1.12019年衡水中学讲义之 集合

合集下载

人教A版数学必修一1.1.2《集合间的基本关系》自助餐

人教A版数学必修一1.1.2《集合间的基本关系》自助餐

河北省衡水中学高一数学必修一自助餐:1.1.2集合间的基本关系1.如下四个结论:①Φ⊆Φ;②Φ∈0;③{}0⊆Φ;④{}Φ=0,其中正确的是 A 只有①与② B 只有①与③ C 只有②与③ D 全部正确2.集合{}2,,0,3π-的非空真子集的个数是A 13B 14C 15D 16二、填空题 3.若{},2,0 M {}4,3,2,1,0⊆,试写出所有满足条件的集合M 4.{}0|2=-=x x x A ,{}0|2=-=x x x B ,则 A,B 之间的关系为__________. 三、解答题5. 已知A ={}d d 21,1,1++,B ={}2,,1r r ,其中1,0≠≠r d 。

当r d ,满足什么条件时A= B ?并求出这种情形下的集合A .6.已知集合A ={}3|<x x ,B ={}a x x <|(1) 若B ⊆A ,求实数a 的取值范围.(2) 若A ⊆B ,求实数a 的取值范围.⊂≠四、预习指导1.交集,并集,补集的概念,以及补集的符号和表示形式;用文氏图表示一个集合中某个集合的补集;2.补集的性质;3.会写出给定集合U中子集A的补集.[参考答案]:一.选择题1..B 2.B二.填空题3.{}1,2,0,{}3,2,0 ,}4,2,0{, {}4,1,2,0,{}3,1,2,0,{}4,3,2,0,{}4,3,1,2,0.4. A B三、解答题5.解: 有两种情形:Ⅰ、⎩⎨⎧=+=+)2(21)1(12r d r d 由(1)得,1-=r d ,代入(2)得0122=+-r r ,1=∴r ,与条件1≠r 矛盾,因此这种情形下A= B 不能成立. Ⅱ、⎩⎨⎧=+=+)2(21)1(12r d r d 由(1)得,12-=r d 代入(2)得0122=--r r ,()()112-+r r =0.由条件1≠r ,得21-=r 代入(2)得43-=d .∴当21-=r ,43-=d 时, A= B =⎭⎬⎫⎩⎨⎧-21,41,1.6. 解:将数集A 表示在数轴上(如图),(1)要满足B ⊆Aa 3 x需要3≤a ;(2)要满足A ⊆B ,,3 a x需要3≥a ;。

河北省衡水中学高中数学 1.1.1集合的含义与表示(二)学案 新人教A版必修1

河北省衡水中学高中数学 1.1.1集合的含义与表示(二)学案 新人教A版必修1

一、自学引导1.把集合的元素出来,并用花括号“{ }”括起来表示集合的方法叫做列举法。

2.用集合所含元素的表示集合的方法称为描述法,具体的方法是:列举法表示法描述法文氏图法集合表示法及分类有限集分类无限集空集二、要点阐释一、列举法将集合中的元素一一列举出来,写在花括号内表示集合的方法,在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可表示无限集,若元素个数比较少用列举法比较简单,若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可用列举法表示。

二、描述法描述法又分为:文字描述法:用文字把元素的共同特征叙述出来,再用花括号括起来,如{正整数}、{平行四边形}等;符号描述法——用符号把元素所具有的共同特征表述出来,再用花括号括起来。

用符号描述法表示集合时应注意:1.弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?2.元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。

三、典型例题例1.用列举法表示下列集合(1)15的正约数组成的集合;(2)平方后仍为原数的数组成的集合。

变式迁移1 用列举法表示下列集合;(1)不大于10的非负偶数集;(2)由),(R b a b ba a∈+所确定的实数集合。

例2.用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集;(3)不等式2x+5<3的解集;(4)第一、三象限点的集合。

变式迁移2 用适当方法表示下列集合:(1)函数)0(2≠++=a c bx ax y 的图像上所有点的集合;(2)一次函数y=x+3与y=-2x+6的图像的交点组成的集合;(3)不等式x-3>2的解集;(4)自然数中不大于10的质数集。

例3.已知集合}023|{2=+-=x ax x A ,若A 中的元素至多只有一个,求a 的取值范围。

河北衡水中学高考一轮复习数学学案 第一章集合与常用逻辑用语

河北衡水中学高考一轮复习数学学案 第一章集合与常用逻辑用语

第一章集合与常用逻辑用语第一讲集合的概念与运算1.集合与元素一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a与集合A,__a∈A__或__a∉A__,二者必居其一.(3)常见集合的符号表示.数集自然数集正整数集整数集有理数集实数集符号N N*Z Q R(4)(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.2.集合之间的基本关系关系定义表示相等集合A与集合B中的所有元素都__相同__A__=__B子集A中的任意一个元素都是__B中的元素__A__⊆__B真子集A是B的子集,且B中至少有一个元素__不属于A__A____B__∅__(2)若集合A中含有n个元素,则其子集个数为__2n__,真子集个数为__2n-1__,非空真子集的个数为__2n-2__.(3)空集是任何集合的子集,是任何__非空集合__的真子集.(4)若A⊆B,B⊆C,则A__⊆__C.3.集合的基本运算符号语言交集A∩B并集A∪B补集∁U A 图形语言意义A∩B={x|x∈A且x∈B}A∪B={x|x∈A或x∈B}∁U A={x|x∈U且x∉A}1.A∩A=A,A∩∅=∅.2.A∪A=A,A∪∅=A.3.A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.4.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.1.已知集合A={x∈N|0≤x≤4},则下列表述正确的是(D)A.0∉A B.1⊆AC.2⊆A D.3∈A[解析]集合A={x∈N|0≤x≤4},所以0∈A,1∈A,2∉A,3∈A.2.若A={x|x=4k-1,k∈Z},B={x=2k-1,k∈Z},则集合A与B的关系是(B)A.A=B B.A BC.A B D.A⊆B[解析]因为集合B={x|x=2k-1,k∈Z},A={x|x=4k-1,k∈Z}={x|x=2(2k)-1,k∈Z},集合B表示2与整数的积减1的集合,集合A表示2与偶数的积减1的集合,所以A B,故选B.3.设集合M={2,4,6,8},N={1,2,3,5,6,7},则M∩N的子集的个数为(B)A.2B.4C.7D.128[解析]∵M={2,4,6,8},N={1,2,3,5,6,7},∴M∩N={2,6},即M∩N中元素的个数为2,子集22=4个,故选B.4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=(A)A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}[解析]根据题意,作图可得,则A∪B={x|x≥-1},故选A.5.(文)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B(A)A.{-2,-1}B.{-2}C.{-2,0,1}D.{0,1}(理)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=(B)A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)[解析](文)∵A={x|x+1>0}={x|x>-1},∴∁R A={x|x≤-1},∴(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.(理)∵Q={x∈R|x2≥4}={x∈R|x≥2或x≤-2},∴∁R Q={x∈R|-2<x<2},则P∪(∁R Q)=(-2,3].故选B.[方法技巧](文)集合基本运算的方法技巧(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算.(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.6.2∈{x2+x,2x}则x=__-2__;-2∉{x2+x,2x},则x≠__0且x≠1,且x≠-1__.[解析]x2+x=2得x=-2或1(舍去),2x=2得x=1(舍去),综上x=-2;不属于按属于处理,-2=x2+x无解.-2=2x,得x=-1,又x2+x与2x不同,∴x≠0,1.7.(文)(2018·山西吕梁期中)已知集合M={x||x|≤1},N={y|y=x2,x∈R},则M∩N=(D) A.[-1,1]B.∅C.(0,1]D.[0,1](理)(2018·江西宜春月考)设全集I=R,集合A={y|y=log2x,x>2},B={x|y=x-1},则(A) A.A⊆B B.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅[解析](文)∵集合M={x||x|≤1}={x|-1≤x≤1},N={y|y=x2,x∈R}={y|y≥0},∴M∩N={0|0≤x≤1}=[0,1].故选D.(理)由题意,A={y|y=log2x,x>2}=(1,+∞),B={x|y=x-1}=[1,+∞),∴A⊆B.故选A.[方法技巧]判断集合间关系的三种方法(1)列举法:把元素一一列举观察.(2)集合元素特征法:首先确定集合中的元素是什么,弄清集合中元素的特征,再利用集合中元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.8.(文)(2018·北京东城区月考)已知集合M={x|x≤a},N={x|-2<x<0},若M∩N=∅,则实数a 的取值范围为(D)A .(0,+∞)B .[0,+∞)C .(-∞,-2)D .(-∞,-2](理)(2018·吉林长春检测)已知集合A ={x |ax -1=0},B ={x |1<log 2x ≤2,x ∈N *},且A ∩B =A ,则实数a 的所有可能取值组成的集合是( D )A .∅B .{13}C .{13,14}D .{0,13,14}[解析] (文)因为M ={x |x ≤a },N ={x |-2<x <0},由M ∩N =∅,得a ≤-2.故选D .(理)由A ∩B =A ,得A ⊆B .∵B ={x |1<log 2x ≤2,x ∈N *}={x |2<x ≤4,x ∈N *}={3,4}.当A =∅时,则方程ax -1=0,无实数解,∴a =0,此时显然有A ⊆B ,符合题意;当A ≠∅,则由方程ax -1=0,得x =1a .要使A ⊆B ,则1a =3或1a =4,即a =13或14.综上所述,a 的所有可能取值组成的集合是{0,13,14}.故选D .考点1 集合的基本概念——自主练透例1 (1)已知集合A ={x |x =3k +1,k ∈Z },则下列表示不正确的是( C ) A .-2∈A B .2019∉A C .3k 2+1∉AD .-35∈A(2)(2018·课标Ⅱ,2)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( A ) A .9 B .8 C .5D .4(3)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a = 0或98 .(4)已知a ∈R ,b ∈R ,若{a ,ba,1}={a 2,a +b,0},则a 2019+b 2019=__-1__.[解析] (1)当-2=3k +1时,k =-1∈Z ,故A 正确;当2019=3k +1时,k =67223∉Z ,故B 正确;当-35=3k +1时,k =-12∈Z ,故D 正确.故选C .(2)本题主要考查集合的含义与表示.由题意可知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素,故选A .(3)若a =0,则A ={23},符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.(4)由已知得ba =0,∴b =0,∴{a,0,1}={a 2,a,0},∴a 2=1,a =-1或1(舍),∴a 2019+b 2019=-1,故填-1.名师点拨 ☞(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;(2)集合中元素的互异性常常容易忽略,特别是含有字母的集合,在求出字母的值后,要注意检验集合中元素是否满足互异性.分类讨论的思想方法常用于解决集合问题.考点2 集合间的关系——师生共研例2 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( C ) A .B ⊆A B .A =B C .A BD .B A(2)(2018·云南第一次检测)设集合A ={x |-x 2-x +2<0},B ={x |2x -5>0},则集合A 与B 的关系是( A )A .B A B .B AC .B ∈AD .A ∈B(3)(文)(2018·江西八校联考)集合M ={x |x =n 2+1,n ∈Z },N ={y |y =n +12,n ∈Z },则两集合M ,N 的关系为( D )A .M ∩N =∅B .M =NC .M ND .N M(理)(2018·广西梧州临川期中)设集合M ={x |x =k 3+16,k ∈Z },N ={x |x =k 6+23,k ∈Z },则( B )A .M =NB .M NC .NMD .M ∩N =∅(4)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}≠∅,若A ∩B =B ,则实数m 的取值范围为__[2,3]__.[解析] (1)A ={x |x 2-3x +2=0,x ∈R }={1,2},B ={x |0<x <5,x ∈N }={1,2,3,4},∴A B . (2)A ={x |-x 2-x +2<0}={x |x >1或x <-2},B ={x |2x -5>0}={x |x >52}.∴B A ,故选A . (3)(文)解法一:(列举法)由题意知:M ={…,0,12,1,32,2,…},N ={…,-12,12,32,52,…},显然N M ,故选D .解法二:(描述法) M ={x |x =n +22,n ∈Z },N ={y |y =2n +12,n ∈Z }.∵n +2表示所有整数,而2n +1表示所有奇数,∴N M ,故选D . (理)解法一:(列举法),由题意知 M ={…-12,-16,16,12,56,76,……}N ={…-16,0,16,13,12,23,56,…}显然M N ,故选B . 解法二:(描述法)M ={x |x =2k +16,k ∈Z },N ={x |x =k +46,k ∈Z }∵2k +1表示所有奇数,而k +4表示所有整数(k ∈Z ) ∴M N ,故选B . (4)由A ∩B =B 知,B ⊆A .又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3,则实数m 的取值范围为[2,3].[引申1]本例(4)中若B ={x |m +1≤x ≤2m -1}情况又如何? [解析] 应对B =∅和B ≠∅进行分类. ①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,由例得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3].[引申2]本例(4)中是否存在实数m ,使A ⊆B ?若存在,求实数m 的取值范围;若不存在,请说明理由.[解析] 由A ⊆B 得⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m >3,不等式组无解,故不存在实数m ,使A ⊆B .[引申3]本例(4)中,若B ={x |m +1≤x ≤1-2m },A B ,则m 的取值范围为__(-∞,-3]__.[解析] 由题意可知⎩⎪⎨⎪⎧m +1≤-2,1-2m ≥5,解得m ≤-3.名师点拨 ☞判断集合间关系的3种方法 列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第1、2题)结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第3题)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(如第4题)〔变式训练1〕(1)(2018·辽宁锦州质检(一))集合M ={x |x =3n ,n ∈N },集合N ={x |x =3n ,n ∈N },则集合M 与集合N 的关系是( D )A .M ⊆NB .N ⊆MC .M ∩N =∅D .MN 且NM(2)(文)(2018·辽宁葫芦岛一中月考)已知集合M ={x |y =lg(2-x )},N ={y |y =1-x +x -1},则( B )A .M ⊆NB .N ⊆MC .M =ND .N ∈M(理)(2018·湖北省部分重点中学联考)已知集合M ={x |y =1-x 2,x ∈R },N ={x |x =m 2,m ∈M },则集合M ,N 的关系是( B )A .M NB .NMC .M ⊆∁R ND .N ⊆∁R M(3)已知集合A ={x |x 2-3x -10≤0},B ={x |mx +10>0},若A ⊆B ,则m 的取值范围是__(-2,5)__. [解析] (1)因为1∈M,1∉N,6∈N,6∉M ,所以MN 且NM ,故选D . (2)(文)∵集合M ={x |y =lg(2-x )}=(-∞,2),N ={y |y =1-x +x -1}={0},∴N ⊆M .故选B .(理)依题意知,M ={x |y =1-x 2,x ∈R }={x |-1≤x ≤1},N ={x |x =m 2,m ∈M }={x |0≤x ≤1},所以NM .故选B .(3)化简A ={x |x 2-3x -10≤0}={x |-2≤x ≤5},当m >0时,x >-10m ,因为A ⊆B ,所以-10m <-2,解得m <5,所以0<m <5.当m <0时,x <-10m ,因为A ⊆B ,所以-10m >5,解得m >-2,所以-2<m <0.当m =0时,B =R ,符合A ⊆B .综上所述,所求的m 的取值范围是(-2,5).考点3 集合的基本运算——多维探究角度1 集合的运算例3 (1)(2018·课标全国Ⅰ,1)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( A )A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}(2)(2018·天津,1)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( C )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}(3)(2018·天津,1)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( B ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}[解析] (1)本题主要考查集合的基本运算.∵A ={0,2},B ={-2,-1,0,1,2},∴A ∩B ={0,2},故选A . (2)本题主要考查集合的运算.由题意得A ∪B ={1,2,3,4,-1,0},∴(A ∪B )∩C ={1,2,3,4,-1,0}∩{x ∈R |-1≤x <2}={-1,0,1}.故选C .(3)本题主要考查集合的基本运算.由B={x|x≥1},得∁R B={x|x<1},借助于数轴,可得A∩(∁R B)={x|0<x<1},故选B.角度2利用集合的运算求参数例4(1)(2018·河北邢台联考)已知全集U={x∈Z|0<x≤8},集合A={x∈Z|2<x<m}(2<m<8),若∁U A中的元素个数为4,则m的取值范围为(A)A.(6,7]B.[6,7)C.[6,7]D.(6,7)(2)(2018·江西鹰潭一中模拟)已知集合A={x|1<2x≤16},B={x|x<a},若A∩B=A,则实数a的取值范围是(A)A.(4,+∞)B.[4,+∞)C.[0,+∞)D.(0,+∞)[解析](1)若∁U A中的元素的个数为4,则∁U A={1,2,7,8},∴6<m≤7,故选A.(2)由题意知A={x|0<x≤4},由A∩B=A,知A⊆B,所以实数a的取值范围是(4,+∞),故选A.名师点拨☞集合的基本运算的关注点1.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.2.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.3.注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.4.根据集合运算结果求参数,先把符号语言译成文字语言,然后应用数形结合求解.〔变式训练2〕(1)(角度1)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=(C)A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}(2)(角度1)(2018·课标Ⅰ,2)已知集合A={x|x2-x-2>0},则∁R A=(B)A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}(3)(角度2)集合M={x|-1≤x<2},N={y|y<a},若M∩N≠∅,则实数a的取值范围是(D)A.a≤-1B.a<-1C.a≥-1D.a>-1(4)(角度1)(文)(2018·山西太原阶段性测评)设集合A={-1,0,1,2,},B={x|y=x2-1},则图中阴影部分所表示的集合为(B)A.{1}B.{0}C.{-1,0}D.{-1,0,1}(角度1)(理)(2018·四川资阳模拟)设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为(D)A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}[分析](1)求解一元二次不等式得集合B,然后根据并集的定义求得A∪B的结果.(2)本题主要考查集合的基本运算及一元二次不等式的解法.[解析](1)由(x+1)(x-2)<0⇒-1<x<2,又x∈Z,∴B={0,1},∴A∪B={0,1,2,3}.故选C.(2)化简A={x|x<-1或x>2},∴∁R A={x|-1≤x≤2}.故选B.(3)∵M={x|-1≤x<2},N={y|y<a},且M∩N≠∅,如图只要a>-1即可.故选D.(4)(文)由题意得图中阴影部分表示的集合为A∩(∁R B).∵B={x|y=x2-1 }={x|x2-1≥0}={x|x≥1或x≤-1},∴∁R B={x|-1<x<1},∴A∩(∁R B)={0},故选B.(理)由题意可知A={x|-1<x<3},B={x|x≥1},则图中阴影部分表示的集合为∁U(A∪B)={x|x≤-1},故选D.[易错警示](1)对于集合B,容易忽略x∈Z的条件而导致错误,注意养成严谨、细心的审题习惯.集合中的新定义问题例5设A是整数集的一个非空子集,对于k∈A,如果k-1∉A且k+1∉A,那么k是A 的一个“孤立元”,给定A={1,2,3,4,5},则A的所有子集中,只有一个“孤立元”的集合共有(D)A .10个B .11个C .12个D .13个[解析] “孤立元”是1的集合:{1},{1,3,4},{1,4,5},{1,3,4,5};“孤立元”是2的集合:{2},{2,4,5};“孤立元”是3的集合:{3};“孤立元”是4的集合:{4},{1,2,4};“孤立元”是5的集合:{5},{1,2,5},{2,3,5},{1,2,3,5},共有13个.故选D .名师点拨 ☞集合新定义问题的“3定\”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素. 〔变式训练3〕(文)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*\”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素之和为( D )A .15B .16C .20D .21(理)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M ={-1,0,12,2,3}的所有非空子集中具有伙伴关系的集合的个数是( B )A .1B .3C .7D .31[解析] (文)由x 2-2x -3≤0,得(x +1)(x -3)≤0,又x ∈N ,故集合A ={0,1,2,3}.∵A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },∴A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,∴A *B ={1,2,3,4,5,6},∴A *B 中的所有元素之和为21.(理)具有伙伴关系的元素组是-1,12,2,∴具有伙伴关系的集合为{-1},{12,2},{-1,12,2},共3个,故选B .第二讲 命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的__陈述句__叫做命题,其中__判断为真__的语句叫做真命题,__判断为假__的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①若两个命题互为逆否命题,则它们有__相同__的真假性;②两个命题为互逆命题或互否命题,它们的真假性__没有关系__.3.充分条件、必要条件与充要条件若p⇒q,则p是q的__充分__条件,q是p的__必要__条件p是q的__充分不必要__条件p⇒q且q pp是q的__必要不充分__条件p q且q⇒pp是q的__充要__条件p⇔qp是q的__既不充分又不必要__条件p q且q p1.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).注意:不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”,即“p⇒q”⇔“若p,则q”为真命题.1.下列语句为命题的是(D)A.对角线相等的四边形B.a<5C.x2-x+1=0D.有一个内角是90°的三角形是直角三角形[解析]只有选项D是可以判断真假的陈述句,故选D.2.命题“平行四边形的对角线互相平分”的逆否命题是(A)A.对角线不互相平分的四边形不是平行四边形B.不是平行四边形的四边形对角线不互相平分C.对角线不互相平分的四边形是平行四边形D.不是平行四边形的四边形对角线互相平分[解析]原命题即“若四边形是平行四边形,则其对角线互相平分”,故其逆否命题“若四边形的对角线不互相平分,则其不是平行四边形”,即“对角线不互相平分的四边形不是平行四边形”.3.(教材改编题)“x=2”是“x2-4=0”的(A)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析]x2-4=0,则x=±2,故是充分不必要条件.故选A.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的(A)A.逆否命题B.逆命题C.否命题D.原命题[解析]假设命题p为“若A,则B”.根据四种命题的关系可知,命题r为“若¬A,则¬B”,命题s为“若¬B,则¬A”,因此s是p的逆否命题.5.下列命题中为真命题的是(A)A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题[解析] 对于A ,其逆命题是“若x >|y |,则x >y ”,是真命题,这是因为x >|y |≥y ,必有x >y ; 对于B ,其否命题是“若x ≤1,则x 2≤1”,是假命题,如x =-5,x 2=25>1;对于C ,其否命题是“若x ≠1,则x 2+x -2≠0”,由于x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x ≠0,不一定有x >1,因此原命题的逆否命题是假命题.6.“tan α=tan β”是“α=β”的( )条件( D )A .充分不必要B .必要不充分C .充要D .既不充分也不必要[解析] 当tan α=tan β时,α=β+k π,k ∈Z ,不一定α=β;当α=β=π2时,tan α,tan β无意义,因此也不能说tan α=tan β,故选D .7.写出下列命题的否定形式和否命题:(1)若xy =0,则x ,y 中至少有一个为零;(2)若a +b =0,则a ,b 中最多有一个大于零;(3)若四边形是平行四边形,则其相邻两个内角相等;(4)有理数都能写成分数.[解析] (1)否定形式:若xy =0,则x ,y 都不为零.否命题:若xy ≠0,则x ,y 都不为零.(2)否定形式:若a +b =0,则a ,b 都大于零.否命题:若a +b ≠0,则a ,b 都大于零.(3)否定形式:若四边形是平行四边形,则它的相邻两个内角不相等.否命题:若四边形不是平行四边形,则它的相邻两个内角不相等.(4)否定形式:有理数不能都写成分数.否命题:非有理数不能写成分数.[答案] 略考点1 四种命题及其关系——自主练透例1 (1)(2018·长春模拟)已知命题α:如果x <3,那么x <5,命题β:如果x ≥3,那么x ≥5,则命题α是命题β的( A )A .否命题B .逆命题C .逆否命题D .否定形式(2)给出以下四个命题: ①“若x +y =0,则x 、y 互为相反数”的逆命题;②“全等三角形面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实数根”的逆否命题;④若ab 是正整数,则a 、b 都是正整数.其中真命题是__①③__(写出所有真命题的序号).(3)(2018·北京,13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__f (x )=sin x ,x ∈[0,2](答案不唯一)__.[解析] (1)命题α:如果x <3,那么x <5,命题β:如果x ≥3,那么x ≥5,则命题α是命题β的否命题.(2)①“若x +y =0,则x 、y 互为相反数”的逆命题为“若x 、y 互为相反数,则x +y =0”,显然是真命题;②“全等三角形面积相等”的否命题为“不全等三角形的面积不相等”,假命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题为“若x 2+x +q =0无实根,则q >-1”,x 2+x+q =0无实根则△=1-4q <0,即q >14,从而q >-1,故③为真命题.(也可由原命题为真得出结论);④显然是假命题,如ab =2时,可能a =-1,b =-2,故填①③.(3)本题主要考查函数的单调性及最值.根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0)即可,除所给答案外,还可以举出f (x )=⎩⎪⎨⎪⎧0,x =0,1x ,0<x ≤2等. [导师点睛] 函数的单调性是对一个区间上的任意两个变量而言的.根据题意,本题只要找到一个定义域为[0,2]的不单调函数,满足在[0,2]上有唯一的最小值点,而且f (x )min =f (0)即可.名师点拨 ☞(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q ”的形式,应先改写成“若p ,则q ”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出严格的推理证明;判断一个命题为假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.考点2 充要条件的判断——师生共研考向1 定义法判断例2 (2018·北京,4)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 本题主要考查充分条件与必要条件,等比数列的性质.由a ,b ,c ,d 成等比数列,可得ad =bc ,即必要性成立;当a =1,b =-2,c =-4,d =8时,ad =bc ,但a ,b ,c ,d 不成等比数列,即充分性不成立,故选B .考向2 集合法判断例3 (文)(2018·天津,3)设x ∈R ,则“x 3>8”是“|x |>2”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(理)(2018·天津,4)设x ∈R ,则“|x -12|<12”是“x 3<1”的( A ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (文)本题主要考查解不等式和充分、必要条件的判断.由x 3>8得x >2,由|x |>2得x >2或x <-2.因为(2,+∞)(-∞,-2)∪(2,+∞),所以“x 3>8”是“|x |>2”的充分而不必要条件.故选A .(理)本题主要考查解不等式和充分、必要条件的判断.由|x -12|<12得-12<x -12<12,解得0<x <1. 由x 3<1得x <1.因为(0,1)(-∞,1),所以“|x -12|<12”是“x 3<1”的充分而不必要条件. [方法总结] (1)充分、必要条件的判断.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后验证得到的必要条件是否满足充分性.考向3 等价转化法判断例4 (1)给定两个条件p ,q ,若¬p 是q 的必要不充分条件,则p 是¬q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为¬p 是q 的必要不充分条件,则q ⇒¬p ,但¬pq ,其逆否命题为p ⇒¬q ,但¬q p ,所以p 是¬q 的充分不必要条件.(2)¬p :cos α=12,¬q :α=π3,显然¬q ⇒¬p ,¬p ¬q ,∴¬q 是¬p 的充分不必要条件,从而p 是q的充分不必要条件,故选A . 另解:若cos α≠12,则α≠2k π±π3(k ∈Z ),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q p .所以p 是q 的充分不必要条件.故选A . 名师点拨 ☞有关充要条件的判断常用的方法(1)根据定义判断:①弄清条件p 和结论q 分别是什么;②尝试p ⇒q ,q ⇒p .若p ⇒q ,则p 是q 的充分条件;若q ⇒p ,则p 是q 的必要条件;若p ⇒q ,q p ,则p 是q 的充分不必要条件;若p q ,q ⇒p ,则p 是q 的必要不充分条件;若p ⇒q ,q ⇒p ,则p 是q 的充要条件.(2)利用集合判断记法A ={x |p (x )},B ={x |q (x )} 关系 A BB A A =B A B 且B A 结论p 是q 的充分不必要条件 p 是q 的必要不充分条件 p 是q 的充要条件p 是q 的既不充分也不必要条件 (3)利用等价转化法:对于带有否定性词语的命题,常用此法,既要判断p 是q 的什么条件,只需判断¬q是¬p的什么条件.〔变式训练1〕(1)(2018·浙江,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的(A)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)指出下列各组中,p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).①在△ABC中,p:A=B,q:sin A=sin B;②已知x,y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0;③非空集合A,B中,p:x∈(A∪B),q:x∈B;④对于实数x,y,p:x+y≠8,q:x≠2或y≠6.[解析](1)∵m⊄α,n⊂α,m∥n,∴m∥α,故充分性成立.而由m∥α,n⊂α,得m∥n或m与n异面,故必要性不成立.故选A.(2)①在△ABC中,A=B⇒sin A=sin B;反之,若sin A=sin B,因为A与B不可能互补(三角形三个内角之和为180°),所以只有A=B,故p是q的充要条件.②条件p:x=1且y=2,条件q:x=1或y=2,所以p⇒q但q p,故p是q的充分不必要条件.③显然x∈(A∪B)不一定有x∈B,但x∈B一定有x∈(A∪B),所以p是q的必要不充分条件.④易知¬p:x+y=8,¬q:x=2且y=6,显然¬q⇒¬p,但¬p¬q,但¬q是¬p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.考点3充要条件的应用——多维探究角度1充要条件的探究例5(2018·山东烟台诊断)若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则实数a的取值范围是(A)A.[2,+∞)B.(-∞,2]C.[-2,+∞)D.(-∞,-2][解析]p:|x|≤2等价于-2≤x≤2.因为p是q的充分不必要条件,所以[-2,2]⊆(-∞,a],即a≥2.角度2等价转化思想的应用例6(2018·福建三明月考)设命题p:|4x-3|≤1,q:x2-(2a+1)x+a(a+1)≤0,若¬p 是¬q的必要不充分条件,则实数a的取值范围是(A)A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞) [解析] 由|4x -3|≤1得12≤x ≤1,由x 2-(2a +1)x +a (a +1)=(x -a )[x -(a +1)]≤0得a ≤x ≤a +1,因为¬p 是¬q 的必要不充分条件,所以p 是q 的充分不必要条件,有⎩⎪⎨⎪⎧a ≤12,a +1≥1得0≤a ≤12.故选A . 名师点拨 ☞充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2)一定要注意端点值的取舍,处理不当容易出现漏解或增解的现象.(3)注意区别以下两种不同说法:①p 是q 的充分不必要条件,是指p ⇒q 但qp ;②p 的充分不必要条件是q ,是指q ⇒p 但p q . (4)注意下列条件的等价转化:①p 是q 的什么条件等价于¬q 是¬p 的什么条件,②p 是¬q 的什么条件等价于q 是¬p 的什么条件.〔变式训练2〕(1)(角度1)(2018·山西45校联考)下列选项中,a >b 的一个充分不必要条件是( D )A .1a >1bB .e a >e bC .a 2>b 2D .lg a >lg b (2)(角度2)已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m (m >0). ①若p 是q 的充分不必要条件,则实数m 的取值范围为__m ≥9__.②若¬p 的必要不充分条件是¬q ,则实数m 的取值范围为__0<m ≤3__.[分析] (2)①与不等式解集相关的两个命题间充分条件、必要条件问题常转化为集合之间的包含关系,从而列出关于参数的不等式(组)求解;②注意“¬p 的必要不充分条件是¬q ”与“¬p 是¬q 的必要不充分条件”的区别,前者是“¬p ⇒¬q ,¬q ¬p ”,后者是“¬q ⇒¬p ,¬p ¬q ”.由于¬q 是¬p 的必要不充分条件,故可先求出¬p 、¬q ,再转化为集合之间的包含关系求解.也可利用互为逆否的两个命题的等价性,由¬q 是¬p 的必要不充分条件可知,p 是q 的必要不充分条件(或q 是p 的充分不必要条件),再转化为集合之间的关系求解.[解析] (1)lg a >lg b ⇒a >b ,反之不成立,如a >b =0时.所以a >b 的一个充分不必要条件的是lg a >lg b ,故选D .(2)p :A ={x |-2≤x ≤10},q :B ={x |1-m ≤x ≤1+m },①∵p 是q 的充分不必要条件,∴A B , ∴⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥10,解得m ≥9. ②∵¬p 的必要不充分条件是¬q ,即¬p ⇒¬q ,¬q ¬p ,∴q ⇒p ,p q ,即p 是q 的必要不充分条件,∴B A ,又m >0,∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,解得0<m ≤3. 名师点拨 ☞探求充要条件的选择题的破题关键:首先,判断是选项“推”题干,还是题干“推”选项,其次,利用以小推大的技巧,即可得结论.抽象命题间充要条件的判定例7 已知p 是r 的充分不必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①r 是q 的充要条件;②p 是q 的充分不必要条件;③r 是q 的必要不充分条件;④¬p 是¬s 的必要不充分条件;⑤r 是s 的充分不必要条件,则正确命题的序号是( B )A .①④⑤B .①②④C .②③⑤D .②④⑤[分析] 本题涉及命题较多,关系复杂,因此采用“图解法”.[解析] 由题意得p ,显然q ⇒r 且r ⇒s ⇒q ,即q ⇔r ,①正确;p ⇒r ⇒s ⇒q 且qp ,②正确;故选B .r ⇔q ,③错误;由p ⇒s 知¬s ⇒¬p ,但sp ,∴¬p ¬s ,④正确;r ⇔s ,⑤错误.名师点拨 ☞ 命题较多、关系复杂时,画出各命题间关系图求解,简洁直观,一目了然.〔变式训练3〕若p 是r 的必要不充分条件,q 是r 的充分条件,则p 是q 的__必要不充分__条件.[解析] 由题意可知q ⇒r p ,∴p 是q 的必要不充分条件.第三讲 逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作__p∧q__,(2)用联结词“或”联结命题p和命题q,记作__p∨q__,(3)对一个命题p的否定记作__¬p__,(4)命题p∧q,p∨q,¬p的真假判断真值表p q¬p p∨q p∧q真真__假____真____真__真假__假____真____假__假真__真____真____假__假假__真____假____假__2.全称量词与存在量词(1)全称量词与全称命题①短语“__所有的__”“__任意一个__”在逻辑中通常叫做全称量词,并用符号“∀”表示.②含有__全称量词__的命题,叫做全称命题.③全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:__∀x∈M,p(x)__.(2)存在量词与特称命题①短语“__存在一个__”、“__至少有一个__”在逻辑中通常叫做存在量词,并用符号“∃”表示.②含有__存在量词__的命题,叫做特称命题.③特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:__∃x0∈M,p(x0)__.3.含有一个量词的命题的否定(1)命题命题的否定∀x∈M,p(x)__∃x0∈M,¬p(x0)__∃x0∈M,p(x0)__∀x∈M,¬p(x)__(2)p∨q的否定是__(¬p)∧(¬q)__;p∧q的否定是__(¬p)∨(¬q)__.1.逻辑联结词与集合的关系.(1)“或”与集合的“并”密切相关,集合的并集是用“或”来定义的,命题“p ∨q ”为真有三个含义:只有p 成立,只有q 成立,p 、q 同时成立;(2)“且”与集合的“交”密切相关,集合的交集是用“且”来定义的,命题p ∧q 为真表示p 、q 同时成立;(3)“非”与集合中的补集相类似. 2.常用短语的否定词1.下列语句是“p且q”形式的命题的是( C ) A .老师和学生 B .9的平方根是3C .矩形的对角线互相平分且相等D .对角线互相平分的四边形是矩形[解析] 对于选项C ,p :矩形的对角线互相平分;q :矩形的对角线相等,故选C .2.设命题p :函数y =sin2x 的最小正周期为π2,命题q :函数y =cos x 的图像关于直线x =π2对称.则下列说法正确的是( C )A .p 为真B .¬q 为假C .p ∧q 为假D .p ∨q 为真[解析] y =sin2x 周期为π,故p 不正确;y =cos x 不关于x =π2对称,故q 不正确;故p ∧q 为假,选C .3.(2018·武汉模拟)已知命题p :实数的平方是非负数,则下列结论正确的是( C ) A .命题¬p 是真命题 B .命题p 是特称命题 C .命题p 是全称命题D.命题p既不是全称命题也不是特称命题[解析]命题p:实数的平方是非负数,是真命题,故¬p是假命题,命题p是全称命题,故选C.4.(2019·黑龙江省哈尔滨市第三中学高三上学期第一次调研考试)设x∈Z,若集合A是奇数集,集合B是偶数集,若命题p:∀x∈A,2x∈B,则(C)A.¬p:∀x∈A,2x∉B B.¬p:∀x∉A,2x∉BC.¬p:∃x∈A,2x∉B D.¬p:∃x∈A,2x∈B[解析]由全称命题的否定知,¬p:∃x∈A,2∉B,故选C.5.(2015·全国新课标卷Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为(C)A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n[解析]由于命题p为特称命题,故其否定为全称命题,将命题p的量词“∃”改为“∀”,“n2>2n”改为“n2≤2n”.故选C.6.(2019·黑龙江省大庆铁人中学高三第一次模拟考试)已知命题p:“∃x0∈R,使得x20+2ax0+1<0成立”为真命题,则实数a满足(B)A.[-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)[解析]设f(x)=x2+2ax+1,由已知得Δ>0,4a2-4>0,解得a>1或a<-1,故选B.考点1含逻辑联结词的命题及其真假判断——自主练透例1(1)若命题“p∨q”是真命题,“¬p”为真命题,则(B)A.p真,q真B.p假,q真C.p真,q假D.p假,q假(2)已知命题p1:当x,y∈R时,|x+y|=|x|+|y|成立的充要条件是xy≥0;p2:函数y=2x+2-x在R上为减函数.则命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2,q4:p1∨(¬p2)中,真命题是(C) A.q1,q3B.q2,q3C.q1,q4D.q2,q4[解析](1)“¬p”为真命题,所以p为假命题;又因为命题“p∨q”是真命题,所以q为真命题.(2)对于p1(充分性)若xy≥0,则xy至少有一个为0或同号,所以|x+y|=|x|+|y|一定成立;(必要性)若|x+y|=|x|+|y|,两边平方,得:。

高中数学-2019年人教版必修-第一册-1.1集合的概念-(2019新教材)

高中数学-2019年人教版必修-第一册-1.1集合的概念-(2019新教材)

高中数学- 2019年人教版必修·第一册-1.1集合的概念(2019版新教材)一、教材分析教材截图(考虑到部分教师未有2019版课本,这里对教材截个图)教材分析:本课是本节的第一课,也是同学们刚进入高中阶段的第一课.常言道“良好的开端是成功的一半”.集合论是现代数学的基础,集合语言是现代数学的基本语言。

在高中数学中,集合是作为一种语言和工具来学习的。

集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,对整个高中学习起着奠基的作用。

同时,教科书对于集合的研究经历了一个完整的数学思考过程,作为一个范例,它向学生完整展示了研究数学问题的“基本套路”,这将为后续的教学提供思维方式的示范及学习方法的引领。

教科书关于集合一共安排了三节内容,“集合的概念”是其第一节课,也是学生进入高中阶段的第一节数学课。

教科书首先在义务教育阶段学习的相关知识的基础上,从6个实例入手,通过对比分析共同特征,从中抽象概括出元素和集合的含义(描述性概念),在渗透抽象概括思想的同时,提升数学抽象素养。

由于集合是一个原始的、不定义的概念,教科书通过研究集合中元素的性质、元素与集合的关系等帮助学生深入了解集合的含义。

其中元素与集合的关系是后续研究集合之间的关系和集合运算的基础,其实质是个体与整体间的关系,其本质是基于集合概念基础上的判断,是推理的初级阶段,也是进一步学习逻辑思维的基础和前提。

列举法和描述法是集合的两种重要表示方法,既相互对立,又相辅相成。

列举法可直接清晰地认识集合中元素的个性特点,在此基础上可进一步抽象概括出集合中元素的特征性质;描述法可更加凸显集合中元素的公共属性,也可通过列举其中的特殊元素从而对集合中元素的公共属性有更加具体的认识。

教科书通过实例分析和应用不断地强化学生对这两种表示方法的理解。

通过不同表示方法的相互转换,引导学生体会自然语言、列举法和描述法各自的特点,并初步学会用集合语言简洁、准确地表述数学的研究对象,在渗透化归转化思想的同时,提升数学抽象素养。

2019衡水名师原创理科数学高考专题卷:专题一《集合与常用逻辑用语》

2019衡水名师原创理科数学高考专题卷:专题一《集合与常用逻辑用语》

2019衡水名师原创理科数学专题卷专题一 集合与常用逻辑用语考点01:集合及其相关运算(1-7题,13题,17,18题);考点02:命题及其关系、充分条件与必要条件(8—11题,14,15题,19题); 考点03:简单的逻辑联结词、全称量词与存在量词(12题,16题,20-22题) 考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.【2017课标1,理1】 考点01 易 已知集合A={x|x<1},B={x|},则( ) A .B .C .D .2.【2017课标II ,理】 考点01 易 设集合,。

若,则( ) A.B.C.D.3.【2017课标3,理1】 考点01 易已知集合A= {}22(,)1x y x y +=│,B= {}(,)x y y x =│,则A B 中元素的个数为( ) A .3 B .2 C .1D .0 4.【来源】2017-2018学年吉林乾安县七中期中 考点01易 集合,且,则的值为( )A .1B .-1C .1或-1D .1或-1或0 5.【来源】2017-2018学年湖北鄂东南联盟学校期中 考点01 中难 若,则的取值范围是( )A.B.C.D.6.【2017福建三明5月质检】 考点01 中难 已知集合,,若,则实数的取值范围是( ) A.B.C.D.7.【来源】2017届浙江温州中学高三模拟考 考点01 难已知集合,若实数,满足:对任意的,都有,则称是集合的“和谐实数对”,则以下集合中,存在“和谐实数对”的是( ) A .B .C. D.8.【来源】2017-2018学年湖北黄石三中期中考点02 易命题“若x2<1,则-1<x<1”的逆否命题是 ()A.若x2≥1,则x≥1,或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥19.【来源】2017届安徽蚌埠怀远县高三上学期摸底考点02 易“”是“”的()A.充分且不必要条件 B.必要且不充分条件C.充要条件 D.既非充分也非必要条件10.【来源】2017届河北衡水中学四调考点02 中难圆与直线有公共点的充分不必要条件是()A.或 B.C. D.或11.【2017天津,理4】考点02 中难设θ∈R,则“ππ||1212θ-<”是“1sin2θ<”的()A 充分而不必要条件B 必要而不充分条件C 充要条件 D既不充分也不必要条件12.【来源】2016届湖南省高三下高考考前演练五考点03 中难已知命题;命题,则下列命题为真命题的是()A. B. C. D.第II卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分。

集合全章讲义

集合全章讲义

第一章:集合与简易逻辑讲义第一节:集合的概念Part One :基础知识(记住有以下6点) 1、集合的概念①集合:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集. ②元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N*或N+{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , } ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 3、元素与集合的关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5.集合的表示方法:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……①列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1} ②描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x 注:(1)在不致混淆的情况下,可以省去竖线及左边部分 如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数}③文氏图:用一条封闭的曲线的内部来表示一个集合的方法 6.集合的分类:a:以元素的个数分类:①有限集:含有有限个元素的集合 ②无限集:含有无限个元素的集合③空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x b:以元素的种类分:点集,数集,等Part Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:集合的三大性的考查1.下列各组对象能确定一个集合吗?(1)所有很大的实数 (2)好心的人 (3)1,2,2,3,4,5.2.设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( ) (A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4. 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?题型二:集合的表示方法的考查 1、用描述法表示下列集合①{1,4,7,10,13} ②{-2,-4,-6,-8,-10}③{ 1, 5, 25, 125, 625 }= ;④ { 0,±21, ±52, ±103, ±174, ……}=2、用列举法表示下列集合 ①{x ∈N|x 是15的约数}②{(x ,y )|x ∈{1,2},y ∈{1,2}}③⎩⎨⎧=-=+}422|),{(y x y x y x ④},)1(|{N n x x n∈-= ⑤},,1623|),{(N y N x y x y x ∈∈=+⑥}4,|),{(的正整数约数分别是y x y x 题型三:集合的分类的考查1、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集第二节:子集 全集 补集(集合与集合的关系) Part One :基础知识(记住有以下8点)1.子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A :A B B A ⊇⊆或 ,A ⊂B 或B ⊃A 读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合2.集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B3.真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A4..人为规定:空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集Φ A 若A ≠Φ,则Φ A (在考虑集合问题时千万不能忘记空集这个特殊集合) 任何一个集合是它本身的子集A A ⊆5.含n 个元素的集合{}n a a a ,,21 的所有子集的个数是n 2,所有真子集的个数是n 2-1,非空真子集数为2-n6.易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合 如 Φ⊆{0}Φ={0},Φ∈{0} 7、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示8. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作AC S ,即CSA=},|{A x S x x ∉∈且 2、性质:CS (CSA )=A ,CSS=φ,CS φ=S Part Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:对子集等基本概念的考查1. 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示2.判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A 3.(1)填空:N___Z, N___Q, R___Z, R___Q , Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗? (3)是否对任意一个集合A ,都有A ⊆A ,为什么? (4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 . 题型二:利用集合的关系来求解具体问题(重点!)1.若{}{}A B m x m x B x x A ⊆+≤≤-=≤≤-=,112|,43|,求是实数m 的取值范围.)1(-≥m2.已知{}{}A C B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆ 题型三:全集与补集有关问题1.已知全集U =R ,集合A ={x |1≤2x +1<9},求C U A2. 已知S ={x |-1≤x +2<8},A ={x |-2<1-x ≤1},B ={x |5<2x -1<11},讨论A 与C S B 的关系Part Three :练习1、已知全集U ={x |-1<x <9},A ={x |1<x <a },若A ≠φ,则a 的取值范围是 (A )a <9 (B )a ≤9 (C )a ≥9 (D )1<a ≤92、已知全集U ={2,4,1-a },A ={2,a2-a +2}如果CUA ={-1},那么a 的值为3、已知全集U ,A 是U 的子集,φ是空集,B =CUA ,求CUB ,CU φ,CUU4、设U={梯形},A={等腰梯形},求CUA.5、已知U=R ,A={x|x2+3x+2<0}, 求CUA.6、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} , A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求CUA.7、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=CUN ,N=CUP ,则M 与P 的关系是( ) M=CUP ,(B )M=P ,(C )M ⊇P ,(D )M ⊆P.8、设全集U={2,3,322-+a a },A={b,2},A C U ={b,2},求实数a 和b 的值.9.已知S ={a ,b },A ⊆S ,则A 与CSA 的所有组对共有的个数为 (A )1 (B )2 (C )3 (D )4 (D )10..设全集U (U ≠φ),已知集合M 、N 、P ,且M =CUN ,N =CUP ,则M 与P 的关系是 11..已知U=﹛(x ,y )︱x ∈﹛1,2﹜,y ∈﹛1,2﹜﹜,A=﹛(x ,y )︱x-y=0﹜,求UA12..设全集U=﹛1,2,3,4,5﹜,A=﹛2,5﹜,求U A 的真子集的个数13. 若S={三角形},B={锐角三角形},则CSB= .14.. 已知A={0,2,4},CUA={-1,1},CUB={-1,0,2},求B= 15.. 已知全集U={1,2,3,4},A={x|x2-5x+m=0,x ∈U},求CUA 、m 第二节:交集和并集Part One :基础知识(记住有以下6点)1.交集的定义 一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’), 即A B={x|x ∈A ,且x ∈B }.如:{1,2,3,6} {1,2,5,10}={1,2}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A B={c,d,e}. 2.并集的定义 一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’), 即A B ={x|x ∈A ,或x ∈B}).如:{1,2,3,6} {1,2,5,10}={1,2,3,5,6,10}. 3..交集、并集的性质 用文图表示 (1)若A ⊇B,则A B=B, A B=B(2)若A ⊆B 则A B=A A B=A(3)若A=B, 则A A=A A A=A(4)若A,B 相交,有公共元素,但不包含 则A B A,A B B A BA, A BB(5) )若A,B 无公共元素,则A B=Φ①交集的性质 (1)A A=A A Φ=ΦA B=B A (2)A B ⊆A, A B ⊆B .BA②并集的性质 (1)A A=A (2)A Φ=A (3)A B=B A (4)A B ⊇A,A B ⊇B 联系交集的性质有结论:Φ⊆A B ⊆A ⊆A B .4. 德摩根律:(CuA) (CuB)= Cu (A B), (CuA) (CuB)= Cu(A B)(可以用韦恩图来理解). 结合补集,还有①A (CuA)=U, ②A (CuA)= ΦPart Two :例题解析(注意领悟每一个题目与基础知识点的对应关系,通过题目再次深刻理解基础知识) 题型一:基础的交集与并集的计算:注意数集的交集和并集运算的图像法 例1 设A={x|x>-2},B={x|x<3},求A B.例2 设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A B.例3 A={4,5,6,8},B={3,5,7,8},求A B.例4设A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A B.例5设A={x|-1<x<2},B={x|1<x<3},求A ∪B. 例6设A={(x,y)|y=-4x+6},{(x,y)|y=5x-3},求A B.例7已知A 是奇数集,B 是偶数集,Z 为整数集,求A B,A Z,B Z,A B,A Z,B Z.8 已知U={},8,7,6,5,4,3,2,1()B C A U ⋂{},8,1=()BA C U ⋂{}6,2= ()(){},7,4=⋂BC A C U U 则集合A=例9.设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m 的值.例10.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A ∩B={3},求实数a,b,c 的值.. 例11. 已知集合A={y|y=x2-4x+5},B={x|y=x -5}求A ∩B,A ∪B .Part Three :练习1.P={a2,a+2,-3},Q={a-2,2a+1,a2+1},P Q={-3},求a .2..已知全集U=A B={1,3,5,7,9},A (CUB)={3,7}, (CUA) B={5,9}.则A B=____.3 已知A ={x| x2-ax +a2-19=0}, B={x| x2-5x +8=2}, C={x| x2+2x -8=0},若ο/⊂A ∩B ,且A ∩C =ο/,求a 的值4.. 已知元素(1, 2)∈A ∩B ,并且A ={(x, y)| mx -y2+n=0},B={(x, y)| x2-my -n=0},求m, n 的值5. 已知集合A={x|x2+4x-12=0}、B={x|x2+kx-k=0}.若B B A = ,求k 的取值范围6. 若集合M 、N 、P 是全集S 的子集,则图中阴影部分表示的集合是( ) A.P N M )( B .P N M )( C .P C N M S )( D .P C N M S )(集合中段测试 一、选择题1、下列六个关系式:①{}{}a b b a ,,⊆ ②{}{}a b b a ,,= ③Φ=}0{ ④}0{0∈ ⑤}0{∈Φ ⑥}0{⊆Φ 其中正确的个数为( ) (A) 6个 (B) 5个 (C) 4个 (D) 少于4个 2.下列各对象可以组成集合的是( )MN P第9题(A )与1非常接近的全体实数 (B )某校2002-2003学年度笫一学期全体高一学生 (C )高一年级视力比较好的同学 (D )与无理数π相差很小的全体实数3、已知集合P M ,满足M P M = ,则一定有( )(A) P M = (B)P M ⊇ (C) M P M = (D) P M ⊆4、集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 的元素个数为( ) (A)10个 (B)8个 (C)18个 (D) 15个5.设全集U=R ,M={x|x.≥1}, N ={x|0≤x<5},则(C U M )∪(C U N )为( )(A ){x|x.≥0} (B ){x|x<1 或x≥5} (C ){x|x≤1或x≥5} (D ){x| x 〈0或x≥5 }6.设集合{}x A ,4,1=,{}2,1x B =,且{}x B A ,4,1=⋃,则满足条件的实数x 的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个.7.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) (A )3个 (B )4个 (C )5个 (D )6个8.已知全集U ={非零整数},集合A ={x||x+2|>4, x ∈U}, 则C U A =( ) (A ){-6 , -5 , -4 , -3 , -2 , -1 , 0 , 1 , 2 } (B ){-6 , -5 , -4 , -3 , -2 , -1 , 1 , 2 } (C ){ -5 , -4 , -3 , -2 , 0 , -1 , 1 } (D ){ -5 , -4 , -3 , -2 , -1 , 1 }9、已知集合{}}8,7,3{},9,6,3,1{,5,4,3,2,1,0===C B A ,则C B A )(等于 (A){0,1,2,6} (B){3,7,8,} (C){1,3,7,8} (D){1,3,6,7,8}10、满足条件{}{}1,01,0=A 的所有集合A 的个数是( ) (A)1个 (B)2个 (C)3个 (D)4个11、如右图,那么阴影部分所表示的集合是( )(A))]([C A C B U (B))()(C B B A (C))()(B C C A U (D)B C A C U )]([ 12.定义A -B={x|x ∈A 且x ∉B}, 若A={1,2,3,4,5},B={2,3,6},则A -(A -B )等于( )(A)B (B){}3,2 (C) {}5,4,1 (D) {}6 二.填空题13.集合P=(){}0,=+y x y x ,Q=(){}2,=-y x y x ,则A ∩B= 14.不等式|x-1|>-3的解集是 15.已知集合A= 用列举法表示集合A=16 已知U={},8,7,6,5,4,3,2,1(){},8,1=⋂B C A U {},6,2=B ()(){},7,4=⋂B C A C U U 则集合A= 三.解答题17.已知集合A={}.,0232R a x ax R x ∈=+-∈1)若A 是空集,求a 的取值范围; 2)若A 中只有一个元素,求a 的值,并把这个元素写出来; 3)若A 中至多只有一个元素,求a 的取值范围18.已知全集U=R ,集合A={},022=++px xx {},052=+-=q x x x B {}2=⋂B A C U 若,试用列举法表示集合A集合单元小结基础训练 参考答案C ;2.B ;3.B ;4.D ;5.B ;6.C ;7.D ;8.B ;9.C ;10.D ;11.C ;12.B;13. (){}1,1-; 14.R; 15. {}5,4,3,2,0; 16{}8,5,3,1 ,⎭⎬⎫⎩⎨⎧∈∈N x17.1)a>89 ; 2)a=0或a=89;3)a=0或a≥89 18.⎭⎬⎫⎩⎨⎧32,319*.CUA={}321≤≤=x x x 或 CUB={}2=x x A ∩B=A A ∩(CUB )=φ (CUA )∩B={}3212≤<=x x x 或1 20*. a=-1或2≤a≤3.。

2024年新高一数学讲义(人教A版2019必修第一册)集合间的基本关系(解析版)

2024年新高一数学讲义(人教A版2019必修第一册)集合间的基本关系(解析版)

第02讲集合间的基本关系模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解集合之间的包含与相等的含义;2.能够识别给定集合的子集和真子集,了解空集的含义;3.能够进行自然语言、图形语言(Venn图)、符号语言的转换,提升数学抽象素养;4.掌握集合子集、相等、真子集的定义,辨析集合间的关系与上一节内容的区别与联系,能使用适当的符号表示集合间的关系.知识点1子集与真子集1、韦恩图:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(1)表示集合的Venn图边界是封闭曲线,它可以是圆、椭圆、矩形,也可以是其他封闭曲线.(2)用Venn图表示集合的方法叫图示法,其优点是能直观地表示出集合间的关系,缺点是集合元素的共同特征不明显.2、子集定义一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合B 的子集.记法与读法记作A ⊆B (或B ⊇A ),读作“A 包含于B ”(或“B 包含A ”)图示性质(1)任意一个集合都是它本身的子集,即集合的子集也包括它本身,记作A A ⊆;(2)传递性:对于集合,,A B C ,如果A B ⊆,B C ⊆,则A C ⊆.【注意】(1)“A 是B 的子集”的含义:集合A 中的任何一个元素都是集合B 的元素,即由任意x A ∈,能推出x B ∈.(2)如果集合A 中存在着不是集合B 的元素,那么A 不包含于B ,或B 不包含A .3、真子集A (1)真子集也可以叙述为:若集合AB ⊆,存在元素x B ∈且x A ∉,则称集合A 是集合B 的真子集.(2)如果集合A 是集合B 的真子集,那么集合A 一定是集合B 的子集,反之不成立.知识点2集合相等1、集合相等的概念定义一般地,如果集合A 的任何一个元素都是B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等.记法与读法记作A B =,读作“A 等于B ”图示【注意】(1)若两个集合相等,则两集合所含元素完全相同,与元素排列顺序无关。

高一上学期数学人教A版(2019)必修第一册-1.2集合间的基本关系讲义

高一上学期数学人教A版(2019)必修第一册-1.2集合间的基本关系讲义

集合间的基本关系例1 确定整数x 、y ,使得{2,}{7,4}x x y +=.例2 例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合.例3 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何?说明 判断两个集合之间的关系时,(1)若能用列举法表示出集合,则可根据各个集合的元素构成情况直接判断;(2)若不能用列举法表示集合,则可以根据(集或真子集的)定义进行判断.空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.例4 已知集合{}2|(2)430,A x a x x x =-+-=∈R 有且仅有两个子集,求实数a 的取值范围,并写出集合A 的子集.说明 一般,若集合含有n 个元素,则共有2n 个子集(21n -个真子集),其中有一个是空集.例5 已知集合{}260P x x x =+-=∣,{10}Q xax =+=∣.若Q P ⊆,求满足条件时实数a 的所有取值组成的集合.说明 解决此类问题的一般步骤有:第一步,化简集合,即尽可能地将给定的集合化简,这样我们就能搞清楚集合的元素是什么;第二步,根据子集或真子集的定义,分别写出子集或真子集(不要遗忘空集);第三步,根据子集或真子集的不同情况分别进行分类讨论.例5 已知集合{}510|<+<=ax x A ,⎭⎬⎫⎩⎨⎧<<-=221|x x B . (1)若A B ⊆,求a 的取值范围.(2)若B A ⊆,求a 的取值范围.(3)集合A 与集合B 能否相等?若能,求出a 的值;若不能,说明理由.例6 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件学习检测1.用适当的符号填空:{1,}1-________{}2|10,x x x -=∈R ; {0}________{}2|10,x x x +=∈R . 2.集合{1,2,3}的子集共有________个.3.写出集合{(2,1),(1,2)}--的所有子集:________________________.4.已知集合{1,3,}{3,4}A m B =-=,.若B A ⊆,则实数m =________.5.已知集合{|12}{|}A x x B x x a =<<=>,,B={x |x >a }.若A ⫋B ,则实数a 的取值范围是_____________.6.满足{}a ⫋{,,}M a b c ⊆的所有集合M 共有_________个.7.已知集合A B A C ⊆⊆,,且{0,1,2,3,4,5}B =,{}0,2,4,6,8C =,则满足条件的所有集合A 共有______.8.已知a 、b ∈R ,集合{1,,}A a b a =+,0,,b B b a⎧⎫=⎨⎬⎩⎭.若A B =,则b a -的值是( ) A.1; B.-1; C.2; D.-2.9.已知集合{}2230A y y y =--=∣,{}220B x x ax b =-+=∣(a 、b 均为实数).若非空集合B A ⊆,则a b +的值是( )A.12或-2;B.-2或0;C.2或2或0;D.12或-2或010.若1,1x A A x ∈∈-且,则称集合A 为“和谐集”.已知集合1122,1,,0,1,,,2,3,223M ⎧⎫=---⎨⎬⎩⎭,则集合M 的子集中,“和谐集”的个数为11.已知集合{}52|≤<-=x x A ,{}121|-<≤+=m x m x B ,且B A ⊆.求实数m 的取值范围并用集合表示.12.给定集合A 和B ,定义运算“⊗”:{|,,}A B x x m n m A n B ⊗==-∈∈.若{}4,5,6A =,{}1,2,3B =:(1)写出A B ⊗,并求集合A B ⊗中的所有元素之和;(2)写出集合A B ⊗的所有子集.13.已知集合}),12(51{Z k k x x M ∈+==,},5154{Z k k x x N ∈±==,则集合NM ,之间的关系为( )A N M ⊆ B M N ⊆ C N M = D N M ≠14、已知集合B A ⊆,},)412({Z k k x x B ∈+==π,},)214({Z k k x x C ∈+==π,那么集合A 与C 的关系为_____15、设集合{}240A x x x =+=,(){}222110B x x a x a =+++-=,A B ⊆求实数a 的取值范围。

2019版新教材数学课外辅导讲义——第一册第1讲 集合的概念与运算

2019版新教材数学课外辅导讲义——第一册第1讲 集合的概念与运算

第1讲 集合的概念与运算[玩前必备]1.元素与集合的概念(1)集合:研究的对象统称为元素,把一些元素组成的总体叫作集合. (2)集合元素的特性:确定性、互异性. 2.元素与集合的关系(1)空集:不含任何元素的集合,记作∅.(2)非空集合:①有限集:含有有限个元素的集合. ②无限集:含有无限个元素的集合. 4.常用数集的表示符号 把有限集合中的所有元素都列举出来,写在花括号“{__}”内表示这个集合的方法. 6.描述法(1)集合的特征性质如果在集合I 中,属于集合A 的任意一个元素x 都具有性质p (x ),而不属于集合A 的元素都不具有性质p (x ),则性质p (x )叫做集合A 的一个特征性质. (2)特征性质描述法集合A 可以用它的特征性质p (x )描述为{x ∈I |p (x )},它表示集合A 是由集合I 中具有性质p (x )的所有元素构成的.这种表示集合的方法,叫做特征性质描述法,简称描述法. 7.集合间的基本关系A B(或B A)8.集合的运算(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁A={x|x∈U,且x∉A}[玩转典例]题型一集合的基本概念例1(大纲全国,1) 设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6例2 已知集合A={m+2,2m2+m},若3∈A,则m的值为________.[玩转跟踪]1.(新课标全国,1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B 中所含元素的个数为()A.3B.6C.8D.102.已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求实数a.3.(探究与创新)设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.题型二 集合的表示方法例3 下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}. 问:(1)它们是不是相同的集合? (2)它们各自的含义是什么?例4 已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .[玩转跟踪]1.已知x ,y 为非零实数,则集合M =⎩⎨⎧m |m =x |x |+y |y |+⎭⎬⎫xy |xy |为( )A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}2.(探究与创新)已知集合A ={x |ax 2-3x -4=0,x ∈R }: (1)若A 中有两个元素,求实数a 的取值范围; (2)若A 中至多有一个元素,求实数a 的取值范围.题型三 集合间的基本关系例5 (2013·江苏,4)集合{-1,0,1}共有________个子集. 例6 设集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,421|,则( ) A .N M =B .NM C .MN D .=N M例7 已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A . 求实数m 的取值范围.∅1.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( ) A .6个B .5个C .4个D .3个2.(2016·山东北镇中学、莱芜一中、德州一中4月联考)定义集合A -B ={x |x ∈A 且x ∉B },若集合M ={1,2,3,4,5},集合N ={x |x =2k -1,k ∈Z },则集合M -N 的子集个数为( ) A.2 B.3C.4D.无数个3.已有集合A ={x |x 2-4x +3=0},B ={x |mx -3=0},且B ⊆A ,求实数m 的集合.题型四 集合的基本运算例8 (2016·全国Ⅰ,1)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3 例9 (2015·四川,1)设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3} 例10 (1)设全集U =R ,A ={x |x (x +3)<0},B ={x |x <-1},则图中阴影部分表示的集合为( )A .{x |-3<x <-1}B .{x |-3<x <0}C .{x |-1≤x <0}D .{x |x <-3}(2).(2011·江西,2)若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,则A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}例11 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.1.(2016·安徽安庆市第二次模拟)若集合P ={x ||x |<3,且x ∈Z },Q ={x |x (x -3)≤0,且x ∈N },则P ∩Q 等于( )A.{0,1,2}B.{1,2,3}C.{1,2}D.{0,1,2,3}2.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A.(M ∩P )∩SB.(M ∩P )∪SC.(M ∩P )∩(∁I S )D.(M ∩P )∪(∁I S )3.(探究与创新)已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.[玩转练习]1.已知集合A ={y |y =|x |-1,x ∈R },B ={x |x ≥2},则下列结论正确的是( ) A .-3∈A B .3∉B C .A ∩B =BD .A ∪B =B2.设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪1x<2,则下列结论中正确的是( ) A .N M B .M N C .N ∩M =∅D .M ∪N =R3.(2018·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .44.(2018·济南模拟)设全集U =R ,集合A ={x |x -1≤0},集合B ={x |x 2-x -6<0},则右图中阴影部分表示的集合为( )A .{x |x <3}B .{x |-3<x ≤1}C .{x|x <2}D .{x |-2<x ≤1}5.(2018·潍坊模拟)设集合A =N ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x x -3≤0,则A ∩B 等于( ) A .[0,3) B .{1,2} C .{0,1,2}D .{0,1,2,3}6.(2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( ) A .{1,-3} B .{1,0} C .{1,3} D .{1,5}7.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为( ) A .(-∞,0] B .[0,+∞) C .(-∞,0)D .(0,+∞)8.满足{a ,b }∪B ={a ,b ,c }的集合B 的个数是________.9.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________. 10.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.11.已知全集I ={2,3,a 2+2a -3},若A ={b,2},∁I A ={5},求实数a ,b .12.已知A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .13.设全集为R ,集合A ={x |3≤x <6},B ={x |2<x <9}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值构成的集合.14.已知集合A ={x |0<x -a ≤5},B ={x |-a2<x ≤6}.(1)若A ∩B =A ,求a 的取值范围; (2)若A ∪B =A ,求a 的取值范围.。

衡水中学文数一轮复习----集合与常用逻辑术语

衡水中学文数一轮复习----集合与常用逻辑术语

第1讲集合◆高考导航·顺风启程◆最新考纲常见题型1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表示集合的关系及运算.多以选择题出现于第1或第2题位置,是高考必考内容,占5分左右.[知识梳理]1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种元素:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:集合自然数集正整数集整数集有理数集实数集符号NN *或N +ZQR2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A 的元素都是集合B 的元素x ∈A ⇒x ∈B A ⊆B 或B ⊇A 真子集合A 是集合B 的子集,且集合B 中A ⊆B ,且∃x 0∈B ,x 0AB 或集至少有一个元素不属于A∉A B A相等集合A ,B 的元素完全相同A ⊆B ,B ⊆A A =B 空集不含任何元素的集合,空集是任何集合A 的子集∀x ,x ∉∅,∅⊆A∅3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于集合A且属于集合B 的元素组成的集合{x |x ∈A ,且x ∈B }A ∩B并集属于集合A或属于集合B 的元素组成的集合{x |x ∈A ,或x ∈B }A ∪B补集全集U 中不属于集合A 的元素组成的集合{x |x ∈U ,且x ∉A }∁U A[知识感悟]1.集合的运算性质并集的性质:A ∪∅=A ;A ∪A =A ;A ∪B =B ∪A ;A ∪B =A ⇔B ⊆A .交集的性质:A ∩∅=∅;A ∩A =A ;A ∩B =B ∩A ;A ∩B =A ⇔A ⊆B .补集的性质:A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A .2.判断集合关系的三种方法(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn 图.3.数形结合思想数轴和Venn 图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn 图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.[知识自测]1.(2016·全国Ⅰ卷)设集合A ={1,3,5,7},B ={x |2≤x ≤5},则A ∩B =()A .{1,3}B .{3,5}C .{5,7}D .{1,7}[解析]集合A 与集合B 的公共元素有3,5,故A ∩B ={3,5},选B.[答案]B2.(2018·江西重点中学联考)已知集合A ={x |x 2-6x +5≤0},B ={x |y =x -3},则A ∩B 等于()A .[1,3]B .[1,5]C .[3,5]D .[1,+∞)[解析]根据题意,得A ={x |x 2-6x +5≤0}={x |1≤x ≤5},B ={x |y =x -3}={x |x ≥3},所以A ∩B ={x |3≤x ≤5}=[3,5].[答案]C3.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2017=______.[解析]由M =N =1,2n =m=m ,2n =1,=0,=1=2,=2.[答案]-1或0题型一集合的基本概念(基础拿分题——自主练透)(1)(2018·山东省枣庄十六中4月模拟试卷)设集合A ={1,2,3},B ={4,5},M ={x |x=a +b ,a ∈A ,b ∈B },集合M 真子集的个数为()A .32B .31C .16D .15[解析]由题意集合A ={1,2,3},B ={4,5},a ∈A ,b ∈B ,那么:a 、b 的组合有:(1、4),(1、5),(2、4),(2、5),(3、4),(3、5),∵M ={x |x =a +b },∴M ={5,6,7,8},集合M 中有4个元素,有24-1=15个真子集.故选:D.[答案]D(2)已知a ,b ∈R ,ba ,{a 2,a +b,0},则a 2018+b 2018为()A .1B .0C .-1D .±1[解析]由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2018+b 2018=(-1)2018+02018=1.[答案]A方法感悟1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.【针对补偿】1.(2018·山西省大同市豪洋中学四模试卷)已知集合A ∈Z |127<3x ≤B ={x ∈N |-2<x <3},则集合{z |z =xy ,x ∈A ,y ∈B }的元素个数为()A .6B .7C .8D .9[解析]由127<3x ≤9,即3-3<3x ≤32,解得-3<x ≤2,∴A ={-2,-1,0,1,2}.B ={0,1,2}.∴集合{z |z =xy ,x ∈A ,y ∈B }={-2,-1,0,1,2,-4,4}的元素个数为7.故选:B.[答案]B2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.[解析]由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.[答案]-323.已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为______.[解析]因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6.[答案]5<k ≤6题型二集合的基本关系(重点保命题,共同探讨)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A⊆C ⊆B 的集合C 的个数为()A .1B .2C .3D .4[解析](1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4}.所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.[答案]D(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为______.[解析]因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅m -1≥m +1,+1≥-2,m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3.[答案]m ≤3方法感悟1.空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.2.已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.[注意]题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.【针对补偿】4.已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为()A.13或-12B .-13或12C.13或-12或0D .-13或12或0[解析]由题意知A ={2,-3},当a =0时,B =∅,满足B ⊆A ;当a ≠0时,ax -1=0的解为x =1a ,由B ⊆A ,可得1a =-3或1a =2,∴a =-13或a =12.综上,a 的值为-13或12或0.[答案]D5.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,实数a 的取值范围是(c ,+∞),则c =______.[解析]由log 2x ≤2,得0<x ≤4.即A ={x |0<x ≤4},而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4.[答案]4题型三集合的基本运算(高频考点题,多角突破)集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题难度不大,多为低档题.高考对集合运算的考查主要有以下三个命题角度:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求集合;(3)已知集合的运算结果求参数的值(或参数的取值范围).考向一求交集1.(2017·课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.0[解析]集合中的元素为点集,由题意,结合A表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线y=x上所有的点组成的集合,圆x2+y2=1与直线y=x 相交于两点(1,1),(-1,-1),则A∩B中有两个元素.故选B.[答案]B考向二求并集2.(2016·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)[解析]A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1},选C.[答案]C考向三集合的交、并、补的综合运算3.(2018·山东省德州市四月二模)设全集U=R,集合M={x|x2+x-2>0},N=-1≥(∁U M)∩N=()A.[-2,0]B.[-2,1]C.[0,1]D.[0,2][解析]M={x|x>1或x<-2},∁U M={x|-2≤x≤1},N={x|x-1≤-1}={x|x≤0},所以(∁U M)∩N={x|-2≤x≤0},故选A.[答案]A考向四利用集合运算求参数4.已知集合A={x|x2-x-12≤0},B={x|2m-1<x<m+1},且A∩B=B,则实数m 的取值范围为()A.[-1,2)B.[-1,3] C.[2,+∞)D.[-1,+∞) [解析]由x2-x-12≤0,得(x+3)(x-4)≤0,即-3≤x≤4,所以A={x|-3≤x≤4},又A∩B=B,所以B⊆A.①当B=∅时,有m+1≤2m-1,解得m≥2.②当B≠∅3≤2m-1,+1≤4,m-1<m+1,解得-1≤m<2.综上,m的取值范围为[-1,+∞).[答案]D考向五集合的斜定义问题5.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为() A.77B.49C.45D.30[解析]如图,集合A表示如图所示的所有圆点“○”,集合B表示如图所示的所有圆点“○”+所有圆点“·”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“○”+所有圆点“·”+所有圆点“⊙”,共45个,故A⊕B中元素的个数为45.故选C.[答案]C方法感悟集合基本运算的常见题型与破解策略:重点题型破解策略求并集、交集或补集一般是先解方程或不等式化简集合,再由并集、交集或补集的定义求解交、并、补的混合运算先算括号里面的,再按运算的顺序求解利用集合的基本运算求参数的取值(范围)数形结合思想的运用,利用好数轴、Venn图等.集合的定义问题解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义,首先分析定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质,解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.【针对补偿】6.(2017·山东)设函数y=4-x2的定义域A,函数y=ln(1-x)的定义域为B,则A∩B =()A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)[解析]由4-x2≥0得-2≤x≤2,由1-x>0得x<1,故A∩B={x|-2≤x≤2}∩{x|x <1}={x|-2≤x<1},选D.[答案]D7.(2018·山东省青岛市数学一模试卷)已知集合A={x||x+1|≥1},B={x|x≥-1},则(∁R A)∩B=()A.[-1,0]B.[-1,0)C.(-2,-1)D.(-2,-1][解析]∵A={x||x+1|≥1}={x|x≤-2或x≥0},∴∁R A={x|-2<x<0},又B={x|x≥-1},∴(∁R A)∩B=[-1,0).故选:B.[答案]B8.定义一种新的集合运算△:A△B={x|x∈A,且x∉B},若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4}B.{x|3≤x≤4}C.{x|3<x<4}D.{x|2≤x≤4}[解析]A={x|1<x<3},B={x|2≤x≤4},由题意知B△A={x|x∈B,且x∉A}={x|3≤x≤4}.[答案]B◆牛刀小试·成功靠岸◆课堂达标(一)[A基础巩固练]1.(2017·课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅[解析]由3x<1可得3x<30,则x<0,即B={x|x<0},所以A∩B={x|x<1}∩{x|x<0}={x|x<0},A∪B={x|x<1}∪{x|x<0}={x|x<1}.故选A.[答案]A2.(2017·天津)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}[解析](A∪B)∩C={1,2,4,6}∩[-1,5]={1,2,4},选B.[答案]B3.(2018·哈尔滨九中二模)设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,有x∈P B.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈P D.∃x0∈P,使得x0∉P[解析]∵P∩Q=P,∴P⊆Q∴A错误;B正确;C错误;D错误.故选B.[答案]B4.(2018·刑台摸底考试)已知集合A={x|-2≤x≤2},B={y|y=x,0≤x≤4},则下列关系正确的是()A.A⊆∁R B B.B⊆∁R AC.∁R A⊆∁R B D.A∪B=R[解析]依题意得B={y|0≤y≤2},因此B⊆A,∁R A⊆∁R B.[答案]C5.(2018·湖北七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为()A.147B.140C.130D.117[解析]由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5时有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.[答案]B6.(2018·山东临沂期中)已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是()A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)[解析]∵x 2-3x +2>0,∴x >2或x <1.∴A ={x |x >2或x <1},∵B ={x |x ≤a },∴∁U B ={x |x >a }.∁U B ⊆A ,借助数轴可知a ≥2,故选D.[答案]D7.已知集合A ={x |y =x },B |12<2x <4(∁R A )∩B 等于______.[解析]因为A ={x |y =x }={x |x ≥0},所以∁RA ={x |x <0}.又B |12<2x<4{x |-1<x <2},所以(∁R A )∩B ={x |-1<x <0}.[答案]{x |-1<x <0}8.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________.[解析]当m ≤0时,B =∅,显然B ⊆A .当m >0时,∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,m ≥-1,≤3,m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1].[答案](-∞,1]9.(2018·南阳月考)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =________.[解析]因为A ={x |x ≥3或x ≤-1},B ={y |y >1},所以A ∪B ={x |x >1或x ≤-1}.[答案](-∞,-1]∪(1,+∞)10.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],求实数m 的值;(2)若A ⊆∁R B ,求实数m 的取值范围.[解]由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3]-2=0,+2≥3,∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3.因此实数m 的取值范围是{m |m >5或m <-3}.[B 能力提升练]1.(2018·湖南衡阳第三次联考)集合M ={(x ,y )|x +y ≤1,y ≤x ,y ≥-1},N ={(x ,y )|(x -2)2+y 2=r 2,r >0},若M ∩N ≠∅,则r 的取值范围为()A.22,3B.[1,10]C.22,10D.1,102[解析]由条件可得M 的可行域:如图阴影部分,N 则是以P (2,0)为圆心,半径为r 的圆,由M ∩N =∅,则当圆与x +y =1相切时半径最小,如图D 处,则d =r =22,当过y =x ,y =-1的交点时最大,此时r =10,故选C.[答案]C2.(2018·开封模拟)设集合U =R ,A ={x |2x (x-2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为()A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析]易知A ={x |2x (x-2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B }={x |1≤x <2}.[答案]B3.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.[解析]A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.[答案]-1;14.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若∀x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有__________________个.[解析]当A ={1}时,B 有23-1=7种情况,当A ={2}时,B 有22-1=3种情况,当A={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,所以满足题意的“子集对”共有7+3+1+3+1+1+1=17个.[答案]175.(2018·徐州模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.[解](1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B -m >2m ,m ≤1,-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需<13,-m ≤1<13,m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).[C 尖子生专练](2018·贵阳市监测考试)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =______.(用列举法表示)[解析]若a 1∈A ,则a 2∈A ,则由若a 3∉A ,则a 2∉A 可知,a 3∈A ,假设不成立;若a 4∈A ,则a 3∉A ,则a 2∉A ,a 1∉A ,假设不成立,故集合A ={a 2,a 3}.[答案]{a 2,a 3}第2讲命题及其关系、充分条件与必要条件◆高考导航·顺风启程◆最新考纲常见题型1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解充分条件、必要条件与充要条件的含义.多以选择题出现于第1、2题位置、占5分左右.[知识梳理]1.命题概念使用语言、符号或者式子表达的,可以判断真假的陈述句特点(1)能判断真假;(2)陈述句分类真命题、假命题2.四种命题及其相互关系(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为B p 是q 的充分不必要条件p ⇒q 且q /⇒p A 是B 的真子集集合与充要条件p 是q 的必要不充分条件p /⇒q 且q ⇒p B 是A 的真子集p 是q 的充要条件p ⇔qA =B p 是q 的既不充分也不必要条件p /⇒q 且q /⇒pA ,B 互不包含[知识感悟]1.四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.2.命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.[知识自测]1.下列命题中为真命题的是()A .命题“若x >y ,则x >|y |”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题[解析]对于A ,其逆命题是若x >|y |,则x >y ,则真命题,这是因为x >|y |≥y ,必有x >y .[答案]A2.(2017·天津)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]|θ-π12|<π12⇔0<θ<π6⇒sin θ<12,但θ=0,sin θ<12,不满足|θ-π12|<π12,所以是充分不必要条件,选A.[答案]A3.在下列三个结论中,正确的是________.(写出所有正确结论的序号)①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;>0,b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件.[解析]易知①②正确.对于③,若x=-1,则x2=1,充分性不成立,故③错误.[答案]①②题型一四种命题及相互关系(基础拿分题——自主练透)(1)(2018·广东肇庆一模)原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个[解析]原命题:若c=0则不成立,由等价命题同真同假知其逆否命题也为假;逆命题:∵ac2>bc2知c2>0,由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴有2个真命题.[答案]C(2)(2018·宿州模拟)下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④[解析]对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确,故选A.[答案]A思维升华1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假方法感悟1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【针对补偿】1.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.“若x+y是偶数,则x与y不都是偶数”B.“若x+y是偶数,则x与y都不是偶数”C.“若x+y不是偶数,则x与y不都是偶数”D.“若x+y不是偶数,则x与y都不是偶数”[解析]由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案]C2.已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数,是真命题”[解析]由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.[答案]D题型二充分条件,必要条件的判断(高频考点题、共同探讨)充分条件、必要条件的判断是高考命题的热点,常以选择题的形式出现,作为一个重要载体,考查的知识面很广,几乎涉及数学知识的各个方面.高考对充要条件的考查主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件;(3)与命题的真假性相交汇命题.考向一与不等式有关的题型1.(2018·山西省大同市豪洋中学四模试卷)“m ≤-12”是“∀x >0,使得x 2+12x -32>m是真命题”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析]若∀x >0,使得x 2+12x -32>m 是真命题,则m +12x -,令f (x )=x 2+12x -32,则f (x )≥2x 2·12x -32=1-32=-12,故m <-12,故m ≤-12”是“m <-12”的必要不充分条件,故选B.[答案]B考向二与三角有关的题型2.(2018·石家庄一模)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析]当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A.[答案]A考向三与向量有关的题型3.(2018·甘肃省兰州市二模)设向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析]∵a ⊥b ,∴(x -1)(x +2)+x (x -4)=0,化为:2x 2-3x -2=0,解得x =-12或2.∴“a ⊥b ”是“x =2”的必要不充分条件.故选:B.[答案]B考向四与数列有关的题型4.(2018·北京市西城区一模)数列{a n }的通项公式为a n =|n -c |(n ∈N *).则“c ≤1”是“{a n }为递增数列”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]数列{a n }的通项公式为a n =|n -c |(n ∈N *),若“{a n }为递增数列”,则a n +1-a n =|n +1-c |-|n -c |>0,即(n +1-c )2>(n -c )2,解得c <n +12,∵n +12≥32,∴c ≤1是{a n }为递增数列充分不必要条件,故选A.[答案]A考向五与几何问题有关的题型5.(2016·山东卷)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析]若a ,b 相交则α,β一定相交.若α,β相交则不能得出a ,b 相交.故选A.[答案]A考向六与函数有关的题型6.(2018·合肥一模)函数f (x )2x ,x >0,x -a ,x ≤0有且只有一个零点的充分不必要条件是()A .a ≤0或a >1B .0<a <12C.12<a <1D .a <0[解析]因为f (x )2x ,x >0x -a ,x ≤0有且只有一个零点的充要条件为a ≤0或a >1.由选项可知,使“a ≤0或a >1”成立的充分条件为选项D.[答案]D方法感悟充分、必要条件判定的常见题型与求解策略:常见题型求解策略与不等式相关的充分必要条件的判断可把不等式之间的关系转化为集合与集合之间的关系,根据集合与充要条件之间的关系进行判断与平面向量相关的充分必要条件的判断该类题型常涉及向量的概念、运算及向量共线、共面的条件,可把问题转化为有关向量之间的推理与三角相关的充分必要条件的判断熟练掌握三角的相关概念、运算公式、三角函数的图象和性质以及正、余弦定理是解决该类问题的关键与数列相关的充分必要条件的判断熟练掌握等差数列与等比数列的定义、性质及数列的单调性、周期性、a n 与S n 的关系与立体几何相关的充分必要条件的判断可把问题转化为线线、线面、面面之间位置关系的判断及性质问题,由此进行恰当判断与解析几何相关的充分必要条件的判断首先理解点与曲线的位置关系,两直线的位置关系,直线与曲线的位置关系,然后弄清题意进行判断提醒:解答充分条件、必要条件的判断题,必须从正、逆两个方面进行判断.【针对补偿】3.(2018·东北三省四市联考)“x <2”是“x 2-3x +2<0”成立的()A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件[解析]由x 2-3x +2<0,解得1<x <2,因为{x |1<x <2}{x |x <2},所以“x <2”是“x 2-3x+2<0”成立的必要不充分条件,故选A.[答案]A4.(2018·广西名校联考)在△ABC 中,命题p :“B ≠60°”,命题q :“△ABC 的三个内角A ,B ,C 不成等差数列”,那么p 是q 的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析]命题p :“B ≠60°”则(A +C )-2B =π-B -2B ≠0,⇔命题q :“△ABC 的三个内角A ,B ,C 不成等差数列”,故选C.[答案]C5.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析]由题意知f (x )=x 2+bx -b 24,最小值为-b 24.令t =x 2+bx ,则f (f (x ))=f (t )=t 2+bt -b 24,t ≥-b 24,当b <0时,f (f (x ))的最小值为-b 24,所以“b <0”能推出“f (f (x ))的最小值与f (x )的最小值相等”;当b =0时,f (f (x ))=x 4的最小值为0,f (x )的最小值也为0,所以“f (f (x ))的最小值与f (x )的最小值相等”不能推出“b <0”.故选A.[答案]A题型三充分必要条件的应用(重点保分题,共同探讨)(1)(2018·皖北第一次联考)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是()A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1)[解析]∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1,∵p 是q 的充分不必要条件,∴k >2.[答案]B(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析]命题p |12≤x ≤命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A |x >1或x 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件.+1>1,≤12+1≥1,<12,∴0≤a ≤12.故答案为0,12.[答案]0,12方法感悟根据充要条件求解参数范围的注意点1.解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.2.求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【针对补偿】6.已知条件p :x 2-3x -4≤0;条件q :x 2-6x +9-m 2≤0,若p 是q 的充分不必要条件,则m 的取值范围是()A.[-1,1]B.[-4,4]C.(-∞,-4]∪[4,+∞)D.(-∞,-1]∪[1,+∞)[解析]p:-1≤x≤4,q:3-m≤x≤3+m(m>0)或3+m≤x≤3-m(m<0),>0,-m≤-1,+m>4>0,-m<-1,+m≥4<0,+m≤-1,-m>4<0,+m<-1,-m>4,解得m≤-4或m≥4,选C.[答案]C7.已知不等式|x-m|<1成立的充分不必要条件是13<x<12,则m的取值范围是______.[解析]由|x-m|<1得m-1<x<m+1,若13<x<12是|x-m|<1成立的充分不必要条件,-1≤13+1>12-1<13+1≥12得-12≤m≤43.[答案]-12,43◆牛刀小试·成功靠岸◆课堂达标(二)[A基础巩固练]1.(2018·山东重点中学模拟)已知命题p:“正数a的平方不等于0”,命题q:“若a 不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定[解析]命题p:“正数a的平方不等于0”写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.[答案]B2.(2016·天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件[解析]若x>|y|,则x>y或x>-y,若x>y,当y>0时,x>|y|,当y<0时,不能确定x>|y|.故选C.[答案]C3.(2018·河北保定二模)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A .m >14B .0<m <1C .m >0D .m >1[解析]由题意知,对应方程的Δ=(-1)2-4m <0,即m >14.结合选项可知,不等式恒成立的一个必要不充分条件是m >0,故选C.[答案]C4.(2018·北京市朝阳区二模)“x >0,y >0”是“y x +xy ≥2”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析]“x >0,y >0”⇔“y x +xy≥2”,反之不成立,例如取x =y =-1.∴x >0,y >0”是“y x +xy≥2”的充分而不必要条件.故选:A.[答案]A5.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是()A .“若a ,b ,c 成等比数列,则b 2≠ac ”B .“若a ,b ,c 不成等比数列,则b 2≠ac ”C .“若b 2=ac ,则a ,b ,c 成等比数列”D .“若b 2≠ac ”,则a ,b ,c 不成等比数列[解析]根据原命题与其逆否命题的关系,易得命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.[答案]D6.(2018·安徽合肥一模)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,p :A 、B 的体积不相等,q :A 、B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[解析]如果A ,B 在等高处的截面积恒相等,则A ,B 的体积相等,因此有p ⇒q ,但q⇒p 不一定成立,把两个相同的锥体放在一个平面上,再把其中一个锥体翻转底向上,顶点在原底面所在平面,虽然在等高处的截面积不恒相等,但体积相等,故p 是q 的充分不必要条件.故选A.。

2019-2020学年高一数学 初升高衔接班 第二讲 集合的含义与表示讲义.doc

2019-2020学年高一数学 初升高衔接班 第二讲 集合的含义与表示讲义.doc

2019-2020学年高一数学 初升高衔接班 第二讲 集合的含义与表示讲义一、概念定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集),常用大写的拉丁字母表示,如A 、B 、C 、P 、Q……(2)元素:集合中每个对象叫做这个集合的元素,常用小写的拉丁字母表示,如a 、b 、c 、p 、q……2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {},3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x∈A| P(x )} 含义:在集合A 中满足条件P (x )的x 的集合(3)文氏图:用一条封闭的曲线的内部来表示一个集合的方法6. 按元素的多少,集合可分为以下三类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x 二、讲解范例1、下列所给对象能构成集合的是( )A 平面内的所有点B 平面直角坐标系中第一、三象限角平分线上的所有点C 清华大学附中高一年级全体女生D 所有高大的树2、集合{3,x ,x x 22-}中,满足条件的实数x 所组成的集合是________3、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_ _4、由实数x,-x,|x |,332,x x -所组成的集合,最多含( )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素6、用描述法表示下列集合①{1,4,7,10,13} ②{-2,-4,-6,-8,-10}7、用列举法表示下列集合①{(x ,y )|x∈{1,2},y∈{1,2}} ②⎩⎨⎧=-=+}422|),{(y x y x y x ③},)1(|{N n x x n ∈-= ④},,1623|),{(N y N x y x y x ∈∈=+三、课堂练习1、下面表示同一个集合的是( )A 、}{}{)1,2()2,1(==N M ,B 、}{}{)2,1(2,1==N M ,2、集合A=}{0122=++x ax x 中只有一个元素,则a 的值是________ 3、方程组⎩⎨⎧=+-=++03062y x y x 的解集是______4、已知P=}{Rk N x k x x ∈∈<<,,2,若集合P 中恰有3个元素,则实数k 的取值范围是_____ 5、集合A=}{Z b Z a b a x R x ∈∈+=∈,,3,判断下列元素x 与集合A 的关系:(1)x=0 (2)x=354- (3) x=321- (4)2121,,x x x A x A x +=∈∈6、设集合A=(x,y,x+y ),B=(0,2x ,xy)且A=B ,求实数x ,y 的值课堂测验建议用时:40分钟 满分100分一、选择题(本大题共6小题,每小题6分,共36分)1.下列几组对象可以构成集合的是( )A .充分接近π的实数的全体B .善良的人C .某校高一所有聪明的同学D .某单位所有身高在1.7 m 以上的人2.下列四个说法中正确的个数是( )①集合N 中最小的数为1;②若a ∈N ,则-a N ;③若a ∈N ,b ∈N ,a b ,则a +b 的最小值为2;④所有小的正数组成一个集合.A .0B .1C .2D .33.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ),选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B4.已知集合S 的三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正 确的是( )A .0MB .2∈MC .-4MD .4∈M6. 若集合}044|{2=++=x kx x A 中有且仅有一个元素,则实数k 的值为( )A.{0}k ∈B.{1}k ∈C.{1,0}k ∈D.{1,1}k ∈-二、填空题(本大题共3小题,每小题6分,共18分)7.用“∈”或“”填空.(1)-3 ______N ; (2)3.14 ______Q ;(3)13 ______Z ; (4)-12______R ; (5)1 ______N *; (6)0 _______N .8.定义集合运算A *B ={M |M =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为________.9.由下列对象组成的集体属于集合的是________(填序号).①不超过3的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考数学成绩在90分以上的 学生.三、解答题(本大题共3小题,共46分)10.(14分)已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x11.(15分)下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?12.(17分)设A 为实数集,且满足条件:若a ∈A ,则a 11∈A (a ≠1).求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集课后作业一. 选择题1. 给出下列表述:①联合国常任理事国②充分接近2的实数的全体③方程x 2+x-1=0的实数根④全国著名的高等院校。

必修一_第一章_集合(集合讲义_做的很细_适合初学者)

必修一_第一章_集合(集合讲义_做的很细_适合初学者)

集合1.1 集合的含义与表示21.11 集合的含义21.12集合的表示51.2 子集、全集、补集91.3 交集、并集13第一章集合1.1 集合的含义与表示1.11 集合的含义一、知识梳理1.集合的含义:一些元素组成的构成一个集合(set).注意:(1)集合是数学中原始的、不定义的概念,只作描述.(2)集合是一个“整体.(3)构成集合的对象必须是“确定的”且“不同”的2.集合中的元素:集合中的每一个对象称为该集合的元素(element).简称元.集合一般用大写拉丁字母表示,如集合A,元素一般用小写拉丁字母表示.如a,b,c……等.思考:构成集合的元素是不是只能是数或点?【答】3.集合中元素的特性:(1)确定性.设A 是一个给定的集合,x是某一元素,则x是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性.对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性.集合与其中元素的排列次序无关.4.常用数集及其记法:一般地,自然数集记作____________正整数集记作__________或___________整数集记作________有理数记作_______实数集记作________5.元素与集合的关系:如果a是集合A的元素,就记作__________ 读作“___________________”;如果a不是集合A的元素,就记作______或______读作“_______________”;6.集合的分类:按它的元素个数多少来分:(i) _________________叫做有限集;(ii)________________________叫做无限集;(iii)_______________叫做空集,记为_____________二、例题讲解1、运用集合中元素的特性来解决问题例1.下列研究的对象能否构成集合(1)世界上最高的山峰(2)高一数学课本中的难题(3)中国国旗的颜色(4)book中的字母(5)立方等于本身的实数(6)不等式2x-8<13的正整数解【解】点评:判断一组对象能否组成集合关键是能否找到一个明确的标准,按照这个确定的标准,它要么是这个集合的元素,要么不是这个集合的元素,即元素确定性.例2:集合M中的元素为1,x,x2-x,求x的围?分析:根据集合中的元素互异性可知:集合里的元素各不相同,联列不等式组.点评: 元素的特性(特别是互异性)是解决问题的切入点.例3:三个元素的集合1,a,ba,也可表示为0,a2,a+b,求a2005+ b2006的值.分析:三个元素的集合也可表示另外一种形式,说明这两个集合相同,而该题目从特殊元素0入手,可以省去繁琐的讨论.点评:从特殊元素入手,灵活运用集合的三个特征.2、运用元素与集合的关系来解决一些问题例4:集合A中的元素由(a∈Z,b∈Z)组成,判断下列元素与集合A的关系?(1)0 (2(3分析:先把x写成的形式,再观察a,b是否为整数.点评:要判断某个元素是否是某个集合的元素,就是看这个元素是否满足该集合的特性或具体表达形式.例5:不包含-1,0,1的实数集A满足条件a∈A,则11aa+-∈A,如果2∈A,求A中的元素?分析:该题的集合所满足的特征是由抽象的语句给出的,把2这个具体的元素代入求出A的另一个元素,但该题要循环代入,求出其余的元素,同学们可能想不到.三、巩固练习1.下列研究的对象能否构成集合①某校个子较高的同学;②倒数等于本身的实数③所有的无理数④讲台上的一盒白粉笔⑤中国的直辖市⑥中国的大城市2.下列写确的是___________________Q②当n∈N时,由所有(-1)n的数值组成的集合为无限集R④-1∈Z ⑤由book中的字母组成的集合与元素k,o,b组成的集合是同一个集合把正确的序号填在横线上3.用∈或∉填空________N________R0_______N* π________R 227_______Q cos300_______Z4.由实数-x,|x|x,组成的集合最多含有元素的个数是_________________个1.12集合的表示一、知识梳理1. 集合的常用表示方法:(1)列举法将集合的元素一一列举出来,并____________________表示集合的方法叫列举法. 注意:①元素与元素之间必须用“,”隔开;②集合的元素必须是明确的;③各元素的出现无顺序;④集合里的元素不能重复;⑤集合里的元素可以表示任何事物.(2)描述法将集合的所有元素都具有性质()表示出来,写成_________的形式,称之为描述法.注意:①写清楚该集合中元素满足性质;②不能出现未被说明的字母;③多层描述时,应当准确使用“或”,“且”;④所有描述的容都要写在集合的括号;⑤用于描述的语句力求简明,准确.思考:还有其它表示集合的方法吗?【答】文字描述法:是一种特殊的描述法,如:{正整数},{三角形}图示法(Venn图):用平面上封闭曲线的部代集合.2. 集合相等如果两个集合A,B所含的元素完全相同,___________________________________ 则称这两个集合相等,记为:_____________二、例题讲解1、用集合的两种常用方法具体地表示合例1.用列举法表示下列集合:(1)中国国旗的颜色的集合;(2)单词mathematics中的字母的集合;(3)自然数中不大于10的质数的集合;(4)同时满足240121xx x+>⎧⎨+≥-⎩的整数解的集合;(5)由||||(,)a ba b Ra b+∈所确定的实数集合.(6){(x,y)|3x+2y=16,x∈N,y∈N }分析:先求出集合的元素,再用列举法表示.点评:(1)用列举法表示集合的步骤为:①求出集合中的元素②把这些元素写在花括号(2)用列举法表示集合的优点是元素一目了然;缺点是不易看出元素所具有的属性.例2.用描述法表示下列集合:(1)所有被3整除的整数的集合;(2)使yx=有意义的x的集合;(3)方程x2+x+1=0所有实数解的集合;(4)抛物线y=-x2+3x-6上所有点的集合;(5)图中阴影部分点的集合;-12-11oyx分析:用描述法表示来集合,先要弄清楚元素所具有的形式,从而写出其代表元素再确定元素所具有的属性即可.点评: 用描述法表示集合时,注意确定和简化集合的元素所具有的共同特性例3.已知A={a|6,3N a Za∈∈-},试用列举法表示集合A.分析:用列举法表示的集合,要认清集合的实质,集合中的元素究竟满足哪些条件.点评:本题实际上是要求满足6被3-a整除的整数a的值,若将题目改为63Za∈-,则集合A={-3,0,1,2,4,5,6,9}.2、有关集合相等方面的问题例4.已知集合P={-1,a,b},Q={-1,a2,b2},且Q=P,求1+a2+b2的值.分析:含字母的两个集合相等,并不意味着 按序对应相等,要分类讨论,同时也要考虑集合中的元素的互异性和无序性.例5.已知集合B={x|212x a x +=-}有唯一元素,用列举法表示a 的值构成的集合A. 点拔:本题集合B={x|212x a x +=-}有唯一元素,同学们习惯上将分式方程去分母,转化为一元二次方程的判别式为0,事实上当a=时,也能满足唯一元素,但方程已不是一元二次方程,而是一元一次方程,也有唯一解,所以本题要分三种情况讨论.三、巩固练习1.用列举法表示下列集合:(1) {x|x 2+x+1=0}(2){x|x 为不大于15的正约数}(3) {x|x 为不大于10的正偶数}(4){(x,y)|0≤x ≤2,0≤y<2,x ,y ∈Z}2. 用描述法表示下列集合:(1) 奇数的集合;(2)正偶数的集合;(3)不等式2x-3>5的解集;(4)直角坐标平面属于第四象限的点的集合; .3. 下列集合表示确的是(1) {1,2,2};(2) {Ф};(3) {全体有理数};(4) 方程组31420x y x y +=⎧⎨-=⎩的解的集合为{2,4}; (5)不等式x 2-5>0的解集为{x 2-5>0}.4、集合A={x|y=x 2+1},B={t|p=t 2+1},这三个集合的关系?5、已知A={x|12,6N x N x∈∈-},试用列举法表示集合A . 1.2 子集、全集、补集一、知识梳理1.子集的概念及记法:如果集合A 的任意一个元素都是集合B 的元素( ),则称集合 A为集合B 的子集(subset ),记为___________或___________读作“________________”或“__________________”用符号语言可表示为:__________________.注意:(1)A 是B 的子集的含义:任意x ∈A ,能推出x ∈B ;(2)不能理解为子集A 是B 中的“部分元素”所组成的集合.2.子集的性质:① A ⊆A②A ∅⊆③,A B B C ⊆⊆,则A C ⊆思考:A B ⊆与B A ⊆能否同时成立?【答】 _________3.真子集的概念及记法:如果A B ⊆,并且A ≠B ,这时集合 A 称为集合B 的真子集(proper set ),记为_________或_________读作“____________________”或“__________________”4.真子集的性质:①∅是任何非空集合的真子集符号表示为___________________②真子集具备传递性符号表示为___________________5.全集的概念:如果集合U 包含我们所要研究的各个集合,这时U 可以看做一个全集(universal set )全集通常记作_____6.补集的概念:设____________,由U 中不属于A 的所有元 素组成的集合称为U 的子集A 的补集(complementary set ), 记为___________读作“_________________________”即:U C A =_______________________7.补集的性质:①U C ∅=__________________②U C U =__________________③()U U C C A =______________二、例题讲解1、写出一个集合的子集、真子集及其个数公式例1.写出集合{a ,b}的所有子集及其真子集;写出集合{a ,b ,c}的所有子集及其真子集;分析:按子集的元素的多少分别写出所有子集,这样才能达到不重复,无遗漏, 但应注意两个特殊的子集:∅和本身.点评:写子集,真子集要按一定顺序来写.①一个集合里有n 个元素,那么它有2n 个子集;②一个集合里有n 个元素,那么它有2n -1个真子集;③一个集合里有n 个元素,那么它有2n -2个非空真子集.2、判断元素与集合之间、集合与集合之间的关系例2:以下各组是什么关系,用适当的符号表示出来.(1)a 与{a} 0 与 ∅(2)∅与{20,35,∅} (3)S={-2,-1,1,2},A={-1,1},B={-2,2};(4)S=R ,A={x|x ≤0,x ∈R},B={x|x>0 ,x ∈R };(5)S={x|x 为地球人 },A={x|x 为中国人},B={x|x 为外国人 }点评:① 判断两个集合的包含关系,主要是根据集合的子集,真子集的概念,看两个集合里的元素的关系,是包含,真包含,相等.②元素与集合之间用_______________集合与集合之间用_______________3、运用子集的性质例3:设集合A={x|x 2+4x=0,x ∈R},B={x|x 2+2(a+1)x+a 2-1=0,x ∈R},若B ⊆A ,数a 的取值围.分析:首先要弄清集合A 中含有哪些元素,在由B ⊆A ,可知,集合B 按元素的多少分类讨论即可.点评: B=∅易被忽视,要提防这一点.4、补集的求法例4:①方程组210360x x +>⎧⎨-≤⎩的解集为A , U=R ,试求A 及u C A .②设全集U=R ,A={x|x>1},B={x|x+a<0},B 是RC A 的真子集,数a 的取值围.【解】① A={x|122x -<≤}, u C A ={x|x ≤12-或x>2} ② B={x|x+a<0}={x|x<-a} ,R C A ={x|x ≤1}∵B 是R C A 的真子集如图所示:x1-a ∴ -a ≤ 1即a ≥-1点评:求集合的补集时通常借助于数轴,比较形象,直观.三、巩固练习1.判断下列表示是否正确:(1) a ⊆{a} (2) {a}∈{a ,b}(3) {a ,b} ⊆{b ,a}(4) {-1,1} {-1,0,1} (5) ∅ {-1,1}2.指出下列各组中集合A 与B 之间的关系.(1) A={-1,1},B=Z ;(2)A={1,3,5,15},B={x|x 是15的正约数};(3) A = N*,B=N(4) A ={x|x=1+a 2,a ∈N*}B={x|x=a 2-4a+5,a ∈N*}3.(1)已知{1,2 }⊆M ⊆{1,2,3,4,5},则这样的集合M 有多少个?(2)已知M={1,2,3,4,5,6, 7,8,9},集合P 满足:P ⊆M ,且若P α∈,则10-α∈P ,则这样的集合P 有多少个?4.以下各组是什么关系,用适当的符号表来.(1) ∅与{0} (2) {-1,1}与{1,-1}(3) {(a,b)} 与{(b,a)}(4) ∅与{0,1,∅}5.若U=Z ,A={x|x=2k ,k ∈Z},B={x|x=2k+1, k ∈Z},则 U C A ___________U C B ___________:6.设全集是数集U={2,3,a 2+2a-3},已知A={b ,2},U C A ={5},数a ,b 的值. ≠ ⊂ ⊂ ≠7.已知集合A={x|x=a+16,a∈Z},B={x|x=123b-,b∈Z},C={x|x=126c+,c∈Z},试判断A、B、C满足的关系8.已知集合A={x|x2-1=0 },B={x|x2-2ax+b=0} B ⊆ A,求a,b的取值围.1.3 交集、并集一、知识梳理1.交集的定义:一般地,______________________________________________,称为A与B交集(intersection set),记作____________读作“___________”.交集的定义用符号语言表示为:__________________________________交集的定义用图形语言表示为:_________________________________注意:(1)交集(A∩B)实质上是A与B的公共元素所组成的集合.(2)当集合A与B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.交集的常用性质:(1) A∩A = A;(2) A∩∅=∅;(3) A∩B = B∩A;(4)(A∩B)∩C =A∩(B∩C);(5) A∩B ⊆A, A∩B⊆B3.集合的交集与子集:思考:A∩B=A,可能成立吗?【答】_______________________________________________结论:A∩B = A⇔ A⊆B4.区间的表示法:设a,b是两个实数,且a<b,我们规定:[a, b] = _____________________(a, b)= _____________________[a ,b)= _____________________(a ,b] = ______________________(a,+∞)=______________________(-∞,b)=______________________(-∞,+∞)=____________________其中 [a, b],(a, b)分别叫闭区间、开区间;[a ,b),(a ,b] 叫半开半闭区间;a,b叫做相应区间的端点.注意:(1)区间是数轴上某一线段或数轴上的点所对应的实数的取值集合又一种符号语言.(2)区间符号的两个字母或数之间用“,”号隔开.(3)∞读作无穷大,它是一个符号,不是一个数.5.并集的定义:一般地,_________________________________________________,称为集合A与集合B 的并集(union set) 记作__________读作“___________”.交集的定义用符号语言表示为:__________________________________交集的定义用图形语言表示为:_________________________________注意:并集(A∪B)实质上是A与B的所有元素所组成的集合,但是公共元素在同一个集合中要注意元素的互异性.6.并集的常用性质:(1) A∪A = A;(2) A∪∅= A;(3) A∪B = B∪A;(4)(A∪B)∪C =A∪(B∪C);(5) A⊆A∪B, B⊆A∪B7.集合的并集与子集:思考:A∪B=A,可能成立吗?A∪UC A是什么集合?【答】________________________结论:A∪B = B⇔A⊆B二、例题讲解1、求集合的交、并、补集例1.(1)设A={-1,0,1},B={0,1,2,3},求A∩B;(2)设A={x|x>0},B={x|x≤1},求A∩B;(3)设A={x|x=3k,k∈Z},B={y|y=3k+1 k∈Z },C={z|z=3k+2,k∈Z},D={x|x=6k+1,k∈Z},求A∩B;A∩C;C∩B;D∩B;点评:不等式的集合求交集时,运用数轴比较直观,形象.例2:已知数集A={a2,a+1,-3},数集B={a-3,a-2,a2+1},若A∩B={-3},求a的值.点评:在集合的运算中,求有关字母的值时,要注意分类讨论及验证集合的特性.例3:(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∩B;(2)设集合A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-x2+2x+34,x∈R},求A∩B;分析:先求出两个集合的元素,或者集合中元素的围,再进行交集运算.特别注意(1)、(2)两题的区别,这是同学们容易忽视的地方.点评:求集合的交集时,注意集合的实质,是点集还时数集.是数集求元素的公共部分,是点集的求方程组的解所组成的集合.变式训练:1、根据下面给出的A 、B,求A∪B①A={-1,0,1},B={0,1,2,3};②A={y|y=x2-2x},B={x||x|≤3};③A={梯形},B={平行四边形}.2.已知全集U=R,A={x|-4≤x<2},B=(-1,3),P={x|x≤0,或x≥52 },求:①(A∪B)∩P ②()UC B∪P③ (A∩B)∪()UC P.点评:求不等式表示的数集的并集时,运用数轴比较直观,能简化思维过程3、已知集合A={y|y=x-1,x∈R},B={(x,y)|y=x2-1,x∈R},C={x|y=x+1,y≥3},求()A C B.分析:首先弄清楚A,B,C三个集合的元素究竟是什么?然后再求出集合的有关运算.点评:本题容易出现的错误是不考虑各集合的代表元,而解方程组.突破方法是:进行集合运算时,应分析集合的元素是数,还是点,或其它.2、运用并集的性质解题例4:已知集合A={x|x2-1=0 },B={x|x2-2ax+b=0},A∪B=A,求a,b的值或a,b所满足的条件.分析:由于A∪B=A,可知:B ⊆ A,而A={1,-1},从而顺利地求出实数a,b满足的值或围.点评:利用性质:A∪B=A⇔B ⊆ A是解题的关键,提防掉进空集这一陷阱之中.变式训练:1.若集合P={1,2,4,m},Q={2,m2},满足P∪Q={1,2,4,m},数m的值组成的集合.2. 已知集合A={x|x2-4x+3=0},B={x|x2-ax-1=0},C={x|x2-mx+1=0},且A∪B=AA∩C=C,求a,m的值或取围.例5:若A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},(1)若A∪B=A∩B,求a的值;(2)∅ A∩B,A∩C=∅,求a的值.⊂≠总结:解决本题的关键是利用重要结论:A∪B=A∩B⇒ A=B3、运用交集的性质解题例6:已知集合A={2,5},B={x|x2+px+q=0,x∈R}(1)若B={5},求p,q的值.(2)若A∩B= B ,数p,q满足的条件.分析:(1)由B={5},知:方程x2+px+q=0有两个相等,再用一元二次方程的根与系数的关系容易求p,q的值.(2)由A∩B= B可知:B ⊆ A,而A={2,5}从而顺利地求出实数p,q满足的条件.点评:利用性质:A ∩B = A ⇔ A ⊆B 是解题的关键,提防掉进空集这一陷阱之中.变式训练:1.已知集合A={x|x 2+x-6=0},B={x|mx+1=0},若A ∩B =B ,数m 所构成的集合M .2.已知集合M={x|x ≤-1},N={x|x>a-2},若M ∩N ≠∅,则a 满足的条件是什么?4、借助Venn 图解决集合的运算问题例7:已知全集U={不大于20的质数},M,N 是U 的两个子集,且满足M ∩(U C N )={3,5}, ()U C M N ={7,19},()()U U C M C N ={2,17},求M ,N 的值.分析:用Venn 图表示集合M ,N ,U ,将符合条件的元素依次填入即可.5、交集并集性质的应用例8、已知集合A={(x,y)|x 2-y 2-y=4},B={(x,y)|x 2-xy -2y 2=0},C={(x,y)|x -2y=0},D{(x,y)|x+y=0}。

人教A版数学必修一河北省衡水中学高一数学自助餐:1.1.1集合的含义与表示(第二课时).docx

人教A版数学必修一河北省衡水中学高一数学自助餐:1.1.1集合的含义与表示(第二课时).docx

1.M ={面积是1的圆}, N ={面积是1的菱形},以下四个说法中,正确的是 ( )A M 、 N 都是有限集B M 、 N 都是无限集C M 是有限集 ,N 是无限集D M 是无限集,N 是有限集2.下列说法正确的是 ( )A 自然数集是有限集B Φ是{}Φ的素C {}0与Φ表示相同集合D 用描述法来描述一个集合,其表示形式是唯一的。

3.下列四个关系中正确的是 ( )A {}a ∈ΦB {}a a ∉C {}{}b a a ,∈D {}b a a ,∈4.有下列四个说法:①{}0是空集;②若∈a N ,则∉-a N ;③集合{}012|2=+-∈=x x R x A 有两个素;④集合⎭⎬⎫⎩⎨⎧∈∈=N x Q x B 6|是有限集,其中正确的说法个数为( )A.0B.1C. 2D. 35.用列举法表示集合}0)2)(32)(1(|{2=--+∈=x x x Q x A 为________________. 6.用列举法表示不等式组⎩⎨⎧-≥+>+121042x x x 的整数解的集合为__________7.已知集合A =⎭⎬⎫⎩⎨⎧∈-∈N x N x 612|,用列举法表示集A=__________. 8.设x , y , z 都是非零实数,试用列举法将xyz xyz z z y y x x +++可能取的值组成的集合表示出来。

9.已知集合A {}R a x ax x ∈=++=,012|2 (1) 若A 只有一个元素,试求a 的值,并求出这个元素;(2) 若A 是空集,求a 的取值范围;(3)若A 中至多有一个元素,求a 的取值范围。

[参考答案]1 C 2 B 3 D 4A 5.⎭⎬⎫⎩⎨⎧-32,1 6.{}2,1,0,1-7.{}5,4,3,2,0 提示:N x N x ∈∈-,612Θ,由12,6,4,3,2,16=-x ,得0,2,3,4,5=x 。

8.解: 当x , y , z 都是正数时,原式=4;当x , y , z 中有且仅有两个是正数时,原式=0;当x , y , z 中有且仅有一个是正数时,原式=0;当x , y , z 都是负数时,原式=4-。

人教A版数学必修一河北省衡水中学高一数学自助餐:1.1.1集合的含义与表示(一).docx

人教A版数学必修一河北省衡水中学高一数学自助餐:1.1.1集合的含义与表示(一).docx

1.下列语句是否能够成一个集合?(1)你所在的班,体重超过75kg 的学生的全体;(2)大于5的自然数的全体;(3)质数的全体;(4)与1接近的实数的全体。

2. 用符号“∈”,“∉”填空-3 N ,3.14 Q ,31 Z , 0 N ,21- R 3.下面四个说法中正确的个数是 ( )①集合N 中最小的数为1;②若N a N a ∉-∉则,;③若a ∈N ,b ∈N ,则a+b 的最小值为2;④所有小的正数组成一个集合。

A 0B 1C 2D 34.下列各组对象可构成一个集合的是 ( )A .与10非常接近的数B .我校学生中的女生C .中国漂亮的工艺品D .本班视力差的女生5.下面有四个命题:①集合N 中最小的元素是1;②0是自然数:③{}3,2,1是不大于3的自然数组成的集合;④∈a N,∈b N,则2≥+b a 。

其中正确命题的个数是 ( )A 0B 1C 2D 36.集合}12{的实数且小于大于-=M ,则下列关系式正确的为( ) A M ∈5 B M ∉0C M ∈1D M ∈-2π7.在“①难解的题目;②方程012=-x 在实数集内的解;③直角坐标平面内第四象限的一些点;④很多多项式”中,能够组成集合的是 ( )A ②B ①③C ②④D ①②④ 8.集合M (){}R y R x xy y x ∈∈≥=,,0|,是 指 ( )A 第一象限内的点集B 第三象限内的点集C 在第一、第三象限内的点集D 不在第二、第四象限内的点集9.下列各题中的M与P表示同一集合的是_______①M={(1,-3)},P={(-3,1)}②M={1,-3},P={-3,1}答案:1. (1)(2)(3)能构成集合,(4)不能构成集合2.∉∈∉∈∈3—8 :A B B D A D 9.②高中生数学成绩分化的原因与对策数学作为衡量一个人能力的重要学科,从小学到高中绝大多数同学对它情有独钟。

高一是数学学习的一个关键时期,许多小学、初中数学学科成绩的佼佼者,进入高中阶段,第一个跟斗就栽在数学上。

河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1

河北省衡水中学高中数学 1.1.1集合的含义与表示(一)学案 新人教A版必修1

一、学习要求:了解集合的含义,体会元素与集合的“属于”关系。

二、自学导引:1.集合的含义: 一般的,我们把研究 统称为 ;把叫做集合(简称集)2.集合的相等关系:只要构成两个集合的元素是一样的,我们就称这两个集合是 相等的。

3.如果a 是集合A 的元素,就说a 集合A,记作:如果a 不是集合A 的元素,就说a 集合A,记作:4.常用数集及表示符号名称 自然数集 正整数集 整数集有理数集 实数集 符号5.注意:自然数集与非负整数集是相同的,即自然数集包括数0;集合还可以用文氏图来表示。

集合的概念常用数集 属于(a A ∈)集 元素与集合的关系合 不属于(a A ∉)确定性集合种元素的性质 互异性无序性6.集合元素的三个性质:(1)确定性:设A 是一个给定的集合,x 是某一具体对象。

则x 或者是A 的元素,x 或者不是A 的元素,两种情况必有一种且只有一种情况成立。

(2)互异性:“集合的元素必须是互异的”,就是说“对于一个给定集合,它的任何两个元素都是不同的”。

如方程012=-x 的解构成的集合为{},1而不能记为{}1,1 (3)无序性:集合与它的元素的排列顺序无关,如集合{}c b a ,,与{}a c b ,,是同一集合。

三、典例剖析例1.考察下列每组对象能否构成一个集合:(1) 著名的数学家;(2) 某校2007年在校的所有高个子同学;(3) 不超过20的非负数;(4) 方程092=-x在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体。

变式训练1.下列各组对象:①接近于0的数的全体;②某一班级内视力较好的同学;③平面内到点O 的距离等于2的点的全体;④所有锐角三角形;⑤太阳系内的所有行星。

其中能构成集合的组数是()A. 2组B. 3组C. 4组D. 5组例2.(1)已知a∈N,b∈N,(a+b)∈N吗?(2)已知a∈N,b∈Z,(a+b)∈Z吗?变式训练:2.已知a∈Q,b∈R,试判断元素a+b与集合Q,R的关系。

01 衡水中学高一数学预习知识点——集合的定义

01 衡水中学高一数学预习知识点——集合的定义

衡水中学高一数学预习知识点——集合的定义一、知识点讲解(一)集合的相关含义1.集合的概念一般地,研究对象统称为元素,一些元素组成的总体叫做集合,也简称集。

2.集合中元素的特性:确定性、互异性、无序性。

3.元素与集合的关系(1)如果a是集合A的元素,就说a属于A,记作a∈A.(2)如果a不是集合A的元素,就说a不属于A,记作a∈A.4.常用数集及其记法5.集合的分类(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合∈.(二)集合的表示方法1.列举法:把集合中的元素一一列出来,写在大括号内。

2.描述法:把集合中的元素的公共属性描述出来,写在大括号内。

3.图示法(1)文氏图:用一条封闭的曲线的内部来来表示的一个集合。

(2)数轴法二、经典例题1.下列所给对象能构成集合的是()(A)某校高一(5)班数学成绩非常突出的男生能组成一个集合(B)《数学1(必修)》课本中所有的难题能组成一个集合(C)性格开朗的女生可以组成一个集合(D)圆心为定点,半径为1的圆内的点能组成一个集合【答案】D2.集合{1,3,5,7,9}用描述法表示应是()(A){x|x是不大于9的非负奇数}(B){x|x≤9,x∈N}(C){x|1≤x≤9,x∈N}(D){x|0≤x≤9,x∈Z}【答案】A3.已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},试用列举法表示集合A=.解析:因为集合A={(x,y)|x2=y+1,|x|<2,x∈Z},所以A={(-1,0),(0,-1),(1,0)}.【答案】{(-1,0),(0,-1),(1,0)}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.设集合 U=R,A={x|x2-x-2>0},则∁UA=( A.(-∞,-1)∪(2,+∞) B.[-1,2] C.(-∞,-1]∪[2,+∞) D.(-1,2)
)
解析:因为 A={x|x2-x-2>0}={x|x<-1 或 x>2},所以∁UA= {x|-1≤x≤2},故选 B. 答案:B
5.已知集合 A={0,1,x2-5x},若-4∈A,则实数 x 的值为 ________.
3.集合的基本运算 集合的并集 符号 A∪B 表示 图形 表示
集合的交集 A∩B
集合的补集 若全集为 U,则集 合 A 的补集为∁UA
21x∈A 且 x∈B} {x|○ 22x∈U 且 x∉A} 意义 {x|⑳x∈A 或 x∈B} {x|○
二、必明 5●个易误点 1.认清集合元素的属性(是点集、数集或其他情形)和化简集合 是正确求解的两个先决条件. 2.要注意区分元素与集合的从属关系,以及集合与集合的包 含关系. 3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它 本身. 4.运用数轴图示法易忽视端点是实心还是空心. 5.在解决含参数的集合问题时,要注意检验集合元素的互异 性,否则很可能会因为不满足互异性而导致解题错误.
2.集合间的基本关系 (1)集合相等:若集合 A 与集合 B 中的所有元素⑫都相同,则 称 A 与 B 相等. (2)子集:若集合 A 中⑬每一个元素均为集合 B 中的元素,则 称 A 是 B 的子集,记作 A⊆B 或 B⊇A,⑭空集是任何集合的子集. (3)真子集:若集合 A 中任意一个元素均为集合 B 中的元素, 且集合 B 中⑮至少有一个元素不是集合 A 的元素,则称 A 是 B 的 真子集,记作 A B 或 B A. (4)空集是任何集合的子集,是任何⑯非空集合的真子集. (5)含有 n 个元素的集合的子集个数为⑰2n,真子集个数为⑱2n -1,非空真子集个数为⑲2n-2.
2 2-a <1, 解析:由题意得 2 3-a ≥1
1<a<3, 即 a≤2或a≥4,
所以 1<a≤2.
答案:(1,2]
悟· 技法 与集合中的元素有关问题的求解策略 (1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件. (3)根据限制条件列式求参数的值或确定集合中元素的个数, 但 要注意检验集合是否满足元素的互异性.
解析:∵-4∈A,∴x2-5x=-4, ∴x=1 或 x=4. 答案:1 或 4
6.已知集合 M={1,m},N={n,log2n},若 M=N,则(m- n)2 019=________.
解析:由 M=N 知 n=1, n=m, 或 log2n=m log2n=1,
[小题热身] 1.已知集合 P={x|x<2},Q={x|x2<2},则( A.P⊆Q B.P⊇Q C.P析:解 x2<2,得- 2<x< 2,∴P⊇Q. 答案:B
2.(2018· 广东省五校高三第一次考试)已知集合 A={x|2x2-5x -3≤0},B={x∈Z|x≤2},A∩B 中的元素个数为( ) A.2 B.3 C.4 D.5 1 2 解析: A={x|2x -5x-3≤0}=x|-2≤x≤3, B={x∈Z|x≤2}, A∩B={0,1,2},故选 B. 答案:B
B.0 D .± 1
b 解析:由已知得 a≠0,则a=0, 所以 b=0,于是 a2=1,即 a=1 或 a=-1,又根据集合中元 素的互异性可知 a=1 应舍去, 因此 a=-1, 故 a2 017+b2 017=(-1)2 017 +02 017=-1. 答案:C
3 . (2018· 太原第二次质检预测 ) 设集合 A= {x|(x- a)2<1},且 2∈A,3∉A,则实数 a 的取值范围为________.
[知识重温] 一、必记 3●个知识点 1.元素与集合 (1)集合中元素的特性:①确定性、②互异性、无序性. (2)元素与集合的关系:若 a 属于 A,记作③a∈A,若 b 不属于 A,记作④b∉A. (3)集合的表示方法:⑤列举法、⑥描述法、图示法. (4)常见数集及其符号表示 数集 自然数集 正整数集 整数集 有理数集 实数集 符号 ⑦N ⑧N*(或 N+) ⑨Z ⑩Q ⑪R
3.(2017· 天津卷)设集合 A={1,2,6},B={2,4},C={1,2,3,4}, 则(A∪B)∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,6} D.{1,2,3,4,6}
解析:由题意知 A∪B={1,2,4,6},∴(A∪B)∩C={1,2,4},故 选 B. 答案:B
解析: 集合 A 表示以原点 O 为圆心, 半径为 1 的圆上的所有点 的集合, 集合 B 表示直线 y=x 上的所有点的集合. 结合图形可知,直线与圆有两个交点, 所以 A∩B 中元素的个数为 2. 故选 B. 答案:B
2.已知 为( ) A .1 C.-1
b a,b∈R,若a,a,1={a2,a+b,0},则 a2 017+b2 017
考向二
集合间的基本关系[互动讲练型]
[例 1] (1)(2018· 河南南阳、 信阳等六市一模)已知集合 A={(x, y)|y- x=0},B={(x,y)|x2+y2=1},C=A∩B,则 C 的子集的个 数是( C ) A.0 B.1 C.2 D.4 (2)已知集合 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若 -∞,3] B⊆A,则实数 m 的取值范围为( ________ .
m=0, ∴ n=1 m=2, 或 n=2.
答案:-1 或 0
考向一
集合的基本概念[自主练透型]
1.(2017· 新课标全国卷Ⅲ)已知集合 A={(x,y)│x2+y2=1}, B={(x,y)│y=x},则 A∩B 中元素的个数为( ) A .3 B.2 C.1 D .0
相关文档
最新文档