCAD, 即NCAF=NBAD,在aACF和AABD中,VAB=AC, ZCAF=ZBAD, AD=AF, AAACF^AABD(SAS), ACF=BD, NACF=NB,VAB=AC, ZBAC=90%AZB=ZACB=45%/. Z BCF= ZACF+ ZACB=45o+45o=90°,ACF1BD:(2)如图3,过点A作AE_LAC交BC于E,•/ ZBCA=45",••.△ACE是等腰直角三角形,,AC=AE, NAED=45°, VZCAF+ZCAD=90°, ZEAD+ZCAD=90%,NCAF=NEAD,在4ACF和4AED中,VAC=AE, NCAF=NEAD, AD=AF,.•.△ACF^AAED(SAS), /. ZACF=ZAED=45\,ZBCF= ZACF+ ZBCA=45o+45°=90°, ACF1BD.【点睛】此题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图〔1〕,在△A3C中,ZA = 90°, A3 = AC,点.是斜边8C的中点,点E, 产分别在线段A3, 4c上,且NEDF = 90..〔1〕求证:△.所为等腰直角三角形:〔2〕假设△ABC的面积为7,求四边形AEDF•的面积:〔3〕如图〔2〕,如果点E运动到A8的延长线上时,点尸在射线C4上且保持ZEDF = 90°,△.石尸还是等腰直角三角形吗.请说明理由.【答案】〔1〕证实见解析;〔2〕 3.5:〔3〕是,理由见解析.【解析】【分析】〔1〕由题意连接AD,并利用全等三角形的判定判定△ BD年△ ADF〔ASA〕,进而分析证得△.瓦'为等腰直角三角形;〔2〕由题意分析可得S网边形AEDF=S MDF+S AADE=S ABDE+S ACDF,以此进行分析计算求出四边形AEDF的面积即可;〔3〕根据题意连接AD,运用全等三角形的判定判定△ BDE^ △ ADF〔ASA〕,进而分析证得△.所为等腰直角三角形.【详解】解:〔1〕证实:如图①,连接AD.「N BAC=90°,AB=AC,点D是斜边BC的中点,/. AD±BC , AD=BD,・•, Z 1=Z B=45°,Z EDF=90% Z 2+Z 3=90%又,Z 3+Z 4=90°,/. Z 2=Z 4,在^ BDE 和^ ADF 中,Z 1=Z B, AD=BD,Z 2=Z 4,/. △ BDE合 , ADF(ASA),・•, DE二DF,又;Z EDF=90\・•・ ADEF为等腰直角三角形.(2)由(1)可知DE=DF, NON 6=45., 又「N 2+N 3=90°, Z 2+Z 5=90%J Z 3=Z 5,A ADE级△ CDF,・' S N边H,AEDF=S AADF+S CADE二S ABDE+S^CDF,S MBC=2 S 网边毛AEDF,S wijn;AEDF=3.5.(3)是,如图②,连接AD.•/ Z BAC=90\ AB=AC, D 是斜边BC 的中点,/. AD±BC Z AD=BD ,「・Z 1=45°,Z DAF=180°-Z l=180°-45°=135% Z DBE=180°-Z ABC=180°-45°=135%/. Z DAF=Z DBE,「Z EDF=90\/. Z 3+Z 4=90%又;Z 2+Z 3=90°,「・Z 2=Z 4,在仆BDE 和a ADF 中,Z DAF=Z DBE, AD=BD,N 2=Z 4,△ BDE合△ ADF(ASA),・•.DE=DB又:Z EDF=90\.•.A DEF为等腰直角三角形.【点睛】此题考查等腰直角三角形的性质以及全等三角形的判定与性质,根据题意作辅助线构造出全等三角形是解题的关键.5.如图,在MBC中,ZC = 90°, AC = 3, BC = 7,点.是8c边上的动点,连接AD,以AO为斜边在A.的下方作等腰直角三角形AO石.(1)填空:AABC的面积等于—;(2)连接CE,求证:CE是NAC3的平分线;(3)点.在6C边上,且CO = 1,当.从点.出发运动至点3停止时,求点E相应的运动路程.王O 1 _【答案】〔I〕—:〔2〕证实见解析:〔3〕 3点【解析】【分析】〔1〕根据直角三角形的面积计算公式直接计算可得:〔2〕如下图作出辅助线,证实△AEM名ADEN 〔AAS〕,得至I] ME=NE,即可利用角平分线的判定证实:〔3〕由〔2〕可知点E在NACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=!〔AC + C.〕,根据CD的长度计算出CE的长度即可.【详解】解:〔1〕 ZC = 90°, AC = \ BC = 7= -ACxBC = -x3x7 = — ,故答案为:—2〔2〕连接CE,过点E作EMLAC于点M,作EN_LBC于点N,AZEMA=Z END=90°,XVZACB=90SAZMEN=90%AZMED+Z DEN=90°,•••△ADE是等腰直角三角形AZAED=90\ AE=DEA ZAEM+Z MED=90%, ZAEM=Z DEN,在△AEM 与ZkDEN 中,ZEMA=Z END=90% ZAEM=Z DEN, AE=DEAAAEM^ADEN 〔AAS〕/. ME=NE,点E 在NACB 的平分线上, 即CE 是NAC3的平分线工(3)由(2)可知,点E 在NACB 的平分线上,・•・当点D 向点B 运动时,点E 的路径为一条直线,VAAEM^ADEN,AM=DN,即 AC-CM=CN-CD在 RtZiCME 与 RtZkCNE 中,CE=CE, ME=NE,ARtACME^RtACNE (HL)ACM=CN.,.CN=;(AC + CO),又YNMCE 二NNCE=45°, ZCME=90\・,. CE= y/2CN = —(AC + CD).2当 AC=3, CD=CO=1 时,CE=](3 + 1) = 2&当 AC=3, CD=CB=7 时,5CE=r (3 + 7) = 5 虚,点E 的运动路程为:50-20 = 30,£【点睛】此题考查了全等三角形的综合证实题,涉及角平分线的判定,几何中动点问题,全等三角 形的性质与判定,解题的关键是综合运用上述知识点.6.如图1,在长方形ABCD 中,AB=CD=5 cm, BC=12 cm,点P 从点B 出发,以2cm/s 的 速度沿BC 向点C 运动,设点P 的运动时间为ts.(1) PC=—cm :(用含t 的式子表示)■I) I)(2)当t 为何值时,△ABPg^DCP?.(3)如图2,当点P从点B开始运动,此时点Q从点C出发,以vcm/s的速度沿CD向点D运动,是否存在这样的v值,使得某时刻4ABP与以P, Q, C为顶点的直角三角形全等?假设存在,请求出v的值:假设不存在,请说明理由.【答案】(1) (12-2/); (2)1 = 3;(3)存在,P = 2或忏1【解析】【分析】(1)根据P点的运动速度可得BP的长,再利用BC的长减去BP的长即可得到PC的长:(2)先根据三角形全等的条件得出当BP=CP,列方程求解即得;(3)先分两种情况:当BP=CQ, AB=PC 时,△ABPgZ\PCQ:或当BA=CQ, PB=PC 时,△ABPgaQCP,然后分别列方程计算出t的值,进而计算出v的值.【详解】解:(1)当点P以2cm/s的速度沿BC向点C运动时间为ts时3P = 2/57•・• BC = \2cin:.PC = BC-BP = (n-2i)cm故答案为:(12—27)(2) MBP = ^DCP・•. BP = CP・•・ 2/= 12-2/解得1 = 3.(3)存在,理由如下:①当BP=CQ, AB=PC 时,ZiABP名△PCQ,1. PC=AB=5.•.BP=BC-PC=12-5=7•・• BP = Item:.2t=7解得t=3.5.\CQ=BP=7,那么 3.5v=7解得y = 2.②当B4 = C.,PB = PC 时,MBP = \QCP,: BC = ncm,BP = CP = -BC = 6c7〃 2V BP = Item:.2t = 6解得/ = 3CQ = 3vcm,: AB = CQ = 5cm, 3v = 5解得U3综上所述,当u = 2或i,=,时,A48尸与以P, Q,C为顶点的直角三角形全等.【点睛】此题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.7.:在MBC中,AB = AC,ZBAC = 90° ,尸Q为过点4的一条直线,分别过B、C两点作8M_LP0,CN_L尸.,垂足分别为M、N.(1)如图①所示,当P.与BC边有交点时,求证:MN = CN — BM ;(2)如图②所示,当与6C边不相交时,请写出线段8M、CN和MN之间的数量关系,并说明理由. 【答案】(1)见解析:(2) MN = BM + CN (或BM = MN — CN或CN = MN-BM ),理由见解析【解析】【分析】(1)根据条件先证AAA/i运ACN4,得到AM = CN,BM = AN,即可证得MN = CN — BM: (2)由(1)知AAMBYACNA,得到4M =CN,8M = AN,即可确定MN = BM + CN.【详解】证实:・・・BM_LPQ,CN_LP0,・•. ZAMB=ZCAN=90°,V ZBAC=90 ° ,AZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NMM)・•. ZBAM = ZACN,在AAMB和ACN4中,'ZAMB = 4CNA・.• ZBAM = AACN , AB = CA:.AAM“ACN4(A4S),.・.AM =CN,BM =AN,,: MN = AM-AN,:.MN = CN — BM.(2) MN = BM + CN (或BM=MN-CN或CN = MN-BM) .理由:•.・BM_LPQ,CN_LP.,・•・ ZAMB=ZCAN=90°,V ZBAC=90 ° ,.\ZCAN+ZACN=90°,ZCAN+ZBAM=90°(或NCW + NAC/V = NC4N+NBAM ),:.ZBAM = ZACN,在AAMB和ACNA中,'AAMB = ZCNAZ.B\M = ZACN , AB = CA:.AAM*ACNA( AAS),.・.AM =CN,BM =AN,:.MN = AN + AM = BM+CN.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到80、CN和MN之间的关系式.8.操作发现:如图,己知"配和"DE均为等腰三角形,AB=AC, AD=AE,将这两个三角形放置在一起,使点8, D, E在同一直线上,连接CE.(1)如图1, ZABC= ZACB= ZADE= ZAED=55Q,求证:△BADgZkCAE;(2)在(1)的条件下,求N8EC的度数:拓广探索:(3)如图2,假设NC48=NEAD=120.,8D=4, CF为aBCE中8E边上的高,请直接写出讦的长度.【答案】(1)见解析:(2) 70°; (3) 2【解析】【分析】(1)根据SAS证实△BADg/kCAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证4BAD丝ZkCAE,推出EC=BD=4,由NBEC=NBAC=12O0,推出NFCE=30°即可解决问题.(1)证实:如图1中,图1Z ABC=^ ACB = Z ADE=N AED, /. Z EAD=Z CAB,:.Z EAC=A DAB,AE=AD. AC=AB9:.△ BAD^ & CAE (SAS).(2)解:如图1中,设AC交8E于O. •「N A8C=N4C8 = 55°,/. Z 84c=180° - 110° = 70°,BAD^△ CAE,Z ABO=Z ECO,Z EOC=ZAOB,・•, Z CEO = Z 840=70°,即 N BEC= 70°.(3)解:如图2中,A图2Z C48 = N EAD=120\•. Z BAD=A CAE,:AB=AC, AD=AE.△ BAD^ 4 CAE 〔SAS〕,•. Z BAD=A ACE. 8D=EC=4,同理可证N BEC- 8AC=120°,Z F£C=60%CFLEF,Z F=90",•. Z FCE=30\1•. EF=-EC=2. 2此题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.在等边aABC中,点.是边8C上一点.作射线AO,点3关于射线AO的对称点为点E.连接CE并延长,交射线AO于点〔1〕如图,连接AE,①AE与AC的数量关系是;②设NBA尸=a,用.表示NBCF的大小;〔2〕如图,用等式表示线段A尸,CF.所之间的数量关系,并证实.【答案】⑴①AB二AE;②NBCF=.:(2)AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由釉对称性,得:AE二AB, NBAF=NEAF=.,由△A3C是等边三角形,得AB=AC, ZBAC=ZACB=60° ,再根据等腰三角形的性质和三角形内角和等于180°,即可求解:(2)作NFCG=60°交AD于点G,连接BF,易证AFCG是等边三角形,得GF=FC,再证△ACG会ABCF(SAS),从而得AG=BF,进而可得至lj结论.【详解】(1)①•・•点4关于射线的对称点为点E , AAB和AE关于射线AD的对称,AAB=AE.故答案是:AB=AE;②•.•点3关于射线的对称点为点E , ,AE二AB, NBAF=NEAF=.,•二△A3c是等边三角形,AAB=AC, ZBAC=ZACB=60" ,:.ZEAC=60° -2a, AE=AC,ZACE=1[180 - (60 - 2a)] = 60 +6?,A ZBCF=ZACE-ZACB=60 +a-60°=a .(2) AF-EF=CF,理由如下:作NFCG=60.交AD于点G,连接BF,•••NBAF=NBCF=a , NADB=NCDF,A ZABC=ZAFC=60c ,••.△FCG是等边三角形,AGF=FC,•二△A3c是等边三角形,ABC=AC, ZACB=60° , AZACG=ZBCF=« .在AACG和ABCF中,CA = CBZACG = ABCF , CG = CF,AACG 仝ABCF(SAS),.,.AG=BF,•・•点4关于射线AO的对称点为点E , .\AG=BF=EF,VAF-AG=GF,.\AF-EF=CE【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.如图,AA8C是等边三角形,点.在边4c上〔“点D不与A,C重合〕,点石是射线5c上的一个动点〔点E不与点8,C重合〕,连接OE,以OE为边作作等边三角形hDEF,连接CF.〔1〕如图1,当.石的延长线与A3的延长线相交,且CF在直线OE的同侧时,过点D 作DG//AB, DG 交BC 于点、G ,求证:CF = EG ;〔2〕如图2,当.石反向延长线与A8的反向延长线相交,且.,尸在直线OE的同侧时,求证:CD = CE+CF;〔3〕如图3,当OE反向延长线与线段A8相交,且.,厂在直线O石的异侧时,猜测CD、CE、CP之间的等量关系,并说明理由.【答案】〔1〕证实见详解;〔2〕证实见详解:〔3〕 CF = CO-CE,理由见详解.【解析】【分析】(1)由AABC 是等边三角形,DG//AB,得NCDG=NA=60° , NACB=60.,ACDG 是等边三角形,易证AGDE仝ACDF(SAS),即可得到结论:(2)过点D作DG〃AB交BC于点G,易证A GDE仝△ CDF(SAS),即可得到结论;(3)过点D作DG〃AB交BC于点G,易证A GDE仝A CDF(SAS),即可得到结论.【详解】(1)•・• AA3C是等边三角形,DG//AB, :.ZCDG=ZA=60° , ZACB=60° , ・•. ACQG是等边三角形,.\DG=DC.是等边三角形, .,.DE=DF, ZEDF=60° , A ZCDG-ZGDF=ZEDF-ZGDF,即:ZGDE=ZCDF, 在4 GDE和八CDF中,DE = DFNGDE = NCDF ,DG = DC.,.△GDE^A CDF(SAS),:.CF = EG ;(2)过点D作DG〃AB交BC于点G,如图2,•・• AABC是等边三角形,DG//AB、:.ZCDG=ZA=60° , ZACB=60" ,••・ACDG是等边三角形,:.DG=DC.•••ADE/是等边三角形,,DE=DF, ZEDF=60c ,A ZCDG-ZCDE=ZEDF-ZCDE> 即:ZGDE=ZCDF, 在4 GDE和^ CDF中,DE = DFNGDE = ZCDF ,DG = DC.,.△GDE^ACDF(SAS),:・CF = GE,••. CD = CG = CE+GE = CE+CF(3)CF = CD + CE,理由如下:过点D作DG〃AB交BC于点G,如图3,•・・AA8C是等边三角形,DGUAB, .,.ZCDG=ZA=60° , ZACB=60" ,,ACDG是等边三角形, ADG=DC=GC.•・• ADEF是等边三角形, ,DE=DF, ZEDF=60° ,A ZCDG+ZCDE=ZEDF+ZCDE,即:NGDE=NCDF, 在A GDE和4 CDF中,DE = DFNGDE = ZCDF , DG = DCAAGDE^ACDF(SAS),,CF = G£=GC+CE=CD+CE.【点睛】此题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.。

全等三角形证明中考题精选[有答案解析]

全等三角形证明中考题精选[有答案解析]

全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。

是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。

全等三角形的基础和经典例题含有答案

全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13-3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。

图13-5表示图形的全等时,要把对应顶点写在对应的位置。

(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

关于全等三角形的例题

关于全等三角形的例题

关于全等三角形的例题全等三角形,听起来是不是有点高大上?其实它就像我们生活中的小秘密一样,随处可见。

这不,咱们先来聊聊,三角形的魅力在哪里。

大家都知道,三角形是最简单的几何图形之一。

三条边,三角角,简单又好玩。

不过,说到全等三角形,这事儿可就有意思了。

全等三角形就像是长得一模一样的双胞胎,简直让人忍不住想要八卦一番。

想象一下,有两个三角形,A和B,长得就像复制粘贴过来的一样。

这两个小家伙无论是边长还是角度,都是一模一样的。

就像是穿了一样的衣服,甚至连发型都不带差别。

是不是特别有趣?你知道,这样的三角形是怎么判定的嘛?我们常用的有SSS、SAS、ASA和AAS这几种方式。

听上去很复杂,其实就是看边边角角。

只要其中三条边都相等,或者两边一夹角相等,咱们就可以自信地说“嘿,这俩小家伙全等!”再说说我们日常生活中的例子。

想象一下,你和你的小伙伴一起画画,你们俩居然画出了一模一样的三角形。

这不就是全等三角形的真实写照吗?你们用的尺子、量角器,全都一样。

要是让其他朋友来看看,他们肯定会惊叹“哇,真是天衣无缝啊!”这时候,你心里是不是乐开了花?那种感觉就像是找到了志同道合的伙伴,一起做了一件很酷的事情。

咱们再来聊聊这些三角形的性质。

全等三角形之间的关系可不简单。

就像好朋友一样,它们之间有很多的共同点。

比如说,面积和周长,都是一模一样的。

想想看,如果你们在比赛,结果肯定是平局,没有谁赢谁输。

就像打游戏的时候,两个玩家都是满血状态,谁也不服谁。

这样的局面是不是很让人兴奋?还记得我们在课堂上学的那些定理吗?比如说,平行线被横线切割后,形成的角度就可以帮助我们判断全等三角形。

老师一边讲解,一边用粉笔在黑板上画个不停,大家听得津津有味。

每当这时候,心里总会想“哇,数学真有趣!”就像是在探险一样,发现了一个又一个小秘密。

再说说实际应用,生活中其实到处都是全等三角形的身影。

建筑设计、工程测量,甚至一些玩具的制作,三角形的稳定性让它们成为了各种设计的宠儿。

全等三角形经典例题

全等三角形经典例题

全等三角形经典例题(全等三角形的概念和性质)类型一、全等形和全等三角形的概念1、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A→B→C→A,及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图1),若运动方向相反,则称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°,下列各组合同三角形中,是镜面合同三角形的是( )(答案)B ;提示:抓住关键语句,两个镜面合同三角形要重合,则必须将其中一个翻转180°,B 答案中的两个三角形经过翻转180°就可以重合,故选B ;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角 类型三、全等三角形性质3、如图,将长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,那么DAE ∠等于( ).A 。

60° B 。

45° C 。

30° D.15°(答案)D ;(解析)因为△AFE 是由△ADE 折叠形成的,所以△AFE ≌△ADE,所以∠FAE=∠DAE ,又因为60BAF ∠=︒,所以∠FAE =∠DAE =90602︒-︒=15°.(点评)折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:(变式)如图,在长方形ABCD 中,将△BCD 沿其对角线BD 翻折得到△BED ,若∠1=35°,则∠2=________。

(答案)35°;提示:将△BCD 沿其对角线BD 翻折得到△BED,所以∠2=∠CBD ,又因为AD ∥BC ,所以∠1=∠CBD ,所以∠2=35°.4、 如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.(答案)∠α=80°(解析)∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x ,∠2=5x ,∠3=3x ,∴28x +5x +3x =36x =180°,x =5° 即∠1=140°,∠2=25°,∠3=15°∵△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的, ∴△ABE ≌△ADC ≌△ABC ∴∠2=∠ABE ,∠3=∠ACD∴∠α=∠EBC +∠BCD =2∠2+2∠3=50°+30°=80°(点评)此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题。

八年级数学全等三角形常考题型例题

八年级数学全等三角形常考题型例题

八年级数学全等三角形常考题型例题单选题1、如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=4,AB=6,则S△ABD:S△ACD=()A.3:2B.2:3C.1:1D.4:3答案:A解析:过点D作DE⊥AB于点E,根据角平分线的性质得,DE=DC再根据三角形面积公式即可求解.解:过点D作DE⊥AB于点E,在Rt△ABC中,∠C=90°∴DC⊥AC,∵AD是∠BAC的平分线,∴DE=DC,∵S△ABDS△ACD =12AB·DE12AC·DC=ABAC,∵AC=4,AB=6,S△ABD S△ACD =ABAC=64=32,所以答案是:A.小提示:本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键.2、作∠AOB的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D 为圆心,适当的长度为半径作弧使两弧在∠AOB的内部相交于一点,则这个适当的长度()A.大于12CD B.等于12CD C.小于12CD D.以上都不对答案:A解析:根据作已知角的角平分线的方法即可判断.因为分别以C,D为圆心画弧时,要保证两弧在∠AOB的内部交于一点,所以半径应大于12CD,故选:A.小提示:本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A .①②③B .①②④C .①③④D .①②③④答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP ,BP=BP ,∴△ABP ≌△FBP(ASA),∴∠BAP=∠BFP ,AB=FB ,PA=PF ,故②正确.在△APH 和△FPD 中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP ,PA=PF ,∴△APH ≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.4、作∠AOB平分线的作图过程如下:作法:(1)在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧交于点C.(2)分别以D,E为圆心,大于12(3)作射线OC,则OC就是∠AOB的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是()A.SSS B.SAS C.ASA D.AAS答案:A解析:根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.∵分别以D,E为圆心,大于12DE的长为半径作弧,两弧交于点C;∴CE=CD,在△OCE和△OCD中,{OE=OD CD=CE OC=OC,∴△OCE≌△OCD(SSS),故选:A.小提示:本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.5、如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是()A .SSSB .SASC .ASAD .AAS答案:A解析:根据题意两个三角形的三条边分别对应相等,即可利用“边边边”证明这两个三角形全等,即可选择. 在△ABC 和△ADC 中,{AB =ADBC =DC AC =AC,∴△ABC ≅△ADC(SSS),∴∠BAC =∠DAC ,即∠QAE =∠PAE .∴此角平分仪的画图原理是SSS .故选:A .小提示:本题考查了三角形全等的判定和性质.根据题意找到可证明两三角形全等的条件是解答本题的关键.6、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带( )A .第1块B .第2块C .第3块D .第4块答案:B解析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14B.13C.12D.10答案:C解析:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠EAO=∠FCO∵在△AEO和△CFO中,{∠AEO=∠CFO AO=CO ∠AOE=∠COF∴△AEO≌△CFO∴AE=CF,EO=FO=1.5∵C四边形ABCD=18∴CD+AD=9∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C小提示:本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.8、如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R,S,给出下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS.其中正确的是 ( )A.①②③B.①C.①②D.①③答案:C解析:先求证两个三角形全等,可得角、边对应相等,再根据同位角相等从而得出平行关系即可解题.如图在RT△APR和RT△APS中,PS=PR,AP=AP,∴RT△APR≅RT△APS,∴AS=AR,①正确;因为AQ=PQ∴∠PAQ=∠QPA,又因为∠PAQ=∠PAR,∴∠PQC=∠PAQ+∠QPA=∠BAC,∴QP∥AR,②正确;△ BRP和△QPS中只有一个条件PR=PS,没有别的条件可以证明这两个三角形全等,③错误;所以正确答案选C.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边对应角相等的性质,本题中求证RT△APR≅RT△APS 是解题的关键填空题9、如图,在ΔABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为_______.答案:9.解析:根据等腰三角形的性质及全等三角形的判定与性质即可求解.因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD≅△ACE(ASA),所以BD=EC,EC=9.小提示:此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.10、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)解析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC=∠DAC∠D=∠BAC=AC,∴△ABC≌△ADC(AAS),所以答案是:∠D=∠B.小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.11、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.答案:120解析:根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,所以答案是:120.小提示:此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.12、如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,若∠A=50°,则∠DFE的度数为________.答案:40°解析:先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出∠DFE的度数.解:在Rt△ABC与Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.所以答案是:40°.小提示:此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.13、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是____.答案:SSS##边边边解析:由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.解:∵在△ONC和△OMC中{ON=OM CO=CO NC=MC,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,所以答案是:SSS.小提示:本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解答题14、已知:AB//CD,AB=CD,AE=CF.求证:BF//DE.答案:见解析解析:根据AB∥CD,得到∠A=∠C,然后推出AF=CE,即可证明△ABF≌△CDE得到∠AFB=∠CED,则BF∥DE.解:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,{AB=CD ∠A=∠C AF=CE,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴BF∥DE.小提示:本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.15、如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.答案:见解析解析:先利用三角形外角性质证明∠ADE=∠B,然后根据“AAS”判断△ABC≌△ADE.∵∠ADC=∠1+∠B,即∠ADE+∠2=∠1+∠B,而∠1=∠2,∴∠ADE=∠B,在△ABC和△ADE中,{∠C=∠E ∠B=∠ADE AC=AE∴△ABC≌△ADE(AAS).小提示:本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.选用哪一种方法,取决于题目中的已知条件.。

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)

三角形全等典型例题集锦(含答案)一、选择题(本大题共13小题,共39.0分)1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是()A. 2B. 9C. 18D. 27【答案】B由“AAS”可证△ACD≌△AED,可得CD=DE=9.本题考查了全等三角形的判定和性质,角平分线的性质,证明△ACD≌△AED是本题的关键.解:∵BC=27,BD:CD=2:1,∴BD=18,CD=9,∵AD平分∠BAC,∴∠DAC=∠DAE,且AD=AD,∠DCA=∠DEA= 90°,∴△ACD≌△AED(AAS)∴CD=DE=9,故选B.2.如图,已知∠ABC=∠DCB,添加下列条件,不能使△ABC≌△DCB的是()A. AC=DBB. AB=DCC. ∠A=∠DD. ∠1=∠2【答案】A【解析】A.当添加AC=DB时,不能判定△ABC≌△DCB,故本选项符合题意;B.当添加AB=DC时,能判定△ABC≌△DCB,故本选项不符合题意;C.当添加∠A=∠D时,能判定△ABC≌△DCB,故本选项不符合题意;D.当添加∠2=∠1时,能判定△ABC≌△DCB,故本选项不符合题意,故选A.如图,下列三角形中,与△ABC全等的是()A. B. C. D.【答案】C3.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是()A. 甲B. 乙C. 甲和乙D. 都不是【答案】C4.如图,∠ACB=90∘,AC=BC,BE⊥CE于E点,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A. 0.8cmB. 1cmC. 1.5cmD. 4.2cm【答案】A【解析】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90∘,∴∠EBC+∠BCE=90∘.∵∠BCE+∠DCA=∠ACB=90∘,∴∠EBC=∠DCA.在△CEB和△ADC中,{∠E=∠ADC,∠EBC=∠DCA, BC=CA,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm,故选A.5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积为12AC⋅BD.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个【答案】D如图,已知AB=AC,AD=AE,欲说明△ABD≌△ACE,需补充的条件是()A. ∠B=∠CB. ∠D=∠EC. ∠1=∠2D. ∠CAD=∠2【答案】C6.下列三角形中全等的两个是()A. ①②B. ②③C. ③④D. ①④【答案】A如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB.若AB=4,CF=3,则BD的长是()A. 0.5B. 1C. 1.5D. 2【答案】B7.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A. 4B. 3C. 2D. 1【答案】B【解析】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中, {OA=OB∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵{∠OGA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS)∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,{∠AOM=∠DOMOM=OM∠AMD=∠DMO∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA< OC,故③错误;即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.8.尺规作图作角的平分线,作法步骤如下:9.①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于12CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.则上述作法的依据是().A. SSSB. SASC. AASD. ASA【答案】A本题考查了全等三角形的判定与性质、角平分线的尺规作图方法与作图原理,解题的关键是要理解作图过程中每一步的效果,即:OC=OD,CP=DP,OP=OP.连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【解答】解:如下图④所示:连接CP、DP在△OCP与△ODP中,由作图可知:{OC=ODCP=DPOP=OP∴△OCP≌△ODP(SSS),∴∠COP=∠DOP,即OP是∠AOB的平分线.因此题中作法的依据是SSS.故选A.10.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A. 点DB. 点CC. 点BD. 点A【答案】A【解析】解:观察图象可知△MNP≌△MFD.故选:A.根据全等三角形的判定即可解决问题.本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,AD//BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2−AD2的值等于()A. 14B. 9C. 8D. 5【答案】A延长CB和DE交于点F,∵AD//BC∴∠DAE=∠FBE∵点E是线段AB的中点,∴AE=BE∠AED=∠BEF∴△ADE≌△BFE(ASA∴∠ADE=∠BFE,AD =BF ∵DE 平分∠ADC ,∴∠ADE =∠CDE ∴∠CDE =∠BFE ∴CD =CF ∴BC +BF =BC +AD =CD =7∵BC =AD +2,∴解得BC =92,AD =52∴BC 2−AD 2=(92)2−(52)2=14.或者:∵BC +AD =7BC −AD =2∴BC 2−AD 2=(BC +AD)(BC −AD)=7×2=14.故选:A .可以延长CB 和DE 交于点F ,证明△ADE≌△BFE(ASA)得∠ADE =∠BFE ,AD =BF ,再根据已知条件DE 平分∠ADC ,得∠ADE =∠CDE ,∠CDE =∠BFE ,得CD =CF ,进而得BC +BF =BC +AD =CD =7BC =AD +2,即可求解.本题考查了全等三角形的判定和性质,解决本题的关键是构造适当的辅助线.二、填空题(本大题共7小题,共21.0分)12. 如图,∠AOB 是任意一个角,在OA ,OB 边上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 便是∠AOB 平分线,此作法用的判定三角形全等的方法是 .(用字母表示即可)【答案】SSS【解析】略 13. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是 .14.【答案】1【解析】略15. 如图为6个边长相等的正方形的组合图形,则∠1−∠2+∠3= .16.【答案】45°【解析】略17. 如图,△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC.若∠D =20°,则∠ABC 的度数为 .18.【答案】40°【解析】略19. 已知等边三角形的三条边,三个内角都相等.如图,△ABC 为等边三角形,点D ,E ,F 分别在边BC ,CA ,AB 上,且AE =CD =BF ,则△DEF 的形状按边分类为 三角形. 20.【答案】等边【解析】略21. 如图,△ABC ,∠ABC =45°,∠ACB =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD =______.【答案】√6+√22【解析】解:作DF ⊥AB 于点F ,作DG ⊥AC 于点G ,作EH ⊥AC 于点H ,∵∠ACB =30°,DG ⊥AC ,∴CD =2DG ,∵AE =CE ,EH ⊥AC ,∴AH =CH ,∴AC =2AH ,∵AD ⊥AE ,DG ⊥AC ,EH ⊥AC ,∴∠DAE =90°,∠DGA =∠AHE =90°,∴∠DAG +∠EAH =90°,∠EAH +∠AEH =90°,∴∠DAG =∠AEH ,在△DAG 和△AEH 中{∠DGA =∠AHE ∠DAG =∠AEH DA =AE∴△DAG≌△AEH(AAS)∴DG =AH ,∴AC =2DG ,∴AC =CD ,∴∠CAD =∠CDA ,∵∠ACB =30°,∵∠ABC=45°,∠ACB=30°,∴∠BAC=180°−∠ABC−∠ACB=105°,∴∠DAE=∠BAC−∠CAD=105°−75°=30°,∵DF⊥AB,∴∠DFA=∠DFB=90°,又∵∠B=45°,∠BAD=30°,∴AD=2DF,BF=DF,∴AF=√AD2−DF2=√3DF,BD=√BF2+DF2=√2DF,∴AB=AF+BF=√3DF+DF,∴ABBD =√3DF+DF√2DF=√6+√22,故答案为:√6+√22.作DF⊥AB于点F,作DG⊥AC于点G,作EH⊥AC于点H,然后根据直角三角形的性质和全等三角形的判定,利用勾股定理可以求得AB和BD与DF的关系,然后即可求得ABBD的值.本题考查全等三角形的判定与性质、等腰三角形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,AB=6cm,AC=BD=4cm,∠CAB=∠DAB=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动。

全等三角形经典例题与答案13道

全等三角形经典例题与答案13道

1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE ∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4 即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:CD=1/2AB延长CD与P,使D为CP中点。

连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。

∵∠ABC=∠AED。

∴∠ABE=∠AEB。

∴AB=AE。

在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。

∴∠BAF=∠EAF (∠1=∠2)4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C作CG∥EF交AD的延长线于点G CG∥EF,可得,∠EFD=∠CGD DE=DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF=CG ∠CGD=∠EFD 又,EF∥AB∴,∠EFD=∠1 ∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG 又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC∴∠EAD=∠CAD ∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD ∴AE=AB+BD ∵AE=AB+BE∴BD=BE ∴∠BDE=∠E ∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF ∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。

全等三角形的判定常考典型例题及练习

全等三角形的判定常考典型例题及练习

全等三角形的判定一、知识点复习 ①“边角边”定理:两边和它们的夹角对应相等的两个三角形全等。

(SAS )图形分析:书写格式: 在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EFBC E B DEAB∴△ABC ≌△DEF (SAS )②“角边角”定理:两角和它们的夹边对应相等的两个三角形全等。

(ASA)图形分析:书写格式: 在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠FC EF BC EB∴△ABC ≌△DEF(ASA)③“角角边”定理:两个角和其中一个角的对边对应相等的两个三角形全等。

(AAS )图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EFBC F C EB∴△ABC ≌△DEF(AAS)④“边边边”定理:三边对应相等的两个三角形全等。

(SSS )图形分析:书写格式: 在△ABC 和△DEF 中 ⎪⎩⎪⎨⎧===EF BC DF AC DE AB∴△ABC ≌△DEF(AAS)⑤“斜边、直角边”定理:斜边和一条直角边对应相等的两个直角三角形全等。

(HL )图形分析:书写格式:在△ABC 和△DEF 中 ⎩⎨⎧==DFAC DE AB∴△ABC ≌△DEF (HL )一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比如说“SSA ”、“AAA ”能成为判定两个三角形全等的条件吗?两个三角形中对应相等的元素两个三角形是否全等 反例SSA ⨯AAA⨯二、常考典型例题分析第一部分:基础巩固1.下列条件,不能使两个三角形全等的是()A.两边一角对应相等 B.两角一边对应相等 C.直角边和一个锐角对应相等 D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是()A.SAS B.SSS C.ASA D.HL第二部分:考点讲解考点1:利用“SAS ”判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用“SAS ”的判定方法解与全等三角形性质有关的综合问题3.已知:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用“SAS”判定三角形全等解决实际问题4.有一座小山,现要在小山A、B的两端开一条隧道,施工队要知道A、B两端的距离,于是先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离,你能说说其中的道理吗?考点4:利用“ASA”判定两个三角形全等5.如图,已知AB=AD,∠B=∠D,∠1=∠2,求证:△AEC≌△ADE.6..jyeoo./math/report/detail/6ffc59c3-43e4-4008-9d1a-6c2c447db1f4如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;考点6:利用“ASA”与全等三角形的性质解决问题:7.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC考点7:利用“SSS”证明两个三角形全等8.如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,AD=BE,求证:△ABC≌△EDF.考点8:利用全等三角形证明线段(或角)相等9.如图,AE=DF,AC=DB,CE=BF.求证:∠A=∠D.考点9:利用“AAS”证明两个三角形全等10.如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:△ABD≌△ACE.考点10:利用“AAS”与全等三角形的性质求证边相等11.(2017秋•娄星区期末)已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.考点11:利用“HL”证明两三角形全等12.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF。

全等三角形经典例题(含答案)

全等三角形经典例题(含答案)

全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA)..【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E 在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC ≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是①和③,命题的结论是②和④(均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD 全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。

(完整)全等三角形经典例题(含答案),推荐文档

(完整)全等三角形经典例题(含答案),推荐文档

全等三角形证明题精选一.解答题(共30小题)1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.13.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.14.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.15.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.16.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.18.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.19.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是: ;(2)证明: .20.如图,AB=AC,AD=AE.求证:∠B=∠C.21.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.22.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.23.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设: ;结论: .(均填写序号)证明:24.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)25.如图,已知AB=DC,AC=DB.求证:∠1=∠2.26.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是 和 ,命题的结论是 和 (均填序号);(2)证明你写出的命题.27.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.28.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.29.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.30.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.全等三角形证明题精选参考答案与试题解析一.解答题(共30小题)1.(2016•连云港)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.2.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.【点评】此题主要考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.3.(2016•孝感)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.【分析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【解答】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.4.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.5.(2016•云南)如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.6.(2016•宁德)如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.【分析】根据平行线的性质找出∠ADE=∠BAC,借助全等三角形的判定定理ASA证出△ADE≌△BAC,由此即可得出AE=BC.【解答】证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(ASA),∴AE=BC.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键.7.(2016•十堰)如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.【分析】欲证明AF=DF只要证明△ABF≌△DEF即可解决问题.【解答】证明:∵AB∥CD,∴∠B=∠FED,在△ABF和△DEF中,,∴△ABF≌△DEF,∴AF=DF.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握全等三角形的判断和性质,熟练掌握平行线的性质,属于基础题,中考常考题型.8.(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.9.(2016•昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键.10.(2016•衡阳)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.【分析】求出AD=BC,根据ASA推出△AED≌△BFC,根据全等三角形的性质得出即可.【解答】证明:∵AC=BD,∴AC+CD=BD+CD,∴AD=BC,在△AED和△BFC中,,∴△AED≌△BFC(ASA),∴DE=CF.【点评】本题考查了全等三角形的性质和判定的应用,能求出△AED≌△BFC是解此题的关键,注意:全等三角形的对应边相等.11.(2016•重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.12.(2016•南充)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.【解答】(1)证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,∴∠B=∠C,在△ACM和△ABN中,,∴△ACM≌△ABN(ASA),∴∠M=∠N.【点评】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.13.(2016•恩施州)如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.【分析】通过全等三角形(Rt△CBE≌Rt△BCD)的对应角相等得到∠ECB=∠DBC,则AB=AC.【解答】证明:∵BE⊥AC,CD⊥AB,∴∠CEB=∠BDC=90°.∵在Rt△CBE与Rt△BCD中,,∴Rt△CBE≌Rt△BCD(HL),∴∠ECB=∠DBC,∴AB=AC.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.14.(2016•重庆)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC 和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.15.(2016•湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.【点评】本题考查全等三角形的判定和性质、直角三角形30°性质、勾股定理等知识,解题的关键是正确寻找全等三角形,记住直角三角形30°角所对的直角边等于斜边的一半,属于中考常考题型.16.(2016•吉安校级一模)如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.【分析】根据全等三角形的性质得到CD=AF,证明∴△DGC≌△AGF,根据全等三角形的性质和角平分线的判定得到∠CBG=∠FBG,根据三角形内角和定理计算即可.【解答】解:∵Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∴BC=BF,BD=BA,∴CD=AF,在△DGC和△AGF中,,∴△DGC≌△AGF,∴GC=GF,又∠ACB=∠DFB=90°,∴∠CBG=∠FBG,∴∠GBF=(90°﹣28°)÷2=31°.【点评】本题考查的是全等三角形的性质角平分线的判定,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.(2016•武汉校级四模)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.【分析】由垂直的定义可得到∠C=∠D,结合条件和公共边,可证得结论.【解答】证明:∵AC⊥BC,BD⊥AD,∴∠C=∠D=90,在Rt△ACB和Rt△BDA中,,∴△ACB≌△BDA(HL).【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.18.(2016•济宁二模)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.19.(2016•诏安县校级模拟)已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是: ∠MAB=∠NCD ;(2)证明: 在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA). .【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAB=∠NCD,或BM=DN或∠ABM=∠CDN.【解答】解:(1)你添加的条件是:①∠MAB=∠NCD;(2)证明:在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA),故答案为:∠MAB=∠NCD;在△ABM和△CDN中∵∠M=∠N,AM=CM,∠MAB=∠NCD∴△ABM≌△CDN(ASA).【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.(2016•屏东县校级模拟)如图,AB=AC,AD=AE.求证:∠B=∠C.【分析】要证∠B=∠C,可利用判定两个三角形全等的方法“两边和它们的夹角对应相等的两个三角形全等”证△ABE≌△ACD,然后由全等三角形对应边相等得出.【解答】证明:在△ABE与△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“边角边”判定方法.观察出公共角∠A是解决本题的关键.21.(2016•沛县校级一模)如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴BE=CF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.22.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.23.(2012•漳州)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设: 可以为①②③ ;结论: ④ .(均填写序号)证明:【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS 定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.24.(2009•大连)如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)【分析】因为BE=CF,利用等量加等量和相等,可证出BC=EF,再证明△ABC≌△DEF,从而得出AC=DF.【解答】证明:∵BE=CF,∴BE+EC=CF+EC(等量加等量和相等).即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠1,BC=EF,∴△ABC≌△DEF(SAS).∴AC=DF(全等三角形对应边相等).【点评】解决本题要熟练运用三角形的判定和性质.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.25.(2006•平凉)如图,已知AB=DC,AC=DB.求证:∠1=∠2.【分析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.【解答】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【点评】本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.26.(2006•佛山)如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O 点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是 ① 和 ③ ,命题的结论是 ② 和 ④ (均填序号);(2)证明你写出的命题.【分析】本题实际是考查全等三角形的判定,根据条件可看出主要是围绕三角形ABE和ACD全等来求解的.已经有了一个公共角∠A,只要再知道一组对应角和一组对应边相等即可得出三角形全等的结论.可根据这个思路来进行选择和证明.【解答】解:(1)命题的条件是①和③,命题的结论是②和④.(2)已知:D,E分别为△ABC的边AB,AC上的点,且AB=AC,∠ABE=∠ACD.求证:OB=OC,BE=CD.证明如下:∵AB=AC,∠ABE=∠ACD,∠BAC=∠CAB,∴△ABE≌△ACD.∴BE=CD.又∠BCD=∠ACB﹣∠ACD=∠ABC﹣∠ABE=∠CBE,∴△BOC是等腰三角形.∴OB=OC.【点评】本题主要考查了全等三角形的判定,要注意的是AAA和SSA是不能判定三角形全等的.27.(2005•安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.做题时从已知结合全等的判定方法开始思考,做到由易到难,不重不漏.【解答】解:此图中有三对全等三角形.分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.证明:∵AB∥DE,∴∠A=∠D.又∵AB=DE、AF=DC,∴△ABF≌△DEC.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(2004•昆明)如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.【分析】利用已知条件易证△AEB≌△DEC,从而得出AE=DE.【解答】证明:∵AD∥BC,∠B=∠C,∴梯形ABCD是等腰梯形,∴AB=DC,在△AEB与△DEC中,,∴△AEB≌△DEC(SAS),∴AE=DE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.29.(2004•淮安)如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.【分析】可以有三个真命题:(1)②③⇒①,可由ASA证得△ADE≌△BCE,所以DE=EC;(2)①③⇒②,可由SAS证得△ADE≌△BCE,所以∠1=∠2;(3)①②⇒⑧,可由ASA证得△ADE≌△BCE,所以AE=BF,∠3=∠4.【解答】解:②③⇒①证明如下:∵∠3=∠4,∴EA=EB.在△ADE和△BCE中,∴△ADE≌△BCE.∴DE=EC.①③⇒②证明如下:∵∠3=∠4,∴EA=EB,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠1=∠2.①②⇒⑧证明如下:在△ADE和△BCE中,∴△ADE≌△BCE.∴AE=BE,∠3=∠4.【点评】本题考查了全等三角形的判定和性质;题目是一道开放型的问题,选择有多种,可以采用多次尝试法,证明时要选择较为简单的进行证明.30.(2011•通州区一模)已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.【分析】根据AE⊥CD,BF⊥CD,求证∠BCF+∠B=90°,可得∠ACF=∠B,再利用(AAS)求证△BCF≌△CAE即可.【解答】证明:∵AE⊥CD,BF⊥CD∴∠AEC=∠BFC=90°∴∠BCF+∠B=90°∵∠ACB=90°,∴∠BCF+∠ACF=90°∴∠ACF=∠B在△BCF和△CAE中∴△BCF≌△CAE(AAS)∴CE=BF.【点评】此题主要考查全等三角形的判定与性质这一知识点,解答此题的关键是利用(AAS)求证△BCF≌△CAE,要求学生应熟练掌握.。

完整版)全等三角形经典例题(含答案)

完整版)全等三角形经典例题(含答案)

完整版)全等三角形经典例题(含答案)全等三角形证明题精选1.在四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F。

证明:△ADE≌△CBF;若AC与BD相交于点O,证明:AO=CO。

2.已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D。

证明:AC∥DE;若BF=13,EC=5,求BC的长。

3.在△ABC中,BD⊥AC于点D,CE⊥AB于点E,AD=AE。

证明:BE=CD。

4.点O是线段AB和线段CD的中点。

证明:△AOD≌△BOC;AD∥BC。

5.点C是AE的中点,∠A=∠ECD,AB=CD。

证明:∠B=∠D。

6.已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC。

证明:AE=BC。

7.在△ABE和△DEF中,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF。

证明:AF=DF。

8.点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF。

证明:AB∥DE。

9.在△ABC中,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB。

证明:AE=CE。

10.点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF。

证明:DE=CF。

11.点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD。

证明:AE=FB。

12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.证明:BD=CE;∠M=∠N。

13.在△ABC中,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD。

证明:AB=AC。

14.在△ABC和△CED中,AB∥CD,AB=CE,AC=CD。

证明:∠B=∠E。

15.在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F。

证明:AB=AC;若AD=2,∠DAC=30°,求AC的长。

16.已知直角三角形ABC和直角三角形DBF,且它们相似,∠D=28°,求∠GBF的度数。

(完整版)全等三角形的基础和经典例题含有答案

(完整版)全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念(1)全等图形的定义能够完全重合的两个图形就是全等图形。

例如:图13-1和图13—2就是全等图形图13-1图13—2(2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。

例如:图13—3和图13-4中的两对多边形就是全等多边形。

图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.(4)全等多边形的表示例如:图13—5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。

图13—5表示图形的全等时,要把对应顶点写在对应的位置.(5)全等多边形的性质全等多边形的对应边、对应角分别相等。

(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别 (1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。

(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等.相似三角形的识别法中有一个与(SSS )全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS )全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等.A BDC E B'A’ C ’D ’E’(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

8年级数学全等三角形经典例题

8年级数学全等三角形经典例题

8年级数学全等三角形经典例题一、全等三角形经典例题1。

例1:如图,在△ABC中,AB = AC,AD是BC边上的中线,求证:△ABD≌△ACD。

解析:1. 在△ABD和△ACD中:- 已知AB = AC(题目中给出的等腰三角形的两腰相等)。

- 因为AD是BC边上的中线,所以BD = CD(中线的定义)。

- AD = AD(公共边)。

2. 根据SSS(边边边)全等判定定理,可得△ABD≌△ACD。

二、全等三角形经典例题2。

例2:已知:如图,AB = AD,∠B = ∠D,∠1=∠2,求证:△ABC≌△ADE。

解析:1. 因为∠1 = ∠2,所以∠1+∠DAC = ∠2+∠DAC,即∠BAC = ∠DAE。

2. 在△ABC和△ADE中:- 已知AB = AD。

- ∠B = ∠D。

- 且∠BAC = ∠DAE(已证)。

3. 根据ASA(角边角)全等判定定理,可得△ABC≌△ADE。

三、全等三角形经典例题3。

例3:如图,在△ABC中,∠C = 90°,AC = BC,AD平分∠CAB交BC于D,DE⊥AB于E,AB = 6cm,求△DEB的周长。

解析:1. 因为AD平分∠CAB,∠C = 90°,DE⊥AB,根据角平分线的性质,可知CD = DE。

2. 在Rt△ACD和Rt△AED中:- AD = AD(公共边)。

- CD = DE(已证角平分线性质)。

- 根据HL(斜边直角边)定理,可得Rt△ACD≌Rt△AED。

- 所以AC = AE。

3. 因为AC = BC,AB = 6cm,设AC = BC=x,根据勾股定理AC^2+BC^2=AB^2,即x^2+x^2=6^2,2x^2=36,x^2=18,x = 3√(2)。

4. 又因为AE = AC = 3\sqrt{2}\),所以BE=AB - AE = 6 - 3\sqrt{2}\)。

5. 而△DEB的周长为DE+DB+BE,因为CD = DE,BC = BD + CD,所以△DEB的周长为BC+BE = 3\sqrt{2}+6 - 3\sqrt{2}=6cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形 知识梳理
一、知识网络
⎧⎧⎨⎪
⎩⎪
⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪
⎪⎪
⎪⎪
⎪⎩⎩⎧

⎩对应角相等
性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 (二)灵活运用定理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA )②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或 ASA)②夹等角的另一组边相等(SAS)
全等三角形的判定训练
1.已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。

2.已知AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?
3.已知AB =CD ,BE =DF ,AE =CF ,问AB ∥CD 吗?
4.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?
5.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.
A
B
C
D
F
E
A C B
D E F
D
C F
E A B
A D E B
C
1 2
3
4
6.如图,AD=BC,AB=DC. 求证:∠A+∠D=180°
7.如图,已知:AE=CE,∠A=∠C,∠BED=∠AEC,求证:AB=CD.
A
E
C B D
8.如图, AB∥CD, AD、BC交于O点, EF过点O分别交AB、CD于E、F,且AE=DF,
求证:O是EF的中点.
A E B
9.如图,在△ABC中,AD⊥BC,CE⊥AB,垂直分别为D,E,AD,CE交于点H,已知EH=EB=3,AE=4,求CH 的长。

A
E
D C
B
H
10.已知,如图,AB=AE, ∠B=∠E, ∠BAC=∠EAD, ∠CAF=∠DAF. 求证:AF ⊥CD
11.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 于BE 相交于点H ,则BH 与AC 相等吗?为什么?
12.已知D 是△ABC 的边BC 上一点,且CD=AB, ∠BDA=∠BAD,AE 是△ABD 的中线。

求证:AC=2AE
13.已知:如图3-50,AB=DE ,直线AE ,BD 相交于C ,∠B +∠D=180°,AF ∥DE ,交BD 于F .求证:CF=CD .
14.已知:如图,B F⊥AC 于点F ,CE⊥AB 于点E ,且BD=CD 求证:⑴△BDE≌△CDF ⑵点D 在∠A 的平分线上
B
E
D F
C
B A
E
H
D
C
B E D C
A
A
B
D
E
15.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.
16.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C
17. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
18.如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN 。

19.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证:(1)EC=BF ;(2)EC ⊥BF
D C B
A
F
E 654
32
1E D
C
B
A
F
C
M
N
E
12
3
4 A E F
20.如图所示,∠BAC=90°,AB=AC,AE是过A的一条直线,B,C在AE的异侧,BD⊥AE于D,C, CE⊥AE于E,求证:BD=DE+CE
A
D
C
B
E。

相关文档
最新文档