导数证明

合集下载

导数公式证明大全

导数公式证明大全

导数公式证明大全导数是微积分中的重要概念,它描述了函数变化率的性质。

在这篇文章中,我们将给出一些导数的常用公式的证明。

1.一次函数的导数证明:我们考虑一条一次函数的图像,其方程为y = ax + b,其中a和b是常数。

假设我们有两个点(x, y)和(x + h, y + kh)在图像上,其中h是一个趋近于0的非零常数。

由直线的斜率公式知道,两点之间的斜率为k = (y + kh - y) / (x + h - x) = k。

函数的导数定义为函数曲线上任意一点切线的斜率,我们需要证明这个斜率与常数a相等。

根据定义,导数为dy / dx = lim(h -> 0) [(y + kh - y) / (x + h - x)] = lim(h -> 0) (kh / h) = a。

因此,一次函数y = ax + b的导数为dy / dx = a。

2.幂函数的导数证明:考虑一个幂函数y=x^n,其中n是常数。

我们仍然用限制h趋近于0的两个点(x, y)和(x + h, y + kh)来证明这个导数。

根据定义,导数为dy / dx = lim(h -> 0) [(y + kh - y) / (x + h - x)] = lim(h -> 0) [(x + h)^n - x^n] / h。

我们可以使用二项式定理展开(x + h)^n = x^n + nx^(n-1)h + ... + h^n,并取消掉所有除以h的项:dy / dx = lim(h -> 0) [nx^(n-1)h + ... + h^n] / h = lim(h -> 0) [nx^(n-1) + ... + h^(n-1)] = nx^(n-1)。

因此,幂函数y = x^n的导数为dy / dx = nx^(n-1)。

3.指数函数的导数证明:考虑一个指数函数y=a^x,其中a是常数。

我们仍然使用限制h趋近于0的两个点(x, y)和(x + h, y + kh)来证明导数。

导数基本公式的证明

导数基本公式的证明

导数基本公式的证明导数是微积分中非常重要的概念,它描述了函数在其中一点附近的变化率。

导数的基本公式是微积分中的基础知识,本文将为您证明导数的基本公式。

我们先来回顾导数的定义。

对于一个函数f(x),在其中一点x=a处可导,如果该点的导数存在,即该函数在x=a的邻域内极限f'(a) = lim [f(x) - f(a)] / (x - a)x→a存在,那么f'(a)即为函数f(x)在点x=a处的导数。

我们现在来证明导数的基本公式。

1.导数的和法则对于函数f(x)和g(x),假设f(x)和g(x)在x=a处可导,那么(f+g)(a)在x=a处的导数为:(f+g)'(a)=f'(a)+g'(a)证明:根据导数的定义,我们有:(f+g)'(a) = lim [(f+g)(x) - (f+g)(a)] / (x - a)x→a我们展开(f+g)(x)并进行简化:(f+g)'(a) = lim [f(x) + g(x) - f(a) - g(a)] / (x - a)x→a= lim [f(x) - f(a)] / (x - a) + lim [g(x) - g(a)] / (x - a) x→ax→a根据导数的定义,上式等于f'(a)+g'(a),即得证。

2.导数的差法则对于函数f(x)和g(x),假设f(x)和g(x)在x=a处可导,那么(f-g)(a)在x=a处的导数为:(f-g)'(a)=f'(a)-g'(a)证明:根据导数的定义,我们有:(f-g)'(a) = lim [(f-g)(x) - (f-g)(a)] / (x - a)x→a我们展开(f-g)(x)并进行简化:(f-g)'(a) = lim [f(x) - g(x) - f(a) + g(a)] / (x - a)x→a= lim [f(x) - f(a)] / (x - a) - lim [g(x) - g(a)] / (x - a) x→ax→a根据导数的定义,上式等于f'(a)-g'(a),即得证。

导数的四则运算证明

导数的四则运算证明

导数的四则运算证明本文讲解了求导数四则运算如何进行证明,包括加法运算、减法运算、乘法运算和除法运算。

一、加法运算求解导数的加法运算是基于拉格朗日准则:“两个曲线的切线的斜率的和等于这两条曲线的斜率的和”,可以通过它来进行证明。

如果有两个函数y1=f1(x),y2=f2(x),则其和函数y1+y2=f1(x)+f2(x),证明的形式如下:∂/∂x(f1(x)+f2(x))=∂/∂x(f1(x))+∂/∂x(f2(x))即求得,两个函数的导数的和等于这两个函数之和的导数二、减法运算假设有两个函数y1=f1(x),y2=f2(x),减法运算后y1-y2=f1(x)-f2(x),求其导数的证明如下:∂/∂x(f1(x)-f2(x))=∂/∂x(f1(x))-∂/∂x(f2(x))即求得,两个函数的导数的差等于这两个函数之差的导数三、乘法运算假设有两个函数f1(x),f2(x),它们的乘积函数为f1(x)×f2(x),对其导数求解如下:∂/∂x(f1(x)×f2(x))=f1(x)×∂/∂x(f2(x))+∂/∂x(f1(x))×f2(x)即求得,两个函数的导数的乘积等于这两个函数之乘积的导数四、除法运算假设有两个函数f1(x),f2(x),它们的积除函数为f1(x)÷f2(x),对其导数求解如下:∂/∂x(f1(x)÷f2(x))=[(f2(x))×∂/∂x(f1(x))-(f1(x))×∂/∂x(f2(x))]÷(f2(x))^2即求得,两个函数的导数的商等于这两个函数之商的导数以上就是求导数四则运算的证明,可以看出,四则运算都满足拉格朗日准则,即函数的性质不变,斜率的和等于总斜率。

用定义证明导数的四则运算

用定义证明导数的四则运算

用定义证明导数的四则运算在微积分中,导数是表示函数变化率的数学概念。

导数能够帮助我们了解函数在某一点的变化速率,以及函数的斜率。

为了证明导数的四则运算规则,我们可以利用导数的定义来进行推导。

定义导数设函数f(f)在f=f处可导,那么f(f)在f=f处的导数f′(f)定义为:$$ f'(a) = \\lim_{{h \\to 0}} \\frac{f(a + h) - f(a)}{h} $$这个定义告诉我们函数在f=f处的导数是函数在f=f 处的变化率。

现在,我们将利用这个定义证明导数的四则运算规则。

导数的四则运算1. 和差法则设f(f)和f(f)是两个函数,它们在f=f处可导。

我们来证明 $(f(x) \\pm g(x))'$ 等于 $f'(a) \\pm g'(a)$。

根据导数的定义,我们有:$$ \\begin{aligned} (f(x) \\pm g(x))'(a) &= \\lim_{{h \\to 0}} \\frac{(f(a + h) \\pm g(a + h)) - (f(a) \\pm g(a))}{h} \\\\ &= \\lim_{{h \\to 0}} \\left(\\frac{f(a + h) - f(a)}{h} \\pm\\frac{g(a + h) - g(a)}{h}\\right) \\\\ &= f'(a) \\pm g'(a)\\end{aligned} $$2. 积法则设f(f)和f(f)是两个函数,它们在f=f处可导。

我们来证明 $(f(x) \\cdot g(x))'$ 等于 $f'(a) \\cdot g(a) + f(a)\\cdot g'(a)$。

根据导数的定义,我们有:$$ \\begin{aligned} (f(x) \\cdot g(x))'(a) &= \\lim_{{h \\to 0}} \\frac{f(a + h)g(a + h) - f(a)g(a)}{h} \\\\ &= \\lim_{{h \\to 0}} \\left(\\frac{f(a + h) - f(a)}{h}g(a + h) + \\frac{g(a + h) -g(a)}{h}f(a)\\right) \\\\ &= f'(a) \\cdot g(a) + f(a) \\cdot g'(a) \\end{aligned} $$3. 商法则设f(f)和f(f)是两个函数,且f(f)ff0。

常用高阶导数公式证明

常用高阶导数公式证明

常用高阶导数公式证明一阶导数假设函数y=y(y)在y处可导,则函数y=y(y)在y处的导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数如果函数y=y(y)在y处可导,那么它的二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$高阶导数函数y=y(y)的y阶导数定义如下:$$ f^{(n)}(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f^{(n-1)}(x + \\Delta x) - f^{(n-1)}(x)}}{\\Delta x} $$常用高阶导数公式证明二阶导数的公式一阶导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$将一阶导数y′(y)的定义代入二阶导数公式中,得到:$$ f''(x) = \\lim_{{\\Delta x}\\to0}\\frac{{\\left(\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x}\\right)\\big|_{x+\\Delta x} - f'(x)}}{\\Delta x} $$根据导数的定义,上式可简化为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} -f'(x)}}{\\Delta x} $$由此可得到二阶导数的通用公式。

用导数定义证明导数公式的方法

用导数定义证明导数公式的方法

用导数定义证明导数公式的方法在微积分中,导数是描述函数变化速率的重要工具。

证明导数公式是微积分学习中的关键内容之一。

本文将介绍一种用导数定义证明导数公式的方法,帮助读者更深入理解导数的概念和应用。

在证明导数公式时,我们通常会使用基本的导数定义:假设函数f(f)在某一点f可导,那么f(f)在该点的导数f′(f)定义为:$$ f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x + \\Delta x) -f(x)}{\\Delta x} $$基于这一定义,我们可以推导出各种导数的计算公式。

以下以常见的导数公式为例,介绍如何用导数定义证明这些公式。

1. 常数函数的导数首先考虑常数函数f(f)=f的导数。

根据导数定义,我们有:$$ f'(x) = \\lim_{\\Delta x \\to 0} \\frac{f(x + \\Delta x) -f(x)}{\\Delta x} = \\lim_{\\Delta x \\to 0} \\frac{C -C}{\\Delta x} = \\lim_{\\Delta x \\to 0} 0 = 0 $$因此,常数函数的导数恒为0。

2. 幂函数的导数考虑幂函数f(f)=f f的导数。

根据导数定义,我们有:$$ f'(x) = \\lim_{\\Delta x \\to 0} \\frac{(x+\\Delta x)^n -x^n}{\\Delta x} $$为了证明这一式子,我们可以使用二项式定理将$(x +\\Delta x)^n$展开,最终可以得到导数的计算公式。

通过以上的方法,可以用导数定义证明各种函数的导数公式。

这种方法不仅有助于加深对导数概念的理解,还可以帮助我们更好地理解微积分中的基本原理。

希望读者通过这种方法,能够更加熟练地运用导数来分析和解决实际问题。

结论通过以上方法,我们可以用导数定义证明各种导数公式,从常数函数到复杂函数,都可以通过导数的定义来推导和证明其导数公式。

导数证明不等式 步骤

导数证明不等式 步骤

导数证明不等式步骤
1. 确认要证明的不等式的形式。

导数证明不等式一般都是基于单调性的变化,因此需要确认不等式的形式是“小于等于”还是“大于等于”。

2. 取函数的导数。

导数证明不等式要取函数的导数,因此需要首先找到函数的导数表达式。

如果函数的导数表达式比较难求,可以先将函数化简为更易求导的形式,再求导。

3. 找到函数的极值点。

导数证明不等式的核心是单调性分析,因此需要先找到函数的极值点,即导数为0的点。

对于一次函数,其导数恒为定值,没有极值点;而对于二次函数、三次函数等一些复杂的函数,极值点可以是最高次项系数为正时的最小值,或者最高次项系数为负时的最大值。

4. 利用极值点进行函数的单调性分析。

根据极值点,可以将整个函数的定义域分成若干段。

在每一段内,函数的单调性可能存在增加、减少或不变。

因此需要分别考虑每一段函数的单调性。

5. 比较函数值。

在每一段函数的单调性分析之后,可以比较函数在不同点的值。

根据不等式的形式,可以进行大小的比较,进而得到证明。

如果比较函数值比较麻烦,可以考虑对函数关于某个点进行泰勒展开,通过展开式的系数进行比较。

6. 总结证明过程,得出结论。

对于导数证明不等式,一般的证明过程都是通过分析函数的单调性,最后得到证明结论的。

因此,在整合证明过程的过程中,要注意明确函数的单调性,清晰地展示每一个分段函数的单调性分析,以及通过比较函数值来得到证明结论。

最后,需要总结证明过程,得出不等式的正确性结论。

16个基本导数公式详解

16个基本导数公式详解

16个基本导数公式详解在微积分中,导数是指函数在其中一点的切线斜率或变化率。

它在计算斜率、切线和极值时起着重要作用。

以下是16个基本导数公式的详解。

1. 常数函数导数:对于常数函数y=c,导数为dy/dx = 0。

这是因为常数函数在任何点的斜率都是零。

2. 幂函数导数:对于幂函数y=x^n(这里n是常数),其导数为dy/dx = nx^(n-1)。

这个公式可以通过使用极限定义导数来证明。

例如,对于y=x^2,导数为dy/dx = 2x。

3. 指数函数导数:对于指数函数y=a^x(这里a是常数且a>0),其导数为dy/dx = a^x * ln(a)。

这个公式可以通过使用极限定义导数和对数函数的导数来证明。

4. 对数函数导数:对于自然对数函数y=ln(x),其导数为dy/dx =1/x。

对数函数的导数是指数函数导数的倒数。

这个公式也可以通过使用极限定义导数来证明。

5. 正弦函数导数:对于正弦函数y=sin(x),其导数为dy/dx =cos(x)。

这个公式可以通过使用极限定义导数和三角函数的定义来证明。

6. 余弦函数导数:对于余弦函数y=cos(x),其导数为dy/dx = -sin(x)。

这个公式可以通过使用极限定义导数和三角函数的定义来证明。

7. 正切函数导数:对于正切函数y=tan(x),其导数为dy/dx =sec^2(x)。

这个公式可以通过使用sin(x)和cos(x)的导数公式来证明。

8. 反正弦函数导数:对于反正弦函数y=arcsin(x),其导数为dy/dx = 1/√(1 - x^2)。

这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。

9. 反余弦函数导数:对于反余弦函数y=arccos(x),其导数为dy/dx = -1/√(1 - x^2)。

这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。

10. 反正切函数导数:对于反正切函数y=arctan(x),其导数为dy/dx = 1/(1 + x^2)。

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。

举例说明:证明当x>0时,e^x>1+x。

我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。

通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。

即e^x>1+x。

方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。

举例说明:证明(1+x)^n > 1+nx,其中n为自然数。

我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。

令f'(x) = 0,可得x = -1/(n-1)。

我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。

当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。

所以在此区间上(1+x)^n > 1+nx。

同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。

方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。

举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。

我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。

计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。

导数公式的证明最全

导数公式的证明最全

导数公式的证明(最全版)————————————————————————————————作者:————————————————————————————————日期:导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。

导数公式的证明(基础)

导数公式的证明(基础)

导数的定义:f'(x)=lim Δy/Δx用定义求导数公式(1)f(x)=x n求:f'(x)(3)f(x)=cosx 求:f'(x)(5)f(x)=log a x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2 所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1) (sinx)'=cosx (cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。

导数公式证明大全

导数公式证明大全

导数的定义::(x)=lim △ y/A x△ x—0 (下面就不再标明A x—0 了)用定义求导数公式1)f(x)=x A n证法一:n为自然数)f'(x)=lim [(x+A x)An-xAn]/A x=lim (x+ A x-x)[(x+ A x)A(n-1 )+x*(x+ A x)A(n -2)+...+xA(n-2)*(x+ A x)+xA(n -1 )]/ A x=lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+...+xA(n-2)*(x+A x)+xA(n-1)]=xA(n-1 )+x*xA(n -2)+xA2*xA(n -3)+ ...xA(n-2)*x+xA(n -1 )=nxA(n-1)证法二:n为任意实数)f(x)=xAnlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*xAn f'(x)=nxA(n -1)(2)f(x)=sinxf'(x)=lim (sin(x+A x)-sinx)/A x=lim (sinxcos A x+cosxsin A x-sinx)/ A x =lim (sinx+cosxsin A x-sinx)/A x=lim cosxsin A x/A x=cosx(3)f(x)=cosxf'(x)=lim (cos(x+A x)-cosx)/A x=lim (cosxcos A x-sinxsin A x-cosx)/A x =lim (cosx-sinxsin A x-cos)/A x=lim -sinxsin A x/A x=-sinx4)f(x)=a A xf'(x) =lim (aA(x+A x)-aAx)/A x=lim a A x*(a A△ x-1)/A x设"Ax-仁m,贝U A x=logaA(m+1))=lim aAx*m/logaA(m+1)=lim aAx*m/[ln(m+1)/lna]=lim aAx*lna*m/ln(m+1)=lim aAx*lna/[(1/m)*ln(m+1)]=lim aAx*lna/ln[(m+1)A(1/m)]=lim aAx*lna/lne=aAx*lna若a=e,原函数f(x)=eAx 贝f'(x)=eAx*lne=eAx(5)f(x)=logaAxf'(x)=lim (logaA(x+A x)-logaAx)/A x=lim logaA[(x+A x)/x]/A x=lim logaA(1+A x/x)/A x=lim ln(1+A x/x)/(lna* A x) =lim x*ln(1+ A x/x)/(x*lna* A x) =lim (x/A x)*ln(1+ △ x/x)/(x*Ina)=lim ln[(1+ A x/x)A(x/ A x)]/(x*Ina)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=logeAx=Inx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+A x)-tanx)/A x=lim (sin(x+A x)/cos(x+ A x)-sinx/cosx)/A x=lim (sin(x+A x)cosx-sinxcos(x+A x)/(A xcosxcos(x+A x))=lim (sinxcos A xcosx+sin A xcosxcosx-sinxcosxcos A x+sinxsinxsin A x)/(A xcosxcos(x+A x))=lim sin A x/(A xcosxcos(x+A x))=1/(cosx)A2=secx/cosx=(secx)A2=1+(tanx)A2(7)f(x)=cotx f'(x)=lim (cot(x+ △ x)- cotx)/ △ x=lim (cos(x+A x)/sin(x+ △ x) -cosx/sinx)/A x=lim (cos(x+A x)sinx-cosxsin(x+A x))/( A xsinxsin(x+ A x)) =lim (cosxcos A xsinx-sinxsinxsin A x-cosxsinxcos A x- cosxsin A xcosx)/(A xsinxsin(x+A x))=lim -sin A x/(A xsinxsin(x+A x))=-1/(s in x)A2= -cscx/si nx=-(secxF2二1-(cotxF28)f(x)=secx f'(x)=lim (sec(x+A x)-secx)/A x=lim (1/cos(x+A x)-1/cosx)/A x=lim (cosx-cos(x+A x)/(A xcosxcos A x)=lim (cosx-cosxcos A x+sinxsin A x)/(A xcosxcos(x+A x))=lim sinxsin A x/(A xcosxcos(x+A x))=sinx/(cosx)A2=tanx*secx9)f(x)=cscxf'(x) =lim (csc(x+A x)-cscx)/A x=lim (1/sin(x+ A x)-1/sinx)/A x=lim (sinx-sin(x+A x))/(A xsinxsin(x+A x))=lim (sinx-sinxcos A x-sin A xcosx)/(A xsinxsin(x+A x)) =lim -sin A xcosx/(A xsinxsin(x+A x))=-cosx/(s in x)A2=-cotx*cscx10)f(x)=x A x lnf(x)=xlnx (lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x) f'(x)=(lnx+1)*xAx(12)h(x)=f(x)g(x)h'(x)=lim (f(x+ A x)g(x+ A x)-f(x)g(x))/ A x =lim [(f(x+ A x)-f(x)+f(x))*g(x+A x)+(g(x+A x)-g(x)-g(x+A x))*f(x)]/ A x=lim [(f(x+ △x)-f(x))*g(x+ △x)+(g(x+ △ x)-g(x))*f(x)+f(x)*g(x+ △ x)-f(x)*g(x+ △ x)]/ A x=lim (f(x+ A x)-f(x))*g(x+ A x)/ A x+(g(x+ A x)-g(x))*f(x)/ A x=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+ A x)/g(x+A x)-f(x)g(x))/A x=lim (f(x+A x)g(x)-f(x)g(x+A x))/(A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x)+f(x))*g(x) -(g(x+ A x) -g(x)+g(x))*f(x)]/( A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x))*g(x) -(g(x+ A x)-g(x))*f(x)+f(x)g(x) -f(x)g(x)]/(A xg(x)g(x+A x))=lim (f(x+ A x)-f(x))*g(x)/( A xg(x)g(x+A x))-(g(x+A x)-g(x))*f(x)/( A xg(x)g(x+A x))=f'(x)g(x)/(g(x)*g(x)) -f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+ A x))-f(g(x))]/ A x=lim [f(g(x+A x)-g(x)+g(x))-f(g(x))]/A x (另g(x)=u, g(x+A x)-g(x)= △ u)=lim (f(u+ A u)-f(u))/ A x=lim (f(u+ A u)-f(u))* A u/(A x*A u)=lim f'(u)* A u/A x=lim f'(u)*(g(x+ A x)-g(x))/A x=f'(u)*g'(x)=f'(g(x))g'(x)总结一下(A n )'=nx^( n-1)(sinx) '=cosx(cosx) '=-sinx(aAx) '=aAxlna(eAx) '=eAx(logaAx) '=1/(xlna)(lnx)'=1/x(tanx)'=(secx)A2=1+(tanx)A2(cotx)'=-(cscx)A2=-1-(cotx)A2(secx)'=tanx*secx(cscx)'=-cotx*cscx(xAx)'=(lnx+1)*xAx [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)/g(x)]'=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x)。

导数证明不等式的几个方法

导数证明不等式的几个方法

导数证明不等式的几个方法在高等数学中,我们学习了很多种方法来证明不等式。

其中一种常见的方法是使用导数。

导数是用来描述函数变化率的概念,因此可以很好地用来证明不等式。

本文将介绍几种使用导数证明不等式的方法。

一、利用导数的正负性来证明不等式这种方法是最直接的方法之一、假设我们要证明一个函数f(x)在一个区间上大于等于0,我们可以先求出函数f(x)的导数f'(x),然后根据f'(x)的正负性来判断f(x)的增减情况。

如果f'(x)大于等于0,则说明f(x)在整个区间上是递增的;如果f'(x)小于等于0,则说明f(x)在整个区间上是递减的。

根据递增或递减的性质,我们可以得出f(x)大于等于0的结论。

例如,我们要证明函数f(x)=x^2在区间[0,∞)上大于等于0。

首先求出f(x)的导数f'(x)=2x。

然后我们发现在整个区间上,f'(x)大于等于0,说明f(x)是递增的。

由于f(0)=0,因此可以得出f(x)大于等于0的结论。

二、利用导数的单调性来证明不等式这种方法是一种延伸和推广。

与前一种方法类似,我们可以根据导数的单调性来判断函数f(x)的增减情况。

如果f'(x)在一个区间上是递增的,那么f(x)在该区间上是凸的;如果f'(x)在一个区间上是递减的,那么f(x)在该区间上是凹的。

利用这个性质,我们可以得出一些重要的结论。

例如,如果我们要证明一个凸函数在一个区间上大于等于一个常数c,那么只需要证明在这个区间的两个端点上的函数值大于等于c,同时导数在这个区间上是递增的。

三、利用导数的极值来证明不等式这种方法利用了导数的极值特性。

如果一个函数f(x)在一些点x0处的导数为0,并且在这个点的左右两侧的导数符号发生了改变,那么我们可以得出结论,在x0处取得极值。

如果f(x)在x0处取得最大值,那么在这个点的左侧函数值都小于等于f(x0),而在这个点的右侧函数值都大于等于f(x0);反之,如果f(x)在x0处取得最小值,那么在这个点的左侧函数值都大于等于f(x0),而在这个点的右侧函数值都小于等于f(x0)。

导数的公式及证明

导数的公式及证明
导数公式及证由之运算来): 基本导数公式
1.常函数(即常数)y=c(c为常数) y'=0 2.幂函数y=x^n,y'=nx^(n-1)(n∈Q*) 熟记1/X的导数 3.指数函数(1)y=a^x,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数 4.对数函数(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx,y'=1/x 5.正弦函数y=(sinx )y'=cosx 6.余弦函数y=(cosx) y'=-sinx 7.正切函数y=(tanx) y'=1/(cosx)^2 8.余切函数y=(cotx) y'=-1/(sinx)^2 9.反正弦函数y=(arcsinx) y'=1/√1-x^2 10.反余弦函数y=(arccosx) y'=-1/√1-x^2 11.反正切函数y=(arctanx) y'=1/(1+x^2) 12.反余切函数y=(arccotx) y'=-1/(1+x^2) 为了便于记忆,有人整理出了以下口诀: 常为零,幂降次,对导数(e为底时直接导数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’ 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。主要应用导数定义与N次方差公式。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算。由设的辅助函数可以知道:Δx=loga(1+β)。 所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 显然,当Δx→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。 可以知道,当a=e时有y=e^x y'=e^x。 4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x。 也可以进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x。 这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。 5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.类似地,可以导出y=cosx y'=-sinx。 7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果。 对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法。 y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是曲线一点斜率,函数值的变化率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。 x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1. 建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值。

导数公式证明大全(最全版)

导数公式证明大全(最全版)

数学导数公式大全
若 a=e,原函数 f(x)=loge^x=lnx 则 f'(x)=1/(x*lne)=1/x
(6)f(x)=tanx f'(x) =lim (tan(x+Δx)-tanx)/Δx =lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx =lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx)) =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔ x+sinxsinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinΔx/(Δxcosxcos(x+Δx)) =1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2
数学导数公式大全
(3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx
(4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设 a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1)
证法二:(n 为任意实数) f(x)=x^n
lnf(x)=nlnx
数学导数公式大全
(lnf(x))'=(nlnx)'

导数公式的证明(最全版)

导数公式的证明(最全版)

导数的定义:f'(x)=lim Δy/ΔxΔx→0(下面就不再标明Δx→0了)用定义求导数公式(1)f(x)=x^n证法一:(n为自然数)f'(x)=lim [(x+Δx)^n-x^n]/Δx=lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx=lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1)=nx^(n-1)证法二:(n为任意实数)f(x)=x^nlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*x^nf'(x)=nx^(n-1)(2)f(x)=sinxf'(x)=lim (sin(x+Δx)-sinx)/Δx=lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx=lim cosxsinΔx/Δx=cosx(3)f(x)=cosxf'(x)=lim (cos(x+Δx)-cosx)/Δx=lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx=lim -sinxsinΔx/Δx=-sinx(4)f(x)=a^x证法一:f'(x)=lim (a^(x+Δx)-a^x)/Δx=lim a^x*(a^Δx-1)/Δx(设a^Δx-1=m,则Δx=loga^(m+1))=lim a^x*m/loga^(m+1)=lim a^x*m/[ln(m+1)/lna]=lim a^x*lna*m/ln(m+1)=lim a^x*lna/[(1/m)*ln(m+1)] =lim a^x*lna/ln[(m+1)^(1/m)] =lim a^x*lna/lne=a^x*lna证法二:f(x)=a^xlnf(x)=xlna[lnf(x)] '=[xlna] 'f' (x)/f(x)=lnaf' (x)=f(x)lnaf' (x)=a^xlna若a=e,原函数f(x)=e^x则f'(x)=e^x*lne=e^x(5)f(x)=loga^xf'(x)=lim (loga^(x+Δx)-loga^x)/Δx =lim loga^[(x+Δx)/x]/Δx=lim loga^(1+Δx/x)/Δx=lim ln(1+Δx/x)/(lna*Δx)=lim x*ln(1+Δx/x)/(x*lna*Δx)=lim (x/Δx)*ln(1+Δx/x)/(x*lna) =lim ln[(1+Δx/x)^(x/Δx)]/(x*lna) =lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=loge^x=lnx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1)(sinx)'=cosx(cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2 (cotx)'=-(cscx)^2=-1-(cotx)^2 (secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。

导数的证明问题思路

导数的证明问题思路

导数的证明问题思路在微积分学中,导数是描述函数变化率的重要概念,它在许多领域中都有广泛的应用。

导数的定义和求解是微积分学习中的重要内容,而导数的证明问题则是深入理解导数概念的关键之一。

本文将从导数的定义出发,探讨导数的证明问题,并提供一些解题思路。

导数的定义在函数的微积分学中,函数$ f(x) 在某点 x=a $处的导数定义如下:$$ f'(a) = \\lim_{h \\to 0} \\frac{f(a + h) - f(a)}{h} $$其中$ f’(a) 表示函数 f(x) 在 x=a处的导数,即函数在该点的变化率。

这个定义可以理解为当自变量x 在 a 处微小变化 h 时,函数 f(x) $对应的因变量的变化率。

导数的证明问题思路极限运算的性质在导数证明中,常用到极限运算的性质,如加法、减法、乘法、除法、复合函数等。

通过运用这些性质,可以简化导数的计算过程,并有效地处理各种导数证明问题。

函数的基本导数公式对于常见函数的导数,我们需要掌握它们的基本导数公式,如幂函数、指数函数、对数函数、三角函数等。

通过熟练掌握这些基本导数公式,可以更快速地证明导数相关问题。

利用导数的定义进行计算根据导数的定义,我们可以将函数的导数计算转化为极限运算,通过极限运算的求解来证明导数的计算结果。

这种方法在一些复杂函数的导数计算中特别有效。

函数的图像分析通过观察函数的图像特征,可以帮助我们更直观地理解导数的概念,并在导数证明问题中得到启发。

特别是在求函数的关键点、拐点等问题时,图像分析是非常重要的证明方法之一。

结语导数的证明问题是微积分学习中的难点之一,需要我们熟练掌握函数的基本导数公式、极限运算的性质等知识,并灵活应用在实际计算中。

希望本文提供的导数证明问题思路能够帮助读者更好地理解和掌握导数的概念,促进微积分学习的深入。

用导数的定义证明

用导数的定义证明

用导数的定义证明在微积分中,导数是描述函数变化率的重要概念。

导数的定义可以被用来证明某些函数的性质和推导出一些重要的结论。

本文将通过导数的定义,展示如何证明一些数学上的问题。

导数的定义设函数f(f)在某个区间内有定义,若极限$$ f'(x)=\\lim_{h \\to 0} \\frac{f(x+h)-f(x)}{h} $$存在,则称该极限为函数f(f)在点f处的导数。

导数可以用来描述函数在某一点的瞬时变化率。

用导数的定义证明某函数性质定理1:导数的和的导数等于原函数的导数的和假设函数f(f)和f(f)在某个区间内具有导数,我们要证明(f(f)+f(f))′等于f′(f)+f′(f)。

证明过程如下:首先,根据导数的定义,我们有$$ (f(x)+g(x))' = \\lim_{h \\to 0} \\frac{f(x+h)+g(x+h)-(f(x)+g(x))}{h} $$进一步,将分子展开得到$$ (f(x)+g(x))' = \\lim_{h \\to 0} \\frac{f(x+h)-f(x)}{h} +\\frac{g(x+h)-g(x)}{h} $$根据导数的定义,上式等于f′(f)+f′(f)。

因此,得证(f(f)+f(f))′等于f′(f)+f′(f)。

定理2:导数的积的导数等于原函数的导数的积接下来我们证明$(f(x) \\cdot g(x))'$等于$f(x) \\cdot g'(x) + f'(x) \\cdot g(x)$。

证明过程如下:根据导数的定义,我们有$$ \\begin{aligned} (f(x) \\cdot g(x))' =& \\lim_{h \\to 0} \\frac{f(x+h) \\cdot g(x+h) - f(x) \\cdot g(x)}{h} \\\\ =&\\lim_{h \\to 0} \\left(\\frac{f(x+h) - f(x)}{h} \\cdot g(x+h) + f(x) \\cdot \\frac{g(x+h) - g(x)}{h}\\right) \\\\ =& f(x) \\cdot g'(x) + f'(x) \\cdot g(x) \\end{aligned} $$因此,$(f(x) \\cdot g(x))'$等于$f(x) \\cdot g'(x) + f'(x)\\cdot g(x)$成立。

如何证明可导

如何证明可导

如何证明可导
函数可导的条件:左右导数存在且相等,并且在该点连续,才能证明该点可导。

如果一个函数在x0处可导,那么它一定在x0处是连续函数。

函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若
[f(x0+a)-f(x0)]/a的极限存在,
则称f(x)在x0处可导。

(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

扩展资料
导数的几何意义:
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f (x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。

这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 利用导数证明不等式
① 函数不等式的证明
a. 构造辅助函数
1 移项构造
例10 ()x x <+1ln ,()0>x 经典不等式 2 变形构造
例11 已知()()x a ax x x f ln 12
12-+-= ,51<<a ,求证对任意1x ,2x ∈()+∞,0, 21x x ≠,()()12
121->--x x x f x f 3 换元构造
4 控制变量构造
例12 若()2ln 2x mx x x f -+=有两个零点1x ,2x ()21x x <,且2210x x x +=。

求证()00<'x f
例13 已知()x e x f =,设b a <,试比较⎪⎭
⎫ ⎝⎛+2b a f 与()()a b a f b f --的大小,并说明理由.
b. 利用充分性证明
例14 证明0>x 时,ex
e x x 21ln -> 例15 已知函数()x x x
f ln -=,()x x x
g ln =
,证明()()21+>x g x f . 正整数不等式的证明
1 直接构造函数证明
例16 证明*∈N n ,n
n n n +<+11ln
2 比较通项构造证明 例17 证明*∈N n ,2≥n 时,n n
ln 13121<+++
例18 证明()1
1ln 13ln 12ln 1+>++++n n n 例19 证明()1
11ln 43ln 32ln 2+-<++++n n n n 例20 证明()()()
12121ln 33ln 22ln 222222++-<+++n n n n n 3 利用经典不等式证明
例21 求证e n <⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222211811411211 4 零点问题
分类讨论 分离参数 数形结合 例22 已知函数()ax x x f -=ln 有两个零点,求a 的范围. 例23 已知函数mx ex x x +-=232ln 有两个零点,求a 的范围. 5 恒成立,存在性问题
① 单变量问题
1 分离参数
2 分类讨论
3 找充分证充要 例2
4 已知函数()ax x x f -=ln ,对0>∀x ,()0<x f 恒成立,求a 的取值范围. 例24 已知函数()x x e e x f --=,若0≥x ,()ax x f ≥恒成立,求a 的取值范围. 例2
5 已知函数()()()1ln 1++=x x x f ,若0≥x ,()ax x f ≥恒成立,求a 的取值范围.。

相关文档
最新文档