高一力学知识点总结
力学高一知识点总结
力学高一知识点总结力学是物理学中的一个重要分支,研究物体的力学性质和运动规律。
高一的力学课程包含了一些基本的概念和定律,下面对高一力学的知识点进行总结。
1. 牛顿第一定律:也称为惯性定律,指出物体如果没有受到外力作用,将保持静止或匀速直线运动。
2. 牛顿第二定律:描述物体受到力的作用时的加速度变化,力等于物体的质量乘以加速度,即F = m * a。
根据这个定律,我们可以解释物体的运动状态和力的影响。
3. 牛顿第三定律:也称为作用与反作用定律,指出任何两个物体之间的相互作用力大小相等、方向相反。
4. 平衡条件:物体处于平衡状态时,合外力为零,合力矩为零。
这是力学中一个重要的概念,可以用来分析物体是否平衡以及平衡条件的计算。
5. 重力:地球对物体的吸引力称为重力,它的大小与物体的质量有关,与物体间的距离无关。
重力可以解释天体运动、物体自由落体等现象。
6. 单摆运动:指的是一个质点在一条细绳的约束下,在重力作用下的来回摆动。
单摆运动的周期与摆长有关,可以用来研究物体的周期性运动。
7. 力的合成与分解:当多个力作用于一个物体时,可以将这些力按照一定的方法合成成一个合力,也可以将一个力分解成多个分力。
8. 动能和功:动能是物体由于运动而具有的能量,其大小与物体的质量和速度有关。
功是力在物体上所做的功,功等于力与物体位移的乘积。
9. 加速度和位移:加速度是速度变化率的物理量,表示速度的改变量。
位移是物体从一个位置到另一个位置的变化量。
10. 简谐运动:指的是一个物体在弹性力作用下以一定的频率在平衡位置附近作往复振动。
简谐运动的周期与频率与弹簧的劲度系数和质量有关。
以上是高一力学的一些基本知识点总结。
通过学习这些知识,我们可以深入理解物体的力学性质和运动规律,为进一步学习力学和其他相关学科打下坚实的基础。
(完整版)高一物理必修一力学知识点总结
(完整版)高一物理必修一力学知识点总结高一物理必修一力学知识点总结本文档为高一物理必修一力学知识点的总结,旨在帮助学生复和巩固相关的概念和公式。
以下是本文档的主要内容:一、力的概念和分类1. 力的定义:力是物体相互作用时产生的作用。
2. 力的分类:接触力、重力、弹力、摩擦力等。
二、牛顿运动定律1. 第一定律:惯性定律,物体在无外力作用下保持匀速直线运动或静止。
2. 第二定律:力的大小与物体的加速度成正比,与物体的质量成反比,可以表示为 F=ma。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同的物体上。
三、力的合成与分解1. 力的合成:将多个力按照法则进行合成,求得合力的大小和方向。
2. 力的分解:将一个力分解成两个或多个分力,满足力的平衡条件。
四、摩擦力与弹力1. 摩擦力:是接触面上物体相互摩擦时产生的力,可分为静摩擦力和动摩擦力。
2. 弹力:当物体发生弹性形变后恢复原状时,所产生的力。
五、重力与重力势能1. 重力:是地球或其他物体对物体吸引的力。
2. 重力势能:物体具有的由于位置高度而具有的势能。
六、匀速直线运动1. 速度和位移:速度表示物体运动快慢和方向,位移表示物体从一个位置到另一个位置的位置变化。
2. 加速度与匀速直线运动:加速度为零时,物体做匀速直线运动。
七、变速直线运动1. 加速度与变速直线运动:加速度不为零时,物体做变速直线运动。
2. 速度-时间图和位移-时间图:通过速度和位移随时间的关系图来描述物体的运动情况。
以上是高一物理必修一力学知识点的简要总结,希望对学生们的研究有所帮助。
高一力学知识点总结
高一力学知识点总结高一力学知识点总结:力学是物理学中最基础的学科之一,它研究物体的运动和受力的规律。
下面是高一力学知识点的总结。
一、运动学基础知识1. 位移、速度和加速度:位移是指物体从一个位置到另一个位置的变化,速度是位移对时间求导,加速度是速度对时间求导。
2. 平均速度和瞬时速度:平均速度是指物体在某个时间段内的位移与时间的比值,瞬时速度是指物体在某一瞬间的瞬时速度。
3. 运动图象:在图象中,位移和时间呈现线性关系时,称为匀速直线运动;位移和时间呈现二次函数关系时,称为匀加速直线运动。
4. 等速直线运动和匀加速直线运动:等速直线运动的速度恒定,匀加速直线运动的速度随时间的改变而改变。
二、牛顿运动定律1. 牛顿第一定律:也称为惯性定律,物体在外力作用下保持静止或匀速直线运动的状态,直到受到其他力的作用。
2. 牛顿第二定律:描述了物体的加速度与作用在物体上的力之间的关系,F=ma,其中F表示力,m表示物体的质量,a表示加速度。
3. 牛顿第三定律:也称为作用-反作用定律,两个物体之间的力具有相互作用的特性,即两个物体之间的作用力和反作用力大小相等,方向相反。
三、摩擦力1. 静摩擦力和滑动摩擦力:物体相对于接触面静止时,所受的摩擦力称为静摩擦力;物体相对于接触面滑动时,所受的摩擦力称为滑动摩擦力。
2. 摩擦力的计算:静摩擦力的最大值等于物体所受的垂直于接触面的力乘以摩擦系数,滑动摩擦力等于物体所受的垂直于接触面的力乘以摩擦系数。
四、重力和重力加速度1. 重力:地球对物体的吸引力称为重力,重力的大小与物体的质量成正比。
2. 重力加速度:物体在自由下落中,受到的加速度称为重力加速度,一般记作g,近似等于9.8 m/s²。
五、匀速圆周运动1. 圆周运动基本概念:物体在做圆周运动时,具有向心力的作用,向心力使得物体的加速度指向圆心,而速度则在切线方向上。
2. 向心力:向心力是使物体保持在圆周运动状态的力,向心力的大小与质量、速度和半径之间的关系为F=mV²/R,其中m 为质量,V为速度,R为半径。
高中物理:力学知识点总结
高中物理:力学知识点总结1. 运动和力学基础
- 运动的描述:位置、速度、加速度
- 牛顿第一定律:惯性和力的关系
- 牛顿第二定律:力、质量和加速度的关系
- 牛顿第三定律:作用力和反作用力
2. 力的分解和合成
- 力的合成:力的平行和垂直分量的求解
- 力的分解:将一个力分解为多个力的合成
- 平衡力:物体处于平衡状态的条件
3. 重力和运动
- 重力:万有引力定律和重力加速度
- 自由落体:物体在重力作用下的运动
- 抛体运动:物体在抛体运动中的轨迹和速度
4. 动量
- 动量:质量和速度的乘积
- 动量守恒:系统总动量守恒的条件
- 冲量:力在时间上的积累,冲量等于动量变化5. 能量和功
- 功:力对物体做功的量度
- 功的计算:力和位移的乘积
- 动能和势能:物体的动能和势能变化
- 能量守恒:系统总能量守恒的条件
6. 机械振动
- 机械振动的特点和描述
- 简谐振动:周期、频率和振幅的关系
- 力的振幅和频率与物体的振幅和频率的关系
以上是高中物理力学的一些重要知识点总结。
希望对你的学习有所帮助!。
高中物理力学知识点经典总结
高中物理力学知识点经典总结1. 力的概念- 力是物体相互作用的结果,可以改变物体的状态或形状。
- 力的单位是牛顿(N)。
2. 牛顿第一定律(惯性定律)- 物体在无外力作用下保持匀速直线运动或静止。
- 物体的惯性决定了其运动状态。
3. 牛顿第二定律(运动定律)- 力等于物体质量乘以加速度:F = ma。
- 加速度与施加力的方向相同,与物体质量成反比。
4. 牛顿第三定律(作用-反作用定律)- 任何两个物体之间的相互作用力大小相等、方向相反。
5. 动量- 动量是物体运动的属性,与质量和速度有关。
- 动量的大小等于物体质量乘以速度:p = mv。
- 动量守恒定律:在没有外力作用下,系统的总动量保持不变。
6. 力的合成- 若多个力作用于同一物体,则其合力等于各力矢量的矢量和。
7. 加速度- 加速度等于速度变化量与时间的比率:a = Δv / Δt。
8. 重力- 重力是地球吸引物体的力,大小等于物体质量乘以重力加速度:Fg = mg。
9. 弹簧力- 弹簧力是弹簧受拉伸或压缩时的力。
- 弹簧力的大小等于弹簧常数乘以变形长度:Fh = kΔx。
10. 摩擦力- 摩擦力是物体相对运动时的阻力。
- 静摩擦力小于或等于fmax = μsN,动摩擦力小于或等于f = μkN,其中μs和μk分别为静摩擦因数和动摩擦因数,N为垂直于接触面的压力。
11. 斜面运动- 斜面上物体的运动可分解为平行于斜面和垂直于斜面方向的运动。
- 平行于斜面方向的受力:F平= mgsinθ,垂直于斜面方向的受力:F垂= mgcosθ,其中θ为斜面与水平面的夹角。
12. 圆周运动- 圆周运动物体的加速度方向指向圆心,大小等于速度的平方与半径的比值:a = v²/r。
- 圆周运动物体存在向心力,大小等于质量与向心加速度的乘积:F向心 = ma = mv²/r。
以上是高中物理力学的主要知识点经典总结,掌握这些知识将有助于理解和解答与力学相关的问题。
高一力学知识点归纳大全总结
高一力学知识点归纳大全总结力学是物理学的一个分支,研究物体的运动以及造成运动的原因。
在高中物理课程中,力学是一个重要的内容,包含了许多基础概念和理论,下面将对高一力学的知识点进行归纳和总结。
一、物体的运动1. 直线运动:直线运动是指物体在同一直线上运动,可以分为匀速直线运动和变速直线运动。
匀速直线运动时,物体的位移与时间成正比;变速直线运动时,物体的速度随着时间的变化而变化。
2. 抛体运动:抛体运动是指物体在竖直平面上自由落体的运动,其轨迹为抛物线。
在抛体运动中,重力是影响物体运动的主要力,并且物体的水平速度保持不变,垂直速度随时间变化。
3. 圆周运动:圆周运动是指物体围绕某个固定点做圆周轨迹的运动。
在圆周运动中,物体的速度大小保持不变,但方向发生变化,因此物体受到一个向心力的作用。
二、受力与平衡1. 力的概念:力是物体相互作用时产生的物理量,用牛顿(N)作为单位。
力有大小和方向,可以使物体产生形变、变速或改变物体的方向。
2. 受力分析:受力分析是研究物体运动时各种力的作用和相互关系的方法。
通过受力分析,可以确定物体所受的合力和加速度,进而研究物体的运动状态。
3. 平衡条件:平衡是指物体所受的合力为零时的状态。
平衡条件包括力的平衡和力矩的平衡。
力的平衡要求作用于物体上的各个力合力为零;力矩的平衡要求作用于物体上的各个力矩和为零。
三、牛顿定律1. 第一定律(惯性定律):第一定律又称为惯性定律,它描述了物体的运动状态不受力的影响时保持恒定的状态。
若物体受到合力为零的作用,物体将保持静止或匀速直线运动。
2. 第二定律(运动定律):第二定律描述了物体受到力的作用时所产生的加速度与施加力的关系。
根据牛顿第二定律,物体的加速度与所受合力成正比,与物体的质量成反比。
3. 第三定律(作用反作用定律):第三定律描述了物体相互作用时所产生的力是大小相等、方向相反的力。
作用力和反作用力互为一对,且作用在不同的物体上。
高一力学知识点归纳大全总结
高一力学知识点归纳大全总结力学是物理学中的一门重要学科,研究物体运动的规律及其原因。
高一阶段是力学知识的初步学习,以下是对高一力学知识点的归纳总结,供同学们参考。
一、质点力学质点是一个物体在运动中被简化为质点,忽略其大小和形状,并假设作用力集中在物体的质心上。
质点力学研究质点受力和运动规律。
1. 速度和加速度质点的速度是质点位矢关于时间的导数,加速度是速度关于时间的导数。
速度和加速度的方向与质点的运动方向一致。
2. 受力分析质点受到的力包括作用力和约束力。
通过受力分析,可以得到质点的运动方程和力学定律。
3. 牛顿三定律(1)牛顿第一定律:质点在外力作用下保持静止或匀速直线运动,除非有其他外力作用。
(2)牛顿第二定律:质点的加速度与作用力成正比,与质点的质量成反比。
F=ma(3)牛顿第三定律:相互作用的两个物体之间的作用力与反作用力大小相等、方向相反、作用在两个不同的物体上。
4. 滑动摩擦力和静止摩擦力滑动摩擦力和静止摩擦力是质点在运动过程中受到的摩擦力。
滑动摩擦力作用在质点滑动的方向上,静止摩擦力作用在质点准备滑动的方向上,大小与作用力相等,方向相反。
5. 重力和万有引力重力是地球或其他天体对物体的吸引力,大小与物体的质量成正比。
万有引力是两个物体之间的引力,大小与物体质量成正比,与两个物体之间的距离的平方成反比。
二、运动学运动学是研究物体运动的规律和动力学量的变化规律。
在运动学中,我们研究物体的速度、加速度、位移等运动参数。
1. 直线运动直线运动是物体沿直线轨迹运动,可以分为匀速直线运动和变速直线运动。
(1)匀速直线运动的速度恒定,位移与时间成正比。
(2)变速直线运动的速度不断变化,位移与时间之间为非线性关系。
2. 曲线运动曲线运动是物体沿曲线轨迹运动,可以分为圆周运动和非圆周运动。
(1)圆周运动是物体绕固定轴或固定点做圆周轨迹的运动,速度和加速度的大小相等,但方向不同。
(2)非圆周运动是物体沿任意曲线轨迹的运动,速度和加速度的大小和方向均不相等。
高一力学知识点总结
高一力学知识点总结一、力学的基本概念1、定义:力学是研究物体运动和静止状态的科学,它是物理学的基础。
2、基本量:力学中的基本量包括质量、长度、时间、力、速度、加速度等。
3、运动的基本规律:牛顿三定律,它包括惯性定律、动力学定律和作用反作用定律。
二、运动学1、直线运动:直线运动是指物体在运动过程中沿直线路径运动。
直线运动中经常涉及的量包括位移、速度和加速度。
2、曲线运动:曲线运动是指物体在运动过程中沿曲线路径运动。
曲线运动中的量包括切向速度和切向加速度。
3、匀变速直线运动:匀变速直线运动是指物体在运动过程中速度保持不变,而加速度保持不变或者变化的运动。
在匀变速直线运动中常用的公式包括速度公式、位移公式和加速度公式。
4、自由落体运动:自由落体运动是指物体在重力作用下运动的特殊情况。
自由落体运动中的公式包括位移公式、速度公式和加速度公式。
5、抛体运动:抛体运动是指物体在给定初速度的情况下,同时受到重力和阻力的作用运动。
抛体运动中的常用公式包括抛物线方程和飞行时间公式。
三、牛顿运动定律1、牛顿第一定律(惯性定律):物体如果没有受到外力,则保持静止或匀速直线运动。
2、牛顿第二定律(动力学定律):物体所受的合力等于物体质量与加速度的乘积。
3、牛顿第三定律(作用反作用定律):任何一个物体受到外力的作用时,必然伴随着一个与这个外力大小相等、方向相反的作用力。
四、摩擦力1、定义:摩擦力是指两个接触物体之间由于不完全光滑所产生的相互阻碍相对运动的力。
2、摩擦力的类型:静摩擦力和动摩擦力。
3、静摩擦力和动摩擦力的关系:静摩擦力大于动摩擦力。
4、摩擦力的应用:摩擦力常常在物体的运动、静止和力的传递过程中起着重要的作用。
例如:车辆的制动、货物的搬运等。
五、弹力1、定义:弹力是一种物体在往复形变时所表现出来的力。
2、胡克定律:胡克定律是描述弹簧弹力的科学原理,它指出弹簧的伸长(或压缩)与作用在弹簧上的力成正比。
3、弹簧的力学能量:弹簧的弹力与弹簧形变时的势能之间存在一种关系,即弹簧的弹力与弹簧形变的势能成正比。
高一力学重要性知识点总结
高一力学重要性知识点总结力学是物理学中的一个重要分支,研究物体的运动和受力关系。
在高一阶段学习力学是为了打下牢固的物理基础,为后续学习提供必要的知识支持。
下面将总结高一力学中的几个重要知识点。
一、牛顿运动定律牛顿运动定律是力学研究的基石,是了解物体运动状态和受力关系的基本规律。
根据牛顿第一运动定律,物体会保持匀速直线运动,或者保持静止,除非有外力作用。
牛顿第二定律则告诉我们物体的加速度与作用力成正比,与物体质量成反比。
而牛顿第三定律则指出,作用力与反作用力大小相等,方向相反。
二、摩擦力摩擦力是两个物体间接触时产生的一种阻碍物体相对运动的力。
常见的摩擦力包括静摩擦力和动摩擦力。
静摩擦力是物体相对运动之前的阻力,它的大小等于物体之间正压力(垂直于接触面)的乘积与静摩擦系数的乘积。
动摩擦力则是物体相对运动时的阻力,其大小与两物体之间接触面的摩擦系数和法向压力的乘积成正比。
三、弹力弹力是物体在弹性形变后及时恢复原状时发生的力。
根据胡克定律,弹簧伸长或压缩的长度与所受弹力成正比。
而在实际生活中,弹力的作用不仅限于弹簧上,还可以体现在球和地面的反弹、弹簧挂载物体等情况中。
四、重力重力是地球对物体的吸引力,是物体受重影响产生重力的原因之一。
根据万有引力定律,任何两个物体之间都有相互吸引的作用力,其大小与两个物体质量的乘积成正比,与两个物体间距离的平方成反比。
重力的大小与物体在地球表面附近的质量有关,而质量又是物体的基本特征之一。
五、圆周运动圆周运动是物体在半径为R的圆上做匀速运动的一种形式。
对于这种运动,我们可以通过角速度和弧长速度来进行描述。
角速度是物体单位时间内绕圆心转过的角度,而弧长速度则是物体单位时间内在圆周上走过的弧长。
六、合力和分解力合力是多个力的叠加效果,它等于多个力的矢量和。
而分解力则是将一个力拆解成多个分力的过程。
这两个概念在力学中十分重要,可以帮助我们研究力的作用效果和运动过程。
七、质点和刚体质点是物理学中将物体简化为质量点的概念。
(完整版)高一物理力学知识点的梳理总结
(完整版)高一物理力学知识点的梳理总结
引言
本文总结了高一物理力学部分的知识点,帮助学生梳理复重点,加深对物理力学的理解。
1. 力的概念
- 力的定义
- 力的单位
- 力的合成与分解
2. 牛顿定律
- 牛顿第一定律(惯性定律)
- 牛顿第二定律(运动定律)
- 牛顿第三定律(作用与反作用定律)
3. 动力学
- 动量的定义
- 冲量与动量的关系
- 动量守恒定律
- 力的质量与重力
- 万有引力定律
- 圆周运动的力学公式
4. 地面运动
- 平抛运动
- 上抛运动
- 斜抛运动
- 爬升运动与下降运动
5. 机械能守恒定律- 势能与动能概念
- 机械能守恒定律及应用- 动能与功的关系
6. 静力学
- 力对物体的作用
- 平衡条件
- 杠杆的平衡条件与力矩- 浮力与浮力原理
7. 摩擦力
- 摩擦力的概念
- 动摩擦力与静摩擦力的区别
- 摩擦力的计算方法
结论
本文总结了高一物理力学部分的重要知识点,包括力的概念、牛顿定律、动力学、地面运动、机械能守恒定律、静力学和摩擦力等方面。
希望这份总结能够帮助同学们更好地理解力学知识,提高研究效果。
> 注意:本文总结的内容为物理力学的知识点,具体概念和公式的推导请参考相关教材和教师的讲解。
高一力学知识点归纳总结大全
高一力学知识点归纳总结大全力学是物理学中最基础的分支之一,研究物体的运动和相互作用规律。
以下是高一学生需要掌握的力学知识点的归纳总结,帮助学生加深对力学概念的理解。
一、运动的描述与研究1. 位移、速度和加速度- 位移是指物体从初始位置到末位置的变化量,常用Δx表示。
- 速度是指物体在单位时间内位移的变化率,常用v表示。
- 加速度是指速度在单位时间内的变化率,常用a表示。
2. 运动的图解表示- 位移-时间图:横轴表示时间,纵轴表示位移。
- 速度-时间图:横轴表示时间,纵轴表示速度。
- 加速度-时间图:横轴表示时间,纵轴表示加速度。
二、牛顿运动定律1. 牛顿第一定律:惯性定律- 物体在无外力作用下保持静止或匀速直线运动。
2. 牛顿第二定律:运动定律- 物体受到的合力等于质量与加速度的乘积。
- F=ma,其中F表示合力,m表示质量,a表示加速度。
3. 牛顿第三定律:作用-反作用定律- 任何作用力都会有一个相等大小、方向相反的反作用力。
三、力的合成与分解1. 力的合成- 若多个力作用于同一物体,合力等于各个力的矢量和。
2. 力的分解- 若一个力可分解成两个分力,其中一个分力垂直于运动方向,则只影响速度;另一个分力平行于运动方向,则改变速度。
四、静力学1. 力的条件平衡- 力的合力为零时,物体达到平衡状态。
2. 牛顿定律在静力学中的应用- 平衡力学的计算。
3. 杠杆原理- 力矩的概念与计算。
五、动力学1. 运动学公式与动力学公式的联系- 运动学公式:v=at、x=v0t+1/2at^2、v^2=v0^2+2ax- 动力学公式:F=ma2. 自由落体运动- 对于自由落体运动,物体所受重力大小为mg,方向向下。
- 重力加速度地球上近似取9.8 m/s^2。
六、惯性与非惯性参照系1. 惯性参照系- 在惯性参照系中,牛顿定律成立。
2. 非惯性参照系- 在非惯性参照系中,需要引入惯性力以使牛顿定律成立。
七、摩擦力1. 摩擦力的概念与特点- 摩擦力存在于物体接触面上,与物体间存在相互抵抗运动的力。
高一力学重点知识点归纳总结
高一力学重点知识点归纳总结高一是学习物理力学的重要阶段,力学作为物理学的基础,在学习中扮演了重要的角色。
下面将对高一力学的重点知识点进行归纳总结,帮助同学们更好地理解和掌握力学的概念和原理。
一、向量和标量在力学中,我们经常会用到向量和标量的概念。
向量具有大小和方向,如速度、力、加速度等;而标量只有大小,如质量、时间、长度等。
1. 向量的表示和相加减向量通常用带箭头的字母表示,如A。
向量的加减法满足平行四边形法则,即两个向量的和为平行四边形的对角线。
2. 向量的分解向量可以沿着坐标轴的方向进行分解,常用的分解方法有平行分解和垂直分解。
平行分解是将一个向量分解为平行于坐标轴的两个向量的和,垂直分解是将一个向量分解为垂直于坐标轴的两个向量的和。
二、运动的描述运动是力学中研究的重要内容,了解和掌握运动的描述方法是理解力学的关键。
1. 位移和位移矢量位移是描述物体在运动中位置变化的概念,用Δx表示。
位移矢量是一个向量,它的大小等于位移的大小,方向沿着位移的方向。
2. 平均速度和瞬时速度平均速度是指物体在一段时间内的位移与时间的比值,用v表示。
瞬时速度是指物体某一时刻的速度,是平均速度在极短时间间隔内的近似。
3. 加速度和匀变速直线运动加速度是指速度随时间的变化率,用a表示。
在匀变速直线运动中,物体的速度以恒定的加速度变化,位移随时间的关系可以用位移-时间图像表示。
三、牛顿定律牛顿定律是力学中最基本的定律,描述了物体运动的原因。
1. 牛顿第一定律牛顿第一定律也称为惯性定律,它指出,如果没有外力作用,物体将保持匀速直线运动或静止状态。
2. 牛顿第二定律牛顿第二定律描述了力和加速度之间的关系,它表明,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
数学表示为F = ma,其中F是作用在物体上的力,m是物体的质量,a是物体的加速度。
3. 牛顿第三定律牛顿第三定律也称为作用-反作用定律,它指出,作用在物体A上的力等于物体A作用在物体B上的反作用力,且两个力的方向相反,大小相等。
高一物理力学知识点归纳
高一物理力学知识点归纳一、基本概念。
1. 力。
- 定义:力是物体对物体的作用。
力不能脱离物体而单独存在,一个力必然涉及两个物体,即施力物体和受力物体。
- 力的三要素:大小、方向、作用点。
这三个要素都会影响力的作用效果。
例如,力的大小不同,对物体产生的加速度大小就不同;力的方向不同,物体的运动方向改变情况不同;作用点不同,可能会使物体产生不同的转动效果。
- 力的单位:在国际单位制中,力的单位是牛顿,简称牛,符号是N。
- 力的图示和力的示意图。
- 力的图示:用一根带箭头的线段来表示力,线段的长短表示力的大小(按一定比例画),箭头的方向表示力的方向,线段的起点(或终点)表示力的作用点。
- 力的示意图:只画出力的方向和作用点,对力的大小不做严格要求,通常在受力分析等情况中使用。
2. 重力。
- 定义:由于地球的吸引而使物体受到的力叫重力。
重力的施力物体是地球。
- 大小:G = mg,其中g = 9.8N/kg(在粗略计算时可取g = 10N/kg)。
m是物体的质量。
- 方向:总是竖直向下。
- 重心:物体所受重力的等效作用点。
形状规则、质量分布均匀的物体,其重心在几何中心上;对于形状不规则的物体,重心可以用悬挂法等方法来确定。
3. 弹力。
- 定义:发生弹性形变的物体,由于要恢复原状,对与它接触的物体产生力的作用,这种力叫弹力。
- 产生条件:一是物体间直接接触;二是接触处发生弹性形变。
- 弹力的方向:与施力物体恢复形变的方向相同。
例如,压力和支持力的方向垂直于接触面指向被压或被支持的物体;绳子的拉力沿着绳子收缩的方向。
- 胡克定律:在弹性限度内,弹簧弹力F = kx,其中k为弹簧的劲度系数,单位是N/m;x为弹簧的伸长量或压缩量。
4. 摩擦力。
- 定义:两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,就会在接触面上产生阻碍相对运动或相对运动趋势的力,这种力叫摩擦力。
- 静摩擦力。
- 产生条件:一是物体间直接接触且挤压;二是接触面粗糙;三是物体间有相对运动趋势。
高一力学知识点归纳总结大全
高一力学知识点归纳总结大全高中物理力学是学习物理的基础,也是理解自然界规律的重要一环。
从物体的运动到力的作用,从牛顿三大运动定律到万有引力定律,高一力学知识点涵盖了众多的内容。
本文将对高一力学的知识点进行归纳总结,以帮助同学们更好地理解和应用这些基本概念。
一、运动与参照系物理学中的运动概念是建立在参照系基础上的。
参照系分为惯性参照系和非惯性参照系,惯性参照系是一个相对静止或匀速直线运动的参照系,而非惯性参照系则是一个有加速度的参照系。
在研究运动时,我们需要选择一个适当的参照系,并且要注意参照系的相对性。
二、位移、速度与加速度位移是指物体从一个位置到另一个位置的变化量,速度是指物体单位时间内位移的变化量,加速度是指物体单位时间内速度的变化量。
根据物体在运动过程中的变化量,我们可以得到相应的位移、速度和加速度公式。
这些公式的运用可以方便我们计算物体的运动情况。
三、匀速直线运动匀速直线运动是指物体在相等时间内所运动的距离是相等的一种运动形式。
在匀速直线运动中,我们可以应用位移、速度和加速度的概念,运用相应的运动公式进行计算。
同时,也需要注意不同参照系下的运动变化。
四、变速直线运动变速直线运动是指物体在运动过程中速度发生变化的一种运动形式。
对于变速直线运动,我们可以利用平均速度和瞬时速度进行分析和计算,同时也要考虑到加速度的存在。
物体在变速直线运动中的位移与时间的关系可以通过计算机的绘图工具来表示。
五、牛顿三大运动定律牛顿三大运动定律是描述物体在外力作用下运动规律的基本定律。
第一定律也被称为惯性定律,它说明了当物体没有外力作用时,将保持静止或匀速直线运动。
第二定律描述了物体的加速度与外力和物体质量的关系,可以通过F=ma公式来表示。
第三定律则指出了力的作用与反作用的平衡关系。
六、力的合成与分解当多个力作用于一个物体时,我们可以通过力的合成和力的分解来进行计算。
力的合成是指将多个力合成为一个合力,力的分解则是将一个力分解为多个分力。
高中力学知识点总结6篇
高中力学知识点总结6篇第1篇示例:高中力学知识点总结力学是物理学的一个重要分支,研究物体的运动规律和相互作用。
在高中阶段,学生学习的力学知识主要包括牛顿运动定律、动能和势能、功和能量、机械振动等内容。
下面我们就来系统总结一下这些知识点。
一、牛顿运动定律牛顿运动定律是经典力学的基础,共包括三条定律:1. 牛顿第一定律(惯性定律):物体在静止或匀速直线运动时,若外力合成力为零,则物体将保持原来的状态。
2. 牛顿第二定律(运动定律):物体所受合外力等于该物体的质量与加速度的乘积。
3. 牛顿第三定律(作用与反作用定律):两个物体之间的相互作用力大小相等,方向相反。
二、动能和势能1. 动能:一个物体由于运动所具有的能力,其大小等于物体质量乘以速度的平方再乘以1/2。
2. 势能:物体在某一位置上由于位置而具有的能量,包括重力势能、弹性势能等。
三、功和能量1. 功:力对物体做功的大小等于力与物体位移方向相同部分的乘积。
2. 能量:系统具有的做功能力的量称为机械能,包括动能和势能。
机械能守恒原理是宇宙间一种基本的能量守恒规律。
四、机械振动1. 单摆:单摆是清晰的简谐运动,其周期与振幅无关,只与摆长有关。
2. 弹簧振动:弹簧振动是一种简谐振动,其频率与弹簧的劲度系数和质量有关。
以上是高中力学知识点的简要总结,希望可以帮助同学们更好地理解力学知识,提高解题能力。
在学习力学知识时,要多做题,善于总结,加深理解。
只有通过不断练习和思考,才能真正掌握力学知识,为将来的学习打下坚实的基础。
【2000字】第2篇示例:高中力学知识点总结力学是物理学的一个重要分支,研究物体的运动规律和力的作用关系。
在高中物理学教学中,力学是一个重要的内容,学生需要掌握一些基本的力学知识点。
本文将对高中力学知识点进行总结,方便学生复习和回顾。
一、牛顿三定律1. 第一定律:一个物体如果处于静止状态或匀速直线运动状态,其速度不会改变,除非受到外力的作用。
高一力学知识点归纳整理总结
1.第一定律(惯性定律):物体在没有外力作用下,保持静止或匀速直线运动。
2.第二定律(运动定律):物体的加速度与作用在物体上的力成正比,反比于物体的质量。
3.第三定律(作用-反作用定律):任何两个物体之间的相互作用力,都有相等大小、方向相反的两个力。
五、力与力的合成
1.力:力是物体之间相互作用的原因,用矢量表示,力的单位是牛顿(N)。
2.功率:功率是指单位时间内所做的功,表示能量的转化速率。
十、机械能守恒定律
机械能守恒定律是指在只有重力做功和物体没有受到其他非保守力做功的情况下,系统的机械能保持不变。
以上是高一力学知识点的归纳整理总结。通过深入理解这些知识点,我们可以更好地理解物体的运动规律和相互作用,为进一步学习和应用物理知识打下坚实的基础。
二、位移与速度
1.位移:位移是指物体在运动中从起始位置到终止位置之间的位置变化,用矢量表示。
2.速度:速度是位移与时间的比值,表示物体在单位时间内所发生的位移变化。
三、加速度与速度的变化
1.加速度:加速度是速度与时间的比值,表示单位时间内速度的变化量。
2.速度的变化:物体在运动过程中,速度可以保持不变、匀速变化或变化不规则,根据加速度的不同,速度的变化可以是正加速度、负加速度或零加速度。
2.力的合成:当一个物体受到多个力的作用时,可以将这些力按一定的方法合成为一力,称为合力。
六、摩擦力和斜面上的力
1.摩擦力:摩擦力是由接触面之间的粗糙度和物体间的相互作用导致的阻碍运动的力。
2.斜面上的力:当物体在斜面上运动时,需要考虑斜面对物体的支持力和摩擦力对物体的阻碍。
七、重Байду номын сангаас与弹力
1.重力:地球对物体的吸引力称为重力,它的大小与物体的质量成正比。
高中力学知识点总结7篇
高中力学知识点总结7篇篇1一、力学基础知识概述力学是研究物体机械运动规律的科学,是高中物理的核心组成部分。
在高中阶段,涉及的力学知识点主要包括牛顿运动定律、能量转换与守恒、功与能原理等。
掌握这些知识点对解决力学相关问题具有重要意义。
二、牛顿运动定律要点(一)牛顿第一定律(惯性定律)此定律说明了物体不受外力作用时的运动状态:静止或匀速直线运动。
一切物体都有保持其原有运动状态的性质,即惯性。
(二)牛顿第二定律(加速度定律)描述了力与物体加速度之间的关系,具体表述为:物体的加速度与作用力成正比,与物体质量成反比。
公式表示为F=ma。
(三)牛顿第三定律(作用与反作用)描述了力的相互作用关系,指出作用力与反作用力的大小相等、方向相反,并且作用于相互作用的两个物体上。
三、能量转换与守恒要点(一)动能和势能动能是物体因运动而具有的能量,势能分为重力势能和弹性势能。
动能和势能可以相互转化。
(二)机械能守恒定律在只有重力或弹簧弹力做功的情况下,物体的动能和势能相互转化但总量保持不变。
这是力学中非常重要的一个定律,能帮助解决很多实际问题。
四、功与能原理要点(一)功的概念功是力在距离上的累积效应,是用来描述力对物体所做功的能量转化量度的物理量。
功的计算公式为W=Fs。
(二)能量转化与做功的关系功是能量转化的量度,做功的过程就是能量转化的过程。
做功的过程伴随着能量的转移或转化,功是能量转化的量度。
通过做功可以实现动能和势能之间的转化以及其他形式的能量转化。
五、力学中的其他重要知识点除了上述内容外,高中力学还包括圆周运动、万有引力定律、动量定理等重要知识点。
这些知识点在实际问题中的应用也非常广泛,需要同学们深入理解和掌握。
六、总结与应用建议高中力学知识点众多且相互联系,要想掌握并熟练运用这些知识解决实际问题,需要同学们多做习题以加深理解,并注重理论与实际相结合。
此外,在学习时要注意知识点的层次性和系统性,遵循从基础到进阶的学习路径,逐渐深化对力学知识的理解与应用能力。
大一力学知识点归纳总结
大一力学知识点归纳总结力学是物理学中最基础的学科之一,它研究物体的运动和相互作用。
在大一学习阶段,我们接触到了许多力学的基本知识点。
本文将对大一力学知识点进行归纳总结,帮助同学们更好地掌握这些概念和原理。
一、力学的基本概念力学的基本概念包括力、质点、质量、速度、加速度等。
力是物体产生运动或形变的原因,通常用矢量表示。
质点是指物体的形状和大小都可以忽略的对象,它只有质量但没有体积。
质量是物体惯性的度量,用于描述物体的数量级和质量大小。
速度是质点在单位时间内位移的大小和方向,加速度是质点在单位时间内速度的变化率。
二、牛顿运动定律牛顿运动定律是力学研究的基石,描述了物体的运动规律。
包括牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)和牛顿第三定律(作用-反作用定律)。
牛顿第一定律指出,在没有外力作用的情况下,物体将保持静止或匀速直线运动。
牛顿第二定律描述了力对物体运动状态的影响,它表示物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。
三、运动学运动学研究物体的运动状态和运动规律,其中包括位移、速度和加速度的概念。
位移表示物体从起始位置到结束位置的位置变化,是一个矢量量。
速度是位移在单位时间内的变化率,是一个矢量量。
加速度是速度在单位时间内的变化率,也是一个矢量量。
在直线运动和曲线运动中,我们可以使用运动方程和曲线运动方程来描述物体的运动规律。
四、动力学动力学研究物体的运动和作用力之间的关系。
其中包括动量、能量和功的概念。
动量是描述物体运动状态的物理量,它等于物体的质量与速度的乘积。
根据动量定理,当物体受到作用力时,物体的动量将发生改变。
能量是物体的一种守恒量,包括动能和势能。
动能是物体由于运动而具有的能量,计算公式为动能=1/2mv²,其中m为物体的质量,v为物体的速度。
势能是物体由于其位置而具有的能量,计算公式为势能=mgh,其中m为物体的质量,g为重力加速度,h为物体的高度。
高一力学知识点
高一力学知识点导言:力学是物理学的一个重要分支,研究物体的运动和相互作用。
在高中阶段,学生接触到了较为系统的力学知识,本文将重点探讨一些高一力学的基础知识点。
I. 速度、位移和加速度速度、位移和加速度是力学中最基本的概念之一。
速度是一个物体的位移随时间的变化率,用公式表示为v = Δx/Δt,其中 v 表示速度,Δx 表示位移,Δt 表示时间。
加速度则是速度随时间的变化率,用公式表示为a = Δv/Δt,其中 a 表示加速度,Δv 表示速度的变化量。
II. 牛顿第一定律牛顿第一定律,也称为惯性定律,阐述了物体在无外力作用下保持静止或匀速直线运动的状态。
这一定律可以用经典的“落苹果”实验来解释:当苹果悬挂在树上无外力作用时,它会保持静止;而当苹果受到外力(如风力)作用时,它会改变运动状态。
III. 牛顿第二定律牛顿第二定律描述了物体受力时的运动规律。
它指出,物体所受合力的大小与物体的加速度成正比,与物体的质量成反比。
公式表示为 F = ma,其中 F 表示合力,m 表示物体的质量,a 表示物体的加速度。
这个定律解释了为什么不同质量的物体在相同力下具有不同的加速度。
IV. 牛顿第三定律牛顿第三定律,也称为作用-反作用定律,阐述了物体间相互作用的性质。
根据这个定律,任何作用力都会有一个大小相等、方向相反的反作用力。
例如,当一个人站在地板上时,他的体重向下作用于地板,而地板会反过来施加与体重大小相等、方向相反的支持力。
V. 摩擦力摩擦力是物体接触并相对运动时产生的力。
它分为静摩擦力和动摩擦力。
静摩擦力是阻止两个物体开始相对运动的力,而动摩擦力是两个物体相对运动过程中产生的阻力。
摩擦力的大小与两个物体之间的摩擦系数和法向压力成正比。
VI. 重力重力是地球对物体施加的引力。
根据万有引力定律,物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
重力的作用下,物体在垂直方向上具有重力加速度,并且所有物体在同样的自由落体实验中将以相同的加速度下落。
高一力学知识点归纳
高一力学知识点归纳高一力学学问点归纳第一篇理解要点:(1)力具有物质性:力不能离开物体而存在。
说明:①对某一物体而言,可能有一个或多个施力物体。
②并非先有施力物体,后有受力物体(2)力具有互相性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。
说明:①互相作用的物体可以直接接触,也可以不接触。
②力的大小用测力计测量。
(3)力具有矢量性:力不仅有大小,也有方向。
(4)力的作用效果:使物体的样子发生转变;使物体的运动状态发生改变。
(5)力的种类:①依据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。
②依据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。
说明:依据效果命名的,不同名称的力,性质可以相同;同一名称的力,性质可以不同。
高一力学学问点归纳第二篇求几个共点力的合力,叫做力的合成。
(1)力是矢量,其合成与分解都遵循平行四边形定则。
(2)一条直线上两力合成,在规定正方向后,可利用代数运算。
(3)互成角度共点力互成的分析①两个力合力的取值范围是|F1-F2|≤F≤F1+F2②共点的三个力,假如任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。
③同时作用在同一物体上的共点力才能合成(同时性和同体性)。
④合力可能比分力大,也可能比分力小,也可能等于某一个分力。
高一力学学问点归纳第三篇说明:①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是依据物体的“需要〞取值,所以与正压力无关。
②最大静摩擦力大小决定于正压力与最大静摩擦因数(选学)Fm=μsFN。
ⅳ效果:总是阻碍物体间的相对运动的趋势。
对物体进行受力分析是解决力学问题的基础,是讨论力学的重要方法,受力分析的程序是:依据题意选取适当的讨论对象,选取讨论对象的原则是要使对物体的讨论处理尽量简便,讨论对象可以是单个物体,也可以是几个物体组成的系统。
把讨论对象从四周的环境中隔离出来,根据先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、力学的建立
力学的演变以追溯到久远的年代,而物理学的其它分支,直到近几个世纪才有了较大的发展,究其原因,是人们对客观事物的认识规律所决定的。在日常生活和生产劳动中,首先接触最多的是宏观物体的运动,其中最简单。最基本的运动是物体位置的变化,这种运动称之为机械运动。由此我们注意到,力学建立的原动力就是源于人们对机械运动的研究,亦即力学的研究对象就是机械运动的客观规律及其应用。了解了这些,可以对力学的主脉络有了一条清晰的线索,就是对于物体运动规律的研究。首先要涉及到物体在空间的位置变化和时间的关系,继而阐述张力之间的关系,然后从运动和力出发,推广并建成完整的力学理论。正是要达到上述目的,我们在研究过程中,就需要不断地引入新的物理概念和方法,此间,由“物”及“理”的思维过程和严密的逻辑揄体系,逐步得以完善和体现。明确了以上观点,可以使我们在学习及复习过程,不会生硬地接受。机械地照搬,而是自然流畅地水到渠成。
把握一个概念的来龙去脉和准确定义显然是非常重要的,可以避免一些相似概念的混淆。如功与冲量。动能与动量。加速度与速度等等。所谓学习物理要“概念清楚”,就是这个含意。
三、力学规律的运用
物理概念的有机组合,构成了美妙的物理定律。因此,清晰的概念是掌握一个定律的重要前提。如牛顿第二定律就是由力。质量及加速度三个量构成的。在力学中重要的定律定理有:牛顿一。二。三定律;机械能守恒定律;动量守恒定律;万有引力定律;动量定理和动能定理。掌握定律并非以记忆为标准,重要的是会在实际问题中加以运用。如牛顿第二定律,从形式上看来并不复杂,然而很多同学在解决连结体问题时,却总是把握不好这三个量对研究对象之间的“对应关系”。在此可举一例。水平光滑轨道上有一小车,受一恒定水平拉力作用,若在小车上固定一个物体时,小车的加速度要减小是何原因?常见的答案显然是:合外力不变,质量变大。然而,若回答合外力变小,是不是正确的呢?这里显然是由于研究对象的选择不同而造成的不同结果。在此,研究对象的确定和公式各量的对应性问题,起着关键的作用,这也恰恰是牛顿第二定律应用时的重要环节。
四、逻辑推理在物理中的运用
逻辑推理在力学中可以说俯拾皆是。严密的逻辑推理,是正确运用物理规律解决问题的必由之路。试举一例:做曲线运动的物体一定受合外力 ,其逻辑推理过程如下:曲线运动的速度方向沿轨迹的切线方向,而曲线切线方向每点是不同的,因此曲线运动的速度方向一定是不断变化的。由于的矢量,所以曲线运动必为变速运动,必然有加速度,由牛顿第二定律可知其必受合外力。当然,实际问题中似乎并非如此繁琐,然而细细地想来又的如此,只是思维过程较为迅速罢了。再举一例:合外力对物体做功不为零,则物体的动量一定发生变化,而物体的动量变化,合外力对物体不一定做功。此命题依然可用逻辑推理说明其正确性。根据动能定理,当合外力做功时,则物体的动能必然发生变化,因此速率发生变化,则动量必然变化。反之支量发生变化,动能不一定变(动量是矢量,动能是标量),则合外力不一定做功。不难看出,清晰地认识概念,牢固地掌握规律,者严密正确的逻辑推理得以完成的重要前提和充足的条件补充。同学们若多留意。多用心,定会受益非浅。
二、力学概念的引入
前面曾经提到过,力学的研究对象是机械运动的客观规律及其应用。为达此目的,我们需要不断地引入许多概念。以运动学部分为例,体会一下力学概念引入的动机及方法,这对力学的复习无疑是大有裨益的。
让我们研究一下行驶在平直公路上的汽车。首先一个问题就是,怎样确定汽车在不同时刻的位置。为了能精确地确定汽车的位置,我们可将汽车看作一个点,这样,质点的概念随之引入。同时,参照物的引入则是水到渠成的,即在参照物上建立一个直线坐标,用一个带有正负号的数值,即可能精确描述汽车的位置。而后由于汽车位置要不断地发生变化,位置的改变-位移亦被引入,至于速度的引入在此就不再赘述。在学习物理的过程中,这类问题可以说比比皆是。因此,只有搞清引入某一概念的真正意图,才能对要研究的问题有深入的了解,才能说真正地掌握了一个物理概念。而在物理中,引入概念的方法,充分体现了物理学的研究手段,例如:用比值定义物理量。该方法在整个物理学中具有很典型的意义。
运动学规律及动力学关系在解决问题时,也有许多应当注意和思考的地方。如在匀速圆周运动中,我们似乎并未明确指出哪些公式属于运动学关系,哪些属于动力学关系,但在实际问题中却可使人困惑。例如:在一光滑水平面上用绳拴一小球做匀速圆周运动,由公式v=2nr/T可以知道,若增大速率V可以减小周期T.然而卫星绕地球做匀速圆周运动时,我们却不能用增大V的方式来改变周期T,若仅在V=2nr/Th 大做定会百思不得其解。究其原因,还是由于忽略了动力学原因,即前者与后者的最大区别是向心力不同。一个是绳子弹力,它可以以r不变时,任意提供了不同大小的拉力;而另一个是万有引力,当r一定时,其大小也就一定了。在这类问题上,最容易犯的就是片面性的错误。再比如机械能守恒和动量守恒这两条重要的力学定律,我们是否了解了守恒的条件,就可以做到灵活地运用呢?我们知道,机械能守恒的条件是“只有重力做功”,有些人看到某个问题中,重力没有做功,就立刻得出机械能不守恒的结论,如光滑水平面上的匀速直线运动。造成这类错误的原因是,只注意到了物理定律的文字表述,孰不知深刻理解其内涵才是最重要的。如动量守恒定律的内涵,是在满足了守恒条件的情况下,即系统不受外力或外力合力为零,动量只是在系统内部传递,而总动量不变。
最后谈谈动能定理和动量定理。观察其形式可以发现,每个定理都涉及两个状态量和一个过程量,注意到这一点应是定理正确应用的关键。我们不妨将状态看作一个点,过程看作一条线,在应用时必然是“两点夹一线”,即状态量及过程量,一定要对应,这也是两个定理的相似之处,至于它们的区别,在此就不多讲了。
由以上的讨论可以看出,对物理定律的应用,绝不能只满足于会用,而应当多方面地体会其深层的含意和适用条件中所包含的物理意义。只有这样,才能达到灵活运用物理规律解题的目的,做到居高临下,以不变应万变。
让我们走入力学的大门看一看,它的殿堂是怎样的金碧辉煌。静力学研究了物体最简单的状态:简单的状态:静止或匀速直线运动。并且阐述了解决力学问题最基本的方法,如受力情况的分析以及处理方式;力的合成。力的分解和正交分解法。应当认识到,这些方法是贯穿于整个力学的,是我们研究机械运动规律的不可缺少的手段。运动学的主要任务是研究物体的运动,但并不涉及其运动的原因。牛顿运动定律的建立为研究力与运动的关系奠定了雄厚的基础,即动力学。至此,从理论上讲各种运动都可以解决。然而,物体的运动毕竟有复杂的问题出现,诸如碰撞。打击以及变力作用等等,这类问题根本无法求解。力学大厦的建设者们,从新的角度对物体的运动规律做了全面的。深入的讨论,揭示了力与运动之间新的关系。如力对空间的积累-功,力对时间的积累-冲量,进而获得了解决力学问题的另外两个途径-功能关系和动量关系,它们与牛顿运动定律一起,在力学中形成三足鼎立之势。