传感器应用实例:磁电式转速传感器的设计

合集下载

磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告

磁电式传感器的转速测量实验报告实验目的:1.通过磁电式传感器测量旋转角度和转速。

2.掌握磁电式传感器的工作原理。

3.熟悉使用数字万用表和示波器进行信号测量。

实验器材:1.磁电式传感器2.数字万用表3.示波器4.直流电源5.实验台实验原理:磁电式传感器是一种将磁场、电场和运动简单互相联系的电器元件。

磁电式传感器由磁电感应电路和运放电路构成。

当磁感发生改变时,电感也会随之改变,从而在运放电路中产生输出电压信号。

在本实验中,由于磁电式传感器的内部磁场与传感器转动轴线垂直,因此当传感器转动时,会产生与转动速度成正比的电压输出信号。

根据电压输出信号的变化可以确定传感器电压的周期和频率,从而计算出旋转角度和转速。

实验步骤:1.将磁电式传感器安装在实验台上,并将传感器的输出插头插入数字万用表的电压测量插孔中。

2.将磁电式传感器连接到示波器上,并将示波器调整到适当的范围。

3.将磁电式传感器接入直流电源中,将电压设置在适当范围内。

4.慢慢旋转传感器,观测数字万用表和示波器上的输出信号,记录旋转角度和转速数据。

5.根据记录的数据,分析传感器的性能和工作特点,并进行实验报告撰写。

实验结果:经过实验测量,我们发现磁电式传感器的转速测量的值与理论值相差不大,表明该传感器的测量精度和稳定性较高,可用于工业生产中的转速检测和控制。

实验结论:本次实验通过磁电式传感器测量旋转角度和转速,掌握了磁电式传感器的工作原理,熟悉使用数字万用表和示波器进行信号测量。

实验结果表明,该传感器具有高测量精度和稳定性,可用于工业生产中的转速检测和控制。

磁电式转速传感器测转速实验

磁电式转速传感器测转速实验

磁电式转速传感器测转速实验本文主要介绍磁电式转速传感器的工作原理及其在转速测量中的应用。

通过实验验证它的测速精度,并探究其各种测速原理。

一、磁电式转速传感器的工作原理磁电式转速传感器是一种测量转速的传感器,它利用磁电效应实现测量。

磁电效应是指物质受到磁场作用后,会产生电压或电流变化的现象。

磁电式转速传感器利用磁场作用于旋转铁芯时,感应出的磁场信号,然后将这个信号转化成电信号,从而测量转速。

磁电式传感器主要是由磁场发生装置和信号处理电路组成。

其中磁场发生装置中通常包括磁铁和磁性材料,而信号处理电路包括放大电路、滤波电路和信号采集电路等。

磁电式传感器通过磁场感应出的电压信号,可以测量旋转体的转速。

磁电式转速传感器是一种广泛应用于测量转速的传感器。

它通常被用于汽车、摩托车、机床、船舶、电机、风力发电等领域中的转速测量。

在汽车和摩托车发动机的转速测量中,磁电式传感器常常是通过电子控制模块感应发动机的曲轴转速信号,然后控制点火系统的点火时间,保证引擎始终运转在最佳状态。

在机械系统中,磁电式传感器被广泛应用于螺纹切削加工机床、数控机床、切削机床、磨削机床等精密加工设备的转速测量中。

磁电式传感器由于其测量精度高、探测范围广、安装简单等优点,可广泛应用于各种机械系统的转速测量中。

在风力发电机的控制中,磁电式传感器被应用于测量风力发电机中的转子转速和风轮转速等参数,以保证风力发电机工作的稳定性和安全性。

1、实验目的2、实验器材磁电式转速传感器、旋转体、气缸等。

3、实验方法将旋转体固定在平稳的基座上,然后在旋转体的表面粘贴一个磁铁,并将磁电式传感器固定在旋转体的一侧。

然后将旋转体旋转起来,使磁铁经过磁电式传感器,记录下磁电式传感器测量到的电信号。

通过多次测试,得出磁电式传感器感应的信号的方波峰值时间周期,并计算出转速。

最后,通过计算得出磁电式传感器的测速精度。

4、实验结果通过实验得出磁电式转速传感器的测速精度达到了0.1%。

论磁电式转速传感器在汽车中的应用

论磁电式转速传感器在汽车中的应用

《装备维修技术》2021年第13期论磁电式转速传感器在汽车中的应用彭溢润(航空工业苏州长风航空电子有限公司,江苏 苏州 215151)摘 要:在现当代的社会当中,汽车已经是人们必不可少的一个重要交通工具,在汽车中关于转速传感器的应用设计这方面我们进行分析,汽车用转速传感器是去检测汽车发动机转速的,转速传感器应用的是磁感应原理,在检测过程当中并不需要接触,使用的过程当中,转速传感器发出正玄信号箱发动机,从而去判断汽车当前的曲轴位置和转速,在检测的过程当中,主要是通过信号轮去旋转切到磁力线,在这个过程当中,芯片会感受到周围磁场的变化,从而能够反映出信号,这个信号通过发动机内部的调节所输出来的是方波形式的信号,这种信号发出的精确度是非常高的,满足于汽车发动机的精确度需求,使得可燃气体能够更充分的燃烧,从而达到尾气排放的标准,能够更好地发展。

关键词:磁感应;转速;磁力线在目前的发展过程当中,关于磁电式转速传感器已经很好地应用到汽车的装备中,而我们目前需要研究的就是是否这种传感器能够让汽车更好的运行,本篇文章将分析其中的相关参数,确定它是否符合汽车的发展,为汽车的发展做出良好的奠基作用,满足汽车发动机的各项需求,才能够在未来发展的更好,对于目前来说,汽车已经是人类必不可少的一项重要交通工具,所以我们必须要对它的各项性能进行更好的了解,保证他的安全运行,对于本篇文章来说,我们要需说的是关于磁电式转速传感器在汽车中的应用。

1 产品的结构磁电式转速传感器,它的组成结构主要是通过在它的内部放一个永磁体,在这个部位的上下方分别放一根导,分别和南极和北极连接,在一侧的外面放有感应的线圈,线圈两端有输出的端子,这个传感器工作的特点是将它固定在一个速度转动,因为他里面装置着永磁体,其中包含着导磁铁心,他的外面会有一定数量的线圈,其中速度齿轮是由铁磁这种材料做成的,齿轮在转动的时候,传感器通过自己的探头对应出来齿轮的转动是连续不断变化的,出现这种情况的原因是由于传感器内部中存在着一定的磁场,这种磁场会经过探头的表面向周围散发出去,传感器的探头靠近齿轮的时候,就会在这个过程中形成一个磁路,当它们之间通过磁通量的时候,并且达到了一定的数量,就会由于其中的间隙不同使得他们之间的词组发生相应的变化,所以在旋转的过程当中,它的磁通量也是变化着的,传感器周围是由线圈围绕的变化的过程中,相应的就会出现感应电压,在计算过程当中,我们会根据公式去计算相应的数据进行分析。

磁电式速度传感器课件

磁电式速度传感器课件

VS
集成化
集成化是未来传感器的一个重要发展趋势 ,通过将多个传感器元件集成在一个芯片 上,实现传感器的小型化、轻量化、低功 耗等特点,提高传感器的应用范围和性能 。
在新兴领域的应用前景
新能源汽车
随着新能源汽车的快速发展,磁电式速度传 感器在新能源汽车中的应用前景广阔,如用 于电机转速的检测、车辆速度的检测等。
机械结构设计
总结词
机械结构设计是磁电式速度传感器制造中的重要环节,它决定了传感器的精度、稳定性和使用寿命。
详细描述
在机械结构设计中,需要考虑到传感器的尺寸、重量、安装方式等因素,以确保传感器在实际应用中 的可靠性和稳定性。同时,还需要对传感器的材料、热处理等进行优化,以提高其机械性能和耐久性 。
磁路设计
智能交通
智能交通系统是未来交通发展的重要方向, 磁电式速度传感器可以用于智能交通系统中 的车辆速度检测、交通流量统计等方面,提 高交通管理的智能化水平。
THANKS
感谢观看
新型绝缘材料
绝缘材料在磁电式速度传感器的制造 中起着重要作用,新型绝缘材料如氮 化硅、碳化硅等具有高绝缘性、低介 电损耗等特点,能够提高传感器的绝 缘性能和稳定性。
智能化与集成化的发展趋势
智能化
随着人工智能和物联网技术的发展,磁 电式速度传感器将逐渐实现智能化,具 备自适应、自学习、自诊断等功能,提 高传感器的工作效率和可靠性。
应用领域
汽车领域
用于发动机转速、车速、ABS 系统等速度检测。
航空领域
用于飞机轮速、滑行速度等速 度检测。
工业自动化领域
用于电机转速、机械传动速度 等速度检测。
其他领域
如医疗器械、环保设备等需要 进行速度检测的领域。

传感器应用实例:磁电式转速传感器的设计

传感器应用实例:磁电式转速传感器的设计

4.3.3 磁电式转速传感器电路设计 1.电路设计
2. 电路仿真效果图
4.3.4 磁电式传感器的应用
1.磁电式相对速度计
磁电式相对速度计结构如图4-32所示。测量时,壳体固 定在一个试件上,顶杆顶住另一试件,则线圈在磁场中运 动速度就是两试件的相对速度。速度计的输出电压与两试 件的相对速度成正比。相对式速度计可测量的最低频率接 近于零。
2.磁电式扭矩传感器
磁电式扭矩传感器的工作原理如图4-43所示,在 驱动源和负载之间的扭转轴的两侧安装有齿形圆 盘, 它们旁边装有相应的两个磁电传感器。
当齿形圆盘旋转时,圆盘齿凸凹引起磁路气隙的 变化,于是磁通量也发生变化,在线圈中感应出 交流电压,其频率等于圆盘上齿数与转数乘积。
பைடு நூலகம்
4.3.2磁电式转速传感器的特点 磁电式转速传感器的工作方式决定了它有很强的抗干扰性, 能够在烟雾、油气、水汽等环境中工作。磁电式转速传感器 输出的信号强,测量范围广,齿轮、曲轴、轮辐等部件,及 表面有缝隙的转动体都可测量。
磁电式转速传感器的工作维护成本较低,运行过程无需供电, 完全是靠磁电感应来实现测量,同时磁电式转速传感器的运 转也不需要机械动作,无需润滑。磁电式转速传感器的结构 紧凑、体积小巧、安装使用方便,可以和各种二次仪表搭配 使用。
任务4.3 磁电式转速传感器的设计
4.3.1磁电式转速传感器的工作原理 磁电式转速传感器基于电磁感应原理,通过磁电相互作用把
转轴的转速转换成相对应的感应电动势,再经过对输出感应 电动势信号进行处理和分析就可以得到转轴的实际转速。磁 电式转速传感器的结构有开磁路和闭磁路两种。 1. 开磁路磁电式转速传感器
开磁路式转速传感器结构比较简单,但输出信号小,另外 当被测轴振动比较大时,传感器输出波形失真较大。在振 动强的场合往往采用闭磁路式转速传感器。

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告

磁电式传感器转速测量实验报告摘要:本文用磁电式传感器进行转速测量实验,以了解磁电式传感器的原理和特性,主要进行实验设计、转速测量实验和结果分析。

实验设计包括电参数测试和信号调试,转速测量部分包括摩擦轮模拟转速测量、实时转速测量和转速示波器记录转速波形等。

根据实验结果,磁电式传感器可以正确测量机械转速,连接传感器电源后,可以正确地输出信号,信号的频率随转速的增加而增加,满足形式的趋势;摩擦轮拟测量遵循转速与信号频率的关系,且准确性在实时相关的测量中比较可靠。

关键词:磁电式传感器;转速测量;实验设计;摩擦轮;实时测量1 引言转速测量是工业应用中常用的测量方法,是加工、机械和控制等各个领域的重要内容。

由于转速测量技术与传感器技术紧密相关,因此高精度、高可靠性的传感器被用于对转速的测量、检测和控制,以满足高效、精确的检测要求。

磁电式传感器是一种常用的信号检测传感器,可以直接输出和信号,能够有效地满足转速测量、振动测量、气流测量等领域的需求。

2 实验设计(1)电参数测试首先,确定电源电压,确定磁电式传感器的电参数,用多功能数字仪表测试磁电式传感器的输出电压。

(2)转速测量实验实验中使用摩擦轮模拟汽车转速,将磁电式传感器装在摩擦轮上。

实验中采用两种方式进行转速测量:一是模拟转速测量,即将摩擦轮的转速从慢到快进行按照恒定速度改变,然后用多功能数字仪表测量磁电式传感器的输出频率,并记录摩擦轮转速和传感器输出信号频率之间的关系;二是实时转速测量,即将摩擦轮不断加速,用转速示波器记录摩擦轮和传感器输出信号的波形。

3 结果分析(1)磁电式传感器检测电参数连接传感器电源后,磁电式传感器可以正确地输出信号,且输出的信号频率随转速的增加而增加,满足形式的趋势。

(2)摩擦轮拟测量实验中,摩擦轮拟测量遵循转速与信号频率的关系,我们发现转速和对应频率存在一定的相关性,且准确性在实时相关的测量中比较可靠,在转速范围0-3000 rpm时,精度达到足够的水平。

磁电式转速传感器测速实验

磁电式转速传感器测速实验

磁电式转速传感器测速实验
一、实验目的:了解磁电式测量转速的原理。

二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁棒时,每转一周线
圈感应电势产生N次的变化,通过放大、整形和计数等电路即可以测量转速。

三、需用器件与单元:磁电传感器、数显单元测转速档、转动调节2-24V,转动源单元。

四、实验步骤:
1、磁电式转速传感器按下图安装:
传感器端面离转动盘面2mm左右,并且对准反射面内的磁钢。

将磁电式传感器输出端插入数显单元Fi孔。

(磁电式传感器两输出插头插入台面板上二个插孔)
2、将波段开关选择转速测量档。

3将转速调节电源2-24V用引线引入到台面板上转动源单元中转动电源2-24V 插孔,合上主控箱电源开关。

使转速电机带动转盘旋转,逐步增加电源电压观察转速变化情况。

五、思考题:
为什么说磁电式转速传感器不能测很低速的转动,能说明理由吗?。

磁电式转速传感器的优化设计

磁电式转速传感器的优化设计

U,、 Dt·- i m - i zat·i- on d’ esi‘ gn 0n m agnetJ 0e● l eCt』 rl● C rot· at·i· ona’ l
speed sensor
XU Guang-wei,SONG Chun—hua (School of M echanical Engineering and Automation,Xihua Un iversity,Chengdu 610039,China)
Abstract: Magnetoelectric speed sensor is widely used in rotational speed measurement.In engineering practice, a transient high voltage appears when rotate ax is starting,which has influence on subsequent signa l processing circuit.Aiming at the above problem ,magnetoelectric speed sensor which has an entirety circular ring stnicture is researched.Ansofl M axwell is used to build a magneto—electric speed sensor model which ha s a structure of
线圈 永久磁铁

图 1 磁电式转速传感器结构图
Fig 1 Structure diagram ofmagnetoelectrie rotational speed sell¥or

实验四磁电式传感器测量转速

实验四磁电式传感器测量转速

实验四磁电式传感器测 转速/压电传感器测 振动实验一 实验目的1 了解磁电式传感器测 转速的原理;2 了解压电传感器的原理和测 振动的方法;二 实验仪器CSY传感器检测技术实验 磁电式传感器 转动源 压电传感器 压电传感器实验模板 移相器/相敏检波器/滤波器模板 振动源实验原理1 动磁式磁电传感器 作原理磁电传感器是一种将被测物理 转换成 感 电势的有源传感器,也称 电动式传感器或感 式传感器 磁电式传感器 成两大类型 动磁式及 动衔铁式(即 变磁阻式) 本实验 用动磁式磁电传感器,实验原理框图如图4—1所示 当转动盘 嵌入6个磁钢时,转动盘 转一周磁电传感器感 电势e产生6次的变化,感 电势e通过放大 整形由频率表显示f,转速n台10f图4—1磁电传感器测转速实验原理框图工 压电加速度传感器实验原理图压电加速度传感器实验原理 电荷放大器由图4—工所示图4—工(a) 压电加速度传感器实验原理框图图4—工(b) 电荷放大器原理图四 实验步骤I磁电式转速传感器测速1 根据图4—左将磁电式转速传感器安装于磁电支架 ,传感器的端面对准转盘 的磁钢并调节升降杆使传感器端面 磁钢之间的间隙大约 工~左工 将 机箱中的转速调节电源0~工4三旋钮调到最小(逆时针方向转到 )后接入电压表(电压表 程 换开关打到工0三档) 将频率\转速表的开关按到转速档 左 检查接线无误后合 机箱电源开关,在小于1工三范围内(电压表监测)调节 机箱的转速调节电源(调节电压改变直流电机电枢电压),观察电机转动及转速表的显示情况 图左—工 霍尔传感器(直流激励) 移实验接线示意图4 从工三开始记录 增加1三 超过1工三 相 电机转速的数据(待电机转速 较稳定后读取数据) 画 电机的三- (电机电枢电压 电机转速的关系)特性曲线 实验完 ,关闭电源三II压电传感器测 振动实验1 按图4—4所示将压电传感器安装在振动 面 ( 振动 面中心的磁钢吸合),振动源的 频输入接 机箱中的 频振荡器,其它连线按图示意接线图4—4 压电传感器振动实验安装 接线示意图工 将 机箱 的 频振荡器幅度旋钮逆时针转到 ( 频输 幅度 零), 调节 频振荡器的频率在6~8击z 右 检查接线无误后合 机箱电源开关 再调节 频振荡器的幅度使振动 明显振动(如振动 明显 调频率)左 用示波器的两个通道同时观察 通滤波器输入端和输 端波形 在振动 正常振动时用手指敲 振动 同时观察输 波形变化4 改变 频振荡器的频率(调节 机箱 频振荡器的频率),,观察输 波形变化 实验完 ,关闭电源。

传感器原理_速度传感器(磁电霍尔)

传感器原理_速度传感器(磁电霍尔)

控制 电流 (mA)
100 100
5
20max 10 10 1V 1V 5
霍尔 电压 (m V, 0.1T)
> 8.5 > 13
5 -10
>5 40-290 80-600 80-120 150-250 250-550
输入 电阻 (Ω)
3 6.5
200-800
40 8-60 8-60 80-400 80-400 240-550
霍尔元件
霍尔特斯拉计〔高斯计
霍尔-角位移测量
叉形钳形表漏磁稍 大,但使用方便
用钳形表测量 电动机的相电流
霍尔钳形电流表的使用
实验探究1
• 若闭合电路中有感应电流,电路中就一定有电动 势.
• 演示实验并播放动画 • 画出等效电路图
实验探究2: 在向线圈中插入条形磁铁的实验中,磁 铁的磁场越强、插入的速度越快,产生 的感应电流就越大.
能输出的霍尔电势的大小.单位是mV/〔mA·T
霍尔电压UH为:
式中 n ——半导体单位体 积中的载流子数
U = K I B UH=nIeBdKHIB H
H
e ——电子电量
KH——霍尔元件灵敏度 ,KH=1/ned
意义:与材料的物理性质和几何尺寸有关,决
定霍尔电势的强弱.
霍耳器件薄膜化是提高灵敏度的一个途径.
A A
闭磁路变磁通式:感应电势的频率与被测转速成正比.
2、恒定磁通式
2、恒定磁通式
eB0lN
B0:工作气隙磁感应强度; l:每匝线圈平均长度; N:线圈在工作气隙磁场 v:相对运动速度.
频率→转速 N=f/分频数
单位r/min r/s
定数采样:这种方法其实是测量单个脉冲的周期 或指定个数脉冲的总周期.这种测量脉冲的方法又 叫做测周法. 定时采样.这种方法其实是测量单位时间的脉冲个 数.这种测量脉冲的方法又叫做测频法.

磁电式传感器的发展与应用

磁电式传感器的发展与应用

磁电式传感器的应用与发展系别专业班级姓名学号完成时间磁电式传感器的应用与发展电子信息与电气工程系09级自动化专业(1)班姓名学号摘要:磁电式传感器利用电磁感应效应,霍尔效应,或磁阻效应等电磁现象,把被测物理量的变化转变为感应电动势的变化,实现速度,位移等参数测量。

按电磁转换机理的不同,磁电式传感器可分为磁电感应式传感器,霍尔式传感器,和磁阻效应传感器等,广泛用于建筑,工业等领域中振动,速度,加速度,转速,转角,磁场参数等的测量。

[1]关键词:磁电式传感器;应用;发展正文:一.基本原理根据电磁感应定律,N匝线圈在磁场中运动切割磁力线,线圈内产生感应电动势e。

e的大小与穿过线圈的磁通Φ变化率有关。

按工作原理不同,磁电感应式传感器可分为恒定磁通式和变磁通式,即动圈式传感器和磁阻式传感器。

恒定磁通式磁电感应式传感器按运动部件的不同可分为动圈式和动铁式。

1.1 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。

这类结构有动圈式和动铁式两种,如图所示。

磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt成正比的感应电动势E,其大小为式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应强度;l为每匝线圈平均长度。

1.2 变磁通式磁电感应传感器一般做成转速传感器,产生感应电动势的频率作为输出,而电动势的频率取决于磁通变化的频率。

变磁通式转速传感器的结构有开磁路和闭磁路两种。

变磁通式传感器对环境条件要求不高,能在-150~+90℃的温度下工作,不影响测量精度,也能在油、水雾、灰尘等条件下工作。

但它的工作频率下限较高,约为50Hz ,上限可达100kHz 。

二.磁电式传感器的应用2.1 磁电式速度传感器2.1.1 理论依据机组振动的大小可用振动参量如位移、速度和加速度等不同量值表征,目前测量机组轴承振动(瓦振)常用磁电式速度传感器。

【课件】传感器与检测技术 磁电式传感器原理及应用

【课件】传感器与检测技术    磁电式传感器原理及应用

第 5章
磁电式传感器
传感器原理及应用
测量转速时,传感器的转轴1 与被测物转轴相连接,因而带动转 子2转动。当转子2的齿与定子5的 齿相对时,气隙最小,磁路系统的 磁通最大。而齿与槽相对时,气隙 最大,磁通最小。
(2)磁电感应式转速传感器
因此当定子5不动而转子2转动 时,磁通就周期性地变化,从而在 线圈4中感应出近似正弦波的电压 信号,其频率与转速成正比关系。
第 5章
磁电式传感器
传感器原理及应用
5.1 磁电感应式传感器 5.1.1 工作原理 当线圈与磁铁间有相对运动时,线圈中产生的感 应电势e为
式中 B :工作气隙磁感应强度; N:线圈处于工作气隙磁场中的匝数,称为工作匝数;
l :每匝线圈的平均长度; v :线圈与磁铁沿轴线方向的相对运动速度(ms-1)。
第 5章
磁电式传感器
传感器原理及应用
由理论推导可得,当振动频率低于传感器的固有频率时, 这种传感器的灵敏度(e/v)是随振动频率而变化;当振动频
率远大于固有频率时,传感器的灵敏度基本上不随振动频率 而变化,而近似为常数;当振动频率更高时,线圈阻抗增大, 传感器灵敏度随振动频率增加而下降。
不同结构的恒定磁通磁电感应式传感器的频率响应特性 是有差异的,但一般频响范围为几十赫至几百赫。
它属于动圈式恒定磁通型。其结构原理图如图5-3所示,永 久磁铁3通过铝架4和圆筒形导磁材料制成的壳体7固定在一起, 形成磁路系统,壳体还起屏蔽作用。磁路中有两个环形气隙, 右气隙中放有工作线圈6,左气隙中放有用铜或铝制成的圆环形 阻尼器2。工作线圈和圆环形阻尼器用心轴5连在一起组成质量 块,用圆形弹簧片1和8支承在壳体上。
将传感器固定在被测振动体上永久磁铁铝架和壳体将传感器固定在被测振动体上永久磁铁铝架和壳体一起随被测体振动由于质量块有一定的质量产生惯性力而一起随被测体振动由于质量块有一定的质量产生惯性力而弹簧片又非常柔软因此当振动频率远大于传感器固有频率时弹簧片又非常柔软因此当振动频率远大于传感器固有频率时线圈在磁路系统的环形气隙中相对永久磁铁运动以振动体的振线圈在磁路系统的环形气隙中相对永久磁铁运动以振动体的振动速度切割磁力线产生感应电动势通过引线动速度切割磁力线产生感

磁电传感器应用

磁电传感器应用
图示为对钢球进行计数的工作示意图和电路图当钢球通过霍尔开关传感器时传感器可输出峰值20mv的脉冲电压该电压经运算放大器aa741放大后驱动半导体三极管vt2n5812工作vt输出端便可接计数器进行计数并由显示器显示检测数值
磁电式传感器应用
一Leabharlann 磁电感应式传感器二
霍尔式传感器
一. 磁电感应式传感器
磁电感应式传感器是利用电磁感应原理 将被测量(如振动、位移、转速等)转换成 电信号的一种传感器。由于它为非接触测量, 永不磨损,抗干扰能力强 ,可靠性高,寿命 长,且有较大的输出功率且性能稳定,因此 被广泛使用。磁电感应式传感器主要有来振 动速度传感器,扭矩传感器,转速传感器等.
二. 霍尔式传感器
霍尔式传感器是利用霍尔元件基于霍尔效应原理而将被测 量、如电流、磁场、位移、压力等转换成电动势输出的一 种传感器。
霍尔元件
1. 霍尔式微位移传感器
①线位移测量 下图所示为一些霍尔式位移传感器的工作原理图。 图(a)是磁场强度相同的两块永久磁铁, 同极性相对 地放置, 霍尔元件处在两块磁铁的中间。由于磁铁中 间的磁感应强度B=0, 因此霍尔元件输出的霍尔电势UH 也等于零, 此时位移Δ x=0。若霍尔元件在两磁铁中产 生相对位移, 霍尔元件感受到的磁感应强度也随之改 变, 这时UH不为零, 其量值大小反映出霍尔元件与磁 铁之间相对位置的变化量, 这种结构的传感器, 其动 态范围可达 5 mm, 分辨率为 0.001mm。这种传感器灵 敏度很高, 但它所能检测的位移量较小, 适合于微位 移量及振动的测量 。
②角位移测量
2. 霍尔式转速传感器
图示为几种不同结构的霍尔式转 速传感器。 磁性转盘的输入轴与 被测转轴相连, 当被测转轴转动 时, 磁性转盘随之转动, 固定在磁 性转盘附近的霍尔传感器便可在 每一个小磁铁通过时产生一个相 应的脉冲, 检测出单位时间的脉 冲数, 便可知被测转速。磁性转 盘上小磁铁数目的多少决定了传 感器测量转速的分辨率。

磁电式与霍尔式发动机转速传感器应用解析

磁电式与霍尔式发动机转速传感器应用解析

・60・内燃机与配件磁电式与霍尔式发动机转速传感器应用解析谢丹;初宏伟(长春汽车工业高等专科学校汽车运用学院,长春130013)摘要:结合某车型的电路图和实车转速传感器波形,本文对磁电式发动机转速传感器、霍尔式发动机转速传感器这两种常见类型的工作原理进行详细的说明,旨在对教学环节和检修工作中,需要做转速波形检测来判断可能的故障点起到一定的理论指导意义。

关键词:磁电式;霍尔式;转速传感器;工作原理;波形中图分类号:U472.9文献标识码:A0引言曲轴位置与转速传感器简称为发动机转速传感器,它是发动机集中控制系统最重要的传感器之一,提供曲轴转角位置、发动机的转速信号至发动机ECU,用于确定发动机基本点火时刻和喷油时刻[1]。

本文对磁电式和霍尔式转速传感器的工作原理进行了详细说明,同时结合电路图分析波形形状及特点,最后总结了二种类型传感器各自的优点。

这对于排查是否因发动机转速传感器异常而导致车辆故障眄提供了积极稳健的理论基础。

1磁电式转速传感器1.1工作原理磁电式转速传感器一般安装在曲轴前端或后端,如图1所示,随着被测物体转动时,传感器输出与旋转频率相关的脉冲信号,达到测速的目的目。

磁电式发动机转速传感器主要由导磁材料制成的信号盘(60-2齿均匀分布,其中有一处缺2个齿)、永久磁铁、信号线圈等组成。

传感器的位置是固定的,软磁铁芯与信号盘转子齿之间必须保持一定间隙。

图1磁电式转速传感器结构当信号盘旋转时,由于铁芯和信号盘之间间隙不断变化,通过线圈的磁通量也不断变化,这将在电磁线圈内感应出感应电动势,即输出信号,可产生与齿数相等且大小和方向均周期性变化的感应电动势,并以交流形式输出,如图2所示。

1.2应用磁电式转速传感器是无源的,不用另外提供电源,所以只有信号输出线和屏蔽地线。

传感器插头接线形式主要有两线制和三线制两种。

两线制的两根线为信号回路线,信号正负交替变化,如图3所示;三线制多出的一根线为屏蔽线,如图4所示,G28的1号和2号引脚为信号正负作者简介:谢丹(1986-),女,黑龙江阿城人,讲师,研究生,研究方向为汽车检测与维修;初宏伟(1971-),女,吉林省吉林市人,高级工程师,学士,研究方向为汽车检测与维修。

磁电式传感器原理及应用

磁电式传感器原理及应用
扭转0角 与感应电动势相位差的关
系为
式中:z为传感0 器z定子、转子的齿
数。
2 霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的一 种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及其 变化,可在各种与磁场有关的场合中使用。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿 命长,安装方便,功耗小,频率高(可达1 MHz),耐振动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀。
f Zn/ 60
式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应电 动势频率(Hz)。这样当已知Z,测得f就知道n了。
开磁路式转速传感器结构比较简单,但输出信号小,另外当被 测轴振动比较大时,传感器输出波形失真较大。在振动强的场 合往往采用闭磁路式转速传感器。
被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙 平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地 变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转 速n(r/min)成正比,即f = n/30。在这种结构中,也可以用齿轮 代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出 信号频率f 同前式。
1.霍尔效应
半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄 片,当有电流I 流过薄片时,在垂直于电流和磁场的方向上将 产生电动势EH,这种现象称为霍尔效应。
B
C
D
A
磁感应强度B为零时的情况
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示:
EH=KH IB
当有图示方向磁场B作用时
数料R中H=的1电/(n子q)浓,度由。材料为物磁理场性和质薄所片决
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。

磁电式传感器及应用

磁电式传感器及应用

磁电式传感器及应用磁电式传感器是一种利用磁场和电压的相互作用来检测和测量非电信号的传感器。

它们通常由一个可移动的磁体和一个固定的线圈组成,当磁体移动时,会在线圈中产生感应电动势,从而实现信号的转换和测量。

磁电式传感器的应用非常广泛,包括工业自动化、汽车工业、医疗设备、航空航天和消费电子等领域。

在工业自动化领域,磁电式传感器常常用于测量和控制设备的位置、速度和加速度等参数。

例如,在机械加工设备中,通过安装磁电式传感器可以实现对工件位置、转速和加工质量等参数的实时监测和控制,从而提高加工精度和效率。

而在汽车工业中,磁电式传感器则常用于发动机控制系统、转向系统和车辆安全系统等方面,如发动机转速传感器、转向角传感器和车速传感器等。

在医疗设备领域,磁电式传感器也扮演着重要的角色。

例如,在核磁共振成像设备(MRI)中,磁电式传感器可以用来监测和测量磁场的强度和方向,从而实现对磁共振成像过程的精确控制和调节。

同时,磁电式传感器还可以用于心脏起搏器、血压测量仪和呼吸机等医疗设备中,用来监测和测量生物体内部的信号和参数。

在航空航天领域,磁电式传感器也有着重要的应用价值。

例如,在飞机和导弹中,磁电式传感器可以用来检测飞行姿态、加速度和地磁场等参数,从而实现对飞行器的准确导航和定位。

同时,磁电式传感器还可以用于卫星和空间探测器中,用来测量和监测太空环境中的磁场和粒子辐射等信息。

在消费电子领域,磁电式传感器也有着广泛的应用。

例如,在智能手机和平板电脑中,磁电式传感器可以用来实现指南针功能、屏幕旋转功能和手势识别功能等。

同时,磁电式传感器还可以用于智能家居产品中,如智能门锁、智能灯具和智能家电等,用来实现对环境和用户行为的监测和控制。

总之,磁电式传感器作为一种重要的传感器技术,已经在各种领域得到了广泛的应用,并为各行各业的发展和进步做出了重要贡献。

随着科学技术的不断发展和进步,相信磁电式传感器在未来会有更加广阔的应用前景和发展空间。

速度传感器的工作原理和应用实例

速度传感器的工作原理和应用实例

速度传感器的工作原理和应用实例一、工作原理速度传感器是一种可以测量物体运动速度的设备。

它利用各种物理原理和方法来检测、测量物体的速度,并将其转化为电信号输出。

常见的速度传感器工作原理包括: 1. 磁电感式:通过感应物体运动时产生的磁场变化,从而测量速度。

2. 光电式:利用光电效应,通过光源和光电传感器之间的光强变化来测量速度。

3. 声波式:利用声波传播速度的测量来获得物体速度。

4. 摩擦式:通过物体与传感器之间的摩擦力来检测速度。

二、应用实例速度传感器广泛应用于各个领域,以下是几个常见的应用实例。

1. 汽车工业在汽车工业中,速度传感器被用于测量车辆的转速和车速。

它们常常被安装在引擎、变速器和车轮上,并通过测量转动或滚动的速度来提供运动状态的反馈。

这些信息可以用于车辆的行驶控制系统、防抱死刹车系统以及车辆稳定控制系统等。

2. 工业自动化在工业自动化领域,速度传感器被广泛应用于生产线的监控和控制。

例如,在生产流水线上,速度传感器可以用于检测物体的运动速度,用于物体的定位、计数和分类。

此外,速度传感器还可以被用于测量机器设备的转速,以确保生产过程的准确性和稳定性。

3. 航空航天在航空航天领域,速度传感器是不可或缺的设备之一。

它们被广泛应用于飞机、火箭和卫星等航空器上,用于测量飞行速度、风速和空气动力学参数。

这些数据对于飞行安全和导航控制至关重要。

4. 医疗设备医疗设备中也常常使用速度传感器来监测和记录患者的生理情况。

例如,在心电图机中,速度传感器用于测量心脏的搏动速度,并将其转化为可视化的心电图信号。

另外,速度传感器还可以用于测量呼吸频率和体温等生理参数。

5. 运动器械速度传感器在运动器械领域有着广泛的应用。

例如,在跑步机和健身车上,速度传感器可以用于监测用户运动的速度和距离。

同时,它们也被用于VR游戏设备中,以实时跟踪用户的运动速度和位置。

以上是速度传感器的工作原理和应用实例的简要介绍。

随着科技的不断进步和创新,速度传感器在各个领域中的应用还将不断扩展和深化。

速度及加速度检测—磁电式速度传感器

速度及加速度检测—磁电式速度传感器

自动检测技术
2)温度误差 当温度变化时,式(5-7)中右边三项都不为零,
对铜线而言每摄氏度变
化量为dL/L≈0.157×10-4,
dR/R≈0.43×10-2,dB/B每摄氏度的变化量取决于永久磁铁的
磁性材料。对铝镍钴永久磁合金,dB/B≈-0.02×10-2,这样由
式(5-7)可得近似值:
这一数值是很可观的,所以需要进行温度补偿。补偿通常采 用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁性材 料做成。它在正常工作温度下已将空气隙磁通分路掉一小部分。
自动检测技术
磁电式传感器的工作原理是基于法拉第电磁感应 原理。当匝数为N的线圈在磁场中运动而切割磁力 线,或通过闭合线圈的磁通量ф发生变化时,线 圈中将产生感应电势e
e N d
dt
磁电式传感器的分类
按工作原理不同,磁电感应式传感器可分为恒定磁通式 和变磁通式,即动圈式传感器和磁阻式传感器。
变磁通 式
三、 磁电感应式传感器测量电路
自动检测技术
图5-4 磁电感应式传感器测量电路方框图 磁电式传感器直接输出感应电动势,且传感器通常具有
较高的灵敏度,不需要高增益放大器。但磁电式传感器是速 度传感器,若要获取被测位移或加速度信号,则需要配用积 分或微分电路。图5-4为一般测量电路方框图。
自动检测技术Leabharlann 产生磁场的永久磁铁和线圈都固定
不动,通过磁通Φ的变化产生感应 电动势e。常用于角速度的测量。
恒磁通 式
工作气隙中的磁通保持不变,线圈 相对永久磁铁运动,并切割磁力线 而产生感应电势。
自动检测技术
动圈式磁电感应式传感器可以分为线速度型 和角速度型
自动检测技术
磁电式转速传感器根据磁路的不同,分成开磁路 式和闭磁路式两种。

磁电式转速传感器输出电压波动的稳健设计

磁电式转速传感器输出电压波动的稳健设计

磁电式转速传感器输出电压波动的稳健设计在磁电式转速传感器生产、装配过程中尺寸公差、装配公差、材料性能偏差等噪音因子,造成了传感器之间输出电压的数值分散。

文章采用稳健设计方法,通过优化线圈匝数、铁芯磁导率、磁钢磁感应强度等设计参数,降低输出电压波动的均值、分散区间,使磁电式转速传感器的输出电压具有一定的稳健性。

标签:转速传感器;输出电压波动;稳健设计1 概述磁电式转速传感器广泛应用于发动机转速测量,在监控发动机状态过程中发挥着重要作用。

发动机工作时,具有导磁性的音轮旋转,通过转速传感器线圈的磁通量发生周期性变化,线圈中产生周期性电压,通过对输出电压处理计数,测出齿轮转速[1-2]。

输出电压是转速传感器的重要性能指标,其数值直接影响控制器对转速信号的判断。

然而,转速传感器的输出电压对材料磁导率误差、音轮跳动、磁钢充磁误差等很敏感,尺寸公差、装配公差、材料性能偏差等噪音因子的影响造成了实际输出电压与设计值之间的偏差,以及传感器之间的数值分散,限制了磁电式传感器在更高精度控制条件下的应用。

目前,我厂基于确定参数模型设计转速传感器,忽略了噪音因子对输出电压的影响。

为使传感器输出电压保持一致,通常从生产、检验过程着手,如提高加工精度、挑选产品使用等,生产成本较高。

转速传感器输出电压稳健设计通过设计参数优化,达到传感器输出电压一致的目的。

设计时考虑噪音因子对输出电压的影响,根据特性分散随设计参数组合的敏感程度改变的特点,设计合适的参数,减小输出电压波动,其优势是在现有生产条件下,兼顾输出电压的波动均值和分散区间。

2 输出电压波动的稳健设计2.1 模型建立转速传感器是根据电磁感应原理设计的,完整的测量系统由传感器及音轮两部分组成。

音轮按齿形不同可分为端面齿音轮与径向齿音轮。

以径向齿音轮为例,传感器的测量端正对音轮的齿,传感器的测量端与音轮的齿之间存在间隙,音轮转动时,间隙交替变化周期性地改变磁路中的磁阻,磁阻周期性的变化引起通过线圈磁通量的变化,线圈两端输出周期性、上下对称的脉冲电压信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任务4.3 磁电式转速传感器的设计
4.3.1磁电式转速传感器的工作原理 磁电式转速传感器基于电磁感应原理,通过磁电相互作用把
转轴的转速转换成相对应的感应电动势,再经过对输出感应 电动势信号进行处理和分析就可以得到转轴的实际转速。磁 电式转速传感器的结构有开磁路和闭磁路两种。 1. 开磁路磁电式转速传感器
4.3.3 磁电式转速传感器电路设计 1.电路设计
2. 电路仿真效果图
4.3.4 磁电式传感器的应用
1.磁电式相对速度计
磁电式相对速度计结构如图4-32所示。测量时,壳体固 定在一个试件上,顶杆顶住另一试件,则线圈在磁场中运 动速度就是两试件的相对速度。速度计的输出电压与两试 件的相对速度成正比。相对式速度计可测量的最低频率接 近于零。
2.磁电式扭矩传感器
磁电式扭矩传感器的工作原理如图4-43所示,在 驱动源和负载之间的扭转轴的两侧安装有齿形圆 盘, 它们旁边装有相应的两个磁电传感器。
当齿形圆盘旋转时,圆盘齿凸凹引起磁路气隙的 变化,于是磁通量也发生变化,在线圈中感应出 交流电压,特点 磁电式转速传感器的工作方式决定了它有很强的抗干扰性, 能够在烟雾、油气、水汽等环境中工作。磁电式转速传感器 输出的信号强,测量范围广,齿轮、曲轴、轮辐等部件,及 表面有缝隙的转动体都可测量。
磁电式转速传感器的工作维护成本较低,运行过程无需供电, 完全是靠磁电感应来实现测量,同时磁电式转速传感器的运 转也不需要机械动作,无需润滑。磁电式转速传感器的结构 紧凑、体积小巧、安装使用方便,可以和各种二次仪表搭配 使用。
开磁路式转速传感器结构比较简单,但输出信号小,另外 当被测轴振动比较大时,传感器输出波形失真较大。在振 动强的场合往往采用闭磁路式转速传感器。
2. 闭磁路磁电式转速传感器
闭磁路磁电式转速传感器由装在转轴上的内齿轮和外齿轮、 永久磁铁和感应线圈组成,内外齿轮齿数相同。当转轴连 接到被测转轴上时,外齿轮不动,内齿轮随被测轴而转动, 内、外齿轮的相对转动使气隙磁阻产生周期性变化,当内 齿轮和外齿轮的齿凸相对时,气隙最小,磁阻最小,磁通 最大;当内齿轮和外齿轮的齿凹相对时,气隙最大,磁阻 最大,磁通最小。从而引起磁路中磁通的变化,使线圈内 产生周期性变化的感应电动势。显然,感应电势的频率与 被测转速成正比。
相关文档
最新文档