电阻应变式传感器的特点1

合集下载

电阻应变式传感器.

电阻应变式传感器.

电阻应变式传感器应变式传感器是基于测量物体受力变形所产生应变的一种传感器,最常用的传感元件为电阻应变片。

应用范围:可测量位移、加速度、力、力矩、压力等各种参数。

应变式传感器特点①精度高,测量范围广;②使用寿命长,性能稳定可靠;③结构简单,体积小,重量轻;④频率响应较好,既可用于静态测量又可用于动态测量;⑤价格低廉,品种多样,便于选择和大量使用。

1、应变式传感器的工作原理(1) 金属的电阻应变效应金属导体在外力作用下发生机械变形时,其电阻值随着它所受机械变形(伸长或缩短)的变化而发生变化的现象,称为金属的电阻应变效应。

公式推导:若金属丝的长度为L,截面积为S,电阻率为ρ,其未受力时的电阻为R,则:(9.1)如果金属丝沿轴向方向受拉力而变形,其长度L变化dL,截面积S 变化dS,电阻率ρ变化,因而引起电阻R变化dR。

将式(9.1)微分,整理可得:(9.2)对于圆形截面有:(9.3)为金属丝轴向相对伸长,即轴向应变;而则为电阻丝径向相对伸长,即径向应变,两者之比即为金属丝材料的泊松系数μ,负号表示符号相反,有:(9.9)将式(9.9)代入(9.3)得:(9.5)将式(9.5)代入(9.2),并整理得:(9.6)(9.7)或K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。

K0称为金属丝的灵敏系数,其物理意义是单位应变所引起的电阻相对变化。

公式简化过程:由式可以明显看出,金属材料的灵敏系数受两个因素影响:一个是受力后材料的几何尺寸变化所引起的,即项;另一个是受力后材料的电阻率变化所引起的,即项。

对于金属材料项比项小得多。

大量实验表明,在电阻丝拉伸比例极限范围内,电阻的相对变化与其所受的轴向应变是成正比的,即K0为常数,于是可以写成:(9.8) Array通常金属电阻丝的K0=1.7~4.6。

通常金属电阻丝的K0=1.7~4.6。

(2) 应变片的基本结构及测量原理距用面积。

应变片的规格一般以使用面积和电阻值表示,如2为的电阻丝制成的。

电阻应变式传感器

电阻应变式传感器

当温度变化∆t时,电阻丝电阻的变化值为:
∆Rα=Rt-R0=R0α0∆t
2) 试件材料和电阻丝材料的线膨胀系数的影响 当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如 何变化,电阻丝的变形仍阻丝材料的线膨胀系数不同时,由于环境温度的 变化,电阻丝会产生附加变形,从而产生附加电阻变化。 设电阻丝和试件在温度为0℃时的长度均为l0, 它们的线膨胀 系数分别为βs和βg,若两者不粘贴,则它们的长度分别为
当电桥平衡时, Uo=0, 则有 或 R1R4 = R2R3
R1 R3 = R2 R4
电桥平衡条件:相邻两臂 电桥平衡条件 电阻的比值应相等, 或相 对两臂电阻的乘积相等。
电桥接入的是电阻应变片时,即为应变桥。当一个 桥臂、两个桥臂乃至四个桥臂接入应变片时,相应 的电桥为单臂桥、半桥和全臂桥。 2.不平衡直流电桥的工作原理及电压灵敏度
R1 Z1 = R1 + jwR1C1
R2 Z2 = R2 + jwR2C2
Z 3 = R3
输出电压
⋅ ⋅
Z 4 = R4
U ( Z1Z 4 − Z 2 Z 3 ) U0 = ( Z1 + Z 2 )( Z 3 + Z 4 )
要满足电桥平衡条件, 即U0=0, 则有 Z1 Z4 = Z2 Z3


∆R ∆ρ = (1 + 2 µ )ε + R ρ
∆ρ ∆R R = (1 + 2 µ ) + ρ
ε
ε
通常把单位应变能引起的电阻值变化称为金属电 阻丝的灵敏度系数。其物理意义是单位应变所引起的 电阻相对变化量, 其表达式为 ∆ρ ρ K 0 = 1 + 2µ + ε ∆R = k 0ε 因此 R 灵敏度系数受两个因素影响: ①受力后材料几何尺寸的变化, 即(1+2µ); ②受力后材料的电阻率发生的变化, 即∆ρ/

应变式传感器实验报告

应变式传感器实验报告

应变式传感器实验报告
一、实验目的
1.了解应变式传感器的工作原理和特点;
2.掌握应变式传感器的使用方法和注意事项;
3.学习应变式传感器的数据采集和处理方法。

二、实验原理
应变式传感器是一种能够将物体的应变转化为电信号输出的传感器。

其工作原理是利用金属材料在受力作用下发生应变,从而改变其电阻值,进而输出电信号。

应变式传感器的特点是精度高、灵敏度高、响应速度快、可靠性好等。

三、实验器材
1.应变式传感器;
2.数据采集卡;
3.计算机。

四、实验步骤
1.将应变式传感器固定在被测物体上;
2.将应变式传感器与数据采集卡连接;
3.打开数据采集软件,进行数据采集和处理。

五、实验结果
在实验中,我们将应变式传感器固定在一根钢杆上,施加不同的力,记录下相应的电信号输出值。

实验结果如下表所示:
力(N)电信号输出值(mV)
0 0
10 2.5
20 5.0
30 7.5
40 10.0
从实验结果可以看出,随着施加力的增加,应变式传感器的电信号输出值也随之增加,呈现出线性关系。

六、实验分析
1.应变式传感器的灵敏度高,可以精确地测量被测物体的应变情况;
2.应变式传感器的响应速度快,可以实时地输出电信号;
3.应变式传感器的可靠性好,可以长期稳定地工作。

七、实验结论
通过本次实验,我们了解了应变式传感器的工作原理和特点,掌握了应变式传感器的使用方法和注意事项,学习了应变式传感器的数据采集和处理方法。

应变式传感器是一种精度高、灵敏度高、响应速度快、可靠性好的传感器,广泛应用于工业、军事、医疗等领域。

电阻应变片式传感器及应用

电阻应变片式传感器及应用
对于微小变化,d 故有,R

S
L
L L 2 S S S
L 应变: L 引入两个概念 D D 泊松比: L L

R L S R L S
2DD S S 4 4 S D 2 S D
R1 U U R1 1 2 R R1 2 4 R 1 R1 2R
R R1 1 1 R1 1 2R R1 0 2R
U o
U R1 4 R
以上说明:单臂工作时,输出电压与应变片电阻变化率之间是近
似的线性关系,实际上是非线性关系。这会带来非线性误差。
压阻式固态压力传感器
利用扩散工艺制作的四个 半导体应变电阻处于同一硅片 上,工艺一致性好,灵敏度相 等,漂移抵消,迟滞、蠕变非 常小,动态响应快。
压阻式固态压力传感器的隔离、承压膜片
隔离、承压膜片 可以将腐蚀性的气体、 液体与硅膜片 隔离开 来。
p 压阻式固态 压力传感器
内部结构
信号处 理电路
导体的电阻随着机械变形而发生变化的现象, 称为电阻应变效应

金属应变片有:丝式和箔式 优点:稳定性和温度特性好. 缺点:灵敏度系数小.

应变效应:
受外力F作用 应力 L,S, R
dR dL L d L dS 对R按应力 求全微分得: 2 d S d S d S d
r r t t 若半导体只沿纵向受应 力,则 r E 式中: r t 纵向、横向压阻系数 E 半导体弹性模数
R (1 2 r E ) r E R
r t 纵向、横向应力 纵向应变
' ' R1' R1 1,R2 R2 1,R3' R3 1,R4 R4 1,

《电阻应变式传感器》课件

《电阻应变式传感器》课件
薄膜电阻应变式传感器利用薄膜材料制作,具有高灵敏度、低热误差等特点;微型电阻应变式传感器则具有体积 小、重量轻、易于集成等优点,常用于微机电系统等领域。
03
电阻应变式传感器的测量电路
直流电桥测量电路
优点
简单、可靠、稳定性好。
缺点
对温度变化敏感,需要采取温度 补偿措施。
交流电桥测量电路
优点
对直流电源的稳定性要求较低,可以减小电源波动对测量结 果的影响。
在工业生产过程中,电阻应变式压力传感器被广泛应 用于压力控制、流量控制等场合,如气瓶压力监测、 管道压力监测等。
汽车行业
汽车发动机、气瓶、刹车系统等都需要用到压力传感 器,来监测和控制各种气体和液体的压力。
位移传感器的应用实例
自动化生产线
在自动化生产线上,位移传感器被用来检测和控制系 统中的物体位置,如机器人手臂的定位、传送带的物 体位置检测等。
电阻应变式传感器
目 录
• 电阻应变式传感器简介 • 电阻应变式传感器的类型与特性 • 电阻应变式传感器的测量电路 • 电阻应变式传感器的误差来源与补偿方法 • 电阻应变式传感器的应用实例
01
电阻应变式传感器简介
定义与工作原理
定义
电阻应变式传感器是一种将应变转换为电阻变化的传感器,通过测量电阻的变 化来测量受力状态。
总结词
半导体应变式传感器具有高灵敏度、 低温度系数和良好的线性等优点。
详细描述
半导体应变式传感器利用半导体的压 阻效应,即当半导体受到外力作用时 ,其电阻值会发生变化。这种传感器 常用于测量加速度、压力和振动等物 理量。
陶瓷电阻应变式传感器
总结词
陶瓷电阻应变式传感器具有耐高温、耐 腐蚀、高绝缘性和良好的稳定性等特点 。

电阻应变式传感器介绍

电阻应变式传感器介绍

最低固化条件 室温10小时或
60℃2小时 室温1小时 室温24小时 室温2.5小时 200℃2小时 150℃3小时 150℃1小时 190℃3小时 200℃3小时 280℃2小时 400℃1小时 400℃3小时
固化压力 /104Pa 0.5~1
粘合时指压
0.3~0.5 粘合时指压 粘合时指压
2 1~2 — — 1~3
基底材料有纸基和胶基。胶基由环氧树脂、酚醛树脂和聚酰亚胺等 制成胶膜, 厚度约0.03~0.05mm
3.黏合剂材料
用于将敏感栅固定于基底上,并将盖片与基底粘贴在一起。使用 金属应变片时,也需用粘结剂将应变片基底粘贴在构件表面某个方 向和位置上。以便将构件受力后的表面应变传递给应变计的基底和 敏感栅。
2.3应变片的主要参数
1.应变片电阻值(R0) 电阻应变片的电阻值为60Ω、120Ω、350Ω,500Ω和1000Ω 等 多种规格,以120Ω最为常用。 应变片的电阻值越大,允许的工作电压就大,传感器的输出电压 也大,相应地应变片的尺寸也要增大,在条件许可的情况下,应 尽量选用高阻值应变片。
2.绝缘电阻(敏感栅与基底间电阻值: 要求>1010欧姆;
在金属丝的弹性范围内,灵敏系数KS 为常数,即 :
R R
Ks
线性关系
通常很小, 常用10-6表示之。例如, 当 为0.000001时, 在工程中 常表示为1 10-6或 m/m。在应变测量中, 也常将之称为微应变
(με)。对金属材料而言, 当它受力之后所产生的轴向应变最好不要 大于1 10-3, 即1000 m/m, 否则有可能超过材料的极限强度而 导致断裂。
合剂
化环已酮、萘酸钴干料
环氧树脂、聚硫酚铜胺、 固化剂
环氧树脂类 酚醛环氧、无机填料、

电阻式应变传感器

电阻式应变传感器

电阻式应变传感器是以电阻应变计为转换元件的传感器,其精确测量工作的原理是应变式原理。

这种应变计可以将变形能量转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。

弹性敏感元件、电阻应变计、补偿电阻和外壳组成的电阻应变式传感器,可以根据具体测量要求,设计成多种结构的形式。

还有这样的事实存在,弹性敏感元件如果受到所测量的力会产生变形,并使附着其上的电阻应变计一起变形。

目前,在测量行业内,常用的电阻应变式传感器有应变式测力传感器、应变式压力传感器、应变式扭矩传感器、应变式位移传感器、应变式加速度传感器和测温应变计等。

电阻应变式传感器的优点是精
度高,测量范围广寿命长,结构简单,频响特性好,能在恶劣条件下工作,易于实现小型化、整体化和品种多样化等。

电阻式应变传感器常见的特点有以下几点:
①精度高,测量范围广;
②使用寿命长,性能稳定可靠;
③结构简单,体积小,重量轻;
④频率响应较好,既可用于静态测量又可用于动态测量;
⑤价格低廉,品种多样,便于选择和大量使用。

蚌埠高灵传感系统工程有限公司在自主创新的基础上开发生产出力敏系列各类传感器上百个品种,各种应用仪器仪表和系统,以及各种起重机械超载保护装置,可以广泛应用于油田、化工、汽车、起重机械、建设、建材、机械加工、热电、军工、交通等领域。

公司除大规模生产各种规格的高精度、高稳定性、高可靠性常规产品外,还
可根据用户具体要求设计特殊的非标传感器,以满足用户的特殊要求。

如果您想进一步的了解,可以直接点击官网高灵传感进行在线了解。

应变式、压阻式、压电式传感器特性比较

应变式、压阻式、压电式传感器特性比较

应变式、压阻式、压电式传感器特性比较1.应变式传感器应变式传感器是把力的变化转换成电阻值的变化来进行测量的,应变片是由金属导体或半导体制成的电阻体,其阻值随力所产生的应变而变化。

应变效应是导体受机械变形时,其电阻值发生变化的现象。

2.压阻式传感器压阻式传感器的灵敏度比金属丝式应变片的灵敏度高,其精度好,而且响应频率好,工作可靠。

缺点是受温度影响较大,应进行温度补偿压阻效应是物质受外力作用发生变形时,其电阻率发生变化的现象。

3.压电式传感器压电式传感器的原理是基于某些晶体材料的压电效应,目前广泛使用的压电材料有石英和钛酸钡等,当这些晶体受压力作用发生机械变形时,在其相对的两个侧面上产生异性电荷,这种现象称为“压电效应”。

压电式压力传感器不能用作静态测量,一般用于测量脉动压力,不能测量静压力;压电传感器产生的信号很弱而输出阻抗很高,必须根据压电传感器的输出要求,将微弱的信号经过电压放大或电荷放大(一般是电荷放大),同时把高输出阻抗变换成低输出阻抗,此信号才能被示波器或其他二次仪表接受。

压电式传感器与压阻式传感器的区别及其优缺点前边的那个受电场的干扰,后边那个受温度的干扰,看你用在那个场合。

前者的原理是压电效应,后者原理是受力后的应变。

前者的缺点是电荷泄露,优点是结构简单,灵敏度和信噪比高。

后者的缺点是信噪比不高,而且结构比前者复杂,优点是便宜,耐用,频率响应好。

压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。

其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。

当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。

用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。

压电式传感器:基于压电效应的传感器。

是一种自发电式和机电转换式传感器。

应变式电阻传感器的工作原理

应变式电阻传感器的工作原理

应变式电阻传感器的工作原理引言应变式电阻传感器是一种常用的传感器,广泛应用于工程领域。

其工作原理是利用材料的应变特性来测量所受力的大小。

本文将详细介绍应变式电阻传感器的工作原理以及其在实际应用中的一些特点。

一、工作原理应变式电阻传感器是通过在感应材料中引入电阻应变来测量外力的。

当受力作用于材料时,材料会发生应变,即长度或形状发生变化。

这种应变会导致材料的电阻发生变化,进而改变电路中的电流和电压。

具体来说,应变式电阻传感器通常由一条细长的金属电阻丝或薄膜组成,该电阻丝或薄膜被粘合在一个弹性体基座上。

当外力作用于传感器时,弹性体基座会发生形变,从而使电阻丝或薄膜发生拉伸或压缩。

这些形变会导致电阻丝或薄膜的电阻值发生变化。

二、工作特点1. 高精度:应变式电阻传感器具有较高的测量精度,可达到微米级别。

这使得它在许多精密测量领域得到广泛应用,如机械工程、材料科学等。

2. 宽测量范围:应变式电阻传感器的测量范围较宽,可以覆盖从微小变形到大变形的范围。

这使得它适用于各种不同应变程度的测量需求。

3. 快速响应:应变式电阻传感器具有快速的响应速度,可以实时地测量外力的变化。

这使得它在需要实时监测的应用中非常有用,如结构健康监测、力学测试等。

4. 抗干扰性强:应变式电阻传感器对外界干扰具有一定的抗干扰性能。

它的结构设计使其能够有效屏蔽外界电磁干扰,提高测量的准确性。

5. 结构简单:应变式电阻传感器的结构相对简单,制造成本较低。

这使得它成为一种经济实用的传感器。

三、应用领域应变式电阻传感器在工程领域有广泛的应用,以下是一些常见的应用领域:1. 结构健康监测:应变式电阻传感器可以用于监测建筑物、桥梁、飞机等结构体的应变情况,及时发现并修复潜在的结构问题。

2. 材料力学测试:应变式电阻传感器可以用于测量材料的力学性能,如材料的强度、刚度等参数。

3. 汽车工程:应变式电阻传感器可以用于测量汽车零部件的应变情况,如发动机支架、悬挂系统等。

电阻式传感器的分类

电阻式传感器的分类

以下为电阻式传感器分类及其相关知识点介绍,一起来了解一下吧。

电阻式传感器分类:电阻式传感器按其工作原理可分为:电阻应变式;电位计式;热电阻式;半导体热能电阻传感器等。

电阻式传感器优缺点:优点:(1)有较大的非线性、输出信号较弱,但可采取一定的补偿措施。

因此它广泛应用于自动测试和控制技术中。

(2)电阻应变式传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化缺点:(1)对于大应变有较大的非线性、但输出信号较弱。

(2)随着时间和环境的变化,构成传感器的材料和器件性能会发生变化。

因此不适用于长期监测,因为时漂、温漂较大,长时间测的话可能就无法取得真实有效的数据。

(3)易受到电场、磁场、振动、辐射、气压、声压、气流等的影响。

电阻式传感器应用:电阻式传感器与相应的测量电路组成的测力、测压、称重、测位移、加速度、扭矩等测量仪表是冶金、电力、交通、石化、商业、生物医学和国防等部门进行自动称重、过程检测和实现生产过程自动化不可缺少的工具之一。

扩展资料:发展前景:普通电阻传感器朝向高精度、使用方便快捷、省力方向发展。

而电阻传感器是一种把应变信号直接转化成电信号的敏感元件,因此适用于制作各种传感器,电阻传感器主要用于测力、压力、加速度、位移、扭矩等。

过去电阻传感器主要用于试验研究工作,经常用于工业检测以及生产线的称重计量和控制。

而且在医学和生物工程等方面的使用也有所增加。

在使用过程中通常要求传感器具有电信号输出稳定、响应速度快以及体积小、重量轻等特性,而电阻传感器都能满足这样的条件。

但电阻传感器在温度、蠕变、滞后、弹性模量自补偿等多种功能方面还存在不足之处。

但是随着优良的酚醛胶、环氧一酚醛胶以及聚酞亚胺胶等材料的相继问世,性能更完善的电阻传感器将会有更美好的前景。

电阻应变式称重传感器的应用特点

电阻应变式称重传感器的应用特点

电阻应变式称重传感器的应用特点
电阻应变式称重传感器的应用特点
1)由于采用机械运动结构,抗冲击能力较差
电阻应变式地磅称重传感器由于冲击,设备运行一段时间后可能会造成秤台变形,将影响称重精度,并使动态修正曲线发生变化,称量修正无法还原原来的数据,从而使计重设备准确度下降,这时往往需要维修和标定。

2)安装及调试过程比较复杂
相对于组合式或弯板式轴重衡,其基坑建设是比较复杂的,基坑需要挖至深70~80cm,还要将框架用混凝土固定在路面中间后,一次施工周期长,对路面破坏大。

3)不能很好的放水、防水
基坑排水管道出口一般低于收费广场排水沟底,需增加水井和自动潜水泵以保证及时排水,否则将影响称量精度。

4)对恶劣气候没有有效的防范措施
这种结构是钢结构间,由于结构复杂,且有运动部件,虽经一定的防腐处理,但仍男完全解决潮湿以及汽车尾气对设备的腐蚀,如雨水、潮湿气候及汽车尾气,以及车道内的杂物、泥沙、机油等从间隙中落入基坑时,都会影响计重称量设备的正常运行。

第一节 应变式传感器

第一节  应变式传感器

固有振动频率
0.32 f 0 2 2r 0 l 2l
E

r0—筒的内半径(d=2r0);h—筒的厚度;p—筒壁作用压 力;E—弹性模量;l—圆筒长度;μ—圆筒材料泊松比; ρ—材料密度。
3.1.6
扭转圆柱
在力矩测量中常用到扭转圆柱,其结构如图3-9所示。
当圆柱承受扭矩Mt作用时,在柱表面产生的最大剪切应力为
应变式传感器中,敏感元件一般为各种弹性体,传感元件就是
应变片,测量转换电路一般为桥路;第二类是将应变片贴于被 测试件上,然后将其接到应变仪上就可直接从应变仪上读取被 测试件的应变量。
lim F dF K ( ) x 0 x dx
F——作用在弹性元件上的外力 x——弹性元件产生的变形
dF K tg dx
6.灵敏度Sn:刚度的倒数,单位力产生的变形大小
dx Sn dF
当 S C n 元件;

,则
1 K C
,说明弹性元件是线性
Sn C
,说明弹性元件是一非线性元件。
等强度梁各处的应变值为
6l F 3 Eb0 h
自由端挠度为
6l 3 y F 3 Eb0 h
固有振动频率为
0.316h f 0 l2
灵敏度结构系数为:6
E

3.1.3
弹性圆环
如图3-4所示为一弹性圆环,集中载荷F加在顶部,圆环 A、B处的应力为
54 Fd 100bh 2
式中,b—圆环纵向宽度;h—环的厚度;d—圆环平均直径。
当弹性元件由多个元件串联或并联: 弹性元件并联时,总灵敏度Sn计算公式为:
Sn
1 1 i 1 Sni
1
串联时: 7.弹性滞后:

第一章电阻式应变式传感器

第一章电阻式应变式传感器

上午2时13分
38
全桥差动
③ 全桥差动
R1、R4 受拉应变 R2、R3 受压应变
R1+ΔR1
为提高电桥电压灵敏度 n=1 R4-ΔR4
R1-ΔR1 + U0
R4+ΔR4-
R2 R4 1 R1 R3
E 图1.16 全桥差动电路
上午2时13分
39
全桥差动
结论:
Uo
E
R1 R1
KU E
✓Uo与ΔR1/R1成线性关系,无非线性误差, ✓而且电桥电压灵敏度KU=E,是单臂工作时的四倍。 ✓同时还具有温度补偿作用。
上午2时13分
18
温度误差 四、电阻应变式传感器的温度误差及补偿
1、温度误差及产生原因
由于温度变化引起的应变输出
(1)敏感栅电阻值(T)
Rt=R0(1+αΔt)
Rt R0 R0t Rt R0t
附加应变
t
Rt / R0 K
R0t / R0
K
t
K
特点
T ; ; t
上午2时13分
19
温度误差
电 桥
桥臂关系
半等臂电桥
电源端对称 Z1 Z 4, Z 2 Z 3 输出端对称 Z1 Z 2, Z 3 Z 4
全等臂电桥 Z1 Z 2 Z 3 Z 4
负载 电压输出桥:RL , I 0
功率输出桥:U、I
上午2时13分
28
平衡电桥
(一)
R1
R2
1 平衡电桥
RL U0
当RL→∞时,电桥输出电压为:
y x
上午2时13分
泊松比
6
一、工作原理
电阻丝的灵敏系数Ks:单位应变所引起的电阻相对变

电阻式传感器

电阻式传感器

所谓指示应变ε指是指经过校准 的应变仪的应变读数,它是与应变片 的ΔR/R相对应的。真实应变ε真是 应变片的实际应变值。
30
图3-6 应变片的应变极限
第3章 电阻式传感器
一般情况下,影响应变极限大小的主要因素是 粘合剂和基底材料的性能。如使用过期的粘合剂, 因粘合剂与基底材料固定不充分,胶层与基底太厚 等,都会使应变极限达不到要求。
弹性模量是物质所具有的一种属性,它表示 某种材料反抗形变的能力。
物体单纯受张应力或压应力作用时,其应力与 应变的比值称为杨氏模量。 E F S Fl
l l Sl 14
第3章 电阻式传感器
电阻应变片的工作原理 ——金属的电阻-应变效应
金属丝的电阻随着它所受的机械变形的大小而发生相应的变
Hale Waihona Puke 化的现象称为金属的电阻应变效应。
(3-1)
式中:ρ ——电阻丝的电阻率; l ——电阻丝的长度; A ——电阻丝的截面1积6
第3章 电阻式传感器
当电阻丝受到拉力F作用时, 将伸长Δl,横截面积相应减小 ΔA,电阻率因材料晶格发生变形等因素影响而改变了Δρ,为 研究电阻值的变化,将(3-1)式取自然对数:
ln R ln ln L ln A
dr dL
r
L
(3-4)
μ为电阻丝材料的泊松比,负号表示轴向和径向应变方向相反
(dL为正时,dr为负)。
18
第3章 电阻式传感器
将 dA 2 dr 2 、 dL
Ar
L
代入
dR dL dA d
R LA

dR (1 2) d
R
(3-5)
19
第3章 电阻式传感器

dR R (1 2) d

电阻应变传感器实验报告

电阻应变传感器实验报告

一、实验目的1. 理解电阻应变式传感器的基本原理和结构。

2. 掌握电阻应变式传感器的测量方法及其在工程中的应用。

3. 通过实验验证电阻应变式传感器在不同应变条件下的响应特性。

二、实验原理电阻应变式传感器是利用电阻材料的应变效应,将机械变形转换为电阻变化的传感器。

其基本原理如下:当电阻丝受到拉伸或压缩时,其长度和截面积将发生变化,从而导致电阻值的变化。

这种电阻值的变化与应变值呈线性关系。

通过测量电阻值的变化,可以计算出应变值。

实验中使用的电阻应变式传感器主要由电阻应变片、引线、电桥电路和电阻应变仪组成。

三、实验器材1. 电阻应变式传感器2. 电桥电路3. 电阻应变仪4. 拉伸装置5. 载荷装置6. 电流表7. 电压表8. 电阻箱四、实验步骤1. 将电阻应变式传感器安装到拉伸装置上,确保传感器与拉伸装置的连接牢固。

2. 将电桥电路连接到电阻应变仪上,并调整电桥电路的平衡。

3. 通过拉伸装置对传感器施加不同等级的拉伸力,记录相应的应变值。

4. 使用电阻应变仪测量电阻值的变化,并计算应变值。

5. 重复步骤3和4,验证电阻应变式传感器在不同应变条件下的响应特性。

五、实验结果与分析1. 电阻应变式传感器在不同应变条件下的响应特性实验结果表明,电阻应变式传感器在不同应变条件下的响应特性良好,其电阻值的变化与应变值呈线性关系。

当拉伸力逐渐增大时,电阻值也随之增大,且变化趋势与应变值的变化趋势基本一致。

2. 电阻应变式传感器的灵敏度实验结果表明,电阻应变式传感器的灵敏度较高。

在相同的应变条件下,电阻应变式传感器的电阻值变化较大,说明其具有较高的灵敏度。

3. 电阻应变式传感器的线性度实验结果表明,电阻应变式传感器的线性度较好。

在一定的应变范围内,电阻应变式传感器的电阻值变化与应变值呈线性关系,说明其具有较高的线性度。

六、实验结论1. 电阻应变式传感器是一种有效的应变测量装置,具有灵敏度高、线性度好等优点。

2. 电阻应变式传感器在工程中具有广泛的应用前景,如结构健康监测、材料力学性能测试等。

电阻应变式传感器工作原理

电阻应变式传感器工作原理

电阻应变式传感器工作原理
电阻应变式传感器是一种利用电阻值随物体形变而发生变化的传感器,常被用于测量材料的应变或力的大小。

其工作原理基于导电材料在受到应变时电阻值发生变化的特性。

以下是电阻应变式传感器的基本工作原理:
1. 导电材料的特性:电阻应变式传感器通常使用导电性能较好的金属材料,如铜或铂。

这些材料在受到外部应变(例如拉伸或压缩)时,会导致其内部原子结构的变化,从而改变电阻值。

2. 应变引起电阻变化:当导电材料受到应变时,晶格结构发生变化,导致电子流通的路径发生扭曲或拉伸,从而引起电阻值的变化。

这个变化通常是线性的,与应变的大小成正比。

3. 电桥电路:电阻应变式传感器常常被集成到电桥电路中。

电桥电路包括多个电阻,其中一个是电阻应变式传感器。

当传感器受到应变时,其电阻值发生变化,导致整个电桥电路的电阻不平衡。

通过测量电桥电路两个对角线上的电压差,可以确定电阻变化的大小,从而计算出应变的值。

4. 信号放大和处理:电阻应变式传感器输出的信号较小,通常需要进行放大和处理。

使用放大器、滤波器等电子元件来增强和调整传感器输出的信号,以便更准确地测量和记录应变值。

5. 应变测量与力/压力关联:应变是由物体的形变引起的,通过测量电阻应变式传感器的电阻变化,可以间接地得知物体的形变情况。

进一步,通过已知材料的弹性特性,可以将应变转换为物体所受的力或压力值。

总体而言,电阻应变式传感器通过测量导电材料在应变作用下的电阻变化,实现对物体形变的测量,从而可以用于测量受力物体的力或压力。

这种传感器在工程、结构监测和材料测试等领域得到广泛应用。

(完整版)四种压力传感器的基本工作原理及特点

(完整版)四种压力传感器的基本工作原理及特点

四种压力传感器的基本工作原理及特点一:电阻应变式传感器1 1电阻应变式传感器定义被测的动态压力作用在弹性敏感元件上,使它产生变形,在其变形的部位粘贴有电阻应变片,电阻应变片感受动态压力的变化,按这种原理设计的传感器称为电阻应变式压力传感器。

1.2 电阻应变式传感器的工作原理电阻应变式传感器所粘贴的金属电阻应变片主要有丝式应变片与箔式应变片。

箔式应变片是以厚度为0.002——0.008mm的金属箔片作为敏感栅材料,,箔栅宽度为0.003——0.008mm。

丝式应变片是由一根具有高电阻系数的电阻丝(直径0.015--0.05mm),平行地排成栅形(一般2——40条),电阻值60——200 ?,通常为120 ?,牢贴在薄纸片上,电阻纸两端焊有引出线,表面覆一层薄纸,即制成了纸基的电阻丝式应变片。

测量时,用特制的胶水将金属电阻应变片粘贴于待测的弹性敏感元件表面上,弹性敏感元件随着动态压力而产生变形时,电阻片也跟随变形。

如下图所示。

B为栅宽,L为基长。

材料的电阻变化率由下式决定:R Ad d d(1)R A式中;R—材料电阻由材料力学知识得;[(12)(12)]dRR C K (2)K —金属电阻应变片的敏感度系数式中K 对于确定购金属材料在一定的范围内为一常数,将微分dR 、dL 改写成增量ΔR 、ΔL,可得RLK K R L (3) 由式(2)可知,当弹性敏感元件受到动态压力作用后随之产生相应的变形ε,而形应变值可由丝式应变片或箔式应变片测出,从而得到了ΔR 的变化,也就得到了动态压力的变化,基于这种应变效应的原理实现了动态压力的测量。

1.3电阻应变式传感器的分类及特点测低压用的膜片式压力传感器常用的电阻应变式压力传感器包括测中压用的膜片——应变筒式压力传感器测高压用的应变筒式压力传感器1.3.1膜片——应变筒式压力传感器的特点该传感器的特点是具有较高的强度和抗冲击稳定性,具有优良的静态特性、动态特性和较高的自震频率,可达30khz 以上,测量的上限压力可达到9.6mp a 。

第3章 电阻式传感器

第3章 电阻式传感器
通过弹性元件可将位移、压力、振动等物理量通过应力变化,并转换为 电阻的变化进行测量,这是应变式传感器测量应变的基本原理。
3. 主要特性 (1)应变片灵敏系数 k
k0 表征金属丝的灵敏系数,但金属丝做成应变片后,电阻应变特征 与单根金属丝不同。 实际的灵敏系数包括基片、粘合剂、敏感栅的横向效应等因素。做 成应变片以后灵敏系数与k0不同,必须重新标定。 通常采用实验的方法,按统一的标准,如受单向力拉力或压力,试 件材料为钢,箔松系数μ=0.285; 取成品的 5% 进行测定,取平均值做产品的灵敏系数,称标称灵敏 系数k ,即产品出厂时标注的灵敏系数。 实验表明,应变片灵敏系数小于电阻丝灵敏系数,即k<k0 如果实际 应用与标定条件不同时,k 误差较大需要修正。
• • •
(2)横向效应


直线电阻丝绕成敏感栅后,虽然长度相同,但圆弧部分应变状态 不同,圆弧段电阻的变化小于沿轴向摆放的电阻丝电阻变化。
实际应变变化 ε = ΔL/L 比拉直了看要小,可见直线的电阻丝作成 敏感栅后,虽然长度相同,但应变不同。
☻ 园弧部分使灵敏系数 k0↓下降,这种现象
称为横向效应。敏感栅越窄、基长越长, 横向效应越小。
R3 R1 R1 U0 E R R R R R R 1 2 2 3 4 1
按等臂电桥:
R3 R1 R1 U0 E R1 R1 R 2 R 2 R3 R 4
R 2 / R1 R 4 / R 3
n R 2 / R1
U0 E
n ( R1 / R1 ) (1 R1 / R1 n ) 1 n
• 由于 R 1 R 1 ,忽略分母中 R1 / R1 • 电桥输出电压可近似为 电桥输出的电压灵敏度为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 常用传感器工作原理
《传感器原理及应用》
第2章 常用传感器工作原理
第2章 常用传感器
§2.1 电阻式传感器 §2.2 电感式传感器 §2.3 电容式传感器 §2.4 压电式传感器 §2.5 磁电式传感器 §2.6 光电式传感器 §2.7 热电式传感器
《传感器原理及应用》
电阻式传感器概述
第2章 常用传感器工作原理
半导体应变片的灵敏系数比 金属丝式的高50~80倍,但半导 体材料的温度系数大,应变时非 线性比较严重,使应用范围受到 一定的限制。
半导体应变片的优点: 体积小,灵敏度高,频率 响应范围宽,输出幅值大,不 需要放大器,可直接与记录仪 连接,使测量系统简单。
《传感器原理及应用》
第2章 常用传感器工作原理
件:电阻应变片,试件上的
应力变化转换成电阻变化。 F
l
2r 体或半导体在
受到外界力的作用时,产生机械
l+ dl
变形,机械变形导致其阻值变化,
金属丝的应变效应
这种因形变而使阻值发生变化的
如果对电阻丝长度作用均匀
现象称为应变效应。
应力,则ρ、L、A的变化(dρ、
一、金属的应变效应
《传感器原理及应用》
第2章 常用传感器工作原理
2.1 电阻式传感器
2.1.1 工作原理 2.1.2 电阻应变片的主要特性 2.1.3 电阻应变片的测量电路 2.1.4 电阻应变式传感器的应用
《传感器原理及应用》
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
应变效应
应变式传感器的核心元
可测力、压力、位移、应变、加速度等物理量;
力、压 力、位

弹性 敏感 元件
电阻 应变 片
R
电桥 电路
U
工作原理:金属丝、箔、薄膜在外界应力作用下电 阻值变化的效应——电阻应变效应 结构简单,使用方便 易于实现自动化、多点及远距离测量、遥测; 灵敏度高,测量速度快,适合静态、动态测量;
《传感器原理及应用》

压阻效应
制成的一种纯电阻性元件。
压阻效应:
几何形状
d
l
l E x
半导体材料的电阻率随作用应 力的变化而发生变化的现象。
dR R
(1
2
l E) x
当半导体材料受轴向力作用时,
πl 半 导 体 材 料 的 压 阻 系
电阻相对变化为
数 。 式 中 1+2μ 项 随 几 何 形 状
定义:KS为金属丝的灵敏系 数,表示单位应变所引起的电阻 的相对变化,则有
则轴向应变和径向应变的关系为 εy=-μεx μ为金属材料的泊松系数。
KS

dR R
/x

(1 2)
d
/x
《传感器原理及应用》
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
一、金属的应变效应
KS
根据应力σ和应变ε的关系: 应力σ=εE,σ∝ε, 应变ε∝dR,σ∝dR。
通过弹性元件,可将应力转 换为应变,这是应变式传感器测 量应力的基本原理。
《传感器原理及应用》
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
一、金属的应变效应
KS

(1
2)

d
/x
F
l
2r 2(r-dr)
F
灵敏系数KS受两个因素影响: (1)应变片受力后材料几何 尺寸的变化, 即1+2μ; (2)应变片受力后材料的电 阻率的变化,即(dρ/ρ)/ εx 。
金属材料: 灵敏度系数表达式中1+2μ的值 要比(dρ/ρ)/εx大得多。
《传感器原理及应用》
l+ dl
金属丝的应变效应
应变是量纲为1的数。通 常应变很小,常用10-6来表示。 例如,当应变为0.000001时, 在工程中常表示为1×10-6或 μm/m。在应变测量中,也常 称为微应变。
dR R
(1 2 ) x

d
而变化,πlE项为压阻效应, 随电阻率而变化。
《传感器原理及应用》
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
二、半导体的压阻效应
实验证明πlE比1+2μ大近百倍, 所以1+2μ可以忽略,因而半导体应
变片的灵敏系数:
KB

dR R
/x
lE
电阻应变片的种类
按材料分类:
引线 覆盖层
电阻 金属电阻应变片
基片
应变片 半导体电阻应变片
按结构分类:
单片、双片、特殊形状
按使用环境分类:
高温、低温、高压、磁场、水下
一、金属电阻应变片
金属应变片:丝式 箔式 薄膜式
金属丝
金属丝应变片结构
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
一、金属的应变效应
《传感器原理及应用》
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
二、半导体的压阻效应
半导体材料敏感条电阻
半导体应变片又称为压阻式传 感器。
基于半导体材料的压阻效应而
率的相对变化值与其在轴向
所受的应力之比为一常数。
l
2r 2(r-dr)
若电阻丝是圆形的,则A=πr ²,
对r 微分得dA=2πr dr,则 F
F
dA A

2rdr r 2

2
dr r
令dL / L x — 金属的轴向应变 dr / r y — 金属的径向应变
在弹性范围内金属丝受拉力 时,沿轴向伸长,沿径向缩短,
l+ dl
金属丝的应变效应

dR R
/x

(1 2)
d
/x
F
l
2r 2(r-dr)
F
确定的金属材料,(1+2μ)项 是 常 数 , 其 数 值 约 在 1~2 之 间 , 实验证明dρ/ρ╱εx 也是常数。
dR R

KS x ,KS

dR R
/ x
金属的电阻相对变化与应
变成正比关系。
l+ dl
金属丝的应变效应
对于一长为L、横截面积为A、
dL、dA)将引起电阻R变化dR。通 过对上式的全微分可得dR为
电阻率为ρ的金属丝,其电阻值
R为
R L / A
dR dL L d L dA
A
A
A2
《传感器原理及应用》
第2章 常用传感器工作原理
2.1.1 电阻式传感器的工作原理
一、金属的应变效应
第2章 常用传感器工作原理
《传感器原理及应用》
应变片用于各种电子衡器
第2章 常用传感器工作原理
电子天平
磅秤
《传感器原理及应用》
材料应变的测量
第2章 常用传感器工作原理
斜拉桥上的斜拉 绳应变测试
《传感器原理及应用》
第2章 常用传感器工作原理
汽车衡称重系统
《传感器原理及应用》
汽车衡称重 系统
第2章 常用传感器工作原理
相关文档
最新文档