第章高频局部放电检测技术
局部放电检测技术
局部放电检测技术摘要:局部放电试验作为一种非破坏性试验,是电力设备绝缘检测和诊断的重要方法。
随着人们对电力设备可靠性的要求的提高,局部放电技术快速发展,各种局部放电技术应运而生。
文章回顾了局部放电检测技术的发展,重点对常用的几种局部放电测试方法进行介绍,并对未来的局部放电检测作了展望。
关键词:局部放电绝缘检测气隙超高频Abstract: As a kind of non-destructive testing, the partial discharge test is of the important methods for electric power equipment insulation detection and diagnosis. With the increasing demand for electric power equipment reliability, partial discharge technologies develop rapidly , all kinds of partial discharge technology arises at the historic moment. The paper reviews the development of partial discharge detection technique, introduces the most popular method of PD detection, and gives a forecast for the future development of PD test.Keywords: partial discharge,insulation detectionair gap,UHF1.引言电力设备绝缘在运行中受到电、热、机械、不良环境等各种因素的影响,其性能会逐渐劣化,以致出现缺陷,造成故障。
高压电缆高频局部放电带电检测技术原理、检测报告、高频电流检测典型干扰信号
附录A(资料性附录)高压电缆高频局部放电带电检测技术的原理A.1电流耦合型传感器方法将电流耦合型传感器直接卡装在电缆金属屏蔽外,或穿过电缆终端、连接头屏蔽层的接地线,通过感应流过电缆屏蔽层的局放脉冲电流来检测局放,也叫电磁耦合法。
电磁耦合法应用于XLPE电缆PD 在线监测比较成功的例子是1998年瑞士研制的170kV XLPE电缆PD在线监测系统,测量位置选在XLPE中间接头金属屏蔽的连接引线上,系统的检测频带在15~50MHz左右,检测灵敏度可低于15pC。
由于宽频带电磁耦合法具有小巧灵活,操作安全,能真实地反映脉冲波形等特点,正在被广泛的研究和应用。
同时XLPE电缆PD信号微弱、幅值很小,外界强电磁场干扰源很多,特别是地线上干扰信号更为复杂,单纯依赖宽频带滤波器和高倍数的放大器很难排除某些类似PD脉冲的干扰,所以电磁耦合传感器关键在于抗干扰技术。
A.2电容耦合型传感器方法在XLPE电缆中间接头两侧,通过耦合剂将2块金属箔分别贴的金属屏蔽上,金属箔与金属屏蔽筒之间则构成一个约为1500~2000pF的等效电容,再在两金属箔之间连接检测阻抗。
金属箔与电缆屏蔽层的等效电容、电缆导体与绝缘间的等效电容与检测阻抗构成检测回路,检测原理如附图A.1所示。
附图A.1电容型电流传感器检测原理图当电缆接头一侧存在局部放电时,由于另一侧电缆绝缘的等效电容的耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。
耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示。
日本电力公司将此原理应用于275kV的XLPE电缆局部放电在线监测中。
该方法的优点是不必加入专门的高压电源和耦合电容,也无需改变电缆连接线,且由于可等效为桥式电路,故能很好地抑制外界噪声。
A.3电磁感应型传感器方法电磁感应型传感器紧贴于电缆本体或附件表面,通过电磁感应的原理,获取局部放电在电缆本体或附件表面的电磁信号。
附录B(资料性附录)检测报告检测单位检测人员检测时间检测环境(温度、湿度)检测线路名称检测仪器型号及规格检测结果序号检测位置测试相位测试方法测试记录检测结论:测试日期工作负责人附录C(资料性附录)高压电缆局部放电的高频电流检测典型干扰信号C.1白噪声干扰信号白噪声一般指线圈热噪声、地网噪声等各种典型随机噪声,在整个频域内均匀分布,幅值变化不大,无工频相关性,无周期重复现象。
局部放电带电检测技术简介
提高检测准确性与可靠性的研究
1 2 3
抗干扰技术研究
针对局部放电信号的干扰因素,研究有效的抗干 扰技术和信号处理算法,提高检测准确性和可靠 性。
放电模式识别
研究放电模式的分类和识别方法,实现放电类型 的自动判断和预警,为设备的故障诊断和预防性 维护提供支持。
长期稳定性研究
对局部放电带电检测技术的长期稳定性进行研究 和验证,确保监测数据的可靠性和准确性。
详细描述
超声波法利用局部放电时产生的超声波信号,通过超声波传 感器检测这些信号并转换为电信号进行进一步处理。这种方 法适用于设备内部的局部放电检测,不受电磁干扰的影响。
化学法
总结词
通过检测局部放电产生的化学物质来检测局部放电的方法。
详细描述
化学法利用局部放电时产生的化学物质,如气体或微粒,通过化学传感器检测这些物质的变化来检测局部放电。 这种方法在某些特定情况下具有较高的灵敏度,但受限于其响应速度和选择性。
THANK YOU
技术要求高
局部放电带电检测技术需要专业人员 进行操作和维护,对人员的技术要求 较高。
无法检测所有类型缺陷
尽管该技术能够检测到许多类型的绝 缘缺陷,但对于某些特定类型的缺陷 可能无法准确检测。
局限性与改进方向
抗干扰能力
需要进一步提高检测设备的抗干扰能力, 以确保准确检测局部放电信号。
标准化与互通性
推动相关标准的制定和实施,提高不 同设备之间的互通性和兼容性,降低
应用领域
广泛应用于电力、冶金、石油化 工等行业的电气设备绝缘监测。
局部放电的类型与特征
类型
根据放电的机理和特征,局部放电可 分为电晕放电、沿面放电、电弧放电 、悬浮放电等类型。
第章 高频局部放电检测技术
《电网设备状态检修技术(带电检测分册)》第五章高频局部放电检测技术目录第1节高频局部放电检测技术概述发展历程高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。
高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。
高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。
电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT)具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。
罗格夫斯基线圈(Rogowski coils,简称罗氏线圈)用于电流检测领域已有几十年历史。
早在1887年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。
罗格夫斯基线圈检测技术在20世纪90年代被英国的公立电力公司(CEGB)用在名为“El-Cid”的新技术里,用于测试发电机和电动机的定子[1]。
罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。
20世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。
如法国ALSTHOM公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80年代英国Rocoil公司实现了罗格夫斯基线圈系列化和产业化。
特高频局部放电检测技术
主要内容
1 2 3 4 5 特高频局部放电检测的原理 特高频局部放电检测仪器及工具 特高频局部放电检测方法及注意事项 数据、图谱的分析及诊断 典型案例分析
一、特高频局部放电检测的原理
电力设备绝缘体中绝缘强度和击穿场强都很高,当局部放电 在很小的范围内发生时,击穿过程很快,将产生很陡的脉冲 电流,其上升时间小于1ns,并激发频率高达数GHz的电磁波。 应用宽带高频天线(300MHz-1.5GHz传感器)检测GIS内部 局放电流激发的电磁波信号,从而反应GIS内部局部放电的类 型及大体位置。根据传感器安装位置不同,该方法分为内置 法与外置法两种。 由于现场的晕干扰主要集中在300MHz频段以下,因此特高频 法能有效地避开现场的电晕等干扰,具有较高的灵敏度和抗 干扰能力,可实现局部放电带电检测、定位以及缺陷类型识 别等优点。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
荧 光 干 扰
干扰信号幅值较分散,一般情况下工频相关性弱。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
移 动 电 话 干 扰
干扰信号工频相关性弱,有特定的重复频率,幅值有规律变化。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
马 达 干 扰
干扰信号无工频相关性,幅值分布较为分散,重复率低。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
空 穴 放 电
放电信号通常在工频相位的正、负半周均会出现,且具有一定对称性,放电 幅值较分散,放电次数较少。
类 型
PRPS谱图
峰值检测谱图
PRPD谱图
自 由 金 属 颗 粒 放 电 局放信号极性效应不明显,任意相位上均有分布,放电次数少,放电幅值无 明显规律,放电信号时间间隔不稳定。提高电压等级放电幅值增大但放电间 隔降低。
特高频局部放电检测技术知识讲解
特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。
特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。
本文将详细介绍特高频局部放电检测技术的原理、应用及优势。
一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。
当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。
特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。
二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。
例如,它可以用于变压器、电缆、断路器等电力设备的检测。
通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。
三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。
2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。
3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。
4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。
四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。
通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。
在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。
随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。
特高频局部放电检测技术解析
特高频局放测试仪组成示意图UHBiblioteka 外置传感器UHF 内置传感器
导体
局部放电源
法兰
UHF 内置传感器
绝缘子
内置式特高频传感器
外置式特高频传感器
UHF信号在GIS中的传播衰减
GIS的金属同轴结构可视为一个良好的电磁波导, 放电所形成的高阶电磁波TE和TM(f>300MHz), 可沿波导方向无衰减地进行转播; 绝缘屏障会造成2dB信号衰减 转角结构会造成6dB信号分散
传感器应与盆式绝缘子紧密接触,且应放置于两根禁锢盆式 绝缘子螺栓的中间,以减少螺栓对内部电磁波的屏蔽及传感 器与螺栓产生的外部静电干扰; 在测量时应尽可能保证传感器与盆式绝缘子的接触,不要因 为传感器移动引起的信号而干扰正确判断;
6、特高频局部放电检测操作流程
在采用特高频法检测局部放电时,典型的操作流程如下:
特高频局部放电检测技术
主要内容
1 2 3 4 5 特高频局部放电检测的原理 特高频局部放电检测仪器及工具 特高频局部放电检测方法及注意事项 数据、图谱的分析及诊断 典型案例分析
一、特高频局部放电检测的原理
电力设备绝缘体中绝缘强度和击穿场强都很高,当局部放电 在很小的范围内发生时,击穿过程很快,将产生很陡的脉冲 电流,其上升时间小于1ns,并激发频率高达数GHz的电磁波。 应用宽带高频天线(300MHz-1.5GHz传感器)检测GIS内部 局放电流激发的电磁波信号,从而反应GIS内部局部放电的类 型及大体位置。根据传感器安装位置不同,该方法分为内置 法与外置法两种。 由于现场的晕干扰主要集中在300MHz频段以下,因此特高频 法能有效地避开现场的电晕等干扰,具有较高的灵敏度和抗 干扰能力,可实现局部放电带电检测、定位以及缺陷类型识 别等优点。
第3章特高频局部放电检测技术
第3章特高频局部放电检测技术第三章特高频局部放电检测技术目录第1节特高频局放检测技术概述 (3)1.1 发展历程 (3)1.2 技术特点 (5)1.2.1 技术优势 (5)1.2.2 局限性 (6)1.2.3 适用范围 (7)1.2.4 技术难点 (7)1.3 应用情况 (9)1.3.1 国外应用情况 (9)1.3.2 国内应用情况 (10)第2节特高频局放检测技术基本原理 (11)2.1 特高频局放电磁波信号基本知识 (11)2.1 GIS内部电磁波的传播特性 (11)2.3 特高频局放检测技术基本原理 (13)2.3 特高频局放检测装置组成及原理 (14)第3节特高频局放检测及诊断方法 (18)3.1 检测方法 (18)3.1.1 操作流程 (18)3.1.2 注意事项 (20)3.2 诊断方法 (21)3.2.1 诊断流程 (21)3.2.2 现场常见干扰及排除方法 (22)3.2.3 放电缺陷类型识别与诊断 (25)3.2.4 放电源定位 (28)3.2.5 局部放电严重程度判定 (29)第4节典型案例分析 (30)4.1 220kV GIS盆式绝缘子内部气隙缺陷检测 (30)4.2 110kV电缆-GIS终端绝缘内部气隙缺陷检测 (32)4.3 220kV GIS内部刀闸放电缺陷检测 (37)参考文献 (43)第1节特高频局放检测技术概述1.1 发展历程电力设备内发生局部放电时的电流脉冲(上升沿为ns级)能在内部激励频率高达数GHz的电磁波,特高频(Ultra High Frequency,UHF)局部放电检测技术就是通过检测这种电磁波信号实现局部放电检测的目的。
特高频法检测频段高(通常为300M~3000MHz),具有抗干扰能力强、检测灵敏度高等优点,可用于电力设备局部放电类缺陷的检测、定位和故障类型识别[1]。
特高频法过去曾被称为“超高频法”。
但是按照中华人民共和国无线电频率划分规定,300MHz~3000MHz频带划分为特高频,因此该检测方法的正式名称为特高频法。
GIS局部放电特高频检测技术的研究
GIS局部放电特高频检测技术的研究一、概述随着电力系统的不断发展,气体绝缘组合电器(GIS)因其优异的绝缘性能和紧凑的结构设计,在电力传输和分配中得到了广泛的应用。
GIS设备在运行过程中,由于设计制造缺陷、安装过程中的不当操作以及运行环境的恶化等原因,可能会产生局部放电现象。
局部放电是GIS设备绝缘性能恶化的重要征兆,长期存在将严重影响设备的正常运行,甚至导致整个电力系统的故障。
对GIS局部放电的检测与监测显得尤为重要。
特高频(UHF)检测技术作为一种新型的局部放电检测手段,因其具有抗干扰能力强、灵敏度高等优点,近年来在GIS局部放电检测中得到了广泛的应用。
特高频检测技术通过接收GIS设备内部局部放电产生的特高频电磁波信号,实现对局部放电的有效检测和定位。
该技术不仅可以用于设备的预防性维护,还可以在设备运行过程中进行实时监测,及时发现并处理潜在的绝缘缺陷,从而提高GIS设备的运行可靠性和电力系统的稳定性。
本文旨在深入研究GIS局部放电特高频检测技术,分析其检测原理、方法及应用现状,并探讨该技术在GIS局部放电检测和定位中的优化与改进。
通过本文的研究,期望能为GIS设备的故障诊断和预防性维护提供更为准确、有效的技术手段,为电力系统的安全稳定运行提供有力保障。
1. GIS(气体绝缘金属封闭开关设备)的重要性及其在电力系统中的应用GIS,即气体绝缘金属封闭开关设备,是现代电力系统中不可或缺的关键组成部分。
其重要性不仅体现在提高电力系统的运行效率和稳定性上,更在于对电力输送和分配过程的安全保障。
GIS设备以其独特的结构和性能优势,在电力系统中发挥着日益重要的作用。
GIS设备具有出色的绝缘性能。
相比于传统的空气绝缘开关设备,GIS采用气体绝缘,大大提高了设备的绝缘强度,使其能够承受更高的电压等级,满足大规模、远距离电力输送的需求。
GIS 设备结构紧凑、占地面积小,有效解决了传统开关设备占地面积大、空间利用率低的问题,特别适用于城市电网和工矿企业等空间有限的场所。
电力设备带电检测仪器技术规范 第5部分:高频法局部放电带电检测仪器技术规范(征求意见稿)-20140731
ICS点击此处添加ICS号点击此处添加中国标准文献分类号Q/GDW企业标准Q/GDW XXXXX—XXXX电力设备带电检测仪器技术规范第5部分:高频法局部放电带电检测仪器技术规范Technical specification for energized test device of electrical equipment -Part 5: technical specification for high-frequency partial discharge detector(征求意见稿)XXXX-XX-XX发布XXXX-XX-XX实施目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 检测原理 (2)5 高频法局部放电带电检测仪结构组成 (2)6 产品分类与型号 (2)7 技术要求 (3)8 试验项目及要求 (4)9 检验规则 (7)10 标志、包装、运输、贮存 (9)前言高频法局部放电带电检测仪器一般用于对电力设备进行局部放电高频带电检测。
为了规范此类仪器的相关技术指标,特制定本标准。
本标准对所使用的高频法局部放电带电检测仪的技术条件、试验项目以及试验方法进行了详细规定。
本标准由国家电网公司运维检修部提出并解释。
本标准由国家电网公司科技部归口。
本标准起草单位:本标准主要起草人:本标准首次发布。
本标准在执行过程中的意见或建议反馈至国家电网公司科技部。
高频法局部放电带电检测仪器技术规范1 范围本标准规定了高频法局部放电带电检测仪器的技术要求、试验项目、调试、验收、标志、包装、运输、贮存、试验方法等。
本标准适用于高频法局部放电带电检测仪器的设计、生产、采购和检验。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T 6593 电子测量仪器质量检验规则GB/T 7354 局部放电测量DL/T 417 电力设备局部放电现场测量导则Q/GDW XXXX 电力设备带电检测仪器技术规范第1部分:带电检测仪器通用技术规范3 术语和定义下列术语和定义适用于本文件。
电力变压器局部放电超高频检测技术探析
电力变压器局部放电超高频检测技术探析局部放电是导致电力变压器失效的最主要原因之一,对其进行有效的检测与处理,能够保证变压器始终处于最稳定的工作状况中。
本文则分析了一种超高频检测方案,首先指出了该方法的检测原理与优势之处,进而将其应用于某变电站的实际检测中,结果显示效果良好。
标签:变压器;局部放电;超高频;检测对变压器进行绝缘状态监测是保证其稳定发挥作用的关键工作,需要格外重视。
局部放电检测是最主要的检测方法,目前最为有效的局部放电检测方案当属超高频检测技术,其检测精度高、定位准确且抗干扰能力极强。
为了深入研究该技术的应用效果,我们首先应该对其形成一个基本认识。
一、超高频检测技术简介(一)超高频检测系统组成无论是何种超高频检测系统,其基本组成均必须包括传感器、信号处理模块、数据采集模块等,其中数据采集模块又可进一步细分为采集卡和工控机。
对各部件的作用分析如下:传感器主要指超高频传感器,主要作用是检测并传输高频电信号;信号处理模块利用设置好的指令,从传感器接受并传输的信号中滤取所需带宽及频率的信号,清除干扰源;数据采集卡最终接受获取的所需信号,并传输至工控机进行最终的数据处理。
(二)局部放电原因电气绝缘系统各个不同部位的电场,其强度往往差异很大,当某一局部的电场强度足以击穿绝缘屏障后,即会出现局部放电现象,但这种放电尚未贯穿整个绝缘系统,因此并不会对电网运行产生实际影响。
一般情况下,高电场强度下,绝缘体电气强度较弱的位置会出现局部放电。
局部放电虽然不会完全击穿整个绝缘屏障,但却会损坏电介质,尤其是有机电介质,从而在一定程度上降低整个变压器绝缘屏障的电气强度,长此以往,必然会影响变压器的正常工作。
(三)局部放电形成超高频电磁波的原因每一次的局部放电都伴随有正负电荷的中和,因此会形成电流脉冲,向周围辐射电磁波。
放电间隙越小,放电持续时间越短,因此电流脉冲越陡,辐射电磁波的频率也就越高。
同时,局部放电区域绝缘强度越高,击穿越快,电流脉冲也就越陡,辐射电磁波的频率同样也就越强。
浅谈高压电缆附件超高频局部放电检测法
浅谈高压电缆附件超高频局部放电检测法前言电力设备绝缘在实际运行中会受到多方面的影响,包括电、机械、热、不良环境等因素,导致电力设备在实际使用中,绝缘性能会逐渐的下降,最后出现故障,影响正常的使用。
绝缘诊断和检测技术就是伴随着电力设备的发展而逐渐发展起来的,其中,超高频局部放电检测技术,作为一种不产生任何破坏作用的检测方法,成为了人们广泛运用的技术。
本文从局部放电检测技术研究的现状出发,探讨局部放电检测技术的应用情况以及对超高频局部放电检测技术进行深入的研究。
一、局部放电检测技术的现状局部放电,在高压电缆附件中广泛存在,是绝缘介质外施电压过高产生的一种电气放电现象,这主要是由于高压电缆附件内部普遍存在的空隙、气泡、污秽和杂质等原因造成的。
尽管局部放电只发生在很微小的空间内,一般情况下不会穿透性击穿绝缘体,但是会对电介质造成一定程度的损坏。
因此,对局部放电的检测技术在很早之前就已经被人们所认知,并积极创造和使用不同的检测方法对局部放电进行检测。
由于局部放电现象是基于声、光、热、电等原因出现的,因此,局部放电的检测技术也就有了相应的方法,大体上分为非电检测法和电检测法。
(一)非电检测法非电检测法主要是基于局部放电现象在很多情况下都是由声、热、光等现象产生的,因此,局部放电检测法也就相应的出现了声测法、红外测法以及光测法等非电检测法,非电检测法的优点则是与式样电容关系不大,而且抗电磁干扰能力强等。
其中声测法,是指绝缘介质中发生局部放电时,放电瞬间释放的效果类似于小爆炸,放电源类似于声源,不断向周围发出声波,利用声-电传感器,以灵敏度和工作频带两个方面为指标,就可以有效的实现检测声信号转变为电信号,从而实现对局部放电的检测。
光测法,是指将声测法和光纤技术相结合而出现的声−光测法。
声−光测法主要是使用光纤传感器,利用由于局部放电所发生的声波压迫改变光纤性质,并改变光纤输出信号的情况,从而实现局部放电的检测[1]。
局部放电超高频检测技术
•信号处理
UHF传感的信号耦合方式
体内耦合:信号耦合器 安装在GIS体内。
•UHF耦合器
体外耦合:UHF耦合器存在 GIS体外盘式绝缘子处。
•局放
•盘式绝缘子 •屏蔽 •耦合 器
•GIS壳体
体内和体外信号耦合的性能比较
体内耦合
• 体外耦合
• 放电在内,干扰在外, • 受外部干扰较多一些;
体内耦合有较好的灵敏 • 盘式绝缘子多时,也能
ቤተ መጻሕፍቲ ባይዱ
•局部放电特高频检测法检测流程
•2.局部放电特高频检测的接线
• 在采用特高频法检测局部放电时,典型的操作流程如下: • 1)设备连接:按照设备接线图连接测试仪各部件,将传感 器固定在盆式绝缘子上,将检测仪主机及传感器正确接地, 电脑、检测仪主机连接电源,开机。 • 2)工况检查:开机后,运行检测软件,检查主机与电脑通 信状况、同步状态、相位偏移等参数;进行系统自检,确认 各检测通道工作正常。 • 3)设置检测参数:设置变电站名称、检测位置并做好标注 。根据现场噪声水平设定各通道信号检测阈值。 • 4)信号检测:打开连接传感器的检测通道,观察检测到的 信号。如果发现信号无异常,保存少量数据,退出并改变检 测位置继续下一点检测;如果发现信号异常,则延长检测时 间并记录多组数据,进入异常诊断流程。必要的情况下,可 以接入信号放大器。
2GIS局部放电超高频检测 技术
•主要内容
•局部放电特高频检测的原理 •局部放电特高频检测方法及注意事项 •局部放电特高频检测数据、图谱的分析及诊断 •特高频局部放电检测典型案例分析
• 研究背景
• 气体绝缘组合电器(简称GIS)用六氟化硫气体绝缘,可靠性 较高,作为免维护设备在国内外的电力系统中广泛运用。近年国内 1000 kV变电站均采用GIS设备。
电缆附件高频局部放电检测技术及应用
电缆附件高频局部放电检测技术及应用
胡磊磊
【期刊名称】《电气时代》
【年(卷),期】2024()1
【摘要】局部放电检测是电缆附件绝缘检测的重要手段,其中高频局部放电检测方法能有效发现电缆附件的潜伏性缺陷。
利用电缆故障模拟装置获取检测数据,分析不同局部放电故障的时域统计特征,得到不同故障的特征向量,建立局部放电故障特征数据库,为电缆故障诊断提供有力的数据支撑,并通过缺陷模型检测数据验证其检测方法的有效性。
【总页数】4页(P120-122)
【作者】胡磊磊
【作者单位】深圳市沃尔核材股份有限公司
【正文语种】中文
【中图分类】TM2
【相关文献】
1.高压电缆附件超高频局部放电检测的研究
2.高压电缆附件局部放电超高频检测与分析
3.超高频传感器检测电缆附件局部放电的研究进展
4.检测高压电缆附件局部放电用超高频蝶形天线的研究
5.高压电缆附件局部放电超高频检测与分析
因版权原因,仅展示原文概要,查看原文内容请购买。
GIS局部放电特高频检测技术规范
ICS备案号: Q/CSG中国南方电网有限责任公司企业标准 气体绝缘金属封闭开关设备(GIS )局部放电特高频检测技术规范中国南方电网有限责任公司 发 布Q/CSG11401-2010目次前言 (IV)1.范围 (1)2.规范性引用文件 (1)3.术语和定义 (1)3.1 GIS局部放电 GIS partial discharge (1)3.2 特高频 ultra high frequency(UHF) (2)3.3局部放电特高频检测 UHF detection of partial discharge (2)3.4带电测量 on-line detection (2)3.5在线监测 on-line Monitoring (2)3.6背景噪声 background noise (2)3.7最小可测放电量q min minimum level of detectable PD (2)4特高频局部放电检测方法 (2)4.1传感器 (3)4.2传感器布置方式 (3)4.3在线检测 (4)4.3.1 在线监测 (4)4.3.2 带电测量 (4)5.通用要求 (5)5.1使用条件 (5)5.2性能要求 (5)5.2.1检测频带 (5)5.2.2 灵敏度 (5)5.2.3 绝缘性能 (5)5.2.4 防护性能 (5)5.2.5 抗震性能 (5)5.2.6 电磁兼容性能 (6)5.2.7 接入安全性要求 (6)5.2.8 可靠性要求 (6)5.3 功能要求 (6)IQ/CSG11401-2010II 5.3.1 局部放电检测功能 (6)5.3.2 信号采集存储功能 (6)5.3.3 检测参数设置功能 (7)5.3.4 网络通讯功能 (7)5.3.5 检测结果显示功能 (7)5.3.6 异常报警功能 (7)5.3.7 放电类型识别功能 (7)5.3.8 放电源定位功能 (8)5.3.9 自检测和自恢复功能 (8)6.抗干扰 (8)6.1主要干扰类型 (8)6.2干扰的抑制 (8)7.放电源定位 (9)7.1 强度定位 (9)7.2 时差定位 (9)8.放电类型识别 (10)8.1 局部放电类型 (10)8.2 局部放电缺陷识别 (10)9.局部放电严重程度判定 (11)10.检测装置的性能试验 (11)10.1 有效性试验 (11)10.2抗干扰性能试验 (11)10.3 电磁兼容性能试验 (11)10.3.1 辐射电磁场试验 (11)10.3.2 电快速瞬变脉冲群试验 (12)10.3.3 浪涌(冲击)试验 (12)10.3.4工频磁场试验 (12)10.3.5阻尼振荡磁场干扰试验 (12)10.3.6静电干扰试验 (12)10.4 可靠性试验 (13)10.4.1 振动试验 (13)10.4.2 72小时通电试验 (13)11.检测装置试验要求 (13)Q/CSG11401-201011.1型式和验证试验 (13)11.2出厂试验 (14)11.3现场交接试验 (14)附录A GIS局部放电的典型图谱 (15)附录B 干扰信号的典型图谱 (16)附录C 检测报告样板 (17)附录D 检测数据要求 (17)附录E 带电测量方法 (18)附录F 带电测量注意事项 (19)IIIQ/CSG11401-2010IV前言局部放电测量有助于发现GIS内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电网设备状态检修技术(带电检测分册)》弟五章咼频局部放电检测技术目录第 1 节高频局部放电检测技术概述发展历程高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。
高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。
高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。
电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。
罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。
早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。
罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。
罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。
20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。
如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。
总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。
尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。
20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。
例如意大利的博洛尼亚大学的. Montanari 和 A.Cavallini等人及TECHIM公司成功研制了高频局部放电检测仪,并被广泛应用。
近几年国内的一些科研院所和企业均开始研制基于罗氏线圈传感器以及高频局放检测装置,虽然起步比较晚,有些技术还处于跟踪国外大公司的水平,但随着发展罗氏线圈电子式传感器的时机逐渐成熟,国内如清华大学、西安交通大学、上海交通大学、华北电力大学等对于罗氏线圈传感器进行了深入的研究和探索,并取得了大量成果[4]。
技术特点技术优势及局限性高频局放检测技术的技术优势及局限性主要表现在以下几个方面:(1)可进行局部放电强度的量化描述。
由于高频局放检测技术应用高频电流传感器,与传统的脉冲电流法具有类同的检测原理,若传感器及信号处理电路相对确定的情况下,可以对被测局部放电的强度进行理化描述,以便于准确评估被检测电力设备局部放电的绝缘劣化程度。
(2)具有便于携带、方便应用、性价比高等优点。
高频电流传感器作为一种常用的传感器,可以设计成开口CT的安装方式,在非嵌入方式下能够实现局放脉冲电流的非接触式检测,因此具有便于携带、方便应用的特点。
(3)检测灵敏度较高。
高频电流传感器一般由环形铁氧体磁芯构成,铁氧体配合经磁化处理的陶瓷材料,对于高频信号具有很高灵敏度。
局部放电发生后,放电脉冲电流将沿着接地线的轴向方向传播,即会在垂直于电流传播方向的平面上产生磁场,电感型传感器是从该磁场中耦合放电信号。
除此之外利用HFCT进行测量,还具有可校正的优点。
局限性(1)高频电流传感器的安装方式也限制了该检测技术的应用范围。
由于高频电流传感器为开口CT的形式,这就需要被检测的电力设备的接地线或末屏引下线具有引出线,而且其形状和尺寸能够卡入高频电流传感器。
而对于变压器套管、电流互感器、电压互感器等容性设备来说,若其末屏没有引下线,则无法应用高频局放检测技术进行检测。
2)抗电磁干扰能力相对较弱。
由于高频电流传感器的检测原理为电磁感应,周围及被测串联回路的电磁信号均会对检测造成干扰,影响检测信号的识别及检测结果的准确性。
这就需要从频域、时域、相位分布模式等方面对干扰信号进行排除。
适用范围高频法仅适用于具备接地引下线电力设备的局部放电检测,主要包括电力电缆、变压器铁心及夹件、避雷器、带末屏引下线的容性设备等。
应用情况随着高频局部放电检测技术的不断成熟,国网公司在高频局部放电检测应用实践上积累了大量的宝贵经验,发现了大量潜在缺陷,目前该方法已广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备局部放电检测。
随着状态检修工作的不断深入,高频局部放电检测技术已列入状态检修试验规程,成为提前发现电力设备潜在缺陷的重要手段。
国家电网公司在推广应用高频局部放电检测技术方面做了大量卓有成效的工作。
2010 年,在充分总结部分省市电力公司试点应用经验的基础上,结合状态检修工作的深入开展,国家电网公司颁布了《电力设备带电检测技术规范(试行)》和《电力设备带电检测仪器配置原则(试行)》,在国家电网公司范围内统一了高频局部放电检测的判据、周期和仪器配置标准,初步建立起完整的高频局部放电检测技术标准体系,高频局部放电检测技术在国家电网公司范围全面推开。
第 2 节高频局部放电检测技术基本原理罗氏线圈基本知识罗格夫斯基线圈(Rogowski coils ),简称罗氏线圈,又被称为磁位计,最早被用于磁路的测量。
一般情况下罗氏线圈为圆形或矩形,线圈骨架可以选择空心或磁性骨架,导线均匀绕制在骨架上。
罗氏线圈的结构示意图如所示。
图5-1 罗氏线圈结构示意图罗氏线圈的原边为流过被测电流的导体,副边为多匝线圈。
当有交变的电流流过穿过线圈中心的导体时,会产生交变的磁场。
副边线圈与被测电流产生的磁通相交链,整个罗氏线圈副边产生的磁链正比于导体中流过的电流大小。
变化的磁链产生电动势,且电动势的大小与磁链的变化率成正比。
令流过导体的电流为l(t),线圈副边感应出的电动势为e(t),基于安培环路定律和法拉第电磁感应定律,可由Maxwell方程⑹解得:e(t) Mt( 5-1) 其中M为罗氏线圈的互感系数。
根据罗氏线圈负载的不同,线圈可分为外积分式和自积分式[9]。
外积分式罗氏线圈又称作窄带型电流传感器,具有较好的抗干扰能力。
当采用外积分式罗氏线圈时,为得到电流I(t)的波形,线圈的输出通常需要经过无源RC外积分电路、由运放构成的有源外积分电路,以及数自积分电路等负载。
外积分式罗氏线圈受积分电路频率性能影响较大,测量频率上限受到限制,一般用于测量兆赫兹以下的中低频率电流。
自积分式罗氏线圈又称作宽带型电流传感器,具有相对较宽的检测频带。
由于其直接采用积分电阻,因此频率响应较快,适用于测量上升时间较短的脉冲电流信号。
罗氏线圈根据其结构不同可分为挠性罗氏线圈、刚性罗氏线圈和PCB型罗氏线圈[10-11]。
挠性罗氏线圈以能够完全的挠性材料作为线圈骨架,将导线均匀绕在骨架上。
测量时将骨架弯曲成一个闭合的环,使通电导体冲线圈中心穿过。
这种线圈使用方便,但测量精确度低、稳定性不高。
刚性罗氏线圈采用刚性结构线圈骨架,在结构上更容易使得绕线能够均匀分布,大大提高了抗外磁场干扰的能力,从而提高了测量的精确度。
这种线圈的测量精确度和可靠性较高,但在实际使用中会受到现场安装条件的限制。
PCB型罗氏线圈是一种基于印刷电路板(PCB 骨架的罗氏线圈,相比传统的罗氏线圈,其线圈密度、骨架截面积以及线圈截面与中心线的垂直程度都有极大提高,是一种高精度的罗氏线圈。
这种线圈现在还处于起步阶段,其实际应用还有一定的距离。
咼频局部放电检测基本原理用于局部放电检测的罗氏线圈称为高频电流传感器,其有效的频率检测范围一般为3MH»30MHz由于所测量的局部放电信号是微小的高频电流信号,传感器需要在较宽的频带内有较高的灵敏度。
因此HFCT选用高磁导率的磁芯作为线圈骨架,并通常采用自积分式线圈结构[13]。
使用HFCT 进行局部放电检测的等效 电路图如2所示。
其中丨⑴为被测导体中流过的局部放电脉冲电流, M 为被测导 体与HFCT 线圈之间的互感,L s 为线圈的自感,艮为线圈的等效电阻,C 为线圈 的等效杂散电容,R 为负载积分电阻,u o (t)为HFCT 专感器的输出电压信号。
图5-2高频电流传感器局部放电检测等效电路图在传感器参数满足自积分条件的情况下,忽略杂散电容C s ,计算可得系统的 传递函数为[15]:其中N 为线圈的绕线匝数。
因此,在满足自积分条件的一段有效频带内, HFCT 的传递函数是与频率无关的常数。
并且,HFCT 勺灵敏度与绕线匝数N 成反比,与积分电阻R 成正比。
事实上,在高频段C s 的影响是不能忽略的。
在考虑 C 影响的情况下,系统 的传递函数H(S)为:HFCT 等效电路类似于高频小信号并联谐振回路,采用高频小信号并联谐振 回路理论分析可得电流传感器的频带为:下限截止频率:R R sR R s 2 (L s RF S C S ) 2 L s 上限截止频率:L s RF S C s 12 L s RC s 2 RC s 在实际使用中,一般希望 HFCT 有尽可能咼的灵敏度,并且在较宽的频带范围内有平滑的幅频响应曲线。
同时要求 HFCT 有较强的抗工频的磁饱和能力,这 是因为实际检测时不可避免有工频电流流过, 而此时不应因磁芯饱和而影响检测 结果。
H(S) U o (S) 7W M R L S N (5-2)H(S) U o (S)I(S) MS (5-3)(5-4)(5-5)L S C S S 2 R S C S )S R S 1 R高频局部放电检测装置组成及原理常用的高频局部放电检测装置包括:传感器、信号处理单元、信号采集单元和数据处理终端。
高频局部放电检测装置结构如 3 所示,装置实物图如图5-4 所示。
图5-3 高频局部放电检测装置结构图图5-4 高频局部放电检测装置实物图(一)传感器高频局部放电检测HFCTt感器按安装位置不同主要分为接地线HFCT和电缆本体HFCT安装在电力设备接地线或电缆交叉互联系统上的HFCT专感器,内径一般为几十毫米;安装在单芯电力电缆本体上的HFCT传感器,内径一般在100 毫米以上,传感器灵敏度相对接地线HFCT较低。