常州2018届高三第一次模拟数学及答案解析
江苏省苏北四市2018届高三第一次模拟考试
江苏省苏北四市2018 届高三第一次模拟考试数学参考答案及评分标准1. {-1,0,1}2. 13. (0,1]4. 135. 7506.78549.410.11.11 ..12. [ -1,+1] 13 . [-2,2]14. -15 . (1) 在△ABC中 ,由 cos A= ,得A为锐角 ,所以 sin A=-= ,所以 tan A== ,(2 分)所以 tan B=tan[( B-A)+A]= --(4 分) -==3.(6 分) -(2)在△ABC 中,由tan B=3,得 sin B=,cos B=,(8 分)所以 sin C=sin( A+B)=sin A cos B+ cos A sin B=.(10 分)由正弦定理=,得 b===15,(12 分)所以△ABC 的面积为 S= bc sin A= ×15×13×=78 .(14 分)16 . (1) 如图 , 取AB的中点P, 连接PM,PB1.因为 M,P 分别是 AB,AC 的中点,所以 PM∥BC,且 PM= BC.在直三棱柱 ABC- A1B1C1中,BC∥B1C1,BC=B 1C1,又因为N 是 1 1的中点,B C所以 PM∥B1N,且 PM=B1 N,(2 分)所以四边形 PMNB 1是平行四边形,所以∥ 1.(4分 ) MN PB因为 MN?平面 ABB1A1,PB1?平面 ABB1A1,所以 MN∥平面ABB1A1.(6分 )(2)因为三棱柱 ABC-A1B1C1为直三棱柱,所以 BB1⊥平面 A1B1C1,(第 16 题)又因为 BB1?平面 ABB1A1,所以平面 ABB1A1⊥平面 A1 B1C1 .(8 分)因为∠ABC=90°,所以 B1C1⊥B1A1,平面11∩平面1111A1, 1 1?平面111,ABB A ABC=B B C A B C所以 B1 C1⊥平面ABB1 A1 .(10 分)又因为 A1B?平面 ABB1A1,所以 B1 C1⊥A1B,即 NB 1⊥A1 B.如图 ,连接AB1,因为在平行四边形 ABB1 A1中,AB=AA1,所以 AB1⊥A1 B.又因为 NB 1∩AB1=B 1,且 AB1,NB 1?平面 AB1 N,所以 1 ⊥平面 1 ,(12 分)A B AB N因为 AN?平面 AB1N,所以 A1 B⊥AN.(14 分)(第 17题)17 . (1)如图 ,设AO交BC于点D,过点O作OE⊥AB,垂足为 E.在△AOE 中,AE=10cosθ,AB=2 AE=20cosθ,(2 分)在△ABD 中,BD=AB ·sinθ=20cosθ·sinθ,(4 分)所以S=· 2π·20sin ·cos ·20cos400π·sin cos 2θ.(6 分)θ θθ=θ(2)要使侧面积最大 ,由 (1)得 ,S=θθ=θ-θ.(8 分)400π sin cos 2400π(sin sin 3)设 f(x)=x-x3(0 <x<1),则 f' (x)=1 -3 x2,由 f' (x)=1-3x2=0,得 x= .当 x∈时,f'(x)>0;当 x∈时,f'(x)<0,所以 f(x)在区间上单调递增,在区间上单调递减,所以 f(x)在 x=时取得极大值,也是最大值,所以当 sin θ=时 ,侧面积S取得最大值.此时等腰三角形的腰长AB=20cos20 -=20 -=.θ=答: 侧面积S取得最大值时 ,等腰三角形的腰AB 的长度为cm .18 . (1) 设椭圆的方程为+ =1( a>b>0),由题意知解得所以椭圆的方程为+=1 .(2) 若AF=FC,由椭圆的对称性 , 知A,所以B--,此时直线BF的方程为 34 3 0.x- y-=--得 7 x2-6 x-13 =0,由解得 x=( x=-1 舍去 ),- -故== .-(3)设 A(x0,y0),则 B(-x0,-y0),直线 AF 的方程为 y=-(x-1),代入椭圆的方程+ =1,2-8-15+24 x =0 .得(15 -6 x ) x00因为0 是该方程的一个解,所以C 点的横坐标C-.x=x x =-又 C( x C,y C)在直线 y=-(x-1) 上 ,(11 分)(14 分)(2 分)(4 分)(6 分)(8 分)(10 分)(12 分)-所以 y C= -( x C-1) = -.同理 ,点D的坐标为,(14分 )--所以2=-= 1 ,k-= k--即存在 m= ,使得 k2 = k1 .(16分 ) 19 . (1) 函数h( x)的定义域为 (0,+∞).当 a= 1时, h(x)=f(x)-g(x)=x2 +x-ln x+2,所以 ()2 1-,(2 分) h' x = x+ - =所以当 0 <x<时 ,h'(x)<0;当 x> 时,h'(x)>0,所以函数h(x)在区间上单调递减,在区间上单调递增,所以当x=时,函数()取得极小值ln2, 无极大值.(4 分)h x+(2)设函数 f(x)上点( x1,f(x1))与函数 g(x)上点(x2,g(x2))处切线相同, 则(1)(2)-,f' x=g' x=-所以 2x1+a==--(6 分) -,所以 x1=-,代入-=11(ln2-a), +ax +- x得 - +ln x2+ -a-2=0 .(*)(8 分)设 F (x)= - +ln x+ -a- 2,则 F'( x)=- + + =- .不妨设 2+ax0-1=0( x0>0),则当 0<x<x0时 ,F'(x)<0;当 x>x 0时,F'(x) >0,所以 F(x)在区间(0,x0)上单调递减,在区间(x0,+∞)上单调递增,(10 分)代入 a= - = -2x 0 ,得 F (x )min =F ( x 0)= +2x 0 - +ln x 0-2 .设 G (x )=x 2 +2 x- +ln x-2, 则 G'(x ) =2 x+2+ + >0 对 x>0 恒成立 ,所以 ( )在区间 (0,)上单调递增 . 又G (1)=0,G x+∞所以当 0 <x ≤1 时 , G ( x )≤0,即当 0 0≤1 时, ( 0)≤0 .(12 分)<xF x又当 x=e a+2 时,F (x )= -+lne a+2 + -a-2 =- ≥0.(14 分)因此当 0 <x 0≤1 时,函数 F (x )必有零点 ,即当 0 <x 0≤1 时 ,必存在 x 2 使得 ( *)成立 ,即存在 x 1 ,x 2 使得函数 f (x )上点 (x 1 ,f (x 1))与函数 g (x )上点 (x 2, g ( x 2)) 处切线相同 .又由 2 x , 得y'=- 2 0,y= -- <所以 y= -2 x 在(0,1) 上单调递减 ,因此 a= -= -2x 0 ∈[-1,+∞),所以实数 a 的取值范围是 [-1,+∞).(16 分)20 .(1) 若 0, 4,则 n 4 n- 1( ≥2),λ=μ= S = a n所以 a n+1=S n+1 -S n =4( a n -a n- 1),即 a n+1-2a n =2(a n -2a n-1 ), 所以 b =2 b 1.(2 分)n n-又由12, 1 24 1,a = a +a = a得 a 2=3 a 1=6,a 2 -2 a 1 =2 ≠0, 即 b n ≠0,所以2,故数列 {n }是等比数列.(4 分)=b-(2) 若{a n }是等比数列 , 设其公比为 q (q ≠0),当 n= 2 时, S 2 =2λa 2+μa 1,即 a 1 +a 2=2λa 2+μa 1,得1+q=2λ q+μ; ①22当 n= 3 时, S 3 =3λa 3+μa 2,即 a 1 +a 2+a 3 =3 λa 3+μa 2,得 1+q+q =3λq +μq ; ②当 n= 4时, 4 4 43,即 1 2 3 4 4 43 ,得 1 23 4 32③S =λa +μaa +a +a +a= λa +μa +q+q +q = λq +μq .2②-①×q ,得 1 =λq ,③-②×q ,得 13 ,=λq解得 q=1,λ=1.代入① 式 ,得 0(8 分)μ=.此时 S n =na n (n ≥2),所以n1 2,数列 { n }是公比为 1的等比数列 ,a=a =a故 λ=1,μ=0.(10 分)(3) 若 a 2=3,由 a 1+a 2+2λa 2+μa 1, 得 5 =6λ+2μ,又,解得 , 1 (12 分)λ +μ= λ=μ=.由 a 1=2,a 2 =3,λ=,μ=1,代入 S n =λ na+μa n-1 ,得 a 3=4, 所以 a 1,a 2 ,a 3 成等差数列 .由 S n = a n +a n-1 ,得 S n+1 = a n+1 +a n ,两式相减 ,得 an+1 = an+1 - a +a -a n- 1 ,n n即( n-1)a n+1 -( n-2)a n -2a n-1 =0, 所以 na n+2 -(n-1) a n+1 -2a n =0,相减 ,得na n+ 2 2( 1) a n+1 ( 2) n 2 n 2n-10,- n- + n- a - a + a =所以 n (a n+2-2 a n+ 1 +a n )+2( a n+1-2a n +a n- 1) =0,- -所以 (a n+2-2a n+1 +a n ) =- (a n+1-2a n +a n-1 )=(a n -2 a n-1+a n-2 )= =·(a 3-2a 2+a 1 ).(14 分 )--因为1 2 2+a 3 0,所以an+ 2 2 n+1n0,a - a = - a+a =故数列 { a } 是等差数列 .(16 分 )n江苏省苏北四市 2018 届高三第一次模拟考试数学附加题参考答案及评分标准21 . A. 连接 AD. 因为 AB 为圆的直径 ,所以 AD ⊥BD , 又 EF ⊥AB ,则 A ,D ,E ,F 四点共圆 ,所以· ·(5 分)BD BE=BA BF.又△∽△,ABCAEF所以 = ,即 AB ·AF=AE ·AC ,所以· · · ··( ) 2. (10 分 )BE BD-AE AC=BA BF-AB AF=AB BF-AF=ABB. 因为 M=BA= =-(5 分 )- ,-所以 M - 1=.(10 分)- -C. 把直线方程 l :化成普通方程为 x+y= 2.(3 分)-2ρcos θ-2 ρsin θ=0 2 2-2 y=0,将圆 C :ρ+2 化成普通方程为 x +2x+y即( x+1) 2+( y-1) 2=2.(6 分)圆心 C 到直线 l 的距离为 d==,所以直线 l 与圆 C 相切 . (10 分 )D.因为 [(1 +a)+(1+b)+(1+c )+(1 +d)]·≥=(a+b+c+d )2=1,(5 分)又(1 +a)+(1 +b) +(1 +c)+(1 +d)=5,所以+++≥ .(10 分) 22 . (1)因为 AB=1,AA1=2,则 F(0,0,0), A,C -,B,E,所以=(-1,0,0),= -. (2分)记直线 AC 和 BE 所成的角为α,则 cos cos<,>|α =|=-=, -所以直线 AC 和 BE 所成角的余弦值为.(4 分) (2)设平面 BFC1的法向量为 m=(x1,y1, z1),因为=,=-,则-取 x1=4,得 m=(4,0,1) .(6 分)设平面BCC 1 的法向量为(2, 2, 2 ),n= x y z因为=,=(0,0,2),则取 x2=,得n=(,-1,0) .(8 分) -所以 cos <m, n>=-=.根据图形可知二面角 F -BC 1-C 为锐二面角,所以二面角-1-的余弦值为.(10 分)F BC C23 . (1) 因为抛物线 C 的方程为 y2 =4x,所以 F 的坐标为(1,0),设 M(m, n),因为圆 M 与 x 轴、直线 l 都相切,l 平行于 x 轴,所以圆M 的半径为|n|,点(2,2),P n n则直线 PF 的方程为= --,即 2 n(x-1) -y(n2-1) =0,(2 分)所以---=|n|,又,≠0,-m n所以22121,即n2-m+10,|m-n - |=n +=所以 E 的方程为 y2=x- 1( y≠0).(4 分) (2) 设Q(t2+1, t), A(0,y1 ),B(0,y2),由(1) 知, 点Q处的切线l1的斜率存在 ,由对称性不妨设t>0,由 y'=,所以k AQ=-=-- ,,k BQ==-2--所以1= -, 2233,(6 分)y y =t +t所以 AB=-=2t3+ t+ (t>0) .(8 分)令 f(t)=2t3+ t+ ,t>0,则 f' (t)=6 t2 + -=-,由 f' (t)>0,得 t>-;由 f' (t)<0,得0<t<所以 f(t)在区间-,-上单调递减 ,在-上单调递增 ,所以当-时 , ()取得极小值也是最小值,即AB 取得最小值 ,t= f t此时 s=t2 +1=.(10 分)。
江苏省常州市数学高三理数模拟试卷(一)
江苏省常州市数学高三理数模拟试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·全国Ⅰ卷文) 已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=()A . {0,2}B . {1,2}C . {0}D . {-2,-1,0,1,2}2. (2分) (2016高三上·洛阳期中) 复数的共扼复数是()A . ﹣ + iB . ﹣﹣ iC . ﹣ iD . + i3. (2分)有如下几个结论:①相关指数越大,说明残差平方和越小,模型的拟合效果越好;②回归直线方程:一定过样本点的中心;③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适;④在独立性检验中,若公式中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有()个.A . 1B . 3C . 2D . 44. (2分)若,且,则的值为()A . 1或B . 1C .D .5. (2分) (2017高二下·台州期末) 曲线y=x3﹣6x2+9x﹣2在点(1,2)处的切线方程是()A . x=1B . y=2C . x﹣y+1=0D . x+y﹣3=06. (2分)已知为等比数列,若,且与的等差中项为,则()A . 1B .C .D .7. (2分) (2019高二下·深圳月考) 一个几何体的三视图如图,则该几何体的体积为()A .B .C .D .8. (2分)已知是所在平面内一点,,现将一粒红豆随机撒在内,则红豆落在内的概率是()A .B .C .D .9. (2分) (2018高二上·泰安月考) 若数列的前项分别是,则此数列的一个通项公式为()A .B .C .D .10. (2分) (2017高三上·荆州期末) 已知O,F分别为双曲线E: =1(a>0,b>0)的中心和右焦点,点G,M分别在E的渐近线和右支,FG⊥OG,GM∥x轴,且|OM|=|OF|,则E的离心率为()A .B .C .D .11. (2分) (2018高二下·湛江期中) 设函数,以下结论一定错误的是()A .B . 若,则的取值范围是 .C . 函数在上单调递增D . 函数有零点12. (2分) (2018高二下·抚顺期末) “正弦函数是奇函数,函数是正弦函数,因此函数,是奇函数。
2018届江苏高考数学模拟试卷(1)(含答案)
2018届江苏高考数学模拟试卷(1)数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.已知集合{02},{11}A x x B x x =<<=-<<,则A B U = ▲ .2. 设复数1a +=-i z i(i 是虚数单位,a ∈R ).若z 的虚部为3,则a 的值为 ▲ .3.一组数据5,4,6,5,3,7的方差等于 ▲ .4.右图是一个算法的伪代码,输出结果是 ▲ .5.某校有B A ,两个学生食堂,若甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则此三人不在同一食堂用餐的概率为 ▲ .6. 长方体1111ABCD A B C D -中,111,2,3AB AA AC ===,则它的体积等于 ▲ .7.若双曲线2213x y a -=的焦距等于4,则它的两准线之间的距离等于 ▲ .8. 若函数()22xx af x =+是偶函数,则实数a 等于 ▲ .9. 已知函数f (x )=2sin(ωx +φ)(ω>0).若f (π3)=0,f (π2)=2,则实数ω的最小值为 ▲ .S ←0 a ←1 For I From 1 to 3a ←2×a S ←S +a End For Print S (第4题)10. 如图,在梯形ABCD 中,,2,234,//CD AD AB CD AB ====,,如果 ⋅-=⋅则,3= ▲ .11.椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,若椭圆上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是 ▲ .12.若数列12{}(21)(21)n n n +--的前k 项的和不小于20172018,则k 的最小值为 ▲ .13. 已知24παπ<<,24πβπ<<,且22sin sin sin()cos cos αβαβαβ=+,则tan()αβ+的最大值为▲ .14. 设,0a b >,关于x 的不等式3232x xx xa N Mb ⋅-<<⋅+在区间(0,1)上恒成立,其中M , N 是与x 无关的实数,且M N >,M N -的最小值为1. 则ab的最小值为___▲___.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答. 解答时应写出文字说明、证 明过程或演算步骤.15.如图,在ABC ∆中,已知7,45AC B =∠=o,D 是边AB 上的一点,3,120AD ADC =∠=o . 求:(1)CD 的长; (2)ABC ∆的面积.16.如图,在四棱锥S-ABCD 中,底面ABCD 是平行四边形,E ,F 分别是AB ,SC 的中点. (1)求证:EF ∥平面SAD ; A D CB(2)若SA=AD ,平面SAD ⊥平面SCD ,求证:EF ⊥AB .17.如图,有一椭圆形花坛,O 是其中心,AB 是椭圆的长轴,C 是短轴的一个端点. 现欲铺设灌溉管道,拟在AB 上选两点E ,F ,使OE =OF ,沿CE 、CF 、F A 铺设管道,设θ=∠CFO ,若OA =20m ,OC =10m , (1)求管道长度u 关于角θ的函数;(2)求管道长度u 的最大值.18.在平面直角坐标系xOy 中,已知圆222:C x y r +=和直线:l x a =(其中r 和a 均为常数,且0r a <<),M 为l 上一动点,1A ,2A 为圆C 与x 轴的两个交点,直线1MA ,2MA 与圆C 的另一个交点分别为,P Q .(1)若2r =,M 点的坐标为(4,2),求直线PQ 方程; (2)求证:直线PQ 过定点,并求定点的坐标.19.设R k ∈,函数2()ln 1f x x x kx =+--,求: (1)1=k 时,不等式()1f x >-的解集; (2)函数()x f 的单调递增区间;(3)函数()x f 在定义域内的零点个数.20.设数列{}n a ,{}n b 分别是各项为实数的无穷等差数列和无穷等比数列. (1)已知06,12321=+-=b b b b ,求数列{}n b 的前n 项的和n S ;(2)已知数列{}n a 的公差为d (0)d ≠,且11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+,求数列{}n a ,{}n b 的通项公式(用含n ,d 的式子表达); (3)求所有满足:11n n n na b b a ++=+对一切的*N n ∈成立的数列{}n a ,{}n b .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲(本小题满分10分) 如图,在△ABC 中,90BAC ∠=,延长BA 到D ,使得AD =12AB ,E ,F 分别为BC ,AC 的中点,求证:DF =BE .B .选修4—2:矩阵与变换 (本小题满分10分)已知曲线1C :221x y +=,对它先作矩阵1002A ⎡⎤=⎢⎥⎣⎦对应的变换,再作矩阵010m B ⎡⎤=⎢⎥⎣⎦对应的变换(其中0≠m ),得到曲线2C :2214x y +=,求实数m 的值.C .选修4—4:坐标系与参数方程 (本小题满分10分)已知圆C的参数方程为12cos 2sin x y θθ=+⎧⎪⎨=⎪⎩, , (θ为参数),直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩, , (t 为参数,0 ααπ<<π≠2,且),若圆C 被直线lα的值.D .选修4—5:不等式选讲 (本小题满分10分)对任给的实数a 0a ≠()和b ,不等式()12a b a b a x x ++-⋅-+-≥恒成立,求实数x 的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在直三棱柱ABC -A 1B 1C 1中,A A 1=AB =AC =1,AB ⊥AC ,M ,N 分别是棱CC 1,BC 的 中点,点P 在直线A 1B 1上.(1)求直线PN 与平面ABC 所成的角最大时,线段1A P 的长度;(2)是否存在这样的点P ,使平面PMN 与平面ABC 所成的二面角为6π. 如果存在,试确定点P 的位置;如果不存在,请说明理由.(第21—A 题)BECFDA123.(本小题满分10分)设函数()sin cos n n f θθθ=+,其中n 为常数,n ∈*N , (1)当(0,)2πθ∈时, ()f θ是否存在极值?如果存在,是极大值还是极小值?(2)若sin cos a θθ+=,其中常数a 为区间[内的有理数. 求证:对任意的正整数n ,()f θ为有理数.2018高考数学模拟试卷(1)数学Ⅰ答案一、填空题答案:1. {12}x x -<<2. 5 3.53 4. 14 5. 43 6.4 7. 1 8. 1 9. 3 10.2311. 111(,)(,1)322⋃.解:422111232c a c e e c a>-⎧⇒<<≠⎨≠⎩且,故离心率范围为111(,)(,1)322⋃.12. 10解:因为对任意的正整数n ,都有1212)12)(12(211--=--++n n n n n 1-1, 所以⎭⎬⎫⎩⎨⎧--+)12)(12(21n n n的前k 项和为 1)1)(2(221)1)(2(221)1)(2(221322211--++--+--+k kk12112112112112112113221---++---+---=+k k 12111--=+k 使2018201712111≥--+k ,即2018121≥-+k ,解得10≥k ,因此k 的最小值为10.13. -4解:因为24ππ<<βα,,所以βαβαsin sin cos cos ,,,均不为0.由βαβαβαcos cos )sin(sin sin 22+=,得βαβαβαβαsin cos cos sin tan tan sin sin +=,于是αββαtan 1tan 1tan tan +=,即βαβαβαtan tan tan tan tan tan +=, 也就是βαβα22tan tan tan tan =+,其中βαtan tan ,均大于1. 由βαβαβαtan tan 2tan tan tan tan22⋅≥+=⋅,所以34tan tan ≥βα.令()341tan tan 1-,--∞∈=βαt , βαβαβαβαβαtan tan 1tan tan tan tan 1tan tan )tan(22-=-+=+21-+=tt 4-≤,当且仅当1-=t 时取等号.14.4+解:32()32xxx x a f x b ⋅-=⋅+,则23()6l n2()0(32)xx x a b f x b +'=>⋅+恒成立,所以()f x 在(0,1)上单调递增, 132(0),(1)132a a f f b b --==++,∴()f x 在(0, 1)上的值域为132(,)132a ab b --++,M x f N <<)( 在(0,1)上恒成立,故mi n 321()1321(32)(1)a a ab M N b b b b --+-=-==++++,所以2342a b b =++,所以2344a b b b=++≥.所以min ()4ab=+.二、解答题答案15.解:(1)在ACD ∆中,由余弦定理得2222cos AC AD CD AD CD ADC =+-⋅∠,2227323cos120CD CD =+-⨯⋅o ,解得5CD =.(2)在BCD ∆中,由正弦定理得sin sin BD CD BCD B =∠,5sin 75sin 45BD =o o,解得BD = 所以BDC BD CD ADC CD AD S S S BCD ACD ABC ∠⋅+∠⋅=+=∆∆∆sin 21sin 2111535sin120560222+=⨯⨯+⨯⨯oo 758+=.16. 解(1)取SD 的中点G ,连AG ,FG .在SCD ∆中,因为F ,G 分别是SC ,SD 的中点, 所以FG ∥CD ,12FG CD =. 因为四边形ABCD 是平行四边形,E 是AB 的中点, 所以1122AE AB CD ==,AE ∥CD . 所以FG ∥AE ,FG=AE ,所以四边形AEFG 是平行四边形,所以EF ∥AG .因为AG ⊂平面SAD ,EF ⊄平面SAD ,所以EF ∥平面SAD . (2)由(1)及SA=AD 得,AG SD ⊥.因为平面SAD ⊥平面SCD ,平面SAD ⋂平面SCD =SD ,AG ⊂平面SAD , 所以AG ⊥平面SCD ,又因为SCD CD 面⊂,所以AG ⊥CD . 因为EF ∥AG ,所以EF ⊥CD , 又因为CD AB //,所以EF ⊥AB .17. 解:(1)因为θsin 01=CF ,θtan 10=OF ,θtan 10-20=AF , 所以θθθθsin cos 102020tan 1002sin 02-+=-+=++=AF CF CE u , AE DCS FG其中,552cos 0<<θ. (2)由 θθsin cos 102020-+=u ,得θθ2'sin cos 0201-=u ,令21cos 0'==θ,u , 当 21cos 0<<θ时,0'>u ,函数)(θu 为增函数;当552c o s 21<<θ时,0'<u ,函数)(θu 为减函数. 所以,当21cos =θ,即3πθ=时,310203sin21102020max +=⨯-+=πu (m )所以,管道长度u 的最大值为)(31020+m.18. 解:(1)当2r =,(4,2)M 时,则1(2,0)A -,2(2,0)A ,直线1MA 的方程:320x y -+=,解224320x y x y ⎧+=⎨-+=⎩得86(,)55P .直线2MA 的方程:20x y --=,解22420x y x y ⎧+=⎨--=⎩得(0,2)Q -.所以PQ 方程为220x y --=.(2)由题设得1(,0)A r -,2(,0)A r ,设(,)M a t ,直线1MA 的方程是()ty x r a r =++,与圆C 的交点11(,)P x y , 直线2MA 的方程是()ty x r a r=--,与圆C 的交点22(,)Q x y ,则点11(,)P x y ,22(,)Q x y 在曲线[()()][()()]0a r y t x r a r y t x r +-+---=上, 化简得2222222()2()()0a r y ty ax r t x r ---+-=, ①又11(,)P x y ,22(,)Q x y 在圆C 上,圆C :2220x y r +-=, ②①-2t ×②得22222222222()2()()()0a r y ty ax r t x r t x y r ---+--+-=,化简得2222()2()0a r y t ax r t y ----=.所以直线PQ 方程为2222()2()0a r y t ax r t y ----=.令0y =得2r x a =,所以直线PQ 过定点2(,0)r a.19.解(1)k =1时,不等式()1f x >-即2ln 0x x x +->,设2()l n g x x x x =+-,因为2121()210x x g x x x x-+'=+-=>在定义域(0,)+∞上恒成立,所以g (x )在(0,)+∞上单调递增,又(1)0g =,所以()1f x >-的解集为(1,)+∞.(2)2121()2(0)x kx f x x k x x x-+'=+-=>,由()0f x '≥得2210x kx -+≥……(*). (ⅰ)当280k ∆=-≤,即k -≤≤(*)在R 上恒成立,所以()f x 的单调递增区间为(0,)+∞. (ⅱ)当k >时,280k ∆=->,此时方程2210x kx -+=的相异实根分别为12x x ==,因为12120,2102k x x x x ⎧+=>⎪⎪⎨⎪=>⎪⎩,所以120x x <<,所以()0f x '≥的解集为(0,[)44k k -+∞U , 故函数f (x )的单调递增区间为)+∞和.(ⅲ)当k <-时,同理可得:,0,21,020212121<<∴⎩⎨⎧<=+>=x x kx x x x ()f x 的单调递增区间为(0,)+∞.综上所述,当k >()f x的单调递增区间为)+∞和;当k ≤()f x 的单调递增区间为(0,)+∞. (3)据(2)知①当k ≤时,函数()f x 在定义域(0,)+∞上单调递增,令210,0x kx x ⎧-->⎨>⎩得2k x +>,取}m =,则当x >m 时,2()10f x x kx >-->.设01x <<,21max{1,}x kx k λ--<--=,所以()l n f x x λ<+,当0x e λ-<<时,()0f x <,取m i n {1,}n e λ-=,则当(0,)x n ∈时,()0f x <,又函数()f x 在定义域(0,)+∞上连续不间断,所以函数()f x 在定义域内有且仅有一个零点.②当22>k 时,()f x 在12(0,)(,)x x +∞和上递增,在12(,)x x 上递减, 其中012,0122211=+-=+-kx x kx x则2221111111()ln 1ln (21)1f x x x kx x x x =+--=+-+-211ln 2x x =--.下面先证明ln (0)x x x <>:设x x x h -=ln )(),由1()xh x x-'=>0得01x <<,所以h (x )在(0,1)上递增,在(1,)+∞上递减,01)1()(m a x <-==h x h ,所以()0h x <)0(>x ,即 ln (0)x x x <>.因此,047)21(2)(212111<---=--<x x x x f ,又因为)(x f 在12(,)x x 上递减,所以21()()0f x f x <<,所以()f x 在区间2(0,)x 不存在零点.由①知,当x m >时,()0f x >,()f x 的图象连续不间断,所以()f x 在区间2(,)x +∞上有且仅有一个零点. 综上所述,函数()f x 在定义域内有且仅有一个零点.20.解(1)设{}n b 的公比为q ,则有063=+-q q ,即2(2)(23)0q q q +-+=,所以2q =-,从而1(2)3nn S --=.(2)由11122(1)22n n n a b a b a b n +++⋅⋅⋅+=-+得112211(2)22nn n a b a b a b n --++⋅⋅⋅+=-+,两式两边分别相减得2(2)nn n a b n n =⋅≥.由条件112a b =,所以*2(N )n n n a b n n =⋅∈,因此111(1)2(2)n n n a b n n ---=-⋅≥,两式两边分别相除得12(2)1n n a n q n a n -⋅=≥-,其中q 是数列{}n b 的公比.所以122(1)(3)2n n a n q n a n ---⋅=≥-,上面两式两边分别相除得2221(2)(3)(1)n n n a a n n n a n ---=≥-.所以312234a a a =,即1121(2)3()4a d a a d +=+,解得113a d a d ==-或,若d a 31-=,则04=a ,有024444==⋅b a 矛盾,所以1a d =满足条件,所以2,nn n a dn b d==.(3)设数列{}n a 的公差为d ,{}n b 的公比为q , 当q =1时,112n n b b b ++=,所以112n na b a +=,所以数列{}n a 是等比数列,又数列{}n a 是等差数列,从而数列{}n a 是各项不为0的常数列,因此112b =,经验证,110,2n n a a b =≠=满足条件.当1q ≠时,由11n n n n a b b a ++=+得1111(1)n dn a b q q dn a d-+=++-……(*) ①当d>0时,则1d a n d ->时,10n n a a +>>,所以111dn a dn a d +>+-此时令112dn a dn a d +<+-得12d a n d->,因为112d a d a d d -->所以,当12d a n d ->时,1112dn a dn a d +<<+-. 由(*)知,10,0b q >>. (ⅰ)当q >1时,令11(1)2n b q q-+>得121log (1)qn b q >++,取11122max{,1log }(1)q d a M d b q -=++,则当1n M >时,(*)不成立. (ⅱ)当0<q <1时,令11(1)1n b q q -+<得111log (1)qn b q >++,取12121max{,1log }(1)q d a M d b q -=++,则当2n M >时,(*)不成立. 因此,没有满足条件的数列{}n a ,{}n b .②同理可证:当d <0时,也没有满足条件的数列{}n a ,{}n b .综上所述,所有满足条件的数列{}n a ,{}n b 的通项公式为110,2n n a a b =≠=(*N n ∈).数学Ⅱ(附加题)答案21.【选做题】答案A .选修4—1:几何证明选讲 解:取AB 中点G ,连结GF ,12AD AB =,AD AG ∴=,又90BAC ∠=, 即AC 为DG 的垂直平分线, ∴ DF = FG ………………① ,又E 、F 分别为BC 、AC 中点, 1//2EF AB BG EF BG ==∴ 四边形BEFG 为平行四边形, ∴ FG = BE …………② 由①②得BE =DF .B .选修4—2:矩阵与变换 解:010********m m BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,设P ()00,x y 是曲线1C 上的任一点,它在矩阵BA 变换作用下变成点(),P x y ''',则000020210x my x m y x y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,则002x my y x '=⎧⎨'=⎩,即0012x y y x m'=⎧⎪⎨'=⎪⎩, 又点P 在曲线1C 上,则22214x y m''+=,'p 在曲线2C 上,则14''22=+x y , 故21m =,所以,1m =±.C .选修4—4:坐标系与参数方程 解:圆的直角坐标方程为()(2214x y -+-=,直线的直角坐标方程为()1y k x =-()tan k α=,因为圆C 被直线l,∴=k =,即tan α=, 又0πα≤<,∴α=π3或2π3.D .选修4—5:不等式选讲 解:由题知,aba b a x x ++-≤-+-21恒成立,故|1||2|x x -+-不大于aba b a ++-的最小值 ,∵||||2|||≥|a b a b a b a b a -++++-=,当且仅当()()0≥a b a b +-时取等号, ∴aba b a ++-的最小值等于2.∴x 的范围即为不等式|x -1|+|x -2|≤2的解,解不等式得1522≤≤x .【必做题】答案22. 解:如图,以A 为原点建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1), M (0,1,12),N (12,12,0)设10),1,0,(<<=λλp .则)0,0,(1λ=A ,)1,0,(11λ=+=A ;)1,21,21(--=λ, (1)∵()0,0,1=m 是平面ABC 的一个法向量.=><=∴|,cos |sin m θ45)21(1141)21(|100|22+-=++--+λλ∴当12λ=时,θ取得最大值,此时sin θ=,tan 2θ=即:当12λ=时, θ取得最大值,此时tan 2θ=. 故P A 1的长度为21.(2)=)21,21,21(-,由(1))1,21,21(--=λ,设(),,x y z =n 是平面PMN 的一个法向量.则111022211()022x y z x y z λ⎧-++=⎪⎨⎪-+-=⎩得123223y x z x λλ+⎧=⎪⎨-⎪=⎩令x =3,得y =1+2λ,z=2-2λ, ∴()3,12,22λλ=+-n , ∴|cos ,|<>=m n 4210130λλ++=(*)∵△=100-4⨯4⨯13=-108<0,∴方程(*)无解∴不存在点P 使得平面PMN 与平面ABC 所成的二面角为30º. 23. 解:(1)当(0,)2πθ∈时,设22()sin cos (sin cos )0n n f n θθθθθ--'=->,等价于0cos sin 22>---θθn n .(ⅰ)n =1时,令,>0)('f θ得110sin cos θθ->,解得04πθ<<,所以()f θ在(0,)4π上单调递增,在(,)42ππ上单调递减,所以()f θ存在极大值,无极小值.(ⅱ)n =2时,()f θ=1,()f θ既无极大值,也无极小值. (ⅲ)3n ≥时,令,>0)('f θ得sin cos θθ>,所以42ππθ<<,所以()f θ在(0,)4π上单调递减,在(,)42ππ上单调递增,所以()f θ存在极小值,无极大值.(3)由22sin cos sin cos 1a θθθθ+=⎧⎪⎨+=⎪⎩得:21sin cos 2a θθ-= , 所以sin θ,cos θ是方程22102a x ax --+=的两根, x =,∴()((2nnnnna a f θ+=+=⎝⎭⎝⎭,当k n 2=为偶数时,()()()()()()()()]222222[(2]222222[(2222222244222224244222222kn n n n n kn nn nnnna a C a C a a C a C a a-++-+-+=-++-+-+=--+-+----当12+=k n 为奇数时,()()()()()()()()]2222222[(22222222(222222122442222214244222222kn n n n n n n knn nn nn n nnna C a C a C a C a C a C a a -++-+-+=-++-+-+=--+-+------∵a为[内的有理数,m n C,2n为正整数,∴()fθ为有理数.。
数学参考答案2018.01
…………………10 分
令 f (x) x3 3x2, x (0,3) ,则由 f (x) 3x2 6x 3x(x 2) 0 ,
解得 x 2 .
列表如下:
…………………12 分
x
(0, 2)
2
(2, 3)
f (x)
+
0
-
f (x)
增
极大值
减
所以当 x 2 时, f (x) 取得最大值.
答:当 BE 的长为 2 分米时,折卷成的包装盒的容积最大.
…………………14 分
18.解:(1)由 N ( 3, 3 ),Q( 2 3, 0) ,得直线 NQ 的方程为 y 3 x 3 .
23
2
…………………2 分
令 x 0 ,得点 B 的坐标为 (0, 3) .
所以椭圆的方程为
x2 a2
c2
c2 ( 2c2
2 c)2 5
3, 5
又 0 B ,所以 sin B 1 cos2 B 4 . 5
……………6 分 ……………10 分 ……………12 分
从而 cos(B ) cos B cos sin B sin 3 2 4 2 2 .
4
4
4 5 2 5 2 10
联立
y kx x2 y2 43
3 1
,消去
y
,得
(3
4k
2
)
x2
8
3kx 0 ,解得 xM
8 3k 3 4k2
.
用 2k 代 k
,得 xN
16 3k 3 16k 2
.
又 DN 2NM ,所以 xN 2(xM xN ) ,得 2xM 3xN .
………………12 分 ………………14 分
江苏南京、盐城市2018届高三数学一模试题有答案
江苏南京、盐城市2018届高三数学一模试题(有答案)南京市、盐城市2018届高三年级第一次模拟考试数学试题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:,其中为底面积,为高.一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合,,则▲.2.设复数为虚数单位),若为纯虚数,则的值为▲.3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在(单位:分钟)内的学生人数为▲.4.执行如图所示的伪代码,若,则输出的的值为▲.5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为▲.6.若抛物线的焦点与双曲线的右焦点重合,则实数的值为▲.7.设函数的值域为,若,则实数的取值范围是▲.8.已知锐角满足,则的值为▲.9.若函数在区间上单调递增,则实数的取值范围是▲.10.设为等差数列的前项和,若的前2017项中的奇数项和为2018,则的值为▲.11.设函数是偶函数,当x≥0时,=,若函数有四个不同的零点,则实数m的取值范围是▲.12.在平面直角坐标系中,若直线上存在一点,圆上存在一点,满足,则实数的最小值为▲.13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若四点均位于图中的“晶格点”处,且的位置所图所示,则的最大值为▲.14.若不等式对任意都成立,则实数的最小值为▲.二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)15.(本小题满分14分)如图所示,在直三棱柱中,,点分别是的中点.(1)求证:∥平面;(2)若,求证:.16.(本小题满分14分)在中,角的对边分别为已知.(1)若,求的值;(2)若,求的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长.现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边,相切于点,.(1)当长为1分米时,求折卷成的包装盒的容积;(2)当的长是多少分米时,折卷成的包装盒的容积最大?18.(本小题满分16分)如图,在平面直角坐标系中,椭圆的下顶点为,点是椭圆上异于点的动点,直线分别与轴交于点,且点是线段的中点.当点运动到点处时,点的坐标为.(1)求椭圆的标准方程;(2)设直线交轴于点,当点均在轴右侧,且时,求直线的方程.19.(本小题满分16分)设数列满足,其中,且,为常数.(1)若是等差数列,且公差,求的值;(2)若,且存在,使得对任意的都成立,求的最小值;(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立.求所有满足条件的数列中的最小值.20.(本小题满分16分)设函数,().(1)当时,若函数与的图象在处有相同的切线,求的值;(2)当时,若对任意和任意,总存在不相等的正实数,使得,求的最小值;(3)当时,设函数与的图象交于两点.求证:.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A.(选修4-1:几何证明选讲)如图,已知为⊙的直径,直线与⊙相切于点,垂直于点.若,求切点到直径的距离.B.(选修4-2:矩阵与变换)已知矩阵,求圆在矩阵的变换下所得的曲线方程. C.(选修4-4:坐标系与参数方程)在极坐标系中,直线与曲线()相切,求的值.D.(选修4-5:不等式选讲)已知实数满足,求当取最大值时的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内)22.(本小题满分10分)如图,四棱锥的底面是菱形,与交于点,底面,点为中点,.(1)求直线与所成角的余弦值;(2)求平面与平面所成锐二面角的余弦值.23.(本小题满分10分)已知,.(1)求的值;(2)试猜想的表达式(用一个组合数表示),并证明你的猜想.南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.2.13.12004.15.6.67.8.9.10.403411.12.13.2414.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.证明:(1)因为是直三棱柱,所以,且,又点分别是的中点,所以,且.所以四边形是平行四边形,从而.……………4分又平面,平面,所以∥面.……………6分(2)因为是直三棱柱,所以底面,而侧面,所以侧面底面.又,且是的中点,所以.则由侧面底面,侧面底面,,且底面,得侧面.……………8分又侧面,所以.……………10分又,平面,且,所以平面.……………12分又平面,所以.……………14分16.解:(1)因为,则由正弦定理,得. (2)分又,所以,即.……………4分又是的内角,所以,故.……………6分(2)因为,所以,则由余弦定理,得,得.……………10分从而,……………12分又,所以.从而.……………14分17.解:(1)在图甲中,连接交于点.设,在中,因为,所以,则.从而,即.……………2分故所得柱体的底面积.……………4分又所得柱体的高,所以.答:当长为1分米时,折卷成的包装盒的容积为立方分米.…………………6分(2)设,则,所以所得柱体的底面积.又所得柱体的高,所以,其中.…………………10分令,则由,解得.…………………12分列表如下:+0-增极大值减所以当时,取得最大值.答:当的长为2分米时,折卷成的包装盒的容积最大.…………………14分18.解:(1)由,得直线的方程为. (2)分令,得点的坐标为.所以椭圆的方程为.…………………4分将点的坐标代入,得,解得.所以椭圆的标准方程为.…………………8分(2)方法一:设直线的斜率为,则直线的方程为.在中,令,得,而点是线段的中点,所以.所以直线的斜率.………………10分联立,消去,得,解得.用代,得.………………12分又,所以,得.………………14分故,又,解得.所以直线的方程为.………………16分方法二:设点的坐标分别为.由,得直线的方程为,令,得.同理,得.而点是线段的中点,所以,故.…………………10分又,所以,得,从而,解得.…………………12分将代入到椭圆C的方程中,得.又,所以,即,解得(舍)或.又,所以点的坐标为.……………14分故直线的方程为.…………………16分19.解:(1)由题意,可得,化简得,又,所以.………………4分(2)将代入条件,可得,解得,所以,所以数列是首项为1,公比的等比数列,所以.……6分欲存在,使得,即对任意都成立,则,所以对任意都成立.………………8分令,则,所以当时,;当时,;当时,.所以的最大值为,所以的最小值为.………………10分(3)因为数列不是常数列,所以.①若,则恒成立,从而,,所以,所以,又,所以,可得是常数列.矛盾.所以不合题意.………………12分②若,取(*),满足恒成立.………………14分由,得.则条件式变为.由,知;由,知;由,知.所以,数列(*)适合题意.所以的最小值为.………………16分20.解:(1)由,得,又,所以,.当时,,所以,所以.………………2分因为函数与的图象在处有相同的切线,所以,即,解得.………………4分(2)当时,则,又,设,则题意可转化为方程在上有相异两实根. (6)分即关于的方程在上有相异两实根.所以,得,所以对恒成立.………………8分因为,所以(当且仅当时取等号),又,所以的取值范围是,所以.故的最小值为.………………10分(3)当时,因为函数与的图象交于两点,所以,两式相减,得.………………12分要证明,即证,即证,即证.………………14分令,则,此时即证.令,所以,所以当时,函数单调递增.又,所以,即成立;再令,所以,所以当时,函数单调递减,又,所以,即也成立.综上所述,实数满足.………………16分附加题答案21.(A)解:如图,连接,,因为直线与⊙相切于点,所以,又因为垂直于,所以,所以,①在⊙中,所以,②………………5分由①②得,即,又,,所以,所以,又,所以,即到直径的距离为4.………………10分(B)解:设是圆上任意一点,则,设点在矩阵对应的变换下所得的点为,则,即,解得,………………5分代入,得,即为所求的曲线方程.………………10分(C)解:以极点O为原点,极轴为轴建立平面直角坐标系,由,得,得直线的直角坐标方程为.………………5分曲线,即圆,所以圆心到直线的距离为.因为直线与曲线()相切,所以,即.……………10分(D)解:由柯西不等式,得,即.而,所以,所以,………………5分由,得,所以当且仅当时,.所以当取最大值时的值为.………………10分22.解:(1)因为是菱形,所以.又底面,以为原点,直线分别为轴,轴,轴,建立如图所示空间直角坐标系.则,,,,.所以,,,,.则.故直线与所成角的余弦值为.………5分(2),.设平面的一个法向量为,则,得,令,得,.得平面的一个法向量为.又平面的一个法向量为,所以,,.则.故平面与平面所成锐二面角的余弦值为 (10)分23.解:(1)由条件,①,在①中令,得.………………1分在①中令,得,得.………………2分在①中令,得,得.………………3分(2)猜想=(或=).………………5分欲证猜想成立,只要证等式成立.方法一:当时,等式显然成立,当时,因为,故.故只需证明.即证.而,故即证②.由等式可得,左边的系数为.而右边,所以的系数为.由恒成立可得②成立.综上,成立.………………10分方法二:构造一个组合模型,一个袋中装有个小球,其中n个是编号为1,2,…,n的白球,其余n-1个是编号为1,2,…,n-1的黑球,现从袋中任意摸出n个小球,一方面,由分步计数原理其中含有个黑球(个白球)的n个小球的组合的个数为,,由分类计数原理有从袋中任意摸出n个小球的组合的总数为.另一方面,从袋中个小球中任意摸出n个小球的组合的个数为.故,即②成立.余下同方法一.………………10分方法三:由二项式定理,得③.两边求导,得④.③×④,得⑤.左边的系数为.右边的系数为.由⑤恒成立,可得.故成立.………………10分。
2018江苏常州一模数学及答案解析
常州市教育学会学生学业水平监测高三数学Ⅰ试题 2018年1月一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.若集合2{2,0,1},{|1}A B x x =-=>,则集合A B =I ▲ .2.命题“2[0,1],10x x ∃∈-≥”是 ▲ 命题(选填“真”或“假”). 3.若复数z 满足22i 1(i )z z ⋅=+其中为虚数单位,则z = ▲ . 4.若一组样本数据2015,2017,x ,2018,2016的平均数为2017,则该组样本数据的方差为 ▲ .5.右图是一个算法的流程图,则输出的n 的值是 ▲ . 6.函数1()ln f x x=的定义域记作集合D .随机地投掷一枚质地均匀的 正方体骰子(骰子的每个面上分别标有点数1,2,,6L ),记骰子 向上的点数为t ,则事件“t D ∈”的概率为 ▲ .7.已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为 ▲ .8.各项均为正数的等比数列{}n a 中,若234234a a a a a a =++,则3a 的最小值为 ▲ .9.在平面直角坐标系xOy 中,设直线:10l x y ++=与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是 ▲ .(第5题)10.已知实数,x y 满足0,220,240,x y x y x y -⎧⎪+-⎨⎪-+⎩≤≥≥则x y +的取值范围是 ▲ .11.已知函数()ln f x bx x =+,其中b ∈R .若过原点且斜率为k 的直线与曲线()y f x =相切,则k b -的值为 ▲ .12.如图,在平面直角坐标系xOy 中,函数sin()(0,0π)y x ωϕωϕ=+><<的图象与x 轴的交点,,A B C 满足2OA OC OB +=,则ϕ= ▲ .13.在ABC ∆中,3,7,5===BC AC AB ,P 为ABC ∆内一点(含边界),若满足)(41R ∈+=λλBC BA BP ,则BP BA ⋅的取值范围为 ▲ . 14.已知ABC ∆中,3AB AC ==,ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC ∆面积的最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知ABC ∆中,a b c ,, 分别为三个内角A B C ,, 的对边,3sin cos b C c B c =+. (1)求角B ; (2)若2b ac =,求11tan tan A C+的值. 16.(本小题满分14分)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,PC ABCD ⊥平面,PB PD =,点Q 是棱PC 上异于P ,C 的一点. (1)求证:BD AC ⊥;(2)过点Q 和AD 的平面截四棱锥得到截面ADQF (点F 在棱PB 上),求证:QF BC ∥.(第16题)1-1(第12题)17.(本小题满分14分)已知小明(如图中AB 所示)身高1.8米,路灯OM 高3.6米,AB ,OM 均垂直于水平地面,分别与地面交于点A ,O .点光源从M 发出,小明在地面上的影子记作AB'.(1)小明沿着圆心为O ,半径为3米的圆周在地面上走一圈,求AB'扫过的图形面积; (2)若3=OA 米,小明从A 出发,以1米/秒的速度沿线段1AA 走到1A ,3π1=∠OAA ,且101=AA 米.t 秒时,小明在地面上的影子长度记为)(t f (单位:米),求)(t f 的表达式与最小值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆)0(1:2222>>=+b a bya x C 的右焦点为F ,点A 是椭圆的左顶点,过原点的直线MN 与椭圆交于N M ,两点(M 在第三象限),与椭圆的右准线交于P 点.已知MN AM ⊥,且243OA OM b ⋅=u u u r u u u u r . (1)求椭圆C 的离心率e ; (2)若103AMN POF S S a ∆∆+=,求椭圆C 的标准方程.(第17题)xy(第18题)19.(本小题满分16分)已知各项均为正数的无穷数列{}n a 的前n 项和为n S ,且满足1a a =(其中a 为常数),1(1)(1)n n nS n S n n +=+++*()n ∈N .数列{}n b满足n b =(*)n ∈N .(1)证明数列{}n a 是等差数列,并求出{}n a 的通项公式;(2)若无穷等比数列{}n c 满足:对任意的*n ∈N ,数列{}n b 中总存在两个不同的项s b ,t b (*,s t ∈N ),使得s n t b c b ≤≤,求{}n c 的公比q .20.(本小题满分16分) 已知函数2ln ()()xf x x a =+,其中a 为常数. (1)若0a =,求函数()f x 的极值;(2)若函数()f x 在(0)a -,上单调递增,求实数a 的取值范围;(3)若1a =-,设函数()f x 在(01),上的极值点为0x ,求证:0()2f x <-.常州市教育学会学生学业水平监测数学Ⅱ(附加题) 2018年1月21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲在ABC ∆中,N 是边AC 上一点,且2CN AN =,AB 与NBC ∆的外接圆相切,求BCBN的值. B .选修4—2:矩阵与变换已知矩阵421a ⎡⎤=⎢⎥⎣⎦A 不存在逆矩阵,求: (1)实数a 的值; (2)矩阵A 的特征向量. C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴,建立极坐标系.曲线C 的参数方程为2cos 1,2sin x y αα=+⎧⎨=⎩(α为参数),直线l 的极坐标方程为πsin()24ρθ+=,直线l与曲线C 交于M ,N 两点,求MN 的长. D .选修4—5:不等式选讲注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将本卷和答题卡一并交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔. (选修4—1)已知0,0a b >>,求证:3322a b a b ++【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)已知正四棱锥ABCD P -的侧棱和底面边长相等,在这个正四棱锥的8条棱中任取两条,按下列方式定义随机变量ξ的值:若这两条棱所在的直线相交,则ξ的值是这两条棱所在直线的夹角大小(弧度制); 若这两条棱所在的直线平行,则0=ξ;若这两条棱所在的直线异面,则ξ的值是这两条棱所在直线所成角的大小(弧度制). (1)求)0(=ξP 的值;(2)求随机变量ξ的分布列及数学期望)(ξE .23.(本小题满分10分)记11(1)()()2x x x n+⨯+⨯⨯+L (2n ≥且*n ∈N )的展开式中含x 项的系数为n S ,含2x 项的系数为n T . (1)求n S ; (2)若2nnT an bn c S =++,对2,3,4n =成立,求实数a b c ,,的值; (3)对(2)中的实数a b c ,,,用数学归纳法证明:对任意2n ≥且*n ∈N ,2n nT an bn cS =++都成立.常州市教育学会学生学业水平监测高三数学Ⅰ试题参考答案及评分标准一、填空题:本大题共14小题,每小题5分,共70分1.{2}- 2.真 3.1 4.2 5.7 6.567.38.3 9.(1,2)10.4[,8]3 11.1e 12.34π 13.525[,]84 14.523二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.解:(1)由正弦定理得3sin sin cos sin sin B C B C C =+,ABC ∆中,sin 0C >,所以3sin cos 1B B -=,所以1sin()62B π-=,5666B πππ-<-<,66B ππ-=,所以3B π=; (2)因为2b ac =,由正弦定理得2sin sin sin B A C =,11cos cos cos sin sin cos sin()sin()sin tan tan sin sin sin sin sin sin sin sin sin sin A C A C A C A C B BA C A C A C A C A C A C π++-+=+==== 所以,211sin 123tan tan sin sin 3B AC B B +====. 16.(1)证明:PC ABCD ⊥平面,BD ABCD ⊂平面,所以BD PC ⊥,记AC BD ,交于点O ,平行四边形对角线互相平分,则O 为BD 的中点,又PBD ∆中,PB PD =,所以BD OP ⊥, 又=PC OP P I ,PC OP PAC ⊂,平面,所以BD PAC ⊥平面,又AC PAC ⊂平面,所以BD AC ⊥;(2)四边形ABCD 是平行四边形,所以AD BC ∥,又AD PBC ⊄平面,BC PBC ⊂平面,所以AD PBC 平面∥, 又AD ADQF ⊂平面,ADQF PBC QF =I 平面平面,所以AD QF ∥,又AD BC ∥,所以QF BC ∥. 17.解:(1)由题意AB OM ∥,' 1.81' 3.62AB AB OB OM ===,3OA =,所以'6OB =,小明在地面上的身影AB'扫过的图形是圆环,其面积为226327()πππ⨯-⨯=平方米;(2)经过t 秒,小明走到了0A 处,身影为00'A B ,由(1)知000'12A B AB OB OM ==,所以22000000()'2cos f t A B OA OA AA OA AA OAA ===+-⋅∠,化简得2()39,010f t t t t =-+<≤,2327()24f t t ⎛⎫=-+ ⎪⎝⎭,当32t =时,()f t 的最小值为33, 答:2()39,010f t t t t =-+<≤,当32t =(秒)时,()f t 的最小值为33(米).18.解:(1)由题意22222221()()22x y a b a a x y ⎧+=⎪⎪⎨⎪++=⎪⎩,消去y 得22220c x ax b a ++=,解得2122ab x a x c =-=-,, 所以22(,0)M ab x a c =-∈-,22243M A ab OA OM x x a b c ⋅===u u u r u u u u r ,2234c a =,所以e ;(2)由(1)2(,)3M b -,右准线方程为x , 直线MN的方程为y,所以)P ,212POF P S OF y ∆=⋅=,222AMN AOM M S S OA y b ∆∆==⨯=,所以2210+33a =2203b =,所以b a == 椭圆C 的标准方程为12822=+y x . 19.解:(1)方法一:因为1(1)(1)n n nS n S n n +=+++①, 所以21(1)(2)(1)(2)n n n S n S n n +++=++++②,由②-①得,211(1)(2)(1)2(1)n n n n n S nS n S n S n ++++-=+-+++, 即21(1)(22)(1)2(1)n n n n S n S n S n +++=+-+++,又10n +>, 则2122n n n S S S ++=-+,即212n n a a ++=+.在1(1)(1)n n nS n S n n +=+++中令1n =得,12122a a a +=+,即212a a =+. 综上,对任意*n ∈N ,都有12n n a a +-=, 故数列{}n a 是以2为公差的等差数列. 又1a a =,则22n a n a =-+.方法二:因为1(1)(1)n n nS n S n n +=+++,所以111n n S S n n +=++,又11S a a ==,则数列n S n ⎧⎫⎨⎬⎩⎭是以a 为首项,1为公差的等差数列,因此1nS n a n=-+,即2(1)n S n a n =+-. 当2n ≥时,122n n n a S S n a -=-=-+,又1a a =也符合上式,故22n a n a =-+(*)n ∈N ,故对任意*n ∈N ,都有12n n a a +-=,即数列{}n a 是以2为公差的等差数列. (2)令12122n n n a e a n a +==+-+,则数列{}n e 是递减数列,所以211n e a<+≤. 考察函数1y x x =+(1)x >,因为2221110x y x x -'=-=>,所以1y x x=+在(1,)+∞上递增. 因此1422(2)n n e e a a <+++≤,从而n b =. 因为对任意的*n ∈N ,总存在数列{}n b 中的两个不同项s b ,t b ,使得s n t b c b ≤≤,所以对任意的*n ∈N都有n c ∈,明显0q >.若1q >,当1log q n +≥有111n n n c c q --=>不符合题意,舍去;若01q <<,当1log qn +≥111n n n c c q --=,不符合题意,舍去;故1q =. 20.解:(1)当0a =时,2ln ()xf x x =,定义域为(0)+∞,. 312ln ()xf x x-'=,令()0f x '=,得x =∴当x =()f x 的极大值为2e,无极小值. (2)312ln ()()ax x f x x a +-'=+,由题意()0f x '≥对(0)x a ∈-,恒成立. ∵(0)x a ∈-,,∴3()0x a +<, ∴12ln 0ax x+-≤对(0)x a ∈-,恒成立. ∴2ln a x x x -≤对(0)x a ∈-,恒成立.令()2ln g x x x x =-,(0)x a ∈-,, 则()2ln 1g x x '=+, ①若120ea -<-≤,即120ea ->≥-,则()2ln 10g x x '=+<对(0)x a ∈-,恒成立,∴()2ln g x x x x =-在(0)a -,上单调递减,则2()ln()()a a a a ---≤-,∴ln()a -0≤,∴1a -≤与12e a -≥-矛盾,舍去;②若12ea -->,即12ea -<-,令()2ln 10g x x '=+=,得12ex -=,当120e x -<<时,()2ln 10g x x '=+<,∴()2ln g x x x x =-单调递减,当12ex a -<<-时,()2ln 10g x x '=+>,∴()2ln g x x x x =-单调递增,∴当12ex -=时,1111122222min [()](e)2eln(e )e 2eg x g -----==-=-g ,∴122e a --≤. 综上122ea --≤.(3)当1a =-时,2ln ()(1)xf x x =-,312ln ()(1)x x x f x x x --'=-. 令()12ln h x x x x =--,(01)x ∈,, 则()12(ln 1)2ln 1h x x x '=-+=--,令()0h x '=,得12e x -=.①当12e1x -<≤时,()0h x '≤,∴()12ln h x x x x =--单调递减,12()(02e 1]h x -∈-,,∴312ln ()0(1)x x x f x x x --'=<-恒成立,∴2ln ()(1)x f x x =-单调递减,且12()(e )f x f -≤, ②当120ex -<≤时,()0h x '≥,∴()12ln h x x x x =--单调递增,其中1111()12ln()02222h =--⋅=, 又222225(e )e 12e ln(e )10e h ----=--⋅=-<, ∴存在唯一201(e ,)2x -∈,使得0()0h x =,∴0()0f x '=,当00x x <<时,()0f x '>,∴2ln ()(1)xf x x =-单调递增,当120ex x -<≤时,()0f x '<,∴2ln ()(1)x f x x =-单调递减,且12()(e )f x f -≥, 由①和②可知,2ln ()(1)xf x x =-在0(0)x ,单调递增,在0(1)x ,上单调递减,∴当0x x =时,2ln ()(1)xf x x =-取极大值.∵0000()12ln 0h x x x x =--=,∴0001ln 2x x x -=, ∴00220000ln 11()112(1)(1)2()22x f x x x x x ===----, 又01(0)2x ∈,,∴201112()(0)222x --∈-,,∴0201()2112()22f x x =<---.常州市教育学会学生学业水平监测 高三数学Ⅱ(附加题) 参考答案21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲解:记NBC ∆外接圆为圆O ,AB 、AC 分别是圆O 的切线和割线,所以2AB AN AC =⋅, 又A A ∠=∠,所以ABN ∆与ACB ∆相似,所以BC AB ACBN AN AB==,所以 23BC AB AC AC BN AN AB AN ⎛⎫=⋅== ⎪⎝⎭,BC BN = B .选修4—2:矩阵与变换 (2)42=021λλ----,即(4)(1)40λλ---=,所以250λλ-=,解得120,5λλ== 10λ=时,42020x y x y --=⎧⎨--=⎩,2y x =-,属于10λ=的一个特征向量为12⎡⎤⎢⎥-⎣⎦;25λ=时,20240x y x y -=⎧⎨-+=⎩,2x y =,属于10λ=的一个特征向量为21⎡⎤⎢⎥⎣⎦.C .选修4—4:坐标系与参数方程解:曲线22:(1)4C x y -+=,直线:20l x y +-=,圆心(1,0)C 到直线l 的距离为d ==MN =D .选修4—5:不等式选讲证明:0,0a b >>,不妨设0a b >≥,则5522a b ≥,1122a b ≥,由排序不等式得5151515122222222a ab b a b b a ++≥,所以51515151222222222222a ab b a b b aa b a b ++++≥【必做题】第22题、第23题,每题10分,共计20分.22.解:根据题意,该四棱锥的四个侧面均为等边三角形,底面为正方形,容易得到PAC ∆,PBD ∆为等腰直角三角形.ξ的可能取值为:ππ0,,32,共2828C =种情况,其中:0ξ=时,有2种;π3ξ=时,有34+24=20⨯⨯种;π2ξ=时,有2+4=6种;(1)141282)0(===ξP ; (2)7528164)3π(=+==ξP ,143286)2π(===ξP .再根据(1)的结论,随机变量ξ的分布列如下表:根据上表,π8414273140)(=⨯+⨯+⨯=ξE . 23.解:(1)1122!(1)!nn n S n n ++++==-L .(2)222=3T S ,3311=6T S ,447=2T S , 则2=42311=93671692a b c a b c a b c ⎧++⎪⎪⎪++⎨⎪⎪=++⎪⎩,,, 解得1114126a b c ==-=-,,. (3)①当2n =时,由(2)知等式成立;②假设*(N ,2)n k k k =∈且≥时,等式成立,即21114126k k T k k S =--; 当1n k =+时,由2111()(1)()()()21111[(1)()()]()2111()()!1k k f x x x x x k k x x x x k k S x T x x k k =+⨯+⨯⨯+⨯++=+⨯+⨯⨯+⨯++=+++++L L L知211111112[1()]1(1)!14126k k kk T S T k k k k k ++=+=+--+-+,所以2211111112[1()]32(35)(1)!14126(1)11212122!k k k k k T k k k k k k k k k S k k ++++----+-+==++=+++⎛⎫⎪⎝⎭, 又2111(35)(1)(1)412612k k k k ++-+-=,等式也成立; 综上可得,对任意2n ≥且*n ∈N ,都有2nnT an bn c S =++成立.。
2018年1月江苏省常州市教育学会学生学业水平监测高三期末试题及参考答案常州一模
高三数学Ⅰ试题
2018 年 1 月
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,包含填空题(第 1 题——第 14 题)、解答题(第 15 题——第 20 题 卷)满.本分 160 分,考试时间为 120 分钟.考试结束后,请将本卷和答题卡一并交回. 2.答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在 试卷及答题卡的规定位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效。作答 必须用 0.5 毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚. 4.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗 的圆珠笔.
0)
的两
条渐近线都相交且交点都在 y 轴左侧,则双曲线 C 的离心率e 的取值范围是 ▲ .
1
x y ≤ 0, 10.已知实数 x, y 满足 2x y 2≥ 0, 则 x y 的取值范围是 ▲ .
x 2 y 4≥ 0,
11.已知函数 f (x) bx ln x ,其中 b R .若过原点且斜率为 k 的直线与曲线 y f (x) 相切,
棱 PB 上),求证: QF ∥ BC .
(第 16 题)
2
17.(本小题满分 14 分)
已知小明(如图中 AB 所示)身高 1.8 米,路灯 OM 高 3.6 米,AB,OM 均垂直于水平地面,
分别与地面交于点 A,O.点光源从 M 发出,小明在地面上的影子记作 AB' .
(1)小明沿着圆心为 O,半径为 3 米的圆周在地面上走一圈,求 AB' 扫过的图形面积;
2018届高考模拟试卷一参考答案.doc
s i nB 2 sAi n,求边 a , b 的值 .
【解析】(Ⅰ)因为
f (x) 2sin( x )cos x 6
3
1
2 sin x cos x cos x
2
2
3 sin x cos x cos2 x
------------------------------------------------------------------- 4 分
2 . ---------------------------------------------------8 5
综上,满足要求的实数 k 有且仅有一个, k
2
; ---------------------------------9
5
(Ⅲ)当 k
1 时, an 1
2
1 ( an an 2 ) ,所以 an 2 an 1
kPB ?kBA
y1 - y0 ? y1 + y0 x1 - x0 x1 + x0
y12 -
2
x1 -
( y02
2
=
1-
x0
) ( x12 - 1-
4
2
2
x1 - x0
)x22
4 =-
1 4
............................... 9 分
(1-
又 kBA = kAD =
2l ) y0 - (x0 - (- x0 )
y0 ) =
(1- l ) y0
x0
故 kPB = -
1 =4k BA
x0
4 (1 - l ) y0 .----------------------------------------------------------------------
2018届江苏省常州市武进区高三上学期期中考试理科数学试题及答案 精品
2018届第一学期期中考试高三理科数学试题一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卡相应的位置上) 1.已知集合{}213M x x =-<,集合{}13N x x =-<<,则M N =▲ .2.已知z 是复数,i 是虚数单位,若i zi +=1,则z = ▲ . 3.已知命题2:(0,),2,p x x x ∀∈+∞≥-则命题p 的否定是 ▲ . 4.函数)(x f 的定义域是]1,1[-,则函数)(log 21x f 的定义域为 ▲ .5.执行如右图所示的程序框图.若输出的结果为3,则可输入的实数x 的个数为 ▲ . 6.已知tan 2α=,则1sin cos αα=⋅ ▲ .7.若实数x ,y 满足约束条件1311x y x y ≤+≤⎧⎨-≤-≤⎩,则3x y +的取值范围是▲ .8.已知向量)1,0(),2,1(==,设k +=,-=2,若//,2018.11第5题图则实数k 的值为 ▲ .9.已知函数()72sin ,0,63f x x x ππ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎝⎭⎣⎦的图象与直线y m =的三个交点的横坐标分别为1x 、2x 、3x ,其中123xx x <<,那么1232x x x ++的值为▲ .10.已知x 、y 为正实数,且21x y +=,则1y xy+的最小值为 ▲ .11.设函数()=2f x mx +,()22g x x x =-,[]01,2x ∀∈-,[]11,2x ∃∈-,使得()()01f x g x >,则实数m 的取值范围是 ▲ . 12.已知非零向量,满足||332||||a b a b a =-=+,则+与的夹角为 ▲ .13.已知定义在R 上的奇函数()f x ,设其导函数为()'f x ,当(],0x ∈-∞时,恒有()()'xf x f x <-,则满足()()()1212133x f x f --<的实数x 的取值范围是 ▲ .14.定义域为R 的偶函数)(x f 满足对x R ∀∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f ,若函数)1|(|log )(+-=x x f y a 在R 上至少有四个零点,则a 的取值范围是 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 4cos cos b C a B c B =-. ⑴ 求cos B 的值;⑵ 若32BA BC ⋅= ,3b =,求a 和c .16.(本题满分14分)如图,在矩形ABCD 中,2,2==BC AB ,点E 是BC 边的中点,点F在边CD 上.⑴ 若O 是对角线AC 的中点, )(R AD AE AO ∈+=μλμλ、,求μλ+的值;⑵ 若2=⋅BF AE ,求线段DF 的长.17.(本题满分14分)如图所示,AB 是半径长为1的半圆的一条直径,现要从中截取一个内接等腰梯形ABCD ,设梯形ABCD 的面积为y .⑴ 设2CD x =,将y 表示成x 的函数关系式并写出其定义域; ⑵ 求梯形ABCD 面积y 的最大值.18.(本题满分16分)如图,在平面直角坐标系xOy 中,点11()A x y ,在单位圆O 上,xOA α∠=,且 62ππα⎛⎫∈ ⎪⎝⎭,. ⑴ 若11cos()313πα+=-,求1x 的值;⑵ 若22()B x y ,也是单位圆O 上的点,且3AOB π∠=.过点A B 、分别做x 轴的垂线,垂足为C D 、,记AOC ∆的面积为1S ,BOD ∆的面积为2S .设()12f S S α=+,求函数()f α的最大值.19.(本题满分16分)已知点(p ,q )是平面直角坐标系错误!未找到引用源。
江苏省常州市2018届高三数学一模试卷含解析
2018年江苏省常州市高考数学一模试卷一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M= .2.若复数z满足z+i=,其中i为虚数单位,则|z|= .3.函数f(x)=的定义域为.4.如图是给出的一种算法,则该算法输出的结果是5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l 的右焦点,则双曲线的离心率为.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.12.已知sinα=3sin(α+),则tan(α+)= .13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为.二.解答题:本大题共6小题,共计90分15.在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.16.如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.17.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC(如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h 为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.18.在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.19.己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.20.己知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,设数列。
江苏省苏北四市2018届高三上学期第一次模拟数学试题含答案
苏北四市2018届高三一模数学试卷参考公式:1.柱体的体积公式:V Sh =,其中S 是柱体的底面面积,h 是高.2.圆锥的侧面积公式:12S cl =,其中c 是圆锥底面的周长,l 是母线长. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.已知集合2{0}A x x x =-=,{1,0}B =-,则A B =U ▲ .2.已知复数2iz +=(i 为虚数单位),则z 的模为 ▲ . 3.函数y 的定义域为 ▲ .4.如图是一个算法的伪代码,运行后输出b 的值为 ▲ .5.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[250,400)内的学生共有 ▲ 人.6.在平面直角坐标系xOy 中,已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲ .7.连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为 ▲ . 8.已知正四棱柱的底面边长为3cm ,侧面的对角线长是,则这个正四棱柱的体积是 ▲3cm . 9.若函数()sin()(0,0)f x A x A ωϕω=+>>的图象与直线y m =的三个相邻交点的横坐标分别是6π,3π,23π,则实数ω的值为 ▲ . (第5题) (第17题) 012While 62End While Pr int a b I I a a b b a b I I b ←←← ←+ ←+ ←+ … (第4题)10.在平面直角坐标系xOy中,曲线:C xy =P到直线:0l x =的距离的最小值为 ▲ .11.已知等差数列{}n a 满足13579+10a a a a a +++=,228236a a -=,则11a 的值为 ▲ .12.在平面直角坐标系xOy 中,若圆1C :222(1)(0)x y r r +-=>上存在点P ,且点P 关于直线0x y -=的对称点Q 在圆2C :22(2)(1)1x y -+-=上,则r 的取值范围是 ▲ . 13.已知函数2211()(1)1x x f x x x ⎧-+ ⎪=⎨- > ⎪⎩,≤,,,函数()()()g x f x f x =+-,则不等式()2g x ≤的解集为 ▲ .14.如图,在ABC △中,已知32120AB AC BAC = = ∠=︒,,,D 为边BC 的中点.若CE AD ⊥,垂足为E ,则EB ·EC 的值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(本小题满分14分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且3cos 5A =,1tan()3B A -=.⑴求tan B 的值;⑵若13c =,求ABC △的面积.16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,90ABC ∠=o ,1=AB AA ,M ,N 分别是AC ,11B C 的中点.求证:⑴//MN 平面11ABB A ;⑵1AN A B ⊥.17.(本小题满分14分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O 及其内接等腰三角形ABC 绕底边BC 上的高所在直线AO 旋转180°而成,如图2.已知圆O 的半径为10 cm ,设∠BAO=θ,π02θ<<,圆锥的侧面积为S cm 2. ⑴求S 关于θ的函数关系式;⑵为了达到最佳观赏效果,要求圆锥的侧面积S 最大.求S 取得最大值时腰AB 的长度.B (第14题) A DC E (第16题) 1A 1B NM1C C BA18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b +=>>的离心率为12,且过点312(,).F 为椭圆的右焦点,,A B 为椭圆上关于原点对称的两点,连接,AF BF 分别交椭圆于,C D 两点.⑴求椭圆的标准方程;⑵若AF FC =,求BFFD的值;⑶设直线AB ,CD 的斜率分别为1k ,2k出m 的值;若不存在,请说明理由.19.(本小题满分16分)已知函数2()1()ln ()f x x ax g x x a a =++ =-∈R ,. ⑴当1a =时,求函数()()()h x f x g x =-的极值;⑵若存在与函数()f x ,()g x 的图象都相切的直线,求实数a 的取值范围.20.(本小题满分16分)已知数列{}n a ,其前n 1n a -,其中2n …,n *∈N ,λ,μ∈R .(第18题)(第18题)⑴若0λ=,4μ=,12n n n b a a +=-(n *∈N ),求证:数列{}n b 是等比数列; ⑵若数列{}n a 是等比数列,求λ,μ的值; ⑶若23a =,且32λμ+=,求证:数列{}n a 是等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并在相应的答题区域内作...........答.,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修41:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,弦BD ,CA 的延长线相交于点E ,EF 垂直BA 的延长线于点F .求证:2AB BE BD AE AC =⋅-⋅B .[选修42:矩阵与变换](本小题满分10分)已知矩阵1001⎡⎤=⎢⎥-⎣⎦A ,4123⎡⎤=⎢⎥⎣⎦B ,若矩阵=M BA ,求矩阵M 的逆矩阵1-M .C .[选修4 4:坐标系与参数方程](本小题满分10分)以坐标原点为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线12:12x t l y t=+⎧⎨=-⎩(t 为参数)与圆2:2cos 2sin 0C ρρθρθ+-=的位置关系.D .[选修4 5:不等式选讲](本小题满分10分)已知,,,a b c d 都是正实数,且1a b c d +++=,求证: 2222111115a b c d a b c d +++++++….【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写 出文字说明、证明过程或演算步骤.22.(本小题满分10分)在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC 和11A C 的中点.以{,,}FA FB FG u u u r u u u r u u u r为正交基底,建立如图所示的空间直角坐标系F xyz -. ⑴求异面直线AC 与BE 所成角的余弦值; 1A 1B A B C D E F (第21-A 题) O . A B CDEF (第21-A 题) O . A B CD E F (第21-A 题)O . A B C D E F(第21-A 题) O .⑵求二面角1F BC C --的余弦值.23.(本小题满分10分)在平面直角坐标系xOy 中,已知平行于x 轴的动直线l 交抛物线2:4C y x =于点P ,点F 为C 的焦点.圆心不在y 轴上的圆M 与直线l ,PF ,x 轴都相切,设M 的轨迹为曲线E .⑴求曲线E 的方程;⑵若直线1l 与曲线E 相切于点(,)Q s t ,过Q 且垂直于1l 的直线为2l ,直线1l ,2l 分别与y 轴相交于点A ,B .当线段AB 的长度最小时,求s 的值.数学参考答案与评分标准一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置........ 1.{1,0,1}- 2.1 3.(0,1] 4.13 5.750 67.598.54 9.4 10.11 12.1] 13.[2,2]- 14.277-二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或计算步骤. 15.(1)在ABC △中,由3cos 5A =,得A为锐角,所以4sin 5A ,所以sin 4tan cos 3A A A ==,………………………………………………………………2分 所以tan()tan tan tan[()]1tan()tan B A AB B A A B A A-+=-+=--⋅. ………………………………4分1433314133+==-⨯ …………………………………………………………6分 (2)在三角形ABC 中,由tan 3B =,所以sin B B ==, ………………………………………………8分由sin sin()sin cos cos sin C A B A B A B =+=+=,…………………………10分由正弦定理sin sin b c B C =,得13sin sin c B b C ==,………………………12分所以ABC △的面积114sin 151378225S bc A ==⨯⨯⨯=. …………………………14分 16.(1)证明:取AB 的中点P ,连结1,.PM PB因为,M P 分别是,AB AC 的中点,所以//,PM BC 且1.2PM BC =在直三棱柱111ABC A B C -中,11//BC B C ,11BC B C =, 又因为N 是11B C 的中点,所以1//,PM B N 且1PM B N =. …………………………………………2分 所以四边形1PMNB 是平行四边形,所以1//MN PB , ………………………………………………………………4分 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A ,所以//MN 平面11ABB A . ……………………………………………………6分 (2)证明:因为三棱柱111ABC A B C -为直三棱柱,所以1BB ⊥面111A B C , 又因为1BB ⊂面11ABB A ,所以面11ABB A ⊥面111A B C , …………………8分 又因为90ABC ∠=o ,所以1111B C B A ⊥,面11ABB A I 面11111=A B C B A ,11111B C A B C ⊂平面, 所以11B C ⊥面11ABB A , ………………………10分 又因为1A B ⊂面11ABB A ,所以111B C A B ⊥,即11NB A B ⊥, 连结1AB ,因为在平行四边形11ABB A 中,1=AB AA , 所以11AB A B ⊥,又因为111=NB AB B I ,且1AB ,1NB ⊂面1AB N ,所以1A B ⊥面1AB N ,……………………………………………………………………12分 而AN ⊂面1AB N ,所以1A B AN ⊥.……………………………………………………………………………14分 17.(1)设AO 交BC 于点D ,过O 作OE AB ⊥,垂足为E ,在AOE ∆中,10cos AE θ=,220cos AB AE θ==, …………………………………………………………2分在ABD ∆中,sin 20cos sin BD AB θθθ=⋅=⋅,…………………………………………………………4分所以1220sin cos 20cos 2S θθθ=⋅π⋅⋅ 2400sin cos θθ=π,(0)2πθ<<……………………6分(2)要使侧面积最大,由(1)得:23400sin cos 400(sin sin )S πθθπθθ==-…………8分设3(),(01)f x x x x =-<< 则2()13f x x '=-,由2()130f x x '=-=得:3x =当x ∈时,()0f x '>,当x ∈时,()0f x '< 所以()f x在区间上单调递增,在区间上单调递减,(第16题)1A 1B NM1C C B A P所以()f x在x =时取得极大值,也是最大值; 所以当sin θ时,侧面积S 取得最大值, …………………………11分此时等腰三角形的腰长20cos AB θ=== 答:侧面积S 取得最大值时,等腰三角形的腰AB .…………14分 18.(1)设椭圆方程为22221(0)x y a b a b +=>>,由题意知:22121914c a ab ⎧=⎪⎪⎨⎪+=⎪⎩……………2分解之得:2a b =⎧⎪⎨=⎪⎩22143x y += ……………………………4分(2)若AF FC =,由椭圆对称性,知3(1,)2 A ,所以3(1,)2B --,此时直线BF 方程为3430x y --=, ……………………………………………6分 由223430,1,43x y x y --=⎧⎪⎨+=⎪⎩,得276130x x --=,解得137x =(1x =-舍去),…………8分故1(1)713317BF FD --==-.…………………………………………………………………10分(3)设00,)A x y (,则00(,)B x y --,直线AF 的方程为00(1)1y y x x =--,代入椭圆方程22143x y +=,得 2220000(156)815240x x y x x ---+=, 因为0x x =是该方程的一个解,所以C 点的横坐标08552C x x x -=-,…………………12分又(,)c C C x y 在直线00(1)1y y x x =--上,所以00003(1)152C c y y y x x x -=-=--, 同理,D 点坐标为0085(52x x ++,3)52y x +, ……………………………………………14分 所以000002100000335552528585335252y y y x x k k x x x x x --+-===+--+-,即存在53m =,使得2153k k =. ………………………………………………………16分19.(1)函数()h x 的定义域为(0,)+∞当1a =时,2()()()ln 2h x f x g x x x x =-=+-+, 所以1(21)(1)()21x x h x x x x-+'=+-=………………………………………………2分所以当102x <<时,()0h x '<,当12x >时,()0h x '>,所以函数()h x 在区间1(0,)2单调递减,在区间1(,)2+∞单调递增,所以当12x =时,函数()h x 取得极小值为11+ln 24,无极大值;…………………4分(2)设函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同,则121212()()()()f x g x f x g x x x -''==-所以211212121(ln )12x ax x a x a x x x ++--+==- ……………………………………6分 所以12122ax x =-,代入21211221(ln )x x x ax x a x -=++--得:222221ln 20(*)424a a x a x x -++--= ………………………………………………8分 设221()ln 2424a a F x x a x x =-++--,则23231121()222a x ax F x x x x x +-'=-++= 不妨设2000210(0)x ax x +-=>则当00x x <<时,()0F x '<,当0x x >时,()0F x '> 所以()F x 在区间0(0,)x 上单调递减,在区间0(,)x +∞上单调递增,……………10分 代入20000121=2x a x x x -=-可得:2min 000001()()2ln 2F x F x x x x x ==+-+- 设21()2ln 2G x x x x x =+-+-,则211()220G x x x x'=+++>对0x >恒成立, 所以()G x 在区间(0,)+∞上单调递增,又(1)=0G所以当01x <≤时()0G x ≤,即当001x <≤时0()0F x ≤, ……………12分又当2a x e+=时222421()ln 2424a a a a a F x e a e e +++=-++--2211()04a a e+=-≥ ……………………………………14分 因此当001x <≤时,函数()F x 必有零点;即当001x <≤时,必存在2x 使得(*)成立; 即存在12,x x 使得函数()f x 上点11(,())x f x 与函数()g x 上点22(,())x g x 处切线相同.又由12y x x =-得:2120y x'=--<所以12(0,1)y x x =-在单调递减,因此20000121=2[1+)x a x x x -=-∈-∞, 所以实数a 的取值范围是[1,)-+∞.…………………………………………………16分 20.(1)证明:若=0,4 =λμ,则当14n n S a -=(2n ≥),所以1114()n n n n n a S S a a ++-=-=-, 即1122(2)n n n n a a a a +--=-,所以12n n b b -=, ……………………………………………………………2分 又由12a =,1214a a a +=,得2136a a ==,21220a a -=≠,即0n b ≠,所以12n n bb -=,故数列{}n b 是等比数列.……………………………………………………………4分 (2)若{}n a 是等比数列,设其公比为q (0q ≠ ),当2n =时,2212S a a =+λμ,即12212a a a a +=+λμ,得12q q +=+λμ, ① 当3n =时,3323S a a =+λμ,即123323a a a a a ++=+λμ,得 2213q q q q ++=+λμ, ② 当4n =时,4434S a a =+λμ,即1234434a a a a a a +++=+λμ,得 233214+q q q q q ++=+λμ, ③②①q ,得21q =λ ,③②q ,得31q =λ , 解得1,1 q ==λ.代入①式,得0=μ.…………………………………………………………………8分 此时n n S na =(2n ≥),所以12n a a ==,{}n a 是公比为1的等比数列, 故10 ==,λμ. ……………………………………………………………………10分 (3)证明:若23a =,由12212a a a a +=+λμ,得562=+λμ, 又32+=λμ,解得112==,λμ.…………………………………………………12分 由12a =,23a =,12λ= ,1μ=,代入1n n n S na a λμ-=+得34a =,所以1a ,2a ,3a 成等差数列,由12n n n n S a a -=+,得1112n n n n S a a +++=+,两式相减得:111122n n n n n n na a a a a ++-+=-+-即11(1)(2)20n n n n a n a a +-----= 所以21(1)20n n n na n a a ++---=相减得:2112(1)(2)220n n n n n na n a n a a a ++---+--+= 所以2111(2)2(2)0n n n n n n n a a a a a a +++--++-+=所以221111-222(2)(2)(2)(1)n n n n n n n n n a a a a a a a a a n n n +++---+=--+=-+- 1321(2)(2)(1)2n a a a n n --==-+-L L L , ……………………………………14分因为12320a a a -+=,所以2120n n n a a a ++-+=,即数列{}n a 是等差数列.………………………………………………………………16分数学Ⅱ(附加题)参考答案与评分标准21.A .证明:连接AD ,因为AB 为圆的直径,所以AD BD ⊥,又EF AB ⊥,则,,,A D E F 四点共圆,所以BD BE BA BF ⋅=⋅. …………………………………………………………5分 又△ABC ∽△AEF ,所以AB AC AE AF=,即AB AF AE AC ⋅=⋅, ∴2()BE BD AE AC BA BF AB AF AB BF AF AB ⋅-⋅=⋅-⋅=⋅-=. …………10分B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, ………………………………………5分所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. ………………………………………………………10分C.把直线方程12:12x tl y t =+⎧⎨=-⎩化为普通方程为2x y +=. ……………………………3分将圆:C 22cos 2sin 0ρρθρθ+-=化为普通方程为22220x x y y ++-=,即22(1)(1)2x y ++-=. ………………………………………………………………6分圆心C 到直线l的距离d ==, 所以直线l 与圆C 相切.…………………………………………………………………10分D .证明:因为2222[(1)(1)(1)(1)]()1111a b c d a b c d a b c d++++++++++++++2≥2()1a b c d =+++=, …………………………………………5分 又(1)(1)(1)(1)5a b c d +++++++=,所以2222111115a b c d a b c d +++≥++++.…………………………………………10分22.(1)因为11,2AB AA ==,则111(0,0,0),(,0,0),(,0,0),(,0,1)222F A C B E -,所以(1,0,0)=-u u u r AC,1(,22=-u u u r BE , ………………………………………2分记直线AC 和BE 所成角为α,则11cos |cos ,|α-⨯=<>==u u u r u u u r AC BE , 所以直线AC 和BE. ………………………………………4分(2)设平面1BFC 的法向量为111(,,)x y z =m ,因为FB =u u u r ,11(,0,2)2FC =-u u u u r ,则111101202FB y FC x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩u u u r u u u u r m m ,取14x =得:(4,0,1)=m ……………………………6分 设平面1BCC 的一个法向量为222(,,)x y z =n ,因为1(22CB =u u u r ,1(0,0,2)CC =u u u u r ,则221210220CB x y CC z ⎧⋅==⎪⎨⎪⋅==⎩u u u r u u u u r n n,取2x =1,0)=-n ………………………8分cos ,∴<>==m n 根据图形可知二面角1F BC C --为锐二面角, 所以二面角1F BC C --……………………………………10分 23.(1)因为抛物线C 的方程为24y x =,所以F 的坐标为(1,0),设(,)M m n ,因为圆M 与x 轴、直线l 都相切,l 平行于x 轴, 所以圆M 的半径为n ,点P 2(,2)n n ,则直线PF 的方程为2121y x n n -=-,即22(1)(1)0n x y n ---=,………………………2分n =,又,0m n ≠, 所以22211m n n --=+,即210n m -+=,所以E 的方程为2=1y x -(0)y ≠ ………………………………………………4分(2)设2(1,)+Q t t , 1(0,)A y ,2(0,)B y , 由(1)知,点Q 处的切线1l 的斜率存在,由对称性不妨设0>t ,由'=y121AQ t y k t -=+,221BQ t y k t -==-+ 所以1122=-t y t,3223=+y t t , ……………………………………………………6分 所以33151|23|2(0)2222t AB t t t t t t t=+-+=++>.……………………………………8分 令351()222f t t t t=++,0t >, 则42222511251()6222t t f t t t t +-'=+-=, 由()0f t '>得t >,由()0f t '<得0t <<, 所以()f t在区间单调递减,在)+∞单调递增,所以当t =()f t 取得极小值也是最小值,即AB 取得最小值此时21s t =+=.……………………………………………………………10分。
江苏省南京市、盐城市2018届高三第一次模拟考试 数学
南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,其中S 为底面积,h 为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}|(4)0A x x x =-<,{}0,1,5B =,则A B =I ▲ .2.设复数(,z a i a R i =+∈为虚数单位),若(1)i z +⋅为纯虚数,则a 的值为 ▲ . 3.为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为 ▲ .4.执行如图所示的伪代码,若0x =,则输出的y 的值为 ▲ .5.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 ▲ .6.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为 ▲ . 7.设函数1x xy e a e =+-的值域为A ,若[0,)A ⊆+∞,则实数a 的取值范围是 ▲ . 8.已知锐角,αβ满足()()tan 1tan 12αβ--=,则αβ+的值为 ▲ .9.若函数sin y x ω=在区间[0,2]π上单调递增,则实数ω的取值范围是 ▲ . 10.设n S 为等差数列{}n a 的前n 项和,若{}n a 的前2017项中的奇数项和为2018,则2017S 的值为 ▲ .时间(单位:分钟)50 60 70 80 90 100 0.035 a0.0200.0100.005第3题图 第4题图11.设函数()f x 是偶函数,当x ≥0时,()f x =(3),03,31,>3x x x x x -≤≤⎧⎪⎨-+⎪⎩,若函数()y f x m =-有四个不同的零点,则实数m 的取值范围是 ▲ .12.在平面直角坐标系xOy中,若直线(y k x =-上存在一点P ,圆22(1)1x y +-=上存在一点Q ,满足3OP OQ =,则实数k 的最小值为 ▲ . 13.如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”.若,,,A B C D 四点均位于图中的“晶格点”处,且,A B 的位置所图所示,则CD AB ⋅的最大值为 ▲ .14.若不等式2sin sin sin 19sin sin k B A C B C +>对任意ABC ∆都成立,则实数k 的最小值为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图所示,在直三棱柱111ABC A B C -中,CA CB =,点,M N 分别是11,AB A B 的中点. (1)求证:BN ∥平面1A MC ; (2)若11A M AB ⊥,求证:11AB AC ⊥.16.(本小题满分14分)在ABC ∆中,角,,A B C 的对边分别为,,,a b c已知c =. (1)若2C B =,求cos B 的值; (2)若AB AC CA CB ⋅=⋅,求cos()4B π+的值.17.(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、120EOF ∠=︒的扇形,且弧»EF,¼GH 分别与边BC ,AD 相切于点M ,N . (1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?第13题图 ABC A 1B 1C 1 MN第15题图F18. (本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的下顶点为B ,点,M N 是椭圆上异于点B 的动点,直线,BM BN 分别与x 轴交于点,P Q ,且点Q 是线段OP 的中点.当点N运动到点处时,点Q的坐标为. (1)求椭圆C 的标准方程;(2)设直线MN 交y 轴于点D ,当点,M N 均在y 轴右侧,且2DN NM =时,求直线BM 的方程.19.(本小题满分16分)设数列{}n a 满足221121()n n n a a a a a λ+-=+-,其中2n …,且n N ∈,λ为常数. (1)若{}n a 是等差数列,且公差0d ≠,求λ的值;(2)若1231,2,4a a a ===,且存在[3,7]r ∈,使得n m a n r ⋅-卪对任意的*n N ∈都成立,求m 的最小值;(3)若0λ≠,且数列{}n a 不是常数列,如果存在正整数T ,使得n T n a a +=对任意的*n N ∈均成立. 求所有满足条件的数列{}n a 中T 的最小值.20.(本小题满分16分)设函数()ln f x x =,()bg x ax c x=+-(,,a b c R ∈). (1)当0c =时,若函数()f x 与()g x 的图象在1x =处有相同的切线,求,a b 的值; (2)当3b a =-时,若对任意0(1,)x ∈+∞和任意(0,3)a ∈,总存在不相等的正实数12,x x ,使得120()()()g x g x f x ==,求c 的最小值; (3)当1a =时,设函数()y f x =与()y g x =的图象交于11(,),A x y 2212(,)()B x y x x <两点.求证:122121x x x b x x x -<<-.南京市、盐城市2018届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-1:几何证明选讲)如图,已知AB 为⊙O 的直径,直线DE 与⊙O 相切于点E ,AD 垂直DE 于点D . 若4DE =,求切点E 到直径AB 的距离EF .B .(选修4-2:矩阵与变换)已知矩阵 2 00 1⎡⎤=⎢⎥⎣⎦M ,求圆221x y +=在矩阵M 的变换下所得的曲线方程.A B ED F O · 第21(A)图C .(选修4-4:坐标系与参数方程) 在极坐标系中,直线cos()13πρθ+=与曲线r ρ=(0r >)相切,求r 的值.D .(选修4-5:不等式选讲)已知实数,x y 满足2231x y +=,求当x y +取最大值时x 的值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,四棱锥P ABCD -的底面ABCD 是菱形,AC 与BD 交于点O ,OP ⊥底面ABCD ,点M 为PC 中点,4,2,4AC BD OP ===. (1)求直线AP 与BM 所成角的余弦值;(2)求平面ABM 与平面PAC 所成锐二面角的余弦值.23.(本小题满分10分)已知n N *∈,()0112112r r n n n n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.(1)求()1,f ()2,f ()3f 的值;(2)试猜想()f n 的表达式(用一个组合数表示),并证明你的猜想.M A CD O P 第22题图南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.{}1 2.1 3.1200 4.1 5.236.6 7.(,2]-∞8.34π 9.1(0,]4 10.4034 11.9[1,)412. 13.24 14.100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.证明:(1)因为111ABC A B C -是直三棱柱,所以11//AB A B ,且11AB A B =,又点,M N 分别是11,AB A B 的中点,所以1MB A N =,且1//MB A N . 所以四边形1A NBM是平行四边形,从而1//A M BN . ……………4分又BN ⊄平面1A M C ,1A M ⊂平面1A M C ,所以BN∥面1A MC . ……………6分(2)因为111ABC A B C -是直三棱柱,所以1AA ⊥底面ABC ,而1AA ⊂侧面11ABB A ,所以侧面11ABB A ⊥底面ABC .又CA CB =,且M 是AB 的中点,所以CM AB ⊥.则由侧面11ABB A ⊥底面ABC ,侧面11ABB A 底面ABC AB =,CM AB ⊥,且CM ⊂底面ABC ,得CM ⊥侧面11ABB A . ……………8分又1AB ⊂侧面11ABB A ,所以1AB CM ⊥. ……………10分又11AB A M ⊥,1,A M MC ⊂平面1A MC ,且1AM MC M =, 所以1AB ⊥平面1A M C . ……………12分 又1AC ⊂平面1A M C ,所以11AB AC ⊥. ……………14分16.解:(1)因为2c =,则由正弦定理,得sin 2C B =. ……………2分 又2C B=,所以s in 2s i n2B B =,即4sn c o s5s i nB B =. ……………4分 又B是ABC ∆的内角,所以s i n B >,故co B =. ……………6分(2)因为AB AC CA CB ⋅=⋅, 所以cos cos cb A ba C =,则由余弦定理,得222222b c a b a c +-=+-,得a c =. ……………10分从而223cos 25a c bB ac+-===, (12)分又0B π<<,所以4sin 5B ==. 从而3c o 44B Bππ+=. ……………14分17.解:(1)在图甲中,连接MO 交EF 于点T .设OE OF OM R ===,在Rt OET∆中,因为1602EOT EOF ∠=∠=︒,所以2ROT =,则2RM T O MO T =-=. 从而2R B EMT==,即22R BE ==. ……………2分故所得柱体的底面积OEF OEF S S S ∆=-扇形22114sin120323R R ππ=-︒=. ……………4分 又所得柱体的高4EG =,所以V S EG =⨯=163π-答:当BE 长为1分米时,折卷成的包装盒的容积为163π-. …………………6分E(2)设BE x =,则2R x =,所以所得柱体的底面积OEF OEF S S S ∆=-扇形222114sin120(323R R x ππ=-︒=-.又所得柱体的高62EG x =-,所以V S =⨯=328(3)3x x π--+,其中03x <<. …………………10分令32()3,(0,3)f x x x x =-+∈,则由2()363(2)0f x x x x x '=-+=--=,解得2x =. …………………12分答:当BE 的长为2分米时,折卷成的包装盒的容积最大.…………………14分 18.解:(1)由2N Q ,得直线NQ 的方程为32y x =…………………2分 令0x =,得点B的坐标为(0,.所以椭圆的方程为22213x y a +=. …………………4分 将点N 的坐标22213+=,解得24a =.所以椭圆C 的标准方程为22143x y +=.…………………8分 (2)方法一:设直线BM 的斜率为(0)k k >,则直线BM 的方程为y kx =在y kx =0y =,得P x k =,而点Q 是线段OP的中点,所以2Q x k=. 所以直线BN 的斜率2BN BQ k k k ===. ………………10分联立22143y kx x y ⎧=-⎪⎨+=⎪⎩,消去y ,得22(34)0k x +-=,解得M x =.用2k代k,得6316N x =. ………………12分 又2DN NM =,所以2(N M N x x x =-,得23M N x x =. ………………14分故23=0k >,解得k =. 所以直线BM 的方程为2y x =. ………………16分 方法二:设点,M N 的坐标分别为1122(,),(,)x y x y .由(0,B ,得直线BN的方程为11y y x x =0y =,得P x =.同理,得Q x =.而点Q 是线段OP的中点,所以2P Qx x =,故=. …………………10分 又2DN NM =,所以2122()x x x =-,得21203x x =>4=,解得21433y y =+. …………………12分将21212343x x y y ⎧=⎪⎪⎨⎪=+⎪⎩C的方程中,得2119x =.又22114(1)3y x =-,所以21214(1)(431927y y -+=21120y +=,解得1y =(舍)或1y =.又10x >,所以点M 的坐标为M .……………14分故直线BM 的方程为2y x =. …………………16分 19.解:(1)由题意,可得22()()n n n a a d a d d λ=+-+,化简得2(1)0d λ-=,又0d ≠,所以1λ=. ………………4分(2)将1231,2,4a a a ===代入条件,可得414λ=⨯+,解得0λ=,所以211n n n a a a +-=,所以数列{}n a 是首项为1,公比2q =的等比数列,所以12n n a -=. ……6分欲存在[3,7]r ∈,使得12n m n r -⋅-…,即12n r n m --⋅…对任意*n N ∈都成立,则172n n m --⋅…,所以172n n m --…对任意*n N ∈都成立. ………………8分令172n n n b --=,则11678222n nn n n n n nb b +-----=-=, 所以当8n >时,1n n b b +<;当8n =时,98b b =;当8n <时,1n n b b +>.所以n b 的最大值为981128b b ==,所以m 的最小值为1128. ………………10分 (3)因为数列{}n a 不是常数列,所以2T …. ①若2T =,则2n n a a +=恒成立,从而31a a =,42a a =,所以22221212221221()()a a a a a a a a λλ⎧=+-⎪⎨=+-⎪⎩, 所以221()0a a λ-=,又0λ≠,所以21a a =,可得{}n a 是常数列.矛盾.所以2T =不合题意. ………………12分②若3T =,取*1,322,31()3,3n n k a n k k N n k =-⎧⎪==-∈⎨⎪-=⎩(*),满足3n n a a +=恒成立. ………………14分由2221321()a a a a a λ=+-,得7λ=. 则条件式变为2117n n n a a a +-=+.由221(3)7=⨯-+,知223132321()k k k a a a a a λ--=+-; 由2(3)217-=⨯+,知223313121()k k k a a a a a λ-+=+-; 由21(3)27=-⨯+,知223133221()k k k a a a a a λ++=+-.所以,数列(*)适合题意.所以T 的最小值为3. ………………16分20.解:(1)由()ln f x x =,得(1)0f =,又1()f x x'=,所以(1)1f '=,. 当c =时,()bg x ax x=+,所以2()bg x a x'=-,所以(1)g a b '=-. ………………2分因为函数()f x 与()g x 的图象在1x =处有相同的切线,所以(1)(1)(1)f g f g ''=⎧⎨=⎩,即10a b a b -=⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩. ………………4分 (2)当01x >时,则0()0f x >,又3b a =-,设0()t f x =,则题意可转化为方程3(0)aa x c t t x-+-=>在(0,)+∞上有相异两实根12,x x . ………………6分即关于x 的方程2()(3)0(0)ax c t x a t -++-=>在(0,)+∞上有相异两实根12,x x .所以2121203()4(3)030a c t a a c t x x a ax x a <<⎧⎪∆=+-->⎪⎪+⎨+=>⎪⎪-=>⎪⎩,得203()4(3)0a c t a a c t <<⎧⎪+>-⎨⎪+>⎩, 所以3)c a t >--对(0,),(0,3)t a ∈+∞∈恒成立. 8分因为03a <<,所以23=(当且仅当32a =时取等号), 又0t -<,所以t 的取值范围是(,3)-∞,所以3c …. 故c最小值为3. ………………10分 (3)当1a =时,因为函数()f x 与()g x 的图象交于,A B 两点,所以111222ln ln b x x c x b x x cx ⎧=+-⎪⎪⎨⎪=+-⎪⎩,两式相减,得211221ln ln (1)x x b x x x x -=--. ………………12分要证明122121x x x b x x x -<<-,即证211221212121ln ln (1)x x x x x x x x x x x x --<-<--,即证212211ln ln 11x x x x x x -<<-,即证1222111ln 1x x xx x x -<<-. ………………14分 令21xt x =,则1t >,此时即证11ln 1t t t -<<-.令1()ln 1t t tϕ=+-,所以22111()0t t t t t ϕ-'=-=>,所以当1t >时,函数()t ϕ单调递增. 又(1)0ϕ=,所以1()ln 10t t t ϕ=+->,即11ln t t-<成立;再令()ln 1m t t t =-+,所以11()10tm t t t-'=-=<,所以当1t >时,函数()m t 单调递减,又(1)0m =,所以()ln 10m t t t =-+<,即ln 1t t <-也成立.综上所述,实数12,x x 满足122x x x b x x x-<<-. ………………16分附加题答案21.(A )解:如图,连接AE ,OE ,因为直线DE 与⊙O 相切于点E ,所以DE OE ⊥,又因为AD 垂直DE 于D ,所以//AD OE ,所以DAE OEA ∠=∠,① 在⊙O 中OE OA =,所以OEA OAE ∠=∠,② ………………5分 由①②得DAE ∠OAE =∠,即DAE ∠FAE =∠, 又ADE AFE ∠=∠,AE AE =,所以ADE AFE ∆≅∆,所以DE FE =,又4DE =,所以4FE =, 即E 到直径AB 的距离为4. ………………10分(B )解:设()00,P x y 是圆221x y +=上任意一点,则22001x y +=,设点()00,P x y 在矩阵M 对应的变换下所得的点为(),Q x y ,则002 00 1x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即2x x y y =⎧⎨=⎩,解得012x x y y⎧=⎪⎨⎪=⎩, ………………5分 代入22001x y +=,得2214x y +=,即为所求的曲线方程. ………………10分(C )解:以极点O 为原点,极轴Ox 为x 轴建立平面直角坐标系,由cos()13πρθ+=,得(cos cossin sin )133ππρθθ-=, 得直线的直角坐标方程为20x -=. ………………5分 曲线r ρ=,即圆222x y r +=,所以圆心到直线的距离为1d ==.因为直线cos()13πρθ+=与曲线r ρ=(0r >)相切,所以r d =,即ABE DF O ·第21(A)图1r =. ……………10分(D)解:由柯西不等式,得22222[)][1](1x x ++≥⨯+, 即2224(3)()3x y x y +≥+. 而2231x y +=,所以24()3x y +≤,所以x y +≤, ………………5分由1x x y ⎧=⎪⎪⎨⎪⎪+=⎩,得6x y ⎧=⎪⎪⎨⎪=⎪⎩,所以当且仅当x y ==时,max ()x y += 所以当x y +取最大值时x的值为2x =………………10分 22.解:(1)因为ABCD 是菱形,所以AC BD ⊥.又OP ⊥底面ABCD ,以O 为原点,直线,,OA OB OP 分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.则(2,0,0)A ,(0,1,0)B ,(0,0,4)P ,(2,0,0)C -,(1,0,2)M -. 所以(2,0,4)AP =-,(1,1,2)BM =--,10AP BM ⋅=,||25AP =,||6BM =.则cos ,||||2AP BM AP BM AP BM ⋅<>===. 故直线AP 与BM 所成角的余弦值为6. ………5分 (2)(2,1,0)AB =-,(1,1,2)BM =--.设平面ABM 的一个法向量为(,,)n x y z =,则00n AB n BM ⎧⋅=⎪⎨⋅=⎪⎩,得2020x y x y z -+=⎧⎨--+=⎩,令2x =,得4y =,3z =.得平面ABM 的一个法向量为(2,4,3)n =.又平面PAC 的一个法向量为(0,1,0)OB =,所以n 4OB ⋅=,||29n =,||1OB =. 则cos ,||||29n OB n OB n OB ⋅<>===.故平面ABM 与平面PAC 所成锐二面角的余弦值为………………10分 23.解:(1)由条件,()0112112r r n nn n n n n n n n nf n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+ ①,在①中令1n =,得()011111f C C ==. ………………1分C第22题图在①中令2n =,得()011222222226f C C C C =+=,得()23f =. ………………2分在①中令3n =,得()011223333333332330f C C C C C C =++=,得()310f =. ………………3分 (2)猜想()f n =21nn C -(或()f n =121n n C --). ………………5分 欲证猜想成立,只要证等式011211212n r r n nn n n n n n n n nnC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+成立. 方法一:当1n =时,等式显然成立,当2n …时,因为11!!(1)!==!()!(1)!()!(1)!()!r r nn r n n n rC n nC r n r r n r r n r --⨯-=⨯=-----(),故11111()r r r r r r n n n n n nrC C rC C nC C -----==. 故只需证明00111111211111n r r n n n n n n n n n n nnC nC C nC C nC C nC C ---------=++⋅⋅⋅++⋅⋅⋅+. 即证00111111211111n r r n n n n n n n n n n nC C C C C C C C C ---------=++⋅⋅⋅++⋅⋅⋅+. 而11r n r n n C C --+=,故即证0111111211111n n n r n r n n n n n n n n n nC C C C C C C C C ---+------=++⋅⋅⋅++⋅⋅⋅+ ②. 由等式211(1)(1)(1)n n n x x x --+=++可得,左边nx 的系数为21n n C -. 而右边1(1)n n xx -++()()0111n nn nC C x------=++++++++,所以nx 的系数为01111111111n n r n r n n n n n n n n nC C C C C C C C ---+-----++⋅⋅⋅++⋅⋅⋅+. 由211(1)(1)(1)n n n x x x --+=++恒成立可得②成立. 综上,()21nn f n C -=成立. ………………10分方法二:构造一个组合模型,一个袋中装有21n -个小球,其中n 个是编号为1,2,…,n 的白球,其余n -1个是编号为1,2,…,n -1的黑球,现从袋中任意摸出n 个小球,一方面,由分步计数原理其中含有r 个黑球(n r -个白球)的n 个小球的组合的个数为1r n rn n C C --,01r n ≤≤-,由分类计数原理有从袋中任意摸出n 个小球的组合的总数为01111111n n n n n n n n nC C C C C C -----+++. 另一方面,从袋中21n -个小球中任意摸出n 个小球的组合的个数为21nn C -. 故0111121111n n n n n n n n nn nC C C C C C C ------=++,即②成立. 余下同方法一. ………………10分方法三:由二项式定理,得0122(1)n n nn n n n x C C x C x C x +=++++ ③. 两边求导,得112111(1)2n r r n n n n n n n x C C x rC x nC x ---+=+++++ ④.③×④,得21012212111(1)()(2)n n n r r n n n n n n n n n n n x C C x C x C x C C x rC x nC x ---+=+++++++++⑤.左边n x 的系数为21nn nC -. 右边nx 的系数为121112n n r n r n n n n n n n n n C C C C rC C nC C --+++⋅⋅⋅++⋅⋅⋅+ 1021112r r n n n n n n n n n nC C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+0112112r r n nn n n n n n n n C C C C rC C nC C --=++⋅⋅⋅++⋅⋅⋅+.由⑤恒成立,可得011211212n r r n nn n n n n n n n nnC C C C C rC C nC C ---=++⋅⋅⋅++⋅⋅⋅+. 故()21nn f n C -=成立. ………………10分。
2018年江苏省常州市高考数学一模试卷
解: 由题意得 ,
则 , ,
所以 ,
小明在地面上的影子 扫过的图形是圆环,其面积为 (平方米).
设,经过 秒,小明走到了 处,身影为 .
由 知 ,即 ,
所以 .
因为 , , ,
所以 , ,
即 ,
所以当 时, 取得最小值为 .
综上得: , 取得最小值为 .
【考点】
平行线分线段成比例定理
平行线等分线段定理
【答案】
【考点】
双曲线的离心率
【解析】
求出双曲线的渐近线方程,与直线联立利用交点在 轴左侧,推出双曲线的离心率的范围即可.
【解答】
解:双曲线 的两条渐近线为: ,
联立
可得 ,
联立
可得 ,
由题意 ,
即 ,
则 ,
即 ,
则双曲线 的离心率 的取值范围是: .
故答案为: .
10.已知实数 , 满足 则 的取值范围是________.
∴ 平面 .
∵平面 平面 , 平面 ,
∴ .
已知小明(如图中 所示)身高 米,路灯 高 米, , 均垂直于水平地面,分别与地面交于点 , .点光源从点 发出,小明在地面上的影子记作 .
小明沿着圆心为 ,半径为 米的圆周在地面上走一圈,求 扫过的图形面积;
若 米,小明从 出发,以 米/秒的速度沿线段 走到 , ,且 米. 秒时,小明在地面上的影子长度记为 (单位:米),求 的表达式与最小值.
余弦定理
【解析】
(1)由题意得 求出 ,小明在地面上的影子 扫过的图形是圆环,由此能求出 扫过的图形面积.
(2)经过 秒,小明走到了 处,身影为 .求出 ,从而 .由此能求出 的表达式与最小值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Tn 2 (3) 对 (2) 中的实数 a,b,c , 用数学归纳法证明: 对任意 n ≥ 2 且 n N * , an bn c Sn
都成立.
6
常州市教育学会学生学业水平监测
高三数学Ⅰ试题参考答案及评分标准
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分 1. {2} 8. 3 2.真 9. (1, 2) 3.1 4.2 5.7 6.
a 3 b3 ≥ ab . a 2 b2
5
【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分.请在答题卡指定区域 内作答,解 ....... 答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分 10 分) 已知正四棱锥 P ABCD 的侧棱和底面边长相等,在这个正四棱锥的 8 条棱中任取两条, 按下列方式定义随机变量 的值: 若这两条棱所在的直线相交,则 的值是这两条棱所在直线的夹角大小(弧度制) ; 若这两条棱所在的直线平行,则 0 ; 若这两条棱所在的直线异面,则 的值是这两条棱所在直线所成角的大小(弧度制) . (1)求 P( 0) 的值; (2)求随机变量 的分布列及数学期望 E ( ) .
4 3
椭圆的左顶点,过原点的直线 MN 与椭圆交于 M , N 两点( M 在第三象限) ,与椭圆的右准
2 线交于 P 点.已知 AM MN ,且 OA OM b .
uuu r uuuu r
(1)求椭圆 C 的离心率 e ; (2)若 SAMN SPOF
y
10 a ,求椭圆 C 的标准方程. 3
x 2cos 1, π 参数方程为 ( 为参数) ,直线 l 的极坐标方程为 sin( ) 2 ,直线 l 4 y 2sin
(选修 4—1)
与曲线 C 交于 M,N 两点,求 MN 的长. D.选修 4—5:不等式选讲 已知 a 0, b 0 ,求证:
π ,且 3
AA1 10 米. t 秒时,小明在地面上的影子长度记为 f (t ) (单位:米) ,求 f (t ) 的表达式与
最小值.
(第 17 题)
18. (本小题满分 16 分) 如图,在平面直角坐标系 xOy 中,椭圆 C :
x2 y2 1(a b 0) 的右焦点为 F ,点 A 是 a2 b2
x
(第 18 题)
3
19. (本小题满分 16 分) 已知各项均为正数的无穷数列 {an } 的前 n 项和为 S n ,且满足 a1 a (其中 a 为常数) ,
nSn1 (n 1) Sn n(n 1) (n N* ) .数列 {bn } 满足 bn
(1)证明数列 {an } 是等差数列,并求出 {an } 的通项公式;
8.各项均为正数的等比数列 an 中,若 a2 a3a4 a2 a3 a4 ,则 a3 的最小值为 ▲ 9.在平面直角坐标系 xOy 中,设直线 l : x y 1 0 与双曲线 C :
x2 y 2 1(a 0, b 0) 的两 a 2 b2
.
条渐近线都相交且交点都在 y 轴左侧,则双曲线 C 的离心率 e 的取值范围是 ▲
1 5 , B ,所以 B ; 3 sin B cosB 1,所以 sin( B ) , B 6 6 6 6 6 6 3 2
(2)因为 b2 ac ,由正弦定理得 sin 2 B sin Asin C ,
1 1 cos A cos C cos A sin C sin A cos C sin( A C ) sin( B) sin B tan A tan C sin A sin C sin A sin C sin A sin C sin A sin C sin A sin C
2
2018 年 1 月
▲
.
▲ 命题(选填“真”或“假” ) . ▲ .
开始
3.若复数 z 满足 z 2i z 1(其中i为虚数单位) ,则 z
4.若一组样本数据 2015,2017,x,2018,2016 的平均数为 2017, 则该组样本数据的方差为 ▲ .
5.右图是一个算法的流程图,则输出的 n 的值是 ▲ . 6.函数 f ( x)
1 的定义域记作集合 D .随机地投掷一枚质地均匀的 ln x
正方体骰子(骰子的每个面上分别标有点数 1,2,L ,6 ) ,记骰子 向上的点数为 t ,则事件“ t D ”的概率为 ▲ . 输出 结束 (第 5 题) .
7.已知圆锥的高为 6,体积为 8.用平行于圆锥底面的平面截圆锥,得到的 圆台体积是 7,则该圆台的高为 ▲ .
2 2 an an 1 ( n N*) . an an 1
(2)若无穷等比数列 {cn } 满足:对任意的 n N ,数列 {bn } 中总存在两个不同的项 bs ,bt
*
( s , t N* ) ,使得 bs ≤ cn ≤ bt ,求 {cn } 的公比 q .
20. (本小题满分 16 分) 已知函数 f ( x)
1 1 的值. tan A tan C
16. (本小题满分 14 分) 如图,四棱锥 P ABCD 的底面 ABCD 是平行四边形,PC 平面ABCD , PB PD ,点 Q 是 棱 PC 上异于 P,C 的一点. (1)求证: BD AC ; (2)过点 Q 和 AD 的平面截四棱锥得到截面 ADQF (点 F 在 棱 PB 上) ,求证: QF ∥ BC .
4
常州市教育学会学生学业水平监测
数学Ⅱ(附加题)
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试卷第 21 题有 A、B、C、D 4 个小 题供选做,每位考生在 4 个选做题中选答 2 题.若考生选做了 3 题或 4 题,则按选 做题中的前 2 题计分.第 22、23 题为必答题.每小题 10 分,共 40 分.考试时间 30 分钟.考试结束后,请将本卷和答题卡一并交回. 2. 答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在 试卷及答题卡的规定位置. 3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作 答必须用 0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚. 4. 如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦 洗的圆珠笔. ,每小题 10 分,共计 20 分.请在 21. 【选做题】在 A、B、C、D 四小题中只能选做两题 ...... 答题卡指定区域 内作答,解答时应写出文字说明、证明过程或演算步骤. ....... A.选修 4—1:几何证明选讲 在 ABC 中,N 是边 AC 上一点,且 CN 2 AN ,AB 与 NBC 的外接圆相切,求 2018 年 1 月
12.如图,在平面直角坐标系 xOy 中,函数
y sin( x )( 0,0 π) 的图象与 x 轴的
交点 A, B, C 满足 OA OC 2OB ,则
▲
.
-1 (第 12 题)
13.在 ABC 中, AB 5, AC 7, BC 3 , P 为 ABC 内一点(含边界) ,若满足
1
x y ≤ 0, 10.已知实数 x, y 满足 2 x y 2 ≥ 0, 则 x y 的取值范围是 x 2 y 4 ≥ 0,
▲ .
11. 已知函数 f ( x) bx ln x , 其中 b R . 若过原点且斜率为 k 的直线与曲线 y f ( x) 相切, 则 k b 的值为 ▲ . 1
5 6
7.3
5 25 1 3 4 5 23 10. [ ,8] 11. 12. 13. [ , ] 14. 8 4 e 3 4 16 二、解答题:本大题共 6 小题,共计 90 分.解答时应写出文字说明、证明过程或演算步骤.
15 .解: ( 1 )由正弦定理得 3 sin B sin C cos B sin C sin C , ABC 中, sinC 0 ,所以
(第 16 题)
2
17. (本小题满分 14 分) 已知小明 (如图中 AB 所示) 身高 1.8 米, 路灯 OM 高 3.6 米, AB, OM 均垂直于水平地面, 分别与地面交于点 A,O.点光源从 M 发出,小明在地面上的影子记作 AB' . (1)小明沿着圆心为 O,半径为 3 米的圆周在地面上走一圈,求 AB' 扫过的图形面积; (2)若 OA 3 米,小明从 A 出发,以 1 米/秒的速度沿线段 AA1 走到 A1 , OAA1
23. (本小题满分 10 分)
1 1 记 ( x 1) ( x ) L ( x ) ( n ≥ 2 且 n N* )的展开式中含 x 项的系数为 S n ,含 x 2 项的 2 n
系数为 Tn . (1)求 S n ; (2)若
Tn an2 bn c ,对 n 2,3,4 成立,求实数 a,b,c 的值; Sn
常州市教育学会学生学业水平监测
高三数学Ⅰ试题
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共 4 页, 包含填空题 (第 1 题——第 14 题) 、 解答题 (第 15 题——第 20 题) . 本 卷满分 160 分,考试时间为 120 分钟.考试结束后,请将本卷和答题卡一并交回. 2.答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在 试卷及答题卡的规定位置. 3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效。作答 必须用 0.5 毫米黑色墨水的签字笔。请注意字体工整,笔迹清楚. 4.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗 的圆珠笔. 一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位置上 . ........ 1.若集合 A {2,0,1}, B {x|x2 1} ,则集合 A I B 2.命题“ x [0,1], x2 1≥ 0 ”是