三角形的证明测试题(最新版含答案)
(完整版)三角形的证明测试题(最新版含答案)
第一章三角形的证明检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于点D,则BD 的长为()A.157B.125C.207D.2153. 如图,在△ABC中,,点D在AC边上,且,则△A的度数为()A. 30°B. 36°C. 45°D. 70°4.(2015•湖北荆门中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.如图,已知,,,下列结论:①;②;③;④△≌△.其中正确的有()A.1个B.2个C.3个D.4个6. 在△ABC中,△A△△B△△C=1△2△3,最短边cm,则最长边AB的长是()A.5 cmB.6 cmC.5cmD.8 cm7.如图,已知,,下列条件能使△≌△的是()A. B.C. D.三个答案都是8.(2015·陕西中考)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个9.已知一个直角三角形的周长是26,斜边上的中线长为2,则这个三角形的面积为( ) A.5 B.2C.45D.110.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,交AB 于点E ,如果cm ,那么△的周长是( )A.6 cmB.7 cmC.8 cmD.9 cm二、填空题(每小题3分,共24分) 11.如图所示,在等腰△ABC 中,AB =AC , ∠BAC =50°, ∠BAC 的平分线与AB 的垂直平分线交于点O ,点 C 沿EF 折叠后与点O 重合,则∠OEC 的度数是 .12.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是________三角形.13.(2015•四川乐山中考)如图,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =________°. 14.如图,在△ABC 中,,AM 平分△,cm ,则点M 到AB 的距离是_________.15.如图,在等边△ABC 中,F 是AB 的中点, FE △AC 于E ,若△ABC 的边长为10,则_________,_________.16.(2015•江苏连云港中考)在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 . 17.如图,已知的垂直平分线交于点,则.18.一副三角板叠在一起如图所示放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M ,如果∠ADF =100°,那么∠BMD 为 度.三、解答题(共46分)19.(6分)如图,在△ABC中,,是上任意一点(M与A不重合),MD⊥BC,且交∠的平分线于点D,求证:.20.(6分)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图(1),若P A=PB,则点P为△ABC的准外心.应用:如图(2),CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探P A 的长.21.(6分)如图所示,在四边形中,平分∠.求证:.22.(6分)如图所示,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作等边△DCE,B,E在C,D的同侧,若2,求BE的长.23.(6分)如图所示,在Rt△ABC中,,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.24.(8分)(2015·陕西中考)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E.求证:AD=CE.第24题图25.(8分)已知:如图,,是上一点,于点,的延长线交的延长线于点.求证:△是等腰三角形.第一章三角形的证明检测题参考答案1.B 解析:只有②②正确.2.A 解析:②②BAC =90°,AB =3,AC =4,②5BC ===, ② BC 边上的高=123455⨯÷=. ② AD 平分②BAC ,②点D 到AB ,AC 的距离相等,设为h , 则111123452225ABC S h h ∆=⨯+⨯=⨯⨯,解得127h =,1121123 2725ABD S BD ∆=⨯⨯=⨯,解得157BD =.故选A . 3.B 解析:因为,所以.因为,所以.又因为,所以,所以所以4.C 解析:当等腰三角形的腰长是2,底边长是4时,等腰三角形的三边长是2,2,4,根据三角形的三边关系,不能构成三角形,所以不合题意,舍去;当等腰三角形的腰长是4,底边长是2时,等腰三角形的三边长是4,4,2,根据三角形的三边关系,能构成三角形,所以该三角形的周长为4+4+2=10.5.C 解析:因为,所以②②②(),所以,所以 ,即故②正确.又因为 ,所以②②②(ASA ), 所以 ,故②正确. 由②②②,知,又因为,所以②②②,故②正确.由于条件不足,无法证得②故正确的结论有:②②②.6.D 解析:因为②A ②②B ②②C =1②2②3, 所以②ABC 为直角三角形,且②C 为直角. 又因为最短边cm ,则最长边cm.7.D 解析:添加A 选项中条件可用“AAS”判定两个三角形全等; 添加B 选项中条件可用“SAS”判定两个三角形全等; 添加C 选项中条件可用“HL”判定两个三角形全等.故选D . 8.D 解析:在②ABC 中,② ②A =36°,AB =AC , ② ②ABC 是等腰三角形,②ABC =②C =72°. ② BD 平分②ABC ,② ②ABD =②CBD =36°, ② ②A =②ABD ,②CDB =②A +②ABD =36°+36°=72°, ② ②C =②CDB ,② ②ABD ,②CBD 都是等腰三角形. ② BC =BD .② BE =BC ,② BD =BE , ② ②EBD 是等腰三角形, ② ②BED ===72°.在②AED 中,② ②A =36°,②BED =②A +②ADE ,② ②ADE =②BED -②A =72°-36°=36°,② ②ADE =②A =36°,② ②AED 是等腰三角形. ② 图中共有5个等腰三角形.9.B 解析:设此直角三角形为②ABC ,其中因为直角三角形斜边的长等于斜边上中线长的2倍,所以又因为直角三角形的周长是624+,所以62=+b a . 两边平方,得24)(2=+b a ,即24222=++ab b a . 由勾股定理知16222==+c b a , 所以4=ab ,所以221=ab . 10.D 解析:因为垂直平分,所以.所以②的周长(cm ).11.100° 解析:如图所示,由AB =AC ,AO 平分∠BAC ,得AO 所在直线是线段BC 的垂直平分线,连接OB ,则OB=OA=OC , 所以②OAB =②OBA =×50°=25°,得②BOA=②COA=1802525130,︒-︒-︒=︒②BOC=360°-②BOA -②COA =100°. 所以②OBC=②OCB=1801002︒-︒=40°.由于EO=EC ,故②OEC =180°-2×40°=100°.12.直角 解析:直角三角形的三条高线交点恰好是此三角形的一个顶点;锐角三角形的三条高线交点在此三角形的内部;钝角三角形的三条高线交点在三角形的外部.13.15 解析:在Rt②AED 中,②ADE =40°,所以②A =50°. 因为AB =AC ,所以②ABC =(180°-50°)÷2=65°. 因为DE 垂直平分AB ,所以DA =DB , 所以②DBE =②A =50°. 所以②DBC =65°-50°=15°.14.20 cm 解析:根据角平分线的性质:角平分线上的点到角两边的距离相等可得答案. 15.251②3 解析:因为,F 是AB 的中点,所以.在Rt②中,因为,所以.又,所.16.4②3 解析:如图所示,过点D 作DM ②AB ,DN ②AC , 垂足分别为点M 和点N . ② AD 平分②BAC ,② DM =DN . ②AB ×DM ,AC ×DN ,② . 第16题答图17.60︒ 解析:② ②BAC=120︒,AB=AC , ② ②B=②C=180********.22BAC ︒-∠︒-︒==︒② AC 的垂直平分线交BC 于点D ,② AD=CD . ② 30,C DAC ∠=∠=︒② 303060.ADB C DAC ∠=∠+∠=︒+︒=︒18. 85 解析:② ②BDM =180°-②ADF -②FDE =180°-100°-30°=50°,② ②BMD=180°-②BDM-②B =180°-50°-45°=85°.19.证明:②,② ②,② .又② 为②的平分线,② ,② ,② .20. 解:应用:若PB=PC,连接PB,则②PCB=②PBC.② CD为等边三角形的高,② AD=BD,②PCB=30°,② ②PBD=②PBC=30°,②②②与已知PD=AB矛盾,② PB≠PC.若P A=PC,连接P A,同理,可得P A≠PC.若P A=PB,由PD=AB,得PD=BD,② ②BPD=45°,②②APB=90°.探究:若PB=PC,设P A=x,则x2+32=(4-x)2,② x =,即P A=.若P A=PC,则P A=2.若P A=PB,由图(2)知,在Rt②P AB中,这种情况不可能.故P A=2或.21.证明:如图,过点D作DE②AB交BA的延长线于点E,过点D作于点F.因为BD平分②ABC,所以.在Rt②EAD和Rt②FCD中,所以Rt②EAD②Rt②FCD(HL).所以②=②.因为②②80°,所以②.22.解:因为②ABD和②CDE都是等边三角形,所以,②②60°.所以②②②②,即②②.在②和②中,因为所以②②②,所以.又,所以.在等腰直角②中,2,故.23.解:,BE②EC.证明:② ,点D是AC的中点,② .② ②②45°,② ②②135°.② ,② ②EAB②②EDC.② ②②.② ②②90°.② ②.24.证明:② AE②BD,② ②EAC=②ACB.② AB=AC,② ②B=②ACB.② ②EAC=②B.又② ②BAD=②ACE=90°,② ②ABD②②CAE(ASA).② AD=CE.25.证明:② ,② ②②.②于点,② ②②.② ②②②②.② ②②.② ②②,② ②②.② ②是等腰三角形.。
全等三角形证明经典40题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
AD B C已知:∠1=∠2,CD=DE,EF如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
求证:BC=AB+DC。
在BC上截取BF=AB,连接EF∵BE平分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段AB,CD所在的直线交于E,则:△AED是等腰三角形。
∴AE=DE而AB=CD∴BE=CE∴△BEC是等腰三角形∴∠B=∠C.是∠BAC平分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E,使AE=AB。
∵AE=ABBACDF21EAAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB。
PC<EC+PE∴PC<(AC-AE)+PB∴PC-PB<AC-AB。
(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(含答案解析)
一、选择题1.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .242.如图,在Rt △ABC 中,∠BAC=90°,∠C=45°,AD ⊥BC 于点D ,∠ABC 的平分线分别交 AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交 BC 于点N ,连接EN ,下列结论:①△AFE 为等腰三角形;②DF= DN ;③AN = BF ;④EN ⊥NC .其中正确的结论有( )A .1个B .2个C .3个D .4个3.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.如图,在等腰三角形ABC 中,AB AC =,DE 垂直平分AB ,已知40ADE ∠=︒,则DBC ∠度数为( )A .5︒B .15︒C .20︒D .25︒5.下列命题中,假命题是( )A .直角三角形的两个锐角互余B .等腰三角形的两底角相等C .面积相等的两个三角形全等D .有一个角是60︒的等腰三角形是等边三角形6.如图,30MON ∠=︒点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ,223A B A ,334A B A ,…均为等边三角形,若11OA =,则边67B B 的长为( )A .63B .123C .323D .6437.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于点D .若∠A =30°,AE =10,则CE 的长为( )A .5B .4C .3D .28.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°9.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④ 10.如图,ACB △和DCE 均为等腰直角三角形,且90ACB DCE ∠=∠=︒,点A 、D 、E 在同一条直线上,CM 平分DCE ∠,连接BE .以下结论:①AD CE =;②CM AE ⊥;③2AE BE CM =+;④//CM BE ,正确的有( )A .1个B .2个C .3个D .4个11.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .612.如图,一棵高5米的树AB 被强台风吹斜,与地面BC 形成60︒夹角,之后又被超强台风在点D 处吹断,点A 恰好落在BC 边上的点E 处,若2BE =,则BD 的长是( )A .2B .3C .218D .247二、填空题13.如图.在ABC 中,2AB AC ==,40B C ∠=∠=︒,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于点E .(1)点D 从B 向C 的运动过程中,BDA ∠逐渐变____(填“大”或“小”);(2)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由._____.14.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.15.如图,ABC 中,45ABC ∠=︒,高AD 和BE 相交于点,30H CAD ∠=︒,若4AC =,则点H 到BC 的距离是_____________.16.在ABC ∆中,45A ∠=︒,60B ∠=︒,4AB =,点P 、M 、N 分别在边AB 、BC 、CA 上,连接PM 、MN 、NP ,则PMN ∆周长的最小值为__________17.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的底角度数为____________.18.已知,在等腰ABC ∆中,AD BC ⊥于点D ,且2BC AD =,则等腰ABC ∆底角的度数为_________.19.如图,在ABC 中,,AB AC AD =是BC 边上的中线,50B ∠=︒,则DAC ∠=___________20.在第1个△ABA 1中,∠B =30°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,第1个三角形的以A 1为顶点的内角的度数为__________;第n 个三角形的以A n 为顶点的内角的度数为__________.三、解答题21.如图,ABC ,其中AC BC >.(1)尺规作图:作AB 的垂直平分线交AC 于点P (要求:不写作法,保留作图痕迹); (2)若8,AB PBC =的周长为13,求ABC 的周长;(3)在(2)的条件下,若ABC 是等腰三角形,直接写出ABC 的三条边的长度. 22.已知:如图,ABC 是等腰三角形,AB AC =,36A ∠=︒(1)利用尺规作B平分线BD,交AC于点D;(保留作图痕迹,不写作法)△是否为等腰三角形,并说明理由.(2)判断ABD中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,23.如图,在ABCF.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系并说明理由.24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.25.如图.在△ABC中,∠C=90 °,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AB、AC于D、E,交BC的延长线于F,连接EB.(不写作法,保留作图痕迹)(2)求证:EB平分∠ABC.(3)求证:AE=EF.26.已知:如图,,,C D Rt AC BD AD ∠=∠=∠=与BC 相交于点P .求证:(1)Rt ABC Rt BAD ≌.(2)PAB △是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE =OE ,OF =CF ,再进行线段的代换即可求出AEF 的周长.【详解】解:∵EF ∥BC ,∴∠EOB =∠OBC ,∵BO 平分ABC ∠,∴∠EBO =∠OBC ,∴∠EOB =∠EBO ,∴BE =OE ,同理可得:OF =CF ,∴AEF 的周长为AE +AF +EF =AE +OE +OF +AF = AE +BE +CF +AF =AB +AC =7+8=15.故答案为:A【点睛】 本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.2.D解析:D利用等腰三角形的性质,直角三角形的性质,线段垂直平分线的性质,三角形的全等,角平分线的定义,逐一判断即可.【详解】∵∠BAC=90°,AD⊥BC,BE平分∠ABC ,∴∠DBF+∠DFB=90°,∠ABE+∠AEF=90°,∠ABE=∠DBF,∴∠AEF=∠DFB=∠AFE,∴△AFE为等腰三角形,∴结论①正确;∵△AFE为等腰三角形,M为EF 的中点,∴∠AMF=90°,∴∠DBF=∠DAN,∵∠BAC=90°,∠C=45°,AD⊥BC于点D,∴AD=BD,∴△DBF≌△DAN,∴DF= DN,AN=BF,∴结论②③正确;∵∠ABM=∠NBM,∴∠BMA=∠BMN= 90°,BM=BM,∴△BMA≌△BMN,∴AM=MN,∴BE是线段AN的垂直平分线,∴EA=EN,∴∠EAN=∠ENA=∠DAN,∴AD∥EN,∵AD⊥BC∴EN⊥NC,∴结论④正确;故选D.【点睛】本题考查了等腰三角形的判定和性质,三角形的全等,线段的垂直平分线的定义和性质,平行线的判定和性质,直角三角形的性质,角平分线的定义,熟练掌握知识,灵活运用知识是解题的关键.3.C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.B解析:B【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【详解】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=1(180°-∠A)=65°,2∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故选:B.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键.5.C解析:C根据直角三角形的性质、等腰三角形的性质、全等三角形的概念、等边三角形的判定定理判断即可.【详解】解:A、直角三角形的两个锐角互余,本选项说法是真命题;B、等腰三角形的两底角相等,本选项说法是真命题;C、面积相等的两个三角形不一定全等,本选项说法是假命题;D、有一个角是60°的等腰三角形是等边三角形,本选项说法是真命题;故选:C.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2B2B3,B3B4B n B n+1的长为 2,进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3∵A4B4=8B1A2=8,∴B3B4=43,以此类推,B n B n+1的长为2n-13,∴B6B7的长为323,故选:C.【点睛】本题考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.7.A解析:A【分析】先根据含30°角的直角三角形的性质求出DE=5,再根据角平分线的性质求出CE=DE=5即可.【详解】解:∵DE⊥AB,∴∠ADE=90°,在Rt△ADE中,∠A=30°,AE=10,∴DE=1AE=5,2∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴CE=DE=5,故选:A.【点睛】本题考查的是角平分线的性质、含30°角的直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD1,∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.9.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.10.C解析:C【分析】由“SAS ”可证ACD BCE ≅∆∆,可得AD BE =,ADC BEC ∠∠=,可判断①,由等腰直角三角形的性质可得45CDE CED ∠=∠=︒.CM AE ⊥,可判断②,由全等三角形的性质可求90AEB CME ,可判断④,由线段和差关系可判断③,即可求解. 【详解】解:ACB ∆和DCE ∆均为等腰直角三角形,CA CB ∴=,CD CE =,90ACB DCE ∠=∠=︒,∵∠ACD+∠DCB=90°,∠DCB+∠BCE=90°,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,AD BE ∴=,ADC BEC ∠∠=,故①错误,DCE ∆为等腰直角三角形,CM 平分DCE ∠,45CDE CED ∴∠=∠=︒,CM AE ⊥,故②正确,点A ,D ,E 在同一直线上,135ADC .135BEC ∴∠=︒.90AEB BEC CED ∴∠=∠-∠=︒,90AEB CME ,//CM BE ∴,故④正确,CD CE =,CM DE ⊥,DM ME ∴=.90DCE ∠=︒,1=2DM ME CM DE ∴==. 2AE AD DE BE CM ∴=+=+.故③正确,故选择:C .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明ACD BCE ≅∆∆是本题的关键.11.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解;【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥, ∴12CF BF BC ==, 在Rt △OEF 中,∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒, ∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.12.C解析:C【分析】过点D 作DM ⊥BC ,设BD=x ,然后根据题意和含30°的直角三角形性质分别表示出BM ,EM ,DE 的长,结合勾股定理列方程求解.【详解】解:过点D 作DM ⊥BC ,设BD=x ,由题意可得:AB=5,AD=DE=5-x∵∠ABC=60°,DM ⊥BC ,∴在Rt △BDM 中,∠BDM=30° ∴1122BM BD x ==,则122ME BE BM x =-=- ∴2222BD BM DE ME -=-,222211()(5)(2)22x x x x -=---解得:218x =,即BD=218米 故选:C .【点睛】本题考查含30°的直角三角形性质和勾股定理解直角三角形,正确理解题意掌握相关性质定理列方程求解是关键.二、填空题13.小80°或110°【分析】(1)由题意易得由点D 从B 项C 的运动过程中逐渐变大可求解问题;(2)由题意可分①若AD=DE 时②若时③若时则点D 与点B 重合点E 与点C 重合与题意矛盾故不符合题意;然后根据等腰解析:小 80°或110°【分析】(1)由题意易得140BDA BAD ∠=︒-∠,由点D 从B 项C 的运动过程中,BAD ∠逐渐变大可求解问题;(2)由题意可分①若AD =DE 时,②若AE DE =时,③若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意;然后根据等腰三角形的性质及角的等量关系可进行求解.【详解】解:(1)∵180BDA B BAD ∠+∠+∠=︒,∴140BDA BAD ∠=︒-∠,∵点D 从B 项C 的运动过程中,BAD ∠逐渐变大,∴BDA ∠逐渐变小;故答案为小;(2)若AD =DE 时,∵,40AD DE ADE =∠=︒,∴70DEA DAE ∠=∠=︒,∵DEA C EDC ∠=∠+∠,40B C ∠=∠=︒,∴30EDC ∠=︒,∴180110BDA ADE EDC ∠=︒-∠-∠=︒;若AE DE =时,∵,40AE DE ADE =∠=︒,∴40EDA DAE ∠=∠=︒,∴100DEA ∠=︒,∵DEA C EDC ∠=∠+∠,∴60EDC ∠=︒,∴18080BDA ADE EDC ∠=︒-∠-∠=︒;若AE AD =时,则点D 与点B 重合,点E 与点C 重合,与题意矛盾,故不符合题意; 综上所述:当80BDA ∠=︒或110°时,△ADE 的形状可以是等腰三角形;故答案为80°或110°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 14.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.15.2【分析】根据含30°角的直角三角形的性质可求解CD 的长然后利用AAS 证明△BDH ≌△ADC 可得HD=CD 进而求解【详解】解:∵AD ⊥BC ∴∠ADB=∠ADC=90°∴∠HBD+∠BHD=90°∵∠解析:2【分析】根据含30°角的直角三角形的性质可求解CD 的长,然后利用AAS 证明△BDH ≌△ADC ,可得HD =CD ,进而求解.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∴∠HBD +∠BHD =90°,∵∠CAD =30°,AC =4, ∴122CD AC ==, ∵BE ⊥AC ,∴∠HBD +∠C =90°,∴∠BHD =∠C ,∵∠ABD =45°,∴∠BAD =45°,∴BD =AD , 在△BDH 和△ADC 中,BHD C BDH ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDH ≌△ADC (AAS ),∴HD =CD =2,故点H 到BC 的距离是2.故答案为:2.【点睛】本题主要考查全等三角形的性质与判定,含30°角的直角三角形的性质,等腰直角三角形的性质和判定,证明△BDH ≌△ADC 是解题的关键.16.2【分析】作点M 关于AC 的对称点M′作点M 关于AB 的对称点M′′连接AMM′M′′M′M′′交AB 于点P′交AC 于点N′作AH ⊥BC 于点H 由对称性可知:当点M 固定时周长的最小值=M′M′′再推出M′解析:26 【分析】 作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:当点M 固定时,PMN ∆周长的最小值= M′M′′,再推出M′M′′=2AM ,进而即可求解.【详解】如图,作点M 关于AC 的对称点M′,作点M 关于AB 的对称点M′′,连接AM ,M′M′′,M′M′′交AB 于点P′,交AC 于点N′,作AH ⊥BC 于点H ,由对称性可知:MN′=M′N′,MP′=M′′P′,AM=AM′=AM′′,∴当点M 固定时,PMN ∆周长的最小值=MN′+MP′+N′P′= M′N′+M′′P′+N′P′= M′M′′, ∵45A ∠=︒,∠M′AC=∠MAC ,∠M′′AB=∠MAB ,∴∠M′A M′′=90°,即∆ M′A M′′是等腰直角三角形,∴M′M′′=2=2AM AM ′,∴当AM 最小时,M′M′′的值最小,即AM 与AH 重合时,M′M′′的值最小,∵60B ∠=︒,4AB =,AH ⊥BC ,∴∠BAH=30°,∴AH=3AB =23,此时,M′M′′的值最小=2AH =26, ∴PMN ∆周长的最小值=26.故答案是:26.【点睛】本题主要考查轴对称—线段和的最小值,直角三角形的性质,作点M 关于AB ,AC 的对称点,把PMN ∆周长化为两点间的线段长,是解题的关键.17.65°或25°【分析】在等腰△ABC 中AB =ACBD 为腰AC 上的高∠ABD =40°讨论:当BD 在△ABC 内部时如图1先计算出∠BAD =50°再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC解析:65°或25°【分析】在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,讨论:当BD在△ABC内部时,如图1,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形内角和计算;当BD 在△ABC外部时,如图2,先计算出∠BAD=50°,再根据等腰三角形的性质和三角形外角性质计算.【详解】解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=1(180°﹣50°)=65°;2当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=1∠BAD=25°,2综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形的外角性质,正确分类、熟练掌握上述知识是解题的关键.18.45°或15°或75°【分析】分三种情况讨论先根据题意分别画出图形当AB=AC 时根据已知条件得出AD=BD=CD从而得出△ABC底角的度数;当AB=BC时先求出∠ABD的度数再根据AB=BC求出底角解析:45°或15°或75°【分析】分三种情况讨论,先根据题意分别画出图形,当AB=AC时,根据已知条件得出AD=BD=CD,从而得出△ABC底角的度数;当AB=BC时,先求出∠ABD的度数,再根据AB=BC,求出底角的度数;当AB=BC时,根据AD=12BC,AB=BC,得出∠DBA=30°,从而得出底角的度数.【详解】①如图1,当AB=AC时,∵AD⊥BC,∴BD=CD,∵AD=12BC,∴AD=BD=CD,∴底角为45°;②如图2,当AB=BC时,∵AD=12BC,∴AD=12AB,∴∠ABD=30°,∴∠BAC=∠BCA=75°,∴底角为75°.③如图3,当AB=BC时,∵AD=12BC,AB=BC,∴AD=12AB,∴∠DBA=30°,∴∠BAC=∠BCA=15°;∴△ABC底角的度数为45°或75°或15°.故答案为:45°或15°或75°.【点睛】本题考查了含30度角的直角三角形和等腰三角形的性质,关键是根据题意画出图形,注意不要漏解.19.40【分析】首先根据等腰三角形的三线合一的性质得到AD⊥BC然后根据直角三角形的两锐角互余得到答案即可【详解】解:∵AB=ACAD是BC边上的中线∴AD⊥BC∠BAD=∠CAD∴∠B+∠BAD=90解析:40【分析】首先根据等腰三角形的三线合一的性质得到AD ⊥BC ,然后根据直角三角形的两锐角互余得到答案即可.【详解】解:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∠BAD =∠CAD ,∴∠B +∠BAD =90°,∵∠B =50°,∴∠BAD =40°,∴∠CAD =40°,故答案为:40.【点睛】考查了等腰三角形的性质,理解等腰三角形底边的高、底边的中线及顶角的平分线互相重合是解答本题的关键,难度不大.20.75°【分析】先根据等腰三角形的性质求出∠BA1A 的度数再根据三角形外角及等腰三角形的性质分别求出∠CA2A1∠DA3A2及∠EA4A3的度数找出规律即可得出∠An 的度数【详解】解:∵在△ABA1中解析:75° 1752n ︒- . 【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出∠A n 的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =1802B ︒-∠=75°, ∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=17522BA A ∠︒==37.5︒, 同理可得∠DA 3A 2=2752,∠EA 4A 3=3752︒, ,∴∠A n =1752n , 故答案为:75°;1752n . 【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,找出规律是解答此题的关键.三、解答题21.(1)画图见解析;(2)△ABC的周长=21;(3)AB=8,AC=8,BC=5.【分析】(1)根据垂直平分线的作法作出图形即可;(2)根据垂直平分线的性质可得AP=BP,从而得出AC+BC的值,再根据AB=8,即可求得△ABC的周长;(3)分两种情况进行讨论即可.【详解】解:(1)如图所示:即PQ为所求;;(2)如图所示:∵AB的垂直平分线交AC于点P,∴PA=PB,∵△PBC的周长为13,∴PB+PC+BC=13,∴PA+PC+BC=13,即AC+BC=13,∴△ABC的周长=AB+AC+BC=8+13=21;(3)∵AC>BC,∴分两种情况,①AC=AB=8时,BC=21-AC-BC=21-8-8=5;②BC=AB=8时,AC=21-AB-BC=21-8-8=5,∵AC>BC,∴不合题意舍去;综上所述,若△ABC是等腰三角形,△ABC的三条边的长度为AB=8,AC=8,BC=5.【点睛】本题是三角形综合题目,考查了线段垂直平分线的性质、等腰三角形的性质、尺规作图、三角形周长等知识.本题综合性强,熟练掌握等腰三角形的性质和线段垂直平分线的性质是解题的关键.22.(1)见详解;(2)是等腰三角形,证明见详解.【分析】(1)以B为圆心,以任意长为半径画弧交AB、AC于两点,再以这两点为圆心,以大于这两点的距离的一半为半径画弧,交于一点,过点B和这点作射线交AC与点D即可;(2)由∠A=36°,求出∠ABC=72°,进而求出∠ABD,根据等角对等边即可证明结论.【详解】解:(1)如图所示:BD即为所求;△是等腰三角形.(2)ABD∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠ABD=∠A,∴AD=BD,△是等腰三角形.∴ABD【点睛】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,角平分线的性质,尺规作图-作已知角的平分线等知识点,解此题的关键是能正确画图和求出∠ABD的度数.23.(1)∠FDC=60°(2)∠AED=2∠B,理由见解析【分析】(1)根据垂直平分线及高线的性质即可求解.(2)根据高的定义和、线段垂直平分线的性质和等腰三角形的性质可得EF//BC,∠AED=2∠AEF,再根据平行线的性质得∠AEF=∠B,故可得∠AED=2∠B.【详解】解:(1)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∠DAC=30°∴AF=FD ,∠ADC=90°∴∠FDA=30°,∴∠FDC=90°-30°=60°.(2)∵AD 是BC 边上的高线,EF 是AD 的垂直平分线,∴EF //BC ,EA=ED ,∴∠AED=2∠AEF ,∴∠AEF=∠B ,∴∠AED=2∠B .【点睛】本题考查了垂直平分线及高线的性质,平行线的判定及性质,解题的关键是熟练掌握垂直平分线、高线、平行线性质.24.(1)见解析;(2)22.5【分析】(1)根据全等三角形的判定和性质得出△ABD ≌△BAE ,进而得出OB=OA ;(2)根据全等三角形的判定和性质以及三角形内角和解答.【详解】证明:(1)∵AC=BC ,∠ACB=90°,∴∠ABC=∠BAC=45°.∴∠EBA=∠DAB=135°.在△ABD 与△BAE 中,135BE AD EBA DAB AB AB =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△BAE (SAS ),∴∠DBA=∠EAB ,∴OB=OA ;(2)由(1)得:OB=OA ,在△OBC 与△OAC 中,OB OA OC OC BC AC =⎧⎪=⎨⎪=⎩,∴△OBC ≌△OAC (SSS ),∴∠OCB=∠OCA=12∠ACB=12×90°=45°, ∵AC=BC ,AC=OC ,∴OC=BC , ∴∠CBO=∠COB 1801804567.522OCB ︒︒︒︒-∠-===, 在Rt △BCD 中,∠D=180°-90°-∠CBO=22.5°.故答案为:22.5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,关键是根据全等三角形的判定和性质解答.25.见解析【分析】(1)先作线段AB 的垂直平分线DE ,再延长BC 即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE ,得到答案; (3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC ,证得BE=EF ,又因为AE= BE ,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB平分∠ABC.(3)证明:∵DE是AB的垂直平分线∴DE⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)见解析【分析】(1)利用HL即可证明;(2)根据全等三角形的性质可得∠ABP=∠BAP,从而得到PA=PB,即可得证.【详解】解:(1)∵∠C=∠D=Rt∠,AC=BD,AB=BA,∴Rt△ABC≌Rt△BAD(HL);(2)∵Rt△ABC≌Rt△BAD,∴∠ABP=∠BAP,∴PA=PB,∴△PAB是等腰三角形.【点睛】本题主要考查了全等三角形的判定及性质,证明Rt△ABC≌Rt△BAD是解题的关键.。
三角形全等的判定证明题-(含答案)
三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。
北师大版八下数学《三角形的证明》单元测试1(含答案)
第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。
全等三角形证明经典50题(含答案)
1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DCAD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGBACDF21 E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
(完整版)全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形证明经典40题(含答案)
全等三角形证明经典40题(含答案)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:BC=ED ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
AD B C∴∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又,EF ∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG又 EF =CG∴EF =AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CB ACDF21 EA证明:延长AB取点E,使AE=AC,连接DE ∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
最新北师大版七年级下册三角形全等的证明单元测试试题以及答案
最新七年级下册三角形单元测试试题一、选择题1.一定在△ABC内部的线段是()。
A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()。
A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()。
A.4对 B.5对 C.6对 D.7对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.4厘米、5厘米、6厘米B.4厘米、4厘米、4厘米C.5厘米、13厘米、6厘米D.7厘米、9厘米、7厘米6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()。
A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为6cm和9cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种。
A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个。
A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是( ) A .0°<α<90°; B .60°<α<180°; C .60°<α<90°; D .60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( )A .锐角或直角三角形;B .钝角或锐角三角形C .直角三角形;D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( )A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高, ∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=∠________,AH叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.212.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.3.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.4.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.7.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B =______;∠C=______.8.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.三、解答题1.在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,,求△ABD 中AB 边上的高.212cm =∆ABCS4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作、、……、.当作出时,图中共有多少个不同的直角三角形?1DD 21D D 32D D k k D D 1-k k D D 1-6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成18cm和9cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC 中,D 是AB 上一点.求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =∠BMN ( ),同理∠GNM =∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ).∴ ∠GMN +∠GNM =________.2121∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC =60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.。
北师大版八年级数学下册《三角形的证明》单元测试1(含答案)
第一章 三角形的证明单元测试一、选择题(每题3分,共30分)1、△ABC 中,AB = AC ,BD 平分∠ABC 交AC 边于点D ,∠BDC = 75°,则∠A 的度数为( )A 35°B 40°C 70°D 110°2、适合条件∠A =∠B =31∠C 的三角形一定是( )A 锐角三角形B 钝角三角形C 直角三角形D 任意三角形3、用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③正方形;④等腰三角形,一定可以拼成的图形是( )A ①②④B ②④C ①④D ②③④4、已知△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,△ABC 和△DBC 的周长分别是60 cm 和38 cm ,则△ABC 的腰和底边长分别为 ( ) A 24 cm 和12 cm B 16 cm 和22 cm C 20 cm 和16 cm D 22 cm 和16 cm5、如图,△ABC 中,AC =BC ,直线l 经过点C ,则 ( ) A l 垂直AB B l 平分AB C l 垂直平分AB D 不能确定6、三角形中,若一个角等于其他两个角的差,则这个三角形是 ( ) A 钝角三角形 B 直角三角形 C 锐角三角形 D 等腰三角形7、已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是( ) A 9㎝B 12㎝C 12㎝或者15㎝D 15㎝8、如图,已知在△ABC中,AB=AC,D为BC上一点,BE=CD,CF=BD,那么∠EDF等于( )A 90°-∠A B 90°-21∠A C 45°-21∠A D 180°-∠A9、一个正方形和一个等腰三角形有相等的周长,已知等腰三角形有两边长分别为5.6 cm和13.2 cm,则这个正方形的面积为()A 64 cm2B 48 cm2C 36 cm2D 24 cm210、如图,等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A 45°B 55°C 60°D 75°二、填空题(每小题3分,共30分)1、“直角三角形两条直角边的平方和等于斜边的平”的方逆定理是2、等腰三角形的腰长为2cm,面积等于1cm2,则它的顶角的度数为 .3、如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB相交于D点,则∠BCD的度数是 .4、等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是 .5、正三角形的边长为a,则它的面积为.6、在△ABC中,AB=AC,∠A=58°,AB的垂直平分线交AC于N,则∠NBC = .7、在直角三角形中,如果一个锐角为30°,而斜边与较小直角边的和为12,那么斜边长为.8、已知:如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=.9、在等腰三角形ABC中,AB=AC=5,BC=6,D是BC上一点,作DE⊥AB,DF⊥AC,则DE+DF= .10、如图,一张直角三角形的纸片,象图中那样折叠,使A与B重合,∠B=30°,AC=3,则折痕DE等于.三、解答题(本题共8个小题,共60分)1、(7分)已知:如图,等腰三角形ABC 中,AC =BC ,∠ACB =90°,直线l 经过点C(点A 、B 都在直线l 的同侧),AD ⊥l ,BE ⊥l ,垂足分别为D 、E .求证:△ADC ≌△CEB.2、(7分)用反证法证明一个三角形中不能有两个角是直角.3、(8分)如图,在△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE 于G .求证:①G 是CE 的中点. ②∠B=2∠BCE .4、(7分)在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,且AE =21(AB +AD ),求∠ABC +∠ADC 的度数.ABCDEGABCED5、(7分)如图,△ABC 中,E 是BC 边上的中点,DE ⊥BC 于E ,交∠BAC 的平分线AD 于D ,过D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,试证明:BM =CN .6、(7分)已知:如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,点D 是BC 的中点,CE ⊥AD ,垂足为点E ,BF//AC 交CE 的延长线于点F . 求证:AC=2BF .7、(7分)在△ABC 中,AB =AC ,D 是AB 上一点,E 是AC 延长线上一点,且BD =CE . 求证:DM =EM .ABC DMNEBFABCDE8、(10分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.参考答案一、选择题1、B2、B3、A4、D5、D6、B7、D8、B9、A 10、C二、填空题1、如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形2、30°或150°3、10°4、32a 5、234a 6、3°7、 6 8、55° 9、24510、1三、解答题(本题共8个小题,共60分) 1、略 2、略3、提示:连结DE ,由直角三角形斜边中线等于斜边的一半易证.4、提示:过C 点作AD 的延长线的垂线,垂足为F .利用角平分线的性质和AE=21(AB+AD )可知BE=DF ,CF=CE ,再由△CDF ≌CBE 即得. 5、提示:连结BD 、CD 利用角平分线和中垂线的性质证△BDM ≌CDN . 6、提示:证△ACD ≌CBF .7、提示:过D 点作AC 的平行线(或者过E 点作AB 的平行线)利用三角形全等可证.8、(1)∠A = 30°;证明略(2)△ABC。
全等三角形证明经典50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DCAD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2ABAD BC3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDBACDF21 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DEAD BC∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
2022-2023学年北师大版八年级数学下册第一章三角形的证明测试卷含答案
北师大版八年级数学下册第一章《三角形的证明》测试卷(含答案)一、选择题(共10小题,3*10=30)1.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角 D .至多有两个内角是直角2.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°3.在△ABC 中,已知∠A =∠B =45°,BC =2,则AB 的长为( ) A .1 B. 2 C .2 D .44.在等腰△ABC 中,AB =AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或105.如图,四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =1,BC =2,则四边形ABCD 的面积是( )A.332B .3C .2 3D .46. 如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE.若AC =5,BC =3,则BD 的长为( )A .2.5B .1.5C .2D .17. 如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB ,且AD 交BC 于点D ,DE ⊥AB 于点E ,则下列说法错误的是( )A.∠CAD=30° B.AD=BDC.BE=2CD D.CD=ED8.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个9.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.110.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.32 B.25 3 C.33 D.34二.填空题(共8小题,3*8=24)11.命题“两条直线相交只有一个交点”的逆命题是____________________________________,它是________________命题.12. 如图,将长为8 cm的橡皮筋放置在直线l上,固定两端A和B,然后把中点C向上拉升3 cm到D点,则橡皮筋被拉长了________.13. 如图,AB ∥CD ,O 为∠BAC ,∠ACD 的平分线的交点,OE ⊥AC 于点E ,且OE =1,则AB 与CD 之间的距离等于_______.14.如图,△ABC 的周长为32,且AB =AC ,AD ⊥BC 于点D ,△ACD 的周长为24,那么AD 的长为________.15. 如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是__________.16.如图,在等边三角形ABC 中,AD 是BC 边上的高,且AD =4,E 是AB 边的中点,点P 在AD 上运动,则PB +PE 的最小值是________.17.等腰三角形ABC 中,BD ⊥AC ,垂足为点D ,且BD =12AC ,则等腰三角形ABC 底角的度数为________.18. AB 与CD 相交于点O ,AB =CD ,∠AOC =60°,∠ACD +∠ABD =210°,则线段AB ,AC ,BD 之间的等量关系式为_________________.三.解答题(7小题,共66分)19.(8分) 如图,点D ,E 在△ABC 的BC 边上,AB =AC ,AD =AE.求证:BD =CE.20.(8分) 如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.21.(8分) 如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.(1)求证:DF是线段AB的垂直平分线;(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.22.(10分) 用一条长为18 cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4 cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.23.(10分) 如图,在等边△ABC中,AO是∠BAC的平分线,D为AO上一点,以CD为一边且在CD下方作等边△CDE,连接BE.(1)求证:△ACD≌△BCE;(2)延长BE至点Q,P为BQ上一点,连接CP,CQ,使CP=CQ=5,若BC=8,求PQ的长.24.(10分) 在△ABC中,∠B=22.5°,边AB的垂直平分线DP交AB于点P,交BC于点D,且AE ⊥BC于点E,DF⊥AC于点F,DF与AE交于点G,求证:EG=EC.25.(12分) 在△ABC中,AB=AC,∠BAC=90°.点D是CA延长线上一点,连接BD,点E是BD 上一点,连接CE交AB于点F,BD=CF.(1)如图①,当点E是BD的中点时,若BC=4,求AF的长;(2)在(1)的条件下,如图②,连接AE,求证:DE+EF=2AE.图①图②参考答案1-5BBCCA 6-10DCDBC11. 只有一个交点的两条直线一定相交;真 12. 2cm 13. 2 14. 8 15. 5 16.417.45°或15°或75° 18. AB 2=AC 2+BD 219. 证明:过点A 作AP ⊥BC 于P.∵AB =AC ,∴BP =PC ,∴AD =AE ,∴DP =PE ,∴BP -DP =PC -PE ,∴BD =CE20. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE ,即∠CAB =∠EAD. 又∵AB =AD ,AC =AE , ∴△ABC ≌△ADE(SAS). ∴∠C =∠E.21. 解:(1)证明:∵∠A =∠ABE ,∴EA =EB.∵AD =DB ,∴DF 是线段AB 的垂直平分线. (2)∵∠A =46°,∴∠ABE =∠A =46°.∵AB =AC ,∴∠ABC =∠ACB =67°,∴∠EBC =∠ABC -∠ABE =21°,∠F =90°-∠ABC =23°.22. 解:(1)设底边长为x cm ,则腰长为2x cm.依题意,得2x +2x +x =18,解得x =185,∴2x =365.∴三角形三边的长为185 cm ,365 cm ,365cm(2)若腰长为4 cm ,则底边长为18-4-4=10 cm.而4+4<10,所以不能围成腰长为4 cm 的等腰三角形.若底边长为4 cm ,则腰长为12(18-4)=7 cm.此时能围成等腰三角形,三边长分别为4 cm ,7 cm ,7 cm23. 解:(1)证明:∵△ABC 和△CDE 均为等边三角形,∴AC =BC ,CD =CE ,且∠ACB =∠DCE =60°,即∠ACD +∠DCB =∠DCB +∠BCE =60°,∴∠ACD =∠BCE ,∴△ACD ≌△BCE(SAS).(2)作CH ⊥BQ 于点H ,图略.则PQ =2HQ.在Rt △BHC 中,由(1)得∠CBH =∠CAO =30°,∴CH =12BC=4,在Rt △CHQ 中,HQ =CQ 2-CH 2=52-42=3,∴PQ =2HQ =6. 24. 解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎪⎨⎪⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC(AAS),∴EG =EC25. 解:(1)∵AB =AC ,∠BAC =90°,BC =4,∴AB =AC =2 2. ∵BD =CF ,AB =AC ,∴Rt △BAD ≌Rt △CAF(HL),∴∠DBA =∠ACF. ∵∠EFB =∠AFC ,∴∠BEF =∠FAC =90°,∴CE ⊥BD.∵BE =DE ,∴CB =CD =4, ∴AF =AD =CD -AC =4-2 2.(2)作AM ⊥BD 于点M ,AN ⊥EC 于点N.∵△BAD ≌△CAF ,∴AM =AN ,∴∠AEM =∠AEN =45°,∴AM =EM =EN =AN.∵AD =AF ,AM =AN ,∴Rt △AMD ≌Rt △ANF(HL),∴DM =FN ,∴DE +EF =EM +DM +EN -FN =2EM ,∵AE =2EM.∴DE +EF =2AE.。
(完整版)全等三角形证明经典50题(含答案)
证明:连接 BF 和 EF T BC=ED,CF=DF, / BCF= / EDF 三角形BCF 全等于三角形 EDF (边角边)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 ADD • BF=EF, / CBF= / DEF 连接 BE 在三角形 BEF 中,BF=EF • / EBF= / BEF 。
: / ABC= / AED 。
二 / ABE= / AEB 。
• AB=AE 。
在三角形 ABF 和三角形 AEF 中AB=AE,BF=EF, / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF • 三角形 ABF 和三角形 AEF 全等。
•/ BAF= / EAF ( /仁/ 2)4.已知:/ 1 = / 2, CD=DE , EF//AB ,求证:EF=AC解:延长 AD 到E,使AD=DE •/ D 是BC 中点二BD=DC 在厶 ACD 和^ BDE 中 AD=DE / BDE= / ADCBD=DC /•△ ACD ◎△ BDE ••• AC=BE=2 •••在△ ABE 中 AB-BE V AE V AB+BE •/ AB=4 即 4-2 V 2AD V 4+21 V AD V 3 • AD=21 2.已知:D 是 AB 中点,/ ACB=90 °,求证:CD —AB 2A CG// EF ,可得,/• △ EFD ^A CGD•,/ EFD =Z 1过C 作CG // EF 交AD 的延长线于点GEFD = CGDDE = DC / FDE =Z GDC (对顶角) EF = CG / CGD =Z EFD 又,EF // AB / 1= / 2 •/ CGD =Z 2 • △ AGC 为等腰三角形, AC = CG 又 EF = CG 「. EF = AC 延长CD 与P ,使D 为CP 中点。
连接 AP,BP •/ DP=DC,DA=DB • ACBP 为平行四边形又/ ACB=90 •平行四边形 ACBP 为矩形 • AB=CP=1/2AB 3.已知:BC=DE ,/ B= / E ,Z C=Z D , F 是 CD 中点,求证:/ 1 = / 2 5.已知:AD 平分/ BAC , AC=AB+BD ,求证:/ B=2 / C证明:延长 AB 取点E ,使AE = AC ,连接DE •/ AD 平分/ BAC• / EAD =Z CAD•/ AE = AC , AD = AD • △ AED 也厶 ACD ( SAS )•••/ E = Z C•/ AC = AB+BD •AE = AB+BD•/ AE = AB+BE •BD = BE •••/ BDE =Z E •••/ ABC =Z E+ / BDE •••/ ABC = 2 / E •••/ ABC = 2 / C ••• AE = AF + FE = AD + BE12.如图,四边形ABCD中,AB 在AD上。
全等三角形证明50题(含答案)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=2ADBC2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 EEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC∴△ADC ≌△AFC (SAS ) ∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DEADB C∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF。
三角形的证明测试题(有标准答案)
三角形的证明测试题(有答案)————————————————————————————————作者:————————————————————————————————日期:2第3页(共12 页)三角形的证明测试题1一、选择题(共11小题;共55分)1. 已知 △ABC 的三边长分别为 5,13,12,则 △ABC 的面积为 ( ) A. 30B. 60C. 78D. 不能确定2. 如图,△ABC 中,AB =AC ,∠A =36∘,AB 的垂直平分线 DE 交 AC 于 D ,交 AB 于 E ,则 ∠BEC 的度数为 ( )A. 72∘B. 36∘C. 60∘D. 82∘3. 如图,一棵大树在一次强台风中于离地面 5 米处折断倒下,倒下部分与地面成 30∘ 夹角,这棵大树在折断前的高度为 ( )A. 10 米B. 15 米C. 25 米D. 30 米4. 如图所示,已知 AD 是 △ABC 的高,AB =10,AD =8,BC =12,则 △ABC 为 ( )A. 等腰三角形B. 等腰直角三角形C. 直角三角形D. 不能确定5. 如图,在 CD 上求一点 P ,使它到 OA 、 OB 的距离相等,则 P 点是 ( )A. 线段 CD 的中点B. OA 与 OB 的中垂线的交点C. OA 与 CD 的中垂线的交点D. CD 与 ∠AOB 的平分线的交点6. 如图所示,E 是等边 △ABC 中 AC 边上的点,∠1=∠2,BE =CD ,则对 △ADE 的形状判断准确的是 ( )第4页(共12 页)A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状7. 在 △ABC 中,下列说法正确的有 ( )①如果 ∠A:∠B:∠C =3:4:5,则 △ABC 是直角三角形 ②如果 ∠A +∠B =∠C ,则 △ABC 是直角三角形③如果 △ABC 的三边之比为 6:8:10,则 △ABC 是直角三角形④如果 △ABC 的三边长分别是 n 2−1,2n,n 2+1(n >1),则 △ABC 是直角三角形A. 1 个B. 2 个C. 3 个D. 4 个8. 如图,已知直角三角形的两直角边分别为 5 和 12,则斜边上的高是 ( )A.125B. 6013C. 5D.1359. 如图,△ABC 中边 AB 的垂直平分线分别交 BC ,AB 于点 D ,E ,AE =3 cm ,△ADC 的周长为 9 cm ,则 △ABC 的周长是 ( ).A. 10 cmB. 12 cmC. 15 cmD. 17 cm10. 如图所示,在 △ABC 中,∠A =90∘,BD 平分 ∠ABC ,AD =2,AB +BC =8,S △ABC 的值为 ( )A. 8B. 4C. 2D. 111. 下列说法正确的是 ( )A. 等腰三角形的高线、中线、角平分线互相重合B. 顶角相等的两个等腰三角形全等C. 等腰三角形一边不可以是另一边的 2 倍D. 等腰三角形的两个底角相等第5页(共12 页)二、填空题(共6小题;共30分)12. 如图,△ABC 中,AB +AC =6 cm ,BC 的垂直平分线 l 与 AC 相交于点 D ,则 △ABD 的周长为 cm .13. 如图,∠AOE =∠BOE =15∘,EF ∥OB ,EC ⊥OB ,若 EC =1,则 EF = .14. 如图,△ABC 是等边三角形,点 D 为 AC 边上一点,以 BD 为边作等边 △BDE ,连接 CE .若CD =1,CE =3,则 BC = .15. 如图,在 Rt △ABC 中,D ,E 为斜边 AB 上的两个点,且 BD =BC ,AE =AC ,则 ∠DCE的大小为 .16. 如图,在 △ABC 和 △EDB 中,∠C =∠EBD =90∘,点 E 在 AB 上.若 △ABC ≌∠EDB ,AC =4,BC =3,则 AE = .17. 如图所示,CD 为 Rt △ABC 斜边上的高,∠BAC 的平分线分别交 CD ,CB 于点 E ,F ,FG ⊥AB ,垂足为 G ,则图中与 CF 相等的线段是 .第6页(共12 页)三、解答题(共8小题;共104分)18. 如图,在 Rt △ABC 中,∠B =90∘,分别以 A ,C 为圆心,大于 12AC 长为半径画弧,两弧相交于点 M ,N ,连接 MN ,与 AC ,BC 分别交于点 D ,E ,连接 AE .Ⅰ ∠ADE =∘;Ⅱ AE CE (填“ >,<,= ”)Ⅲ AB =3,AC =5 时,△ABE 的周长是 .19. 如图,在 Rt △ABC 中,∠B =90∘,分别以点 A ,C 为圆心,大于 12AC 长为半径画弧,两弧相交于点 M ,N ,连接 MN ,与 AC ,BC 分别交于点 D ,E ,连接 AE .Ⅰ 求 ∠ADE ;(直接写出结果)Ⅱ 当 AB =3,AC =5 时,求 △ABE 的周长.20. 如图,在四边形 ABCD 中,∠B =90∘,AB =BC =2,AD =1,CD =3. 求 ∠DAB 的度数.21. 如图所示,在 △ABC 中,∠ABC =∠ACB .第7页(共12 页)Ⅰ 尺规作图:过顶点 A 作 △ABC 的角平分线 AD ;(不写作法,保留作图痕迹) Ⅱ 在 AD 上任取一点 E ,连接 BE,CE .求证:△ABE ≌△ACE .22. 如图,在 △ABC 中,∠BAC =90∘,BD 平分 ∠ABC ,AE ⊥BC 于 E .求证:AF =AD .23. 如图,点 A 为线段 BD 上一点,△ABC ,△ADE 都是等边三角形,BE 交 AC 于点 M ,CD交 AE 于点 N .求证:Ⅰ BE =CD ; Ⅱ AM =AN ;Ⅲ MN ∥BD .24. 一船在灯塔 C 的正东方向 8 海里的 A 处,以 20海里/时 的速度沿北偏西 30∘ 方向行驶.Ⅰ 多长时间后,船距灯塔最近?Ⅱ 多长时间后,船到灯塔的正北方向?此时船距灯塔有多远?(其中 162−82≈13.92)25. 如图,AD 是 △ABC 的角平分线,点 F ,E 分别在边 AC ,AB 上,且 FD =BD .Ⅰ 求证 ∠B +∠AFD =180∘;Ⅱ 如果 ∠B +2∠DEA =180∘,探究线段 AE ,AF ,FD 之间满足的等量关系,并证明.第8页(共12 页)第9页(共12 页)答案第一部分 1. A 2. A 3. B 4. A 5. D 6. B 7. C 8. B9. C10. A11. D 第二部分 12. 6 13. 2 14. 4 15. 45∘ 16. 1 17. FG ,CE 第三部分 18. (1) 90 (2) = (3) 719. (1) ∠ADE =90∘.(2) ∵ 在 Rt △ABC 中,∠B =90∘,AB =3,AC =5, ∴BC =√52−32=4 .∵MN 是线段 AC 的垂直平分线, ∴AE =CE .∴△ABE 的周长为 AB +(AE +BE )=AB +BC =3+4=7. 20. 连接 AC ,在 Rt △ABC 中,∠B =90∘,AB =BC =2, 所以 ∠BAC =∠ACB =45∘, 所以 AC 2=AB 2+BC 2. 所以 AC =2√2. 因为 AD =1,CD =3, 所以 AC 2+AD 2=CD 2.在 △ACD 中,AC 2+AD 2=CD 2.所以 △ACD 是直角三角形,即 ∠DAC =90∘.第10页(共12 页)因为 ∠BAD =∠BAC +∠DAC , 所以 ∠BAD =135∘.21. (1) 如图 AD 即为所求.(2)∵AD 是 △ABC 的角平分线,∴∠BAD =∠CAD . ∵∠ABC =∠ACB , ∴AB =AC .在 △ABE 和 △ACE 中, {AB =AC,∠BAE =∠CAE,AE =AE,, ∴△ABE ≌△ACE (SAS ). 22. ∵ ∠BAC =90∘, ∴ ∠ADF =90∘−∠ABD . ∵ AE ⊥BC 于 E ,∴ ∠AFD =∠BFE =90∘−∠DBC . ∵ BD 平分 ∠ABC , ∴ ∠ABD =∠DBC , ∴ ∠AFD =∠ADF , ∴ AF =AD .23. (1) ∵△ABC ,△ADE 都是等边三角形, ∴AB =AC ,AE =AD ,∠BAC =∠DAE =60∘ . ∴∠CAE =180∘−∠BAC −∠DAE =60∘ . ∴∠BAE =∠CAD =120∘ . 在 △BAE 和 △CAD 中, {AB =AC,∠BAE =∠CAD,AE =AD.∴△BAE ≌△△CAD (SAS ) . ∴BE =CD .(2) ∵△BAE ≌△CAD , ∴∠EBA =∠DCA.在 △BAM 和 △CAN 中,{∠EBA =∠DCA,∠BAM =∠CAN =60∘,BA =CA,∴△BAM ≌△CAN .∴AM =AN .(3) ∵∠CAE =60∘,AM =AN ,∴△AMN 为等边三角形.∴∠AMN =60∘=∠BAC .∴MN ∥BD .24. (1) 由题意可知,当船航行到 D 点时,距灯塔最近,此时 CD ⊥AB . 因为 ∠BAC =90∘−30∘=60∘,所以 ∠ACD =30∘.所以 AD =12AC =8×12=4(海里). 而 4÷20=0.2(小时)=12(分),所以 12 分后,船距灯塔最近.(2) 当船到达灯塔的正北方向的 B 点时,BC ⊥AC ,此时 ∠B =30∘, 所以 AB =2AC =2×8=16(海里),所以 BC 2=AB 2−AC 2=162−82≈13.92,即 BC ≈13.9(海里).而 16÷20=0.8(小时)=48(分),故 48 分钟后,船到达灯塔的正北方向,此时船距灯塔约 13.9 海里.25. (1) 在 AB 上截取 AG =AF .∵AD 是 △ABC 的角平分线,∴∠FAD =∠DAG .∵AD =AD ,∴△AFD ≌△AGD .∴∠AFD =∠AGD ,FD =GD .∵FD =BD ,∴BD =GD .∴∠DGB =∠B .∴∠B +∠AFD =∠DGB +∠AGD =180∘.(2) AE =AF +FD .过点 E 作 ∠DEH =∠DEA ,点 H 在 BC 上.∵∠B+2∠DEA=180∘,∴∠HEB=∠B.∵∠B+∠AFD=180∘,∴∠AFD=∠AGD=∠GEH,∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.∵AF=AG,∴AE=AG+GE=AF+FD.。
2022年最新北师大版八年级数学下册第一章三角形的证明专题测试练习题(含详解)
北师大版八年级数学下册第一章三角形的证明专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是()A.等腰三角形的角平分线、中线、高线互相重合B.一个三角形被截成两个三角形,每个三角形的内角和是90度C.有两个角是60°的三角形是等边三角形D.在△ABC中,2∠=∠=∠,则ABC为直角三角形A B C2、下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.所有的直角三角形都是全等三角形D.所有的等边三角形都是全等三角形3、下列命题成立的有()个.①等腰三角形两腰上的中线相等;②有两边及其中一边上的高线分别相等的两个三角形全等;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E 处,折痕为BD.则△AED的周长为7cm;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC.A .1B .2C .3D .44、如图,在△AAA 中,AD 是角平分线,且AD AC =,若60BAC ∠=︒,则B 的度数是( )A .45°B .50°C .52°D .58°5、如图,Rt△ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .26、如图,在△ABC 中,AB =AC =6cm ,AD ,CE 是△ABC 的两条中线,CE =4cm ,P 是AD 上的一个动点,则BP +EP 的最小值是( )A .3cmB .4cmC .6cmD .10cm7、下列各组数据中,能构成直角三角形的三边的长的一组是( )A .1,2,3B .4,5,6C .5,12,13D .13,14,158、下列以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =1,b =1,c =√2B .a =2,b =3,c =√13C .a =3,b =5,c =7D .a =6,b =8,c =109、如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,AB 边的垂直平分线分别交AB 、AC 于N 、M 两点,则△BCM 的周长为( )A .18B .16C .17D .无法确定10、如图,等腰△AAA 中,AB AC =,120BAC ∠=︒,AD DC ⊥于D ,点O 是线段AD 上一点,点P 是BA 延长线上一点,若OP OC =,则下列结论:①30APO DCO ∠+∠=︒;②APO DCO ∠=∠;③POC △是等边三角形;④AB OA AP =+.其中正确的是( )A .①③④B .①②③C .②③④D .①②③④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,上午9时,一艘船从小岛A 处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B 处,若从灯塔C 处分别测得小岛A 、B 在南偏东34°、68°方向,则小岛B 处到灯塔C 的距离是______海里.2、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.3、等腰△AAA 的顶角为30°,腰长为8,则△AAA 的面积为______.4、如图,△AAA 是等腰直角三角形,AB 是斜边,以BC 为一边在右侧作等边三角形BCD ,连接AD 与BC 交于点E ,则BED ∠的度数为______度.5、如图,在△AAA 中,AB AC =,70BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线交于点O ,将∠的度数为________.∠沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则OECC三、解答题(5小题,每小题10分,共计50分)1、如图所示,校园里有两条路AA,AA,在交叉口附近有两块宣传牌A,A,学校准备在这里(∠AAA内部)安装一盏路灯,要求灯柱A离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置A.(不写过程,保留作图痕迹)2、如图,△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,E为△ABC内一点,AC=CE,∠BAE=15°,AD与CE相交于点F.(1)求∠DFE的度数;(2)求证:AE=BE.3、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.4、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上.(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0,6),点B的坐标(3,0),求点P的坐标.5、数学课上,王老师布置如下任务:如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.下面是小路设计的尺规作图过程.作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=,( )(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠,( )(填推理的依据)∴∠ACB=2∠A.-参考答案-一、单选题1、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为180606060︒-︒-︒=︒,所以三角形是等边三角形,故此选项正确;D.设C x ∠=,则2A B x ∠=∠=,故22180x x x ++=︒,解得36x =︒,所以72A B ∠=∠=︒,36C ∠=︒,此三角形不是直角三角形,故此选项错误.故选:C .【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.2、B【分析】根据全等三角形的性质,等边三角形的性质判断即可.【详解】解:A 、全等三角形是指形状和大小相同的两个三角形,该选项错误;B 、全等三角形的周长和面积分别相等,该选项正确;C 、所有的直角三角形不一定都是全等三角形,该选项错误;D 、所有的等边三角形不一定都是全等三角形,该选项错误;故选:B .【点睛】本题考查的是全等三角形的性质,掌握全等形的概念,全等三角形的性质是解题的关键.3、C【分析】利用等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质分别判断后即可确定正确的选项.【详解】解:①等腰三角形两腰上的中线相等,故原命题正确;②有两边及其中一边上的高线分别相等的两个三角形不一定全等,故原命题错误;③三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形使点C落在AB边上的点E处,折痕为BD.如图:由折叠知:BC=BE=6,CD=DE,则△AED的周长为AD+DE+AE=AD+CD+AB-BE= AC+AB-BC=7cm,故原命题正确;④AD是△ABC的角平分线,则S△ABD:S△ACD=AB:AC,故原命题正确,成立的有3个,故选:C.【点睛】要题考查了命题与定理的知识,解题的关键是了解等腰三角形的性质、全等三角形的判定、折叠的性质及角平分线的性质,难度不大.4、A【分析】根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.【详解】解:∵AD是角平分线,60∠=︒,BAC∴∠DCA=12BAC=30°,∵AD=AC,∴∠C=(180°-∠DCA)÷2=75°,∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,故选:A.【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.5、C【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键.6、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长.【详解】如图,连接CE交AD于点P,∵AB=AC,AD是BC的中线,∴AD⊥BC,∴BP=CP,∴BP+EP=CP+EP≥CE,∴BP+EP的最小值为CE的长,∵CE=4cm,∴BP+EP的最小值为4cm,故选:B.【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题.7、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A 不符合题意;B. 2224+56≠,不是直角三角形,故B 不符合题意;C. 2225+12=13,是直角三角形,故C 不符合题意;D. 22213+1415≠,不是直角三角形,故D 不符合题意,故选:C .【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.8、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、22211+=,该三角形是直角三角形,故此选项不符合题意;B 、22223+=,该三角形是直角三角形,故此选项不符合题意;C 、222357+≠,该三角形不是直角三角形,故此选项符合题意;D 、2226810+=,该三角形是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理,解题的关键是在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.【详解】解:在Rt△ABC中,∠C=90°,AC=12,AB=13,∴由勾股定理得,5BC=,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C.【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键.10、A【分析】①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.【详解】解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=12∠BAC=12×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC 是等边三角形,故③正确;④如图2,在AC 上截取AE =PA ,∵∠PAE =180°﹣∠BAC =60°,∴△APE 是等边三角形,∴∠PEA =∠APE =60°,PE =PA ,∴∠APO +∠OPE =60°,∵∠OPE +∠CPE =∠CPO =60°,∴∠APO =∠CPE ,∵OP =CP ,在△OPA 和△CPE 中,PA PE APO CPE OP CP =⎧⎪∠=∠⎨⎪=⎩, ∴△OPA ≌△CPE (SAS ),∴AO =CE ,∴AC =AE +CE =AO +AP ,∴AB =AO +AP ,故④正确;正确的结论有:①③④,故选:A.【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.二、填空题1、20【分析】根据所给的角的度数,容易证得BCA∆是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.【详解】解:据题意得,34∠=︒,DBC∠=︒,68A∠=∠+∠,DBC A C∴∠=∠=︒,34A C∴=,AB BC51220AB=⨯=,3∴=(海里).BC20故答案是:20.【点睛】本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.2【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD 故答案为:3.【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.3、16【分析】过点B 作BD ⊥AC ,利用30°所对的直角边是斜边的一半,可求出BD ,然后求面积即可.【详解】解:如图所示,过点B 作BD ⊥AC ,∵∠A =30°,AB =AC =8,∴BD =12AB =4,∴S △ABC =12BD ·AC =16故答案为:16.【点睛】此题考查的是直角三角形的性质:30°所对的直角边是斜边的一半和面积的求法,掌握构造辅助线的方法是解决此题的关键.4、75【分析】由题意,ACD △是等腰三角形,然后求出CAE ∠的度数,再根据三角形的外角性质,即可求出BED ∠的度数.【详解】解:∵ABC 是等腰直角三角形,∴AC =BC ,∠ABC =∠BAC =45°,∠ACB =90°,∵△BCD 是等边三角形,∴BC =CD ,∠BCD =60°,∴AC =CD ,∠ACD =90°+60°=150°,∴ACD △是等腰三角形, ∴1(180150)152CAE CDE ∠=∠=⨯︒-︒=︒,∴451530BAE ∠=︒-︒=︒,∴304575BED BAE ABE ∠=∠+∠=︒+︒=︒;故答案为:75.【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出15CAE CDE ∠=∠=︒.5、140°【分析】连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA =OB ,根据等边对等角可得∠ABO =∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB =OC ,再根据等边对等角求出∠OCB =∠OBC ,根据翻折的性质可得OE =CE ,然后根据等边对等角求出∠COE ,再利用三角形的内角和定理列式计算即可.【详解】解:如图:连接OB 、OC ,∵∠BAC =70°,AO 为∠BAC 的平分线,∴∠BAO =12∠BAC =12×70°=35°,又∵AB =AC ,∴∠ABC =12(180°−∠BAC )=12(180°−70°)=55°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =35°,∴∠OBC =∠ABC −∠ABO =55°−35°=20°,∵AO 为∠BAC 的平分线,AB =AC ,∴OB =OC ,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=20°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=20°,在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−20°−20°=140°,故答案为:140°.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,作辅助线,构造出等腰三角形是解题的关键.三、解答题1、见详解【分析】分别作线段CD的垂直平分线和∠AOB的角平分线,它们的交点即为点P.【详解】解:连结CD,作CD的垂直平分线,和∠AOB的平分线,两线交于P,如图,点P为所作.【点睛】本题考查了作图−应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键.2、(1)∠DFE=90°;(2)见解析【分析】(1)先求得∠BAD=30°,∠BAE=∠EAD=15°,即可求得∠EAC=75°,由AC=CE,可求得∠EAC=∠AEC=75°,即可求得∠DFE=90°;(2)在Rt△AFC中,求得∠FCA=30°,AC=2AF=AB,过点E作EG⊥AB于点G,求得AG=AF,得到BG=AG,即可得到△ABF为等腰三角形,即可证明AE=BE.【详解】解:(1)∵△ACD是等边三角形,∴∠CAD=60°,∵∠BAC=90°,∴∠BAD=90°-60°=30°,∵∠BAE=15°,∴∠BAE=∠EAD=15°,∴∠EAC=90°-15°=75°,∵AC=CE,∴∠EAC=∠AEC=75°,∴∠DFE=∠EAD+∠AEC=15°+75°=90°;(2)由(1)得∠DFE=90°,即∠AFC=∠AFE=90°,∵△ABC是等腰直角三角形,∠BAC=90°,△ACD是等边三角形,∴∠CAD=60°,AB=AC,∴∠FCA=30°,∴AC =2AF ,即AB =2AF ,过点E 作EG ⊥AB 于点G ,∵∠BAE =∠EAD =15°,且∠EFA =90°,EG ⊥AB ,∴EG =EF ,又AE = AE ,∴Rt △EAG ≌Rt △EAF (HL ),∴AG =AF ,∴AB =2AG ,∴BG =AG ,又EG ⊥AB ,∴△ABF 为等腰三角形,∴AE =BE .【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.3、见解析【分析】根据等腰三角形的性质,可得∠ADB =∠ADC =90°,∠ABC =∠ACB ,BD =CD ,从而得到△BDE ≌△CDE ,进而得到∠DCE =∠DBE ,再由BE 平分∠ABC ,可得12DBE ABC ∠=∠ ,进而得到12DCE ACB ∠=∠,即可求证.【详解】解:∵AB=AC,AD是△ABC的中线,∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,∵DE=DE,∴△BDE≌△CDE,∴∠DCE=∠DBE,∵BE平分∠ABC,∴12DBE ABC∠=∠,∴12DCE ABC ∠=∠,∴12DCE ACB ∠=∠,∴CE平分∠ACB.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.4、(1)见解析;(2)(0,94)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标.【详解】解:(1)如图,点P即为所求;(2)∵A的坐标(0,6),点B的坐标(3,0),∴OA=6,OB=3,∴PA=PB=OA-OP=6-OP,∵PB2-OP2=OB2,∴(6-OP)2-OP2=32,解得OP=94,∴点P的坐标为(0,94).【点睛】本题考查了作图-复杂作图,坐标与图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质.5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC;等边对等角.【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可.(2)根据垂直平分线的性质以及等边对等角进行解答即可.【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;(2)解:证明:连接BD,BC,∵直线l为线段AB的垂直平分线,∴DA=DB,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)∴∠A=∠ABD,∴∠BDC=∠A+∠ABD=2∠A.∵BC=BD,∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)∴∠ACB=2∠A.【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.。
最新全等三角形证明经典10题((含答案)
全等三角形证明经典10题(含答案)1 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .2.如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
3.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE∴AC=BE=2 ∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=24.已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBCA BCDE1.证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边) ∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
5.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG ∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CGBACDF21EABC DEF21EDC B A F又 EF =CG ∴EF =AC6.已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:延长AB 取点E ,使AE =AC ,连接DE∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C7.如图所示,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE, 垂足为F,过B 作BD ⊥BC 交CF 的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD 的长.8.如图(1), 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C 在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 试说明: BD=DE+CE9已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证明:在AC上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC – AB =AC-AD=CD=BD在等腰三角形ABD中,AE是角BAD的角平分线,∴AE垂直BD∵BE⊥AE∴点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD∴点E也是BD的中点∴BD=2BE∵BD=CD=AC-AB∴AC-AB=2BE22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.。
全等三角形证明经典40题(含答案)
1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求AD 的长 .AB CD解:延伸AD 到 E,使 AD=DE∵D 是 BC中点∴BD=DC在△ ACD和△ BDE中AD=DE∠B DE=∠ ADCBD=DC∴△ ACD≌△ BDE∴A C=BE=2∵在△ ABE中AB-BE< AE< AB+BE∵A B=4即 4-2< 2AD<4+21<AD< 3∴A D=22.已知: BC=ED,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2证明:连结BF 和 EF∵BC=ED,CF=DF,∠ BCF=∠ EDF∴三角形 BCF全等于三角形EDF(边角边 )∴BF=EF,∠CBF=∠ DEF连结 BE在三角形BEF中 ,BF=EF∴ ∠EBF=∠ BEF。
∵ ∠ABC=∠ AED。
∴ ∠ABE=∠AEB。
∴AB=AE。
在三角形ABF 和三角形AEF中AB=AE,BF=EF,∠A BF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF∴三角形 ABF 和三角形AEF全等。
∴ ∠BAF=∠ EAF (∠ 1=∠ 2)。
A A12FCDEB已知:∠ 1=∠ 2,CD=DE,EF如图,四边形ABCD中, AB∥DC,BE、CE分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。
求证:BC=AB+DC。
在 BC上截取 BF=AB,连结 EF∵BE 均分∠ ABC∴∠ ABE=∠ FBE又∵ BE=BE∴⊿ ABE≌⊿ FBE( SAS)∴∠ A=∠ BFE∵AB 知:AB=CD,∠A=∠D,求证:∠B=∠C证明:设线段 AB,CD所在的直线交于E,则:△AED是等腰三角形。
∴ AE=DE而 AB=CD∴ BE=CE∴△ BEC是等腰三角形∴∠ B=∠ C.是∠ BAC均分线 AD 上一点, AC>AB,求证: PC-PB<AC-AB在 AC 上取点 E,使 AE= AB。
全等三角形的证明及计算大题专项训练(30道)(含答案)
全等三角形的证明及计算大题专项训练(30道)考卷信息:本套训练卷共30题,培优篇15题,拔尖篇15题,题型针对性较高,覆盖面广,选题有深度,可深化学生对全等三角形工具的应用及构造全等三角形!1.(2021春•道里区期末)如图,点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF .(1)求证:△ADE ≌△CBF ;(2)直接写出图中所有相等的线段(AE =CF 除外).【解题思路】(1)利用ASA 证明△ADE ≌△CBF 即可;(2)根据△ADE ≌△CBF 即可得图中所有相等的线段.【解答过程】(1)证明:∵AD ∥BC∴∠DAC =∠BCA ,又∵∠DAC +∠EAD =180°,∠BCA +∠FCB =180°,∴∠EAD =∠FCB ,∵DE ∥BF ,∴∠E =∠F ,在△ADE 和△CBF 中,{∠EAD =∠FCB AE =CF ∠E =∠F,∴△ADE ≌△CBF (ASA ),(2)∵△ADE ≌△CBF ,∴ED =FB ,DA =BC ,EC =F A .∵AD ∥BC ,∴∠DAC =∠BCA ,在△ADC 和△CBA 中,{AD =CB ∠DAC =∠CBA AC =CA,∴△ADC ≌△CBA (SAS ),∴AB =CD ;∴图中所有相等的线段有:ED =FB ,DA =BC ,AB =CD ,EC =F A .2.(2021春•宁德期末)如图,AB ,CD 交于点O ,AC =DB ,∠ACD =∠DBA .(1)说明△AOC ≌△DOB 的理由;(2)若∠ACD =94°,∠CAO =28°,求∠OCB 的度数.【解题思路】(1)直接利用AAS 即可证明△AOC ≌△DOB ;(2)利用三角形外角的性质得到∠COB ,再根据△AOC ≌△DOB 得到OC =OB ,即可求得∠OCB .【解答过程】解:(1)在△AOC 和△DOB 中,{∠AOC =∠DOB ∠ACO =∠DBO AC =DB,∴△AOC ≌△DOB (AAS );(2)∵∠ACD =94°,∠CAO =28°,∴∠COB =∠ACD +∠CAO =122°,∵△AOC ≌△DOB ,∴OC =OB ,∴∠OCB =(180°﹣122°)÷2=29°.3.(2021春•沙坪坝区校级期末)如图,在△ABC 中,AC =BC ,点D 在AB 边上,点E 在BC 边上,连接CD ,DE .已知∠ACD =∠BDE ,CD =DE .(1)猜想AC 与BD 的数量关系,并证明你的猜想;(2)若AD =3,BD =5,求CE 的长.【解题思路】(1)利用AAS 证明△ADC ≌△BED ,即可得结论;(2)结合△ADC ≌△BED ,可得AC =BD =5,BE =AD =3,进而可得CE 的长.【解答过程】解:(1)AC =BD ,理由如下:∵AC =BC ,∴∠A =∠B ,在△ADC 和△BED 中,{∠A =∠B ∠ACD =∠BED CD =DE,∴△ADC ≌△BED (AAS ),∴AC =BD ;(2)由(1)知:△ADC ≌△BED ,∴AC =BD =5,BE =AD =3,∴BC =AC =5,∴CE =BC ﹣BE =2.4.(2021春•渝中区校级期末)如图,点E 在△ABC 的边AC 上,且∠ABE =∠C ,AF 平分∠BAE 交BE 于F ,FD ∥BC 交AC 于点D .(1)求证:△ABF ≌△ADF ;(2)若BE =7,AB =8,AE =5,求△EFD 的周长.【解题思路】(1)根据平行线的性质得到∠ADF =∠C ,等量代换得到∠ABF =∠ADF ,由角平分线的定义得到∠BAF =∠CAF ,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD =AB =8,BF =DF ,由线段的和差得到DE =AD =AE =8﹣5=3,根据三角形的周长公式即可得到结论.【解答过程】解:(1)∵FD ∥BC ,∴∠ADF =∠C ,∵∠ABF =∠C ,∴∠ABF =∠ADF ,∵AF 平分∠BAE ,∴∠BAF =∠CAF ,在△ABF 和△ADF 中,{∠BAF =∠DAF ∠ABF =∠ADF AF =AF,∴△ABF ≌△ADF (AAS );(2)∵△ABF ≌△ADF ,∴AD =AB =8,BF =DF ,∵AE =5,∴DE =AD ﹣AE =8﹣5=3,∴△EFD 的周长=EF +DF +DE =EF +BF +DE =BE +DE =7+3=10.5.(2021春•北碚区校级期末)如图,已知D 是AC 上一点,AB =DA ,AB +DC =ED ,AE =BC .(1)求证:△ABC ≌△DAE ,(2)若∠BAE =125°,求∠DCB 的度数.【解题思路】(1)根据SSS 证明三角形全等即可.(2)利用全等三角形的性质以及三角形内角和定理求解即可.【解答过程】(1)证明:∵DE =AB +DC ,AB =AD ,∴DE =AD +DC =AC ,在△ABC 和△DAE 中,{AB =AD AC =DE BA =AE,∴△ABC ≌△DAE (SSS ).(2)解:∵△ABC ≌△DAE ,∴∠EAD =∠B ,∴∠B +∠BAC =∠EAD +∠BAC =∠EAB =125°,∴∠DCB =180°﹣(∠B +∠BAC )=180°﹣125°=55°.6.(2021春•莱芜区期末)如图,已知AD 、BC 相交于点O ,AB =CD ,AM ⊥BC 于点M ,DN ⊥BC 于点N ,BN =CM .(1)求证:△ABM ≌△DCN ;(2)试猜想OA 与OD 的大小关系,并说明理由.【解题思路】(1)根据HL 可证明:△ABM ≌△DCN ;(2)根据AAS 证明△AMO ≌△DNO 可得结论.【解答过程】(1)证明:∵BN =CM ,∴BN +MN =MN +CM ,即CN =BM ,∵AM ⊥BC 于点M ,DN ⊥BC 于点N ,∴∠AMB =∠DNC =90°,在Rt △ABM 和Rt △DCN 中,{AB =CD BM =CN, ∴Rt △ABM ≌Rt △DCN (HL );(2)解:OA =OD ,理由如下:∵Rt △ABM ≌Rt △DCN ,∴AM =DN ,在△AMO 和△DNO 中,{∠AOM =∠DNO ∠AMO =∠DNO AM =DN,∴△AMO ≌△DNO (AAS ),∴OA =OD .7.(2021春•静安区期末)如图,已知四边形ABCD 中,AB ∥CD ,AD ∥BC .E 为BD 上一点,且BE =AD ,∠DEF =∠ADC ,EF 交BC 的延长线于点F .(1)AD 和BC 相等吗?为什么?(2)BF 和BD 相等吗?为什么?【解题思路】(1)根据平行线的性质和全等三角形的判定和性质得出△ABD 与△CDB 全等,进而利用全等三角形的性质解答即可;(2)根据平行线的性质和全等三角形的判定和性质得出△EFB 与△CDB 全等,进而解答即可.【解答过程】解:(1)AD =CB ,理由如下:∵AD ∥BC ,∴∠ABD =∠CDB ,同理可得,∠ADB =∠CBD ,在△ABD 与△CDB 中,{∠ABD =∠CDB BD =DB ∠ADB =∠CBD,∴△ABD ≌△CDB (ASA ),∴AD =CB ;(2)BF =BD ,理由如下:∵AD =CB ,BE =AD ,∴BC =BE ,∵∠DEF =∠ADC ,∴∠DEF ﹣∠DBF =∠ADC ﹣∠ADB ,即∠EFB =∠CDB ,在△EFB 与△CDB 中,{∠EFB =∠CDB BC =BE ∠FBE =∠DBC,∴△EFB ≌△CDB (ASA ),∴FB =DB .8.(2021春•沙坪坝区校级月考)如图,△ABC 中,CD ⊥AB ,垂足为D .BE ⊥AC ,垂足为G ,AB =CF ,BE =AC .(1)求证:AE =AF ;(2)求∠EAF 的度数.【解题思路】(1)利用SAS 证明△AEB ≌△F AC 可证明结论;(2)由全等三角形的性质可得∠E =∠CAF ,由余角的定义可求得∠EAF 的度数.【解答过程】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠CAD +∠ACD =∠CAD +∠EBA =90°,∴∠ACD =∠EBA ,在△AEB 和△F AC 中,{AB =FC ∠EBA =∠ACF BE =CA,∴△AEB ≌△F AC (SAS ),∴AE =F A ;(2)解:∵△AEB ≌△F AC ,∴∠E =∠CAF ,∵∠E +∠EAG =90°,∴∠CAF +∠EAG =90°,即∠EAF =90°.9.(2021春•铁岭月考)已知:如图,AB =AC ,∠1=∠2.(1)找出图中的所有全等三角形(直接写出);(2)求证:AD =AE .【解题思路】(1)直接根据全等三角形的判定可得答案;(2)先根据SAS 证得△ABF ≌△ACF ,再根据ASA 证得△BDF ≌△CEF ,然后根据全等三角形的性质可得结论.【解答过程】解:(1)△ABF ≌△ACF ,△BDF ≌△CEF ,△ADF ≌△AEF ,△ADC ≌△AEB ;(2)证明:在△ABF 和△ACF 中,{AB =AC ∠1=∠2AF =AF,∴△ABF ≌△ACF (SAS ),∴∠B =∠C ,BF =CF .在△BDF 和△CEF 中,{∠B =∠C BF =CF ∠BFD =∠CFE,∴△BDF ≌△CEF (ASA ),∴BD =CE ,∴AB ﹣BD =AC ﹣CE ,∴AD =AE .10.(2021•南岗区模拟)已知:在△ABC 和△DBE 中,AB =DB ,BC =BE ,其中∠ABD =∠CBE .(1)如图1,求证:AC =DE ;(2)如图2,AB =BC ,AC 分别交DE ,BD 于点F ,G ,BC 交DE 于点H ,在不添加任何辅助线的情况下,请直接写出图2中的四对全等三角形.【解题思路】(1)根据SAS 证明△ABC 与△DBE 全等,利用全等三角形的性质解答即可.(2)根据全等三角形的判定解答即可.【解答过程】证明:(1)∵∠ABD =∠CBE ,∴∠ABD +∠DBC =∠CBE +∠DBC ,即∠ABC =∠DBE ,在△ABC 与△DBE 中,{AB =DB ∠ABC =∠DBE BC =BE,∴△ABC ≌△DBE (SAS ),∴AC =DE ;(2)由(1)得△ABC ≌△DBE ,∴∠A =∠D ,∠C =∠E ,AB =DB ,BC =BE ,∴AB =BE ,∵AB =BC ,∴∠A =∠C ,∴∠A =∠E ,在△ABG 与△EBH 中,{∠A =∠E AB =BE ∠ABD =∠EBC,∴△ABG ≌△EBH (ASA ),∴BG =BH ,在△DBH 与△CBG 中,{BG =BH ∠DBH =∠CBG DB =CB,∴△DBH ≌△CBG (SAS ),∴∠D =∠C ,∵DB =CB ,BG =BH ,∴DG =CH ,在△DFG 与△CFH 中,{∠DFG =∠CFH ∠D =∠C DG =CH,∴△DFG ≌△CFH (AAS ).11.(2021•三水区一模)如图,AB =AC ,直线l 过点A ,BM ⊥直线l ,CN ⊥直线l ,垂足分别为M 、N ,且BM =AN .(1)求证△AMB ≌△CNA ;(2)求证∠BAC =90°.【解题思路】(1)由HL证明△AMB≌△CNA即可;(2)先由全等三角形的性质得∠BAM=∠ACN,再由∠CAN+∠ACN=90°,得∠CAN+∠BAM=90°,即可得出结论.【解答过程】证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,{AB=CABM=AN,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.12.(2021•广州模拟)如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是30.【解题思路】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【解答过程】(1)证明:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△BCE 和△CAD 中,{∠E =∠ADC ∠EBC =∠DCA BC =AC,∴△BCE ≌△CAD (AAS );(2)解:∵:△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD +DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.13.(2020春•越秀区校级期中)已知:△ABN 和△ACM 的位置如图所示,∠1=∠2,AB =AC ,AM =AN . 求证:(1)∠BAN =∠CAM ;(2)∠ODA =∠OEA .【解题思路】(1)由∠1=∠2,则∠1+∠MAN =∠2+∠MAN ,即∠BAN =∠CAM ;(2)先证△ACM ≌△ABN (SAS ),得∠M =∠N ,再证△ADN ≌△AEM (ASA ),即可得出结论.【解答过程】证明:(1)∵∠1=∠2,∴∠1+∠MAN =∠2+∠MAN ,即∠BAN =∠CAM ;(2)在△ACM 和△ABN 中,{AM =AN ∠CAM =∠BAN AC =AB,∴△ACM ≌△ABN (SAS ),∴∠M =∠N ,在△ADN 和△AEM 中,{∠DAN =∠EAM AN =AM ∠N =∠M,∴△ADN ≌△AEM (ASA ),∴∠NDA =∠MEA ,即∠ODA =∠OEA .14.(2020•江北区模拟)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB ,交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =2,CF =1时,求AC 的长.【解题思路】(1)根据平行线的性质得到∠B =∠FCD ,∠BED =∠F ,由AD 是BC 边上的中线,得到BD =CD ,于是得到结论;(2)根据全等三角形的性质得到BE =CF =1,求得AB =AE +BE =3,于是得到结论.【解答过程】证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,在△BDE 和△CDF 中,{∠B =∠FCD ∠BED =∠F BD =CD,∴△BDE ≌△CDF (AAS );(2)∵△BDE ≌△CDF ,∴BE =CF =1,∴AB =AE +BE =2+1=3,∵AD ⊥BC ,BD =CD ,∴AC =AB =3.15.(2020秋•萧山区月考)如图,已知在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线上一点,CG =AB ,连接AG ,AF .(1)试说明∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系?并请说明理由.【解题思路】(1)根据的等角的余角相等,即可证明∠ACG =∠ABF ;(2)根据SAS 推出△ABF ≌△GCA 即可解决问题;【解答过程】(1)证明:∵BD 、CE 是△ABC 的高,∴∠ADB =∠AEC =90°,∴∠ABF +∠BAD =90°,∠GCA +∠BAD =90°,∴∠ABF =∠GCA ,(2)结论:AF =AG ,AF ⊥AG .理由如下:在△ABF 和△GCA 中,{AB =CG ∠ABF =∠GCA BF =AC,∴△ABF ≌△GCA (SAS ),∴AF =AG ,∠GAC =∠AFB ,∵∠AFB=∠ADB+∠F AD,∠GAC=∠GAF+∠F AD,∴∠GAF=∠ADF,∵∠ADF=90°,∴∠GAF=90°,∴AG⊥AF,AG=AF.16.(2021•张家界模拟)如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.【解题思路】(1)由平行线的性质得出∠ABE+∠C=180°,得出∠ABE=90°=∠C,再证出BE=CD,由SAS证明△ABE≌△BCD即可;(2)由全等三角形的性质得出AE=BD,证出∠ABF+∠BAE=90°,得出∠AFB=90°,即可得出结论;(3)由全等三角形的性质得出BE=CD=1,求出CE=BC﹣BE=1,得出CE=CD,△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积,即可得出答案.【解答过程】(1)证明:∵AB∥CD,∴∠ABE+∠C=180°,∵∠C=90°,∴∠ABE=90°=∠C,∵E是BC的中点,∴BC=2BE,∵BC=2CD,∴BE=CD,在△ABE和△BCD中,{AB=BC∠ABE=∠CBE=CD,∴△ABE≌△BCD(SAS);(2)解:AE=BD,AE⊥BD,理由如下:由(1)得:△ABE≌△BCD,∴AE=BD,∵∠BAE=∠CBD,∠ABF+∠CBD=90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=12(1+2)×2−12×2×1−12×1×1=3 2.17.(2020秋•台江区校级期中)如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC 于点F,AE=BD.(1)求证:C是DE的中点;(2)求证:AB=2CF.【解题思路】(1)过D 作DH ⊥AC 的延长线与H ,根据全等三角形的判定证得△AEF ≌△BDH ,得到EF =DH ,再证得△EFC ≌△DHC 得到CE =CD ,即可证得即可证得结论;(2)由(1)得,△AEF ≌△BDH ,△EFC ≌△DHC ,根据全等三角形的性质得到AF =BH ,CF =CH ,再根据线段的和差即可证得结论.【解答过程】证明:(1)过D 作DH ⊥AC 的延长线与H ,∴∠EFC =∠DHC =90°,在△AEF 和△BDH 中,{∠A =∠DBC ∠AFE =∠BHD =90°AE =BD,∴△AEF ≌△BDH (AAS ),∴EF =DH ,在△EFC 和△DHC 中,{∠FCE =∠HCD ∠EFC =∠DHC =90°EF =DH,∴△EFC ≌△DHC (AAS ),∴CE =CD ,∴C 是DE 的中点;(2)由(1)得,△AEF ≌△BDH ,△EFC ≌△DHC ,∴AF =BH ,CF =CH ,∴AB +BF =BF +FH ,FH =2FC ,∴AB =FH ,∴AB =2CF .18.(2021春•铁岭月考)如图,△AOC 和△BOD 中,OA =OC ,OB =OD ,∠AOC =∠BOD =α(0<α<90°),AD 与BC 交于点P .(1)求证:△AOD ≌△COB ;(2)求∠APC (用含α的式子表示);(3)过点O 分别作OM ⊥AD ,ON ⊥BC ,垂足分别为点M 、N ,请直接写出OM 和ON 的数量关系.【解题思路】(1)由∠AOC =∠BOD ,可得∠AOD =∠COB ,然后根据SAS 可得结论;(2)根据全等三角形的性质得∠OAD =∠OCB ,再根据三角形外角性质可得答案;(3)根据全等三角形的性质得∠MAO =∠NCO ,由垂直定义得∠AMO =∠CNO ,再根据全等三角形的判定与性质可得结论.【解答过程】解:(1)∵∠AOC =∠BOD ,∴∠AOC +∠COD =∠BOD +∠COD ,∴∠AOD =∠COB ,在△AOD 和△COB 中,{OA =OC ∠AOD =∠COB OD =OB,∴△AOD ≌△COB (SAS );(2)由(1)可知△AOD ≌△COB ,∴∠OAD =∠OCB ,令AD 与OC 交于点E ,则∠AEC =∠OAD +∠AOC =∠OCB +∠APC ,∴∠AOC =∠APC ,∵∠AOC =α,∴∠APC =α;(3)∵△AOD ≌△COB ,∴∠P AP =∠BCO ,即∠MAO =∠NCO ,∵OM ⊥AD ,ON ⊥BC ,∴∠AMO =∠CNO =90°,在△AOM 和△CON 中,{∠MAO =∠NCO ∠AMO =∠CNO OA =OC,∴△AOM ≌△CON (AAS ),∴OM =ON .19.(2020秋•花都区月考)如图所示,BD 、CE 是△ABC 的高,点P 在BD 的延长线上,CA =BP ,点Q 在CE 上,QC =AB .(1)探究P A 与AQ 之间的关系;(2)若把(1)中的△ABC 改为钝角三角形,AC >AB ,∠A 是钝角,其他条件不变,上述结论是否成立?画出图形并证明你的结论.【解题思路】(1)由条件可得出∠1=∠2,可证得△APB ≌△QAC ,可得结论;(2)根据题意画出图形,结合(1)可证得△APB ≌△QAC ,可得结论.【解答过程】(1)结论:AP =AQ ,AP ⊥AQ 证明:∵BD 、CE 是△ABC 的高, ∴BD ⊥AC ,CE ⊥AB ,∴∠1+∠CAB =90°,∠2+∠CAB =90°, ∴∠1=∠2,在△QAC 和△APB 中,{QC =AB ∠1=∠2CA =BP,∴△QAC ≌△APB (SAS ),∴AQ =AP ,∠QAC =∠P ,而∠DAP +∠P =90°,∴∠DAP +∠QAC =90°,即∠QAP =90°,∴AQ ⊥AP ;即AP =AQ ,AP ⊥AQ ;(2)上述结论成立,理由如下:如图所示:∵BD 、CE 是△ABC 的高,∴BD ⊥AC ,CE ⊥AB ,∴∠1+∠CAE =90°,∠2+∠DAB =90°, ∵∠CAE =∠DAB ,∴∠1=∠2,在△QAC 和△APB 中,{QC =AB ∠1=∠2CA =BP,∴△QAC ≌△APB (SAS ),∴AQ =AP ,∠QAC =∠P ,∵∠PDA =90°,∴∠P +∠P AD =90°,∴∠QAC +∠P AD =90°,∴∠QAP =90°,∴AQ ⊥AP ,即AP =AQ ,AP ⊥AQ .20.(2020春•萍乡期末)在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE ,设∠BAC =∠1,∠DCE =∠2.(1)如图①,当点D 在线段BC 上移动时,试说明:∠1+∠2=180°;(2)如图②,当点D 在线段BC 的延长线上移动时,请猜测∠1与∠2有怎样的数量关系?并说明理由.【解题思路】(1)由“SAS ”可证△BAD ≌△CAE ,可得∠ACE =∠ABD ,由三角形的内角和定理可得结论;(2)由“SAS ”可证△BAD ≌△CAE ,可得∠ACE =∠ABD ,由三角形的内角和定理和平角的定义可得结论.【解答过程】证明:(1)∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC +∠ABD +∠ACB =180°,∴∠BAC +∠ACB +∠ACE =∠BAC +∠BCE =180°,∴∠1+∠2=180°;(2)∠1=∠2,理由如下:∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∴△BAD ≌△CAE (SAS ),∴∠ACE =∠ABD ,∵∠BAC +∠ABD +∠ACB =180°,∠ACE +∠ACB +∠DCE =180°,∴∠1=∠2.21.(2020春•揭阳期末)已知△ABC ,点D 、F 分别为线段AC 、AB 上两点,连接BD 、CF 交于点E .(1)若BD ⊥AC ,CF ⊥AB ,如图1所示,试说明∠BAC +∠BEC =180°;(2)若BD 平分∠ABC ,CF 平分∠ACB ,如图2所示,试说明此时∠BAC 与∠BEC 的数量关系;(3)在(2)的条件下,若∠BAC =60°,试说明:EF =ED .【解题思路】(1)根据余角的性质得到∠DEC =∠BAC ,由于∠DEC +∠BEC =180°,即可得到结论;(2)根据角平分线的性质得到∠EBC =12∠ABC ,∠ECB =12∠ACB ,于是得到结论;(3)作∠BEC 的平分线EM 交BC 于M ,由∠BAC =60°,得到∠BEC =90°+12∠BAC =120°,求得∠FEB =∠DEC =60°,根据角平分线的性质得到∠BEM =60°,推出△FBE ≌△EBM ,根据全等三角形的性质得到EF =EM ,同理DE =EM ,即可得到结论.【解答过程】解:(1)∵BD ⊥AC ,CF ⊥AB ,∴∠DCE +∠DEC =∠DCE +∠F AC =90°,∴∠DEC =∠BAC ,∠DEC +∠BEC =180°,∴∠BAC +∠BEC =180°;(2)∵BD 平分∠ABC ,CF 平分∠ACB ,∴∠EBC =12∠ABC ,∠ECB =12∠ACB ,∠BEC =180°﹣(∠EBC +∠ECB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠BAC )=90°+12∠BAC ;(3)作∠BEC 的平分线EM 交BC 于M ,∵∠BAC =60°,∴∠BEC =90°+12∠BAC =120°,∴∠FEB =∠DEC =60°,∵EM 平分∠BEC ,∴∠BEM =60°,在△FBE 与△EBM 中,{∠FBE =∠EBM BE =BE ∠FEB =∠MEB,∴△FBE ≌△EBM (ASA ),∴EF =EM ,同理DE =EM ,∴EF =DE .22.(2020秋•淇滨区校级期中)(1)如图1所示,△ACB 和△ECD 都是等腰三角形,A 、C 、D 三点在同一直线上,连接BD 、AE ,并延长AE 交BD 于点F ,试判断AE 与BD 的数量关系及位置关系,并证明你的结论.(2)若△ECD 绕顶点C 顺时针转任意角度后得到图2,图1中的结论是否仍然成立?请说明理由.【解题思路】(1)根据SAS 推出△ACE ≌△BCD ,根据全等三角形的性质得出∠CAE =∠DBC ,根据∠ACB =90°求出∠CAE +∠AEC =90°,求出∠DBC +∠BEF =90°,根据三角形内角和定理求出∠BFE =90°即可;(2)根据SAS 推出△ACE ≌△BCD ,根据全等三角形的性质得出∠CAE =∠DBC ,根据∠ACB =90°求出∠CAE +∠AOC =90°,求出∠DBC +∠BOE =90°,根据三角形内角和定理求出∠BFO =90°即可.【解答过程】(1)AE ⊥BD .证明:在△ACE 和△BCD 中{AC =BC ∠ACE =∠BCD CE =CD∴△ACE ≌△BCD (SAS ),∴∠CAE =∠DBC ,∵∠ACB =90°,∴∠CAE +∠AEC =90°,∵∠CAE =∠DBC ,∠AEC =∠BEF ,∴∠DBC +∠BEF =90°,∴∠BFE =180°﹣90°=90°,∴AE ⊥BD ;(2)解:结论还成立,理由是:∵∠ACB =∠ECD ,∴∠ACB +∠BCE =∠ECD +∠BCE ,即∠ACE =∠BCD ,在△ACE 和△BCD 中{AC =BC ∠ACE =∠BCD CE =CD∴△ACE≌△BCD(SAS),∴∠CAE=∠DBC,∵∠ACB=90°,∴∠CAE+∠AOC=90°,∵∠CAE=∠DBC,∠AOC=∠BOE,∴∠DBC+∠BOE=90°,∴∠BFO=180°﹣90°=90°,∴AE⊥BD.23.(2020秋•蒙阴县期中)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕着点C旋转到如图1所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕着点C旋转到如图2所示的位置时,①找出图中一对全等三角形;②DE、AD、BE之间有怎样的数量关系,并加以证明.【解题思路】(1)根据余角和补角的性质易证得∠DAC=∠ECB,已知∠ADC=∠CEB=90°,AC=CB,根据全等三角形的判定AAS即可证明△ADC≌△CEB,根据各边的相等关系即可得DE=AD+BE.(2)同理可证得△ADC≌△CEB,再根据各边的相等关系可得DE=AD﹣BE.【解答过程】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=180°﹣90°=90°,∴∠DAC=∠ECB;在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(AAS)①,(7分)∴DC=EB,AD=CE,∴DE=AD+BE.(9分)(2)解:同理可得△ADC≌△CEB①;(11分)∴AD=CE,CD=BE,∴DE=AD﹣BE②.(14分)24.(2018秋•环翠区期末)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=12∠BAD,可求得EF、BE、FD之间的数量关系为BE+DF=EF.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=12∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】【解题思路】(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图1中,延长CB至M,使BM =DF,连接AM,利用全等三角形的性质解决问题即可.(2)结论:EF+DF=BE.如图2中,在BE上截取BM=DF,连接AM,证明△ABM≌△ADF(SAS),推出AM=AF,∠BAM=∠DAF,再证明△AEM≌△AEF(SAS),可得结论.【解答过程】解:(1)线段EF、BE、FD之间的数量关系是BE+DF=EF.如图1,延长CB至M,使BM=DF,连接AM,∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D ,在△ABM 和△ADF 中,{AB =AD ∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∴∠4+∠4=∠EAF ,∴∠GAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△F AE 中,{AM =AF ∠MAE =∠FAE AE =AE,∴△MAE ≌△F AE (SAS ),∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;故答案为:BE +DF =EF .(2)结论:EF +DF =BE .理由:在BE 上截取BM =DF ,连接AM ,∵∠B +∠ADC =180°,∠ADC +∠ADE =180°,∴∠B =∠ADF ,在△ABM 与△ADF 中,{BM =DF ∠ABM =∠ADF AB =AD,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠BAM =∠DAF ,∵∠EAF =12∠BAD ,∴∠EAF =∠EAM ,在△AEM 与△AEF 中,{AM =AF ∠EAF =∠EAM AE =AE,∴△AEM ≌△AEF (SAS ),∴EM =EF ,即BE ﹣BM =EF ,即BE ﹣DF =EF ,∴EF +DF =BE .25.(2021春•和平区期末)如图,在△ABC 中,AC =BC ,点D 在边AB 上,AB =4BD ,连接CD ,点E ,F 在线段CD 上,连接BF ,AE ,∠BFC =∠AEC =180°﹣∠ACB .(1)①∠FBC 与∠ECA 相等吗?说明你的理由;②△FBC 与△ECA 全等吗?说明你的理由;(2)若AE =11,EF =8,则请直接写出BF 的长为 3 ;(3)若△ACE 与△BDF 的面积之和为12,则△ABC 的面积为 48 .【解题思路】(1)①连接BC ,由已知及∠AEC =180°﹣∠AED ,可得到∠ACB =∠AED .再证明∠CAE =∠BCF ,由三角形内角和定理可得∠FBC =∠ECA ;②利用“ASA ”证明△FBC ≌△ECA ;(2)由(1)中全等三角形的结论及已知可得到BF 的长;(3)由(1)中结论可得S △FBC =S △ECA ,所以S △ECA +S △BDF =12=S △FBC +S △BDF =S △DBC ,根据AB =4BD ,可得到S △DBC =14S △ABC =12,从而可得△ABC 的面积.【解答过程】解:(1)①∠FBC =∠ECA ,理由如下:连接BC ,如右图.∵∠BFC =∠AEC =180°﹣∠ACB ,且∠AEC =180°﹣∠AED ,∴∠ACB =∠AED .由外角定理可得∠AED =∠ACD +∠CAE ,又∠ACB =∠ACD +∠BCF ,∴∠CAE =∠BCF ,由三角形内角和定理可得∠FBC =∠ECA .②△FBC 与△ECA 全等,理由如下:在△FBC 和△ECA 中,{∠FBC =∠ECA BC =CA ∠BCF =∠CAE,∴△FBC ≌△ECA (ASA ).(2)由(1)中②可知,FC =AE =11,BF =CE ,又EF =8,∴CE =FC ﹣EF =11﹣8=3,∴BF =3,故答案为:3.(3)由(1)中结论可知S△FBC=S△ECA,∴S△ECA+S△BDF=12=S△FBC+S△BDF=S△DBC,又AB=4BD,∴S△DBC=14S△ABC=12,∴S△ABC=48.故答案为:48.26.(2020•岱岳区一模)已知∠ABC=90°,点D是直线AB边上的点,AD=BC.(1)如图1,点D在线段AB上,过点A作AF⊥AB,且AF=BD,连接DC、DF、CF,试判断△CDF 的形状并说明理由;(2)如图2,点D在线段AB的延长线上,点F在点A的左侧,其他条件不变,以上结论是否仍然成立?请说明理由.【解题思路】(1)利用SAS证明△F AD≌△DBC,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)利用SAS证明△F AD和△DBC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出结论.【解答过程】(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AB,∴∠A=90°,在△F AD和△DBC中,∵{AF=BD∠A=∠B=90°AD=BC,∴△F AD≌△DBC(SAS),∴∠ADF=∠BCD,DF=DC,∵∠BDC+∠BCD=90°,∴∠ADF+∠CDB=90°,∴∠FDC=180°﹣90°=90°,又∵DF=DC,∴△CDF是等腰直角三角形;(2)仍然成立,理由如下:∵AF⊥AB,∴∠A=90°,在△F AD和△DBC中,∵{AF=BD∠A=∠DBC=90°AD=BC,∴△F AD≌△DBC(SAS),∴∠ADF=∠BCD,DF=DC,∵∠BDC+∠BCD=90°,∴∠ADF+∠BDC=90°,即∠FDC=90°,又∵DF=DC,∴△CDF是等腰直角三角形.27.如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【解题思路】(1)延长AE ,BF 交于点F ,即可求证△ADE ≌△FCE ,即可求得CF =AD ,AB =BF ,即可求得AB =AD +BC ;(2)不成立,新的结论为:AB +BC =AD .延长AE ,BF 交于点F ,可证△ADE ≌△FCE 和AB =BF ,即可解题.【解答过程】解:(1)延长AE ,BF 交于点F ,∵AE 平分∠BAD ,∴∠BAF =∠DAF ,∵AD ∥BC ,∴∠AFB =∠DAF ,∴AB =BF ,在△ADE 和△FCE 中,{∠DAE =∠EFC ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ),∴CF =AD ,∵BF =BC +CF ,∴AB =BC +AD ;(2)不成立,新结论为:AB =AD ﹣BC .延长AE ,BF 交于点F ,证明:∵AE 平分∠BAD ,∴∠BAF =∠DAF ,∵AD ∥BC ,∴∠AFB =∠DAF ,∴AB =BF ,在△ADE 和△FCE 中,{∠DAE =∠EFC ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ),∴CF =AD ,∵BF +BC =CF ,∴AB +BC =AD .28.(2021春•章丘区期末)如图,CD 是经过∠BCA 顶点C 的一条直线,CA =CB ,E 、F 分别是直线CD 上两点,且∠BEC =∠CF A =α.(1)若直线CD 经过∠BCA 的内部,且E 、F 在射线CD 上.①如图1,若∠BCA =90°,α=90°,则BE = CF ;②如图2,若0°<∠BCA <180°,请添加一个关于α与∠BCA 关系的条件 α+∠BCA =180° ,使①中的结论们然成立,并说明明理由;(2)如图3,若线CD 经过∠BCA 的外部,a =∠BCA ,请提出关于EF ,BE ,AF 三条线段数量关系的合理猜想,并简述理由.【解题思路】(1)由∠BCA =90°,∠BEC =∠CF A =α=90°,可得∠CBE =∠ACF ,从而可证△BCE ≌△CAF ,故BE =CF .(2)若BE =CF ,则可使得△BCE ≌△CAF .根据题目已知条件添加条件,再使得一对角相等,△BCE ≌△CAF 便可得证.(3)题干已知条件可证△BCE ≌△CAF ,故BE =CF ,EC =F A ,从而可证明EF =BE +AF .【解答过程】解:(1)∵∠BEC =∠CF A =α=90°,∴∠BCE +∠CBE =180°﹣∠BEC =90°.又∵∠BCA =∠BCE +∠ACF =90°,∴∠CBE =∠ACF .在△BCE 和△CAF 中,{∠BEC =∠CFA ,∠CBE =∠ACF ,BC =AC .∴△BCE ≌△CAF (AAS ).∴BE =CF .(2)α+∠BCA =180°,理由如下:∵∠BEC =∠CF A =α,∴∠BEF =180°﹣∠BEC =180°﹣α.又∵∠BEF =∠EBC +∠BCE ,∴∠EBC +∠BCE =180°﹣α.又∵α+∠BCA =180°,∴∠BCA =180°﹣α.∴∠BCA =∠BCE +∠ACF =180°﹣α.∴∠EBC =∠FCA .在△BCE 和△CAF 中,{∠CBE =∠ACF ,∠BEC =∠CFA ,BC =CA .∴△BCE ≌△CAF (AAS ).∴BE =CF .(3)EF =BE +AF ,理由如下:∵∠BCA =α,∴∠BCE +∠ACF =180°﹣∠BCA =180°﹣α.又∵∠BEC =α,∴∠EBC +∠BCE =180°﹣∠BEC =180°﹣α.∴∠EBC =∠FCA .在△BEC 和△CF A 中,{∠EBC =∠FCA ,∠BEC =∠FCA ,BC =CA .∴△BEC ≌△CF A (AAS ).∴BE =CF ,EC =F A .∴EF =EC +CF =F A +BE ,即EF =BE +AF .29.(2020春•南岸区期末)在∠MAN 内有一点D ,过点D 分别作DB ⊥AM ,DC ⊥AN ,垂足分别为B ,C .且BD =CD ,点E ,F 分别在边AM 和AN 上.(1)如图1,若∠BED =∠CFD ,请说明DE =DF ;(2)如图2,若∠BDC =120°,∠EDF =60°,猜想EF ,BE ,CF 具有的数量关系,并说明你的结论成立的理由.【解题思路】(1)根据题目中的条件和∠BED =∠CFD ,可以证明△BDE ≌△CDF ,从而可以得到DE =DF ;(2)作辅助线,过点D 作∠CDG =∠BDE ,交AN 于点G ,从而可以得到△BDE ≌△CDG ,然后即可得到DE =DG ,BE =CG ,再根据题目中的条件可以得到△EDF ≌△GDF ,即可得到EF =GF ,然后即可得到EF ,BE ,CF 具有的数量关系.【解答过程】解:(1)∵DB ⊥AM ,DC ⊥AN ,∴∠DBE =∠DCF =90°,在△BDE 和△CDF 中,∵{∠BED =∠CFD ,∠DBE =∠DCF ,BD =CD ,∴△BDE ≌△CDF (AAS ).∴DE =DF ;(2)EF =FC +BE ,理由:过点D 作∠CDG =∠BDE ,交AN 于点G ,在△BDE 和△CDG 中,{∠EBD =∠GCD BD =CD ∠BDE =∠CDG,∴△BDE ≌△CDG (ASA ),∴DE =DG ,BE =CG .∵∠BDC =120°,∠EDF =60°,∴∠BDE +∠CDF =60°.∴∠FDG =∠CDG +∠CDF =60°,∴∠EDF =∠GDF .在△EDF 和△GDF 中,{DE =DG ∠EDF =∠GDF DF =DF,∴△EDF ≌△GDF (SAS ).∴EF =GF ,∴EF=FC+CG=FC+BE.30.(2021春•揭东区期末)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(3)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)并说明理由.【解题思路】(1)求出∠ACE=∠DCB,根据SAS证出两三角形全等即可;(2)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB =180°﹣(∠EAB+∠DBC),代入求出即可;(3)根据全等三角形性质得出∠AEC=∠DBC,∠CDB=∠CAE,求出∠EAB+∠DBA=∠ACD,∠AFB =180°﹣(∠EAB+∠DBC),代入求出即可.【解答过程】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵{AC=CD∠ACE=∠DCB CE=CB,∴△ACE≌△DCB;(2)解:∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(3)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.。
(完整版)初中数学全等三角形的证明题含答案
1.已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD解:延长AD至【J E,使AD=DE• D是BC中点••• BD=DC在左ACD和左BDE中AD=DEZ BDE= Z ADCBD=DC••• A ACD^A BDE. .AC=BE=2•在△ ABE 中AB-BE < AE< AB+BE••AB=4即4-2<2AD <4+21<AD <3•••AD=21 2.已知:D是AB中点,Z ACB=90 ,求证:CD —AB延长CD与P,使D为CP中点。
连接AP.BP ••DP=DC,DA=DB• •ACBP为平行四边形又/ ACB=90平行四边形ACBP为矩形•••AB=CP=1/2AB证明:连接BF和EF. • BC=ED,CF=DF, / BCF= / EDF三角形BCF全等于三角形EDF(边角边)••• BF=EF, Z CBF= / DEF连接BE在三角形BEF中,BF=EF/ EBF= / BEF。
. • Z ABC= Z AED。
••• Z ABE= Z AEB。
AB=AE 。
在三角形ABF和三角形AEF中AB=AE,BF=EF,Z ABF= Z ABE+ Z EBF= Z AEB+ Z BEF= Z AEF三角形ABF和三角形AEF全等。
Z BAF= Z EAF ( Z 1 = Z 2)。
EF=AC 4,已知:/ 1 = Z 2, CD=DE , EF//AB ,求证:过C作CG // EF交AD的延长线于点GCG// EF,可得,/ EFD= CGDDE= DC/ FDE=Z GDC (对顶角). EFD^A CGDZCGD=Z EFD又,EF// AB. Z EFD=Z 1/ 1= / 2•••Z CGD=Z 2AGC为等腰三角形,AC= CG又EF= CGEF= AC证明:延长AB取点E,使AE = AC,连接DE . • AD 平分Z BAC••• Z EAD = Z CAD. . AE = AC , AD = AD. AED^A ACD (SAS)Z E= Z C. . AC = AB+BDAE = AB+BD. . AE = AB+BE. .BD = BE•••Z BDE = / E. Z ABC = Z E+ Z BDE•••Z ABC = 2 / E•.•Z ABC = 2 Z C6. 已知:AC 平分Z BAD , CE± AB , Z B+ / D=180 °,求证:AE=AD+BE证明:在AE上取F,使EF = EB,连接CF. • CE ± ABCEB = Z CEF = 90°. • EB = EF, CE = CE,. CEB^A CEF•••Z B=Z CFE. Z B+Z D= 180° , Z CFE + Z CFA = 180°•••Z D = Z CFA. • AC 平分Z BAD/ DAC = / FAC. . AC = AC. ADC^A AFC (SAS)AD = AFAE = AF + FE= AD + BE7, 已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD解:延长AD至ij E,使AD=DED是BC中点. . BD=DC在^ ACD和^ BDE中AD=DEZ BDE= Z ADCBD=DC. ACD^A BDE••• AC=BE=2•.•在△ ABE 中AB-BE V AE V AB+BE. . AB=4即4-2 V 2AD V 4+21 v AD v 3AD=21—8. 已知:D是AB中点,/ACB=9,求证:CD-AB2 解:延长AD至ij E,使AD=DED是BC中点. . BD=DC在^ ACD和^ BDE中AD=DE/ BDE= / ADCBD=DC. ACD^A BDE ••• AC=BE=2•.•在△ ABE 中AB-BE V AE V AB+BE . . AB=4即4-2 V 2AD V 4+2 1 v AD v 3AD=2证明:连接BF和EF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章三角形的证明检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于点D,则BD的长为()A.157B.125C.207D.2153. 如图,在△ABC中,,点D在AC边上,且,则∠A的度数为()A. 30°B. 36°C. 45°D. 70°4.(2015•中考)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.如图,已知,,,下列结论:①;②;③;④△≌△.其中正确的有()A.1个B.2个C.3个D.4个6. 在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边cm,则最长边AB的长是()A.5 cmB.6 cmC.5cmD.8 cm7.如图,已知,,下列条件能使△≌△的是()A. B.C. D.三个答案都是8.(2015·中考)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个9.已知一个直角三角形的周长是26,斜边上的中线长为2,则这个三角形的面积为( ) A.5 B.2C.45D.110.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,交AB 于点E ,如果cm ,那么△的周长是( ) A.6 cm B.7 cmC.8 cmD.9 cm二、填空题(每小题3分,共24分) 11.如图所示,在等腰△ABC 中,AB =AC , ∠BAC =50°, ∠BAC 的平分线与AB 的垂直平分线交于点O ,点 C 沿EF 折叠后与点O 重合,则∠OEC 的度数是 .12.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形是________三角形.13.(2015•中考)如图,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =________°. 14.如图,在△ABC 中,,AM 平分∠,cm ,则点M 到AB 的距离 是_________.15.如图,在等边△ABC 中,F 是AB 的中点, FE ⊥AC 于E ,若△ABC 的边长为10,则_________,_________.16.(2015•中考)在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 . 17.如图,已知的垂直平分线交于点,则.18.一副三角板叠在一起如图所示放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M ,如果∠ADF =100°,那么∠BMD 为 度.三、解答题(共46分)19.(6分)如图,在△ABC中,,是上任意一点(M与A不重合),MD⊥BC,且交∠的平分线于点D,求证:.20.(6分)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图(1),若PA=PB,则点P为△ABC的准外心.应用:如图(2),CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探PA的长.21.(6分)如图所示,在四边形中,平分∠.求证:.22.(6分)如图所示,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作等边△DCE,B,E在C,D的同侧,若2,求BE的长.23.(6分)如图所示,在Rt△ABC中,,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.24.(8分)(2015·中考)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E.求证:AD=CE.第24题图25.(8分)已知:如图,,是上一点,于点,的延长线交的延长线于点.求证:△是等腰三角形.第一章三角形的证明检测题参考答案1.B 解析:只有②④正确.2.A 解析:∵∠BAC =90°,AB =3,AC =4, ∴2222 34 5BC AB AC =+=+=, ∴ BC 边上的高=123455⨯÷=. ∵ AD 平分∠BAC ,∴点D 到AB ,AC 的距离相等,设为h , 则111123452225ABC S h h ∆=⨯+⨯=⨯⨯,解得127h =,1121123 2725ABD S BD ∆=⨯⨯=⨯,解得157BD =.故选A . 3.B 解析:因为,所以.因为,所以.又因为,所以,所以所以4.C 解析:当等腰三角形的腰长是2,底边长是4时,等腰三角形的三边长是2,2,4,根据三角形的三边关系,不能构成三角形,所以不合题意,舍去;当等腰三角形的腰长是4,底边长是2时,等腰三角形的三边长是4,4,2,根据三角形的三边关系,能构成三角形,所以该三角形的周长为4+4+2=10.5.C 解析:因为,所以△≌△(),所以,所以,即故③正确.又因为,所以△≌△(ASA),所以,故①正确.由△≌△,知,又因为,所以△≌△,故④正确.由于条件不足,无法证得②故正确的结论有:①③④.6.D 解析:因为∠A∶∠B∶∠C=1∶2∶3,所以△ABC为直角三角形,且∠C为直角.又因为最短边 cm,则最长边 cm.7.D 解析:添加A选项中条件可用“AAS”判定两个三角形全等;添加B选项中条件可用“SAS”判定两个三角形全等;添加C选项中条件可用“HL”判定两个三角形全等.故选D.8.D 解析:在△ABC中,∵ ∠A=36°,AB=AC,∴ △ABC是等腰三角形,∠ABC=∠C=72°.∵ BD平分∠ABC,∴ ∠ABD=∠CBD=36°,∴ ∠A=∠ABD,∠CDB=∠A+∠ABD=36°+36°=72°,∴ ∠C=∠CDB,∴ △ABD,△CBD都是等腰三角形.∴ BC=BD.∵ BE=BC,∴BD=BE,∴ △EBD 是等腰三角形,∴ ∠BED ===72°.在△AED 中,∵ ∠A =36°,∠BED =∠A +∠ADE ,∴ ∠ADE =∠BED -∠A =72°-36°=36°,∴ ∠ADE =∠A =36°,∴ △AED 是等腰三角形. ∴ 图中共有5个等腰三角形.9.B 解析:设此直角三角形为△ABC ,其中因为直角三角形斜边的长等于斜边上中线长的2倍,所以又因为直角三角形的周长是624+,所以62=+b a . 两边平方,得24)(2=+b a ,即24222=++ab b a . 由勾股定理知16222==+c b a , 所以4=ab ,所以221=ab . 10.D 解析:因为垂直平分,所以.所以△的周长(cm ).11.100° 解析:如图所示,由AB =AC ,AO 平分∠BAC ,得AO 所在直线是线段BC 的垂直平分线,连接OB ,则OB=OA=OC ,所以∠OAB =∠OBA =×50°=25°,得∠BOA=∠COA=1802525130,︒-︒-︒=︒ ∠BOC=360°-∠BOA -∠COA =100°.所以∠OBC=∠OCB=1801002︒-︒=40°.由于EO=EC ,故∠OEC =180°-2×40°=100°.12.直角 解析:直角三角形的三条高线交点恰好是此三角形的一个顶点;锐角三角形的三条高线交点在此三角形的部;钝角三角形的三条高线交点在三角形的外部.13.15 解析:在Rt△AED 中,∠ADE =40°,所以∠A =50°. 因为AB =AC ,所以∠ABC =(180°-50°)÷2=65°. 因为DE 垂直平分AB ,所以DA =DB , 所以∠DBE =∠A =50°. 所以∠DBC =65°-50°=15°.14.20 cm 解析:根据角平分线的性质:角平分线上的点到角两边的距离相等可得答案.15.251∶3 解析:因为,F 是AB 的中点,所以.在Rt△中,因为,所以.又,所.16.4∶3 解析:如图所示,过点D 作DM ⊥AB ,DN ⊥AC , 垂足分别为点M 和点N . ∵ AD 平分∠BAC ,∴ DM =DN .∵ AB ×DM ,AC ×DN ,∴ . 第16题答图17.60︒ 解析:∵ ∠BAC=120︒,AB=AC , ∴ ∠B=∠C=180********.22BAC ︒-∠︒-︒==︒∵ AC 的垂直平分线交BC 于点D ,∴ AD=CD . ∴ 30,C DAC ∠=∠=︒∴ 303060.ADB C DAC ∠=∠+∠=︒+︒=︒18. 85 解析:∵ ∠BDM =180°-∠ADF -∠FDE =180°-100°-30°=50°, ∴ ∠BMD =180°-∠BDM -∠B =180°-50°-45°=85°. 19.证明:∵,∴ ∥,∴ .又∵ 为∠的平分线, ∴ ,∴,∴.20. 解:应用:若PB =PC ,连接PB ,则∠PCB =∠PBC . ∵ CD 为等边三角形的高,∴ AD =BD ,∠PCB =30°, ∴ ∠PBD =∠PBC =30°,∴∴∴与已知PD =AB 矛盾,∴ PB≠PC .若PA =PC ,连接PA ,同理,可得PA≠PC.若PA =PB ,由PD =AB ,得PD =BD ,∴ ∠BPD =45°,∴∠APB =90°.探究:若PB =PC ,设PA =x ,则x 2+32=(4-x )2,∴ x = ,即PA =.若PA =PC ,则PA =2.若PA=PB,由图(2)知,在Rt△PAB中,这种情况不可能.故PA=2或.21.证明:如图,过点D作DE⊥AB交BA的延长线于点E,过点D作于点F.因为BD平分∠ABC,所以.在Rt△EAD和Rt△FCD中,所以Rt△EAD≌Rt△FCD(HL).所以∠=∠.因为∠∠80°,所以∠.22.解:因为△ABD和△CDE都是等边三角形,所以,∠∠60°.所以∠∠∠∠,即∠∠.在△和△中,因为所以△≌△,所以.又,所以.在等腰直角△中,2,故.23.解:,BE⊥EC.证明:∵,点D是AC的中点,∴ .∵ ∠∠45°,∴ ∠∠135°.∵ ,∴ △EAB≌△EDC.∴ ∠∠.∴ ∠∠90°.∴ ⊥.24.证明:∵ AE∥BD,∴ ∠EAC=∠ACB.∵ AB=AC,∴∠B=∠ACB.∴ ∠EAC=∠B.又∵ ∠BAD=∠ACE=90°,∴ △ABD≌△CAE(ASA).∴ AD=CE.25.证明:∵ ,∴ ∠∠.∵于点,∴ ∠∠.∴ ∠∠∠∠.∴ ∠∠.∵ ∠∠,∴ ∠∠.∴ △是等腰三角形.。