齿轮故障诊断实例分析
消隙齿轮故障分析报告
消隙齿轮故障分析报告消隙齿轮故障分析报告故障描述:该齿轮系统在运行过程中出现了隙间消失的故障现象。
随着使用时间的增加,齿轮系统出现了逐渐的齿距减小现象,最终导致隙间完全消失,齿轮啮合时发生了异常的现象。
经测量,发现齿轮的齿距已经缩小了5%,导致啮合时的载荷集中于少数的齿。
同时,齿轮系统出现了明显的摩擦和磨损声音以及温升现象。
故障原因分析:经过仔细的分析和调查,我们认为该齿轮系统的隙间消失故障可能由以下原因引起:1. 磨损:长时间的运行会导致齿轮的磨损,特别是齿轮的齿形曲线(齿宽和齿高)会发生变化。
这种磨损会导致齿距的减小,从而引起隙间消失的故障。
2. 匹配精度不足:齿轮系统的啮合精度非常关键,如果齿轮加工和安装过程中的匹配精度不足,会导致齿距的不一致,进而引发隙间消失的故障。
3. 使用环境不良:恶劣的操作环境,例如高温、高湿度、大振动等,会加剧齿轮的磨损程度,增加隙间消失故障的发生概率。
4. 润滑不良:齿轮系统的润滑剂选择不当或者润滑方式不合理,会导致齿轮表面磨擦增加,磨损程度加剧。
解决方案:鉴于以上原因,我们提出了以下解决方案:1. 定期检查和维护齿轮系统,及时更换磨损严重的齿轮,恢复齿轮的正常齿距。
2. 提高齿轮加工和安装的精度,确保齿轮的匹配精度符合要求。
3. 改善齿轮系统的使用环境,降低温度、湿度和振动等不良因素的影响。
4. 选择合适的润滑剂,并采取适当的润滑方式,确保齿轮系统的充分润滑。
5. 进行定期的齿轮系统故障诊断,提前发现并解决潜在的问题。
总结:齿轮系统的隙间消失故障是一种常见的故障现象,其原因主要包括磨损、匹配精度不足、使用环境不良和润滑不良等。
为了解决这一故障,需要定期检查和维护齿轮系统,提高齿轮加工和安装的精度,改善使用环境,选择合适的润滑剂,并进行定期的故障诊断。
通过以上措施的实施,可以有效预防和解决齿轮系统的隙间消失故障,保证齿轮系统的正常运行。
基于小波-倒频谱的齿轮故障诊断方法及应用
基于小波-倒频谱的齿轮故障诊断方法及应用摘要: 利用振动信号采集到的齿轮故障信息,依据点蚀的故障机理和频谱特征,采用小波分解将信号分解在不同频带,选择故障所处频带重构信号,对故障进行诊断。
结合倒频谱方法有效地识别故障特征频率。
结果表明小波分析与倒频谱相结合是齿轮故障检测中一种有效的诊断方法。
关键词: 齿轮;故障;小波分析;倒频谱1 引言随着现代机械对齿轮传动的要求日益提高,减速器在国民经济生产中发挥越来越重要的作用,因此其故障诊断一直是学者们研究的热点。
当齿轮存在局部故障时,由于振动产生瞬态的冲击信号,啮合频率及其谐波被调制频率紧紧包围而形成密集边频带,同时由于受噪声的干扰,故障信息往往淹没于强大的噪声中。
这给诊断带来一定的困难。
采用基于傅里叶变换的传统信号处理方法,分别仅从时域或频域给出信号的统计平均结果,无法同时兼顾信号在时域和频域的全貌和局部变化特征,而这些局部化特征恰恰是故障的表征。
解调分析传统的方法包括Hilbert变换和检波解调法,它们形成包络信号进行带通滤波时都需要依靠经验来确定带通滤波器的中心频率和带宽,这在主观上给分析结果带来较大的影响。
由于小波变换具有时频局部化和多分辨特性,从根本上克服了傅里叶分析以单个变量描述信号的缺点,因此小波技术适合于处理非平稳信号[1-3]。
但是小波由于受Heisenberg测不准原理的限制,使其不可能在时域和频域都有很高的分辨率,使得单单采用小波技术对诊断密集边频带准确性和可靠性有一定的局限。
基于小波-倒频谱分析的方法则利用小波多分辨特性,消除背景噪声检测微弱的故障信号,结合倒频谱技术可以分离和提取出密集边频中的故障特征成分,因此是齿轮故障检测中一种有效的诊断方法。
2 小波-倒频谱方法原理2.1 小波技术分解原理如果函数满足以下容许条件:3 齿轮故障诊断的实例应用图1 . db5小波5层分解图(a)为点蚀小波五层分解图(b)为正常信号小波五层分解图从图1中我们发现,正常信号的细节信号有一定的周期性,而点蚀故障信号由于其突变的冲击脉冲作用存在着一定的周期性,导致了其与原有的周期发生耦合作用,而减弱了原有周期性。
齿轮的故障诊断(推荐)
---------------------------------------------------------------最新资料推荐------------------------------------------------------齿轮的故障诊断(推荐)齿轮的故障诊断齿轮的故障诊断齿轮的故障诊断一、齿轮的常见故障一、齿轮的常见故障齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。
据有关资料统计,齿轮故障占旋转机械故障的 10.3%。
齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。
在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达 60%以上。
齿轮本身的常见故障形式有以下几种。
1. 断齿断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而且是应力集中之源。
断齿有三种情况:①疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。
裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。
②过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。
1 / 18③局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。
偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。
局部断齿总是发生在轮齿的端部。
2. 点蚀点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。
在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。
裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。
齿轮箱故障诊断实例分析
I 1 - I 2
I 3 . I 4 L 1 . L 2
0 . 5 3} I Z
0 . 1 5 Hz 0 . 0 4 H Z
3 O
O . O 1
0 . O 2 0 . O 3 0 0 4 0 . 0 4
0. 4 0
3 . 3
3 . 2 3 . 1 3 . 0 3 . 1
2
V G2 0 2 一 V V G3 0 1 一 H
I 1
3l 2
VG3 0 2 一 V VG 4 0 1 一 H
置频宽为 4 0 0 , 采样频率 1 0 2 4 ; 设置谱线数 1 6 0 0 ; 灵
敏 度为 5 0 0 m V / E U 。
表 2 轴 承 型 号
mo t
l
因
L1
{
…
I
分别对测得的振动值做记 录 , 如表 9 所示 , 包括 不 同转 速 下 的速 度 和 加 速 度 振 动 的 有 效 值 和 峭 度
— l 嘲 院 I 翻 l
对其的关注 , 进而分析其振动信号 。
表 9 振 动 值 记 录表
设备 名 测点 电机转 速 位置
, r p m
VG 1 O1 一H
图 2 齿轮箱 结构 示意图
速度信号 速度信号 加速度 加速度
R M S / ( m m / s )
3 3O. 4
I 4
2 8 3
V G6 0 1 一 H V C6 0 2 V
-
L1
2 8 3
齿轮常见故障类型及诊断方法
的应力集中, 交变载荷易使根部产生裂纹最终导致 断裂 , 裂纹的扩展可以是沿横向的, 也可以是沿斜线 向上 的… 。因此 , 裂 形 式 可 能是 齿 根 , 可 能 是 断 也
齿顶 部分 , 如图 1 示 。 所
图 2 齿 的磨 损 与点 蚀
4 实例分析
图 5为齿轮箱实测频谱图, 5 为修理前的频 图 a 谱, 可以看 出, 在各阶啮合频率 附近均有明显的边
带, 且总 的振动 量级 均较 高 ; 5 图 b是修理后 的结 果 ,
部放大, 用来判断或读出故障的特征信息 。
细化谱边频诊断故障一般从 2方 面着手 : 1 ()
利用 边带 的对 称性 , 出 ±n ( 找 n=1 2 … ) , , 的频
率关 系 , 确定 是否 成 为一 组 边带 , 如果 是 边 带 , 可 则
知道啮合频率 和调制信号频率 ; 2 比较 各次 ()
测量中边带幅值变化 的趋 势。由此 2点 , 就可判断
故 障 的类 型 和故 障发 展 的程 度 。
磨损的因索 , 故齿轮磨损后齿的几何形状 、 厚度均产
1 常见故 障类型 和失效 比例
1 齿的断裂 , ) 故障比例为 4 % ; 1 2 齿 面疲 劳 ( ) 点蚀 、 落等 ) 失效 比例 为 3% ; 剥 , 1
3 齿 面划 痕 , 效 比例 为 1% ; ) 失 0 4 齿 面磨 损 , 效 比例 为 1% ; ) 失 0
中图 分 类 号 :H12 T 3
在齿 轮箱 的诊 断 中 , 几乎 涉 及 了旋转 机 械 中 大
疲 劳 和 过 负荷 断 裂从 本 质上 说 是 由 于设 计 、 制 造 、 配不 良而 引 起 的轴 系 共振 、 的弯 曲 、 装 轴 系统 速 度 的急 剧 变化 、 不平 衡载 荷等原 因造成 的 。
齿轮主要振动故障特征及实测频谱案例
齿轮主要振动故障特征及实测频谱案例一、齿轮故障的频谱特征1、齿的磨损、过载齿轮的均匀性磨损、齿轮载荷过大等原因引起的故障,都会在轮齿之间产生很高的冲击力,此时会产生以啮合频率的谐波频率为载波的频率,其中啮合频率的幅值相对正常状态将明显增大,但在啮合频率及其谐波周围不产生边频带。
随着齿轮磨损劣化,啮合频率及谐波幅值会继续增长。
2、断齿、齿面剥落等属于齿轮集中缺陷的局部性故障,在齿轮运行至缺陷部位时,会激发瞬时的冲击,产生一个高幅值的波峰。
此时,啮合频率将受到旋转频率的调制,在啮合频率其及谐波两侧产生一系列的边频带,其频谱特点是边频带数量多、范围广、分布均匀且较为平坦。
随着此类缺陷的扩大,边频带在宽度范围及幅值上也会增大。
3、点蚀、胶合点蚀、胶合等分布比较均匀的缺陷,同样也将产生周期性冲击脉冲和调幅、调频现象。
但是,与断齿等局部性故障不同的是,由于点蚀、胶合都属于浅表缺陷,在齿轮啮合时不会激发瞬态冲击,因此在啮合频率及其谐波两侧分布的边频带阶数少且集中,其频谱特点是边频带数量分布范围窄、幅值起伏变化大。
二、诊断实例对某减速箱的例行巡检过程中发现,该齿轮箱存在周期约为0.5s 的振动冲击,但减速箱本身振动值没有明显变化。
该减速箱为核心设备,一旦该设备出现问题停运,整条生产线将被迫停车,造成巨大的经济损失。
鉴于现场减速箱无明显振动,通过听棒听诊及振动检测等常规方式均无法判断出振动冲击的部位及形成原因,故对该减速箱进行现场振动信号采集和诊断。
查看频谱图,明显存在第三轴和第四轴四级啮合频率(28.15Hz ),且振动能量的缓慢增加,说明磨损在缓慢增长。
随着状态恶化,振动值缓慢增长,三级与四级啮合频率幅值增长明显,同时啮合频率周围开始产生以第三轴转频(2.01Hz )为间隔的边频,而且边频带体现的特征为数量多、范围广(24~60Hz )、分布均匀且较为平坦,如下图所示。
通过时域波形图可以发现,时域信号明显存在着周期约为0。
齿轮的故障诊断
齿轮的故障诊断齿轮的故障诊断一、齿轮的常见故障齿轮是最常用的机械传动零件,齿轮故障也是转动设备常见的故障。
据有关资料统计,齿轮故障占旋转机械故障的10.3%。
齿轮故障可划分为两大类,一类是轴承损伤、不平衡、不对中、齿轮偏心、轴弯曲等,另一类是齿轮本身(即轮齿)在传动过程中形成的故障。
在齿轮箱的各零件中,齿轮本身的故障比例最大,据统计其故障率达60%以上。
齿轮本身的常见故障形式有以下几种。
1. 断齿断齿是最常见的齿轮故障,轮齿的折断一般发生在齿根,因为齿根处的弯曲应力最大,而且是应力集中之源。
断齿有三种情况:①疲劳断齿由于轮齿根部在载荷作用下所产生的弯曲应力为脉动循环交变应力,以及在齿根圆角、加工刀痕、材料缺陷等应力集中源的复合作用下,会产生疲劳裂纹。
裂纹逐步蔓延扩展,最终导致轮齿发生疲劳断齿。
②过载断齿对于由铸铁或高硬度合金钢等脆性材料制成的齿轮,由于严重过载或受到冲击载荷作用,会使齿根危险截面上的应力超过极限值而发生突然断齿。
③局部断齿当齿面加工精度较低、或齿轮检修安装质量较差时,沿齿面接触线会产生一端接触、另一端不接触的偏载现象。
偏载使局部接触的轮齿齿根处应力明显增大,超过极限值而发生局部断齿。
局部断齿总是发生在轮齿的端部。
2. 点蚀点蚀是闭式齿轮传动常见的损坏形式,一般多出现在靠近节线的齿根表面上,发生的原因是齿面脉动循环接触应力超过了材料的极限应力。
在齿面处的脉动循环变化的接触应力超过了材料的极限应力时,齿面上就会产生疲劳裂纹。
裂纹在啮合时闭合而促使裂纹缝隙中的油压增高,从而又加速了裂纹的扩展。
如此循环变化,最终使齿面表层金属一小块一小块地剥落下来而形成麻坑,即点蚀。
点蚀有两种情况:①初始点蚀(亦称为收敛性点蚀)通常只发生在软齿面(HB<350)上,点蚀出现后,不再继续发展,甚至反而消失。
原因是微凸起处逐渐变平,从而扩大了接触区,接触应力随之降低。
②扩展性点蚀发生在硬齿面(HB>350)上,点蚀出现后,因为齿面脆性大,凹坑的边缘不会被碾平,而是继续碎裂下去,直到齿面完全损坏。
风电齿轮箱故障诊断实例分析
仿真 , 毽罐 I C AD I C AMI CA E I C AP P
风电 齿轮箱故障诊断 实例分析
肖洪 波 。 刘松 松 沈 阳鼓 风机 集 团 风 电有 限 公 司 , 沈阳 l 1 0 8 6 9
摘
要: 介绍 了以齿轮箱振动 分析 为主要手段 的风 电齿轮箱 故障诊断 方法 , 并通过齿面 接触磨 损 分析和齿 轮箱润 滑油
以某 风 电 场某 台风 电机 组 的 齿 轮 箱 故 障诊 断 为例
2 . 1 振 动 分 析
作用 、 阵风的冲 . 以及严寒酷暑 、 盐雾等的影 响, 致使风 介绍 风 电齿 轮箱 的 故 障诊 断方 法 、
风 电机绀 的常 见故 障 类 型包 括 电 气 系统 故 障 、传 感
器 和 叶 片/ 变桨 装置 故 障 、 齿轮 箱 故障 等 。据 统 计 , 我 国风 2 . 1 . 1 振 动 测点 分 布 与安装 依 据齿 轮 箱结 构 , 现 场安 装 高速 采集测 点 的传 感 器
文献标 志码 : A
文章 编号 : 1 0 0 2 - 2 3 3 3 ( 2 0 1 4 ) 。 4 — 0 1 5 2 一 O 4
0 引 言
位置 布 置高 速采 集振 动 传感 器 。
2 实 例 分 析
风 力发 电机 组 多安 装 存环 境 恶劣 的 高 山 、 荒野 、 海 滩 等 风 资源 较 优地 区 ,常年经 受无 规律 的变 负荷 变 向风 力 力发 电机 组经 常 观 故 障
径
测点
项目
窀转
空转
夸转
扭矩臂轴向
有效
O1 4 3 9 2 7 0 2 3 1 疆8 i 4 5
齿轮箱的维护与故障分析
齿轮箱维护和故障分析概述风力发电机组由叶片、增速齿轮箱、风叶控制系统、刹车系统、发电机、塔架等组成。
其中增速齿轮箱作为其传动系统起到动力传输的作用,使叶片的转速通过增速齿轮箱增速,使其转速达到发电机的额定转速,以供发电机能正常发电。
高可靠性和良好的可维修性的增速齿轮箱是风力发电机组的关键技术保障。
所以,对海阳、莱州、开发区风场齿轮箱故障现象统计如下表:液压系统和齿轮的损坏三大方面。
齿轮和轴承在转动过程中它们实际都是非直接接触,这中间是靠润滑油建成油膜,使其形成非接触式的滚动和滑动,这时油起到了润滑的作用。
虽然它们是非接触的滚动和滑动,但由于加工精度等原因是其转动都有相对的滚动摩擦和滑动摩擦,这都会产生一定的热量。
如果这些热量在它们转动的过程中没有消除,势必会越集越多,最后导致高温烧毁齿轮和轴承。
因此齿轮和轴承在转动过程中必须用润滑油来进行冷却。
所以润滑油一方面起润滑作用,另一方面起冷却作用。
对于风电齿轮箱,对于所有的齿轮和轴承我们都要采用强制润滑。
因为强制润滑可以进行监控,而飞溅润滑是监控不了的。
从安全性考虑采用强制润滑。
一、风电齿轮的损坏类型及其判断下表为齿轮轮齿的主要故障形式及其原因根据裂纹扩展的情况和断齿原因断齿包括过载折断(包括冲击折断)疲劳折断以及随机断裂等断齿常由细微裂纹逐步扩展而成。
疲劳折断发生从危险截面(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截面上的应力超过其极限应力,造成瞬时折断其根本原因是轮齿在过高的交变应力重复作用,在疲劳折断处,是贝状纹扩展的出发点并向外辐射产生的原因有很多。
主要是材料选用不当,齿轮精度过低,热处理裂纹,磨削烧伤,齿根应力集中等等因此在设计时需要考虑传动的动载荷谱,优选齿轮参数,正确选用材料和齿轮精度,充分保证加工精度消除应力集中集中因素等等。
过载折断总是由于作用在轮齿上的应力超过其极限应力,导致裂纹迅速扩展,常见的原因有轴承损坏突然冲击超载轴弯曲或较、大硬物挤入啮合区等断齿断口有两种形式一种呈放射状花样的。
齿轮故障监测与诊断
齿轮故障监测与诊断引言齿轮作为机械传动装置的重要组成部分,在工业生产过程中扮演着重要的角色。
齿轮故障可能会导致传动装置的失效,进而影响整个生产系统的稳定性与可靠性。
因此,对齿轮的故障监测与诊断显得尤为重要。
本文将介绍齿轮故障的常见类型、监测方法以及诊断技术,旨在为工程师提供相关知识以改善齿轮传动系统的运行。
齿轮故障的常见类型齿轮故障的常见类型包括齿面磨损、齿面损伤、齿根断裂和轴向偏移等。
齿面磨损是由于齿轮之间的相对滑动引起的,主要表现为齿面的变平、光亮和磨耗。
齿面损伤是因为齿轮传动系统在运行过程中受到冲击、振动或过载等因素的影响,造成齿轮齿面的断裂、脱落或裂纹等问题。
齿根断裂是由于齿轮齿面强度不足或负载过大引起的,造成齿根的断裂或塑性变形。
轴向偏移是指齿轮轴线之间的相对位移,可能会导致齿轮啮合不良,进而影响传动效果。
齿轮故障监测方法齿轮故障的监测方法可以分为在线监测和离线监测两种。
在线监测在线监测是指在齿轮传动装置运行过程中,利用各种传感器、信号采集装置和数据分析方法来实时监测齿轮的工作状态。
常见的在线监测方法包括:1.振动分析:通过安装加速度传感器或振动传感器来检测齿轮传动系统的振动信号,根据振动信号的频率、幅值和相位等特征来判断齿轮是否存在故障。
2.声学分析:利用麦克风等设备采集齿轮传动系统产生的声音信号,通过对声音信号的频谱分析和波形分析来判断齿轮的工作状态。
3.温度监测:通过安装温度传感器来检测齿轮传动系统的温度变化,高温可能是齿轮摩擦、磨损或润滑不良的表现。
4.油液分析:对齿轮传动系统的润滑油进行样品采集,并使用油液分析仪器检测油液中的金属颗粒、水分和污染物等指标,以判断齿轮的工作状态。
离线监测离线监测是指在齿轮传动装置停止运行后,通过对齿轮进行拆卸和检查来判断其工作状态。
常见的离线监测方法包括:1.目视检查:人工检查齿轮表面的磨损、损伤和断裂等情况,同时还可检查齿轮啮合间隙和轴向偏移等问题。
齿轮断裂分析报告
齿轮断裂分析报告1. 背景介绍齿轮是一种常见的传动元件,用于实现机械系统的动力传递。
然而,在使用过程中,齿轮断裂的问题经常发生,给机械系统的可靠性和安全性带来了严重影响。
因此,对齿轮断裂的分析和原因的确定具有重要意义。
本报告旨在对某一齿轮断裂事件进行分析,找出断裂的原因,并给出相应的解决方案,以提高齿轮的可靠性和寿命。
2. 断裂现象描述某齿轮在正常工作条件下突然发生断裂,其断裂面呈典型的疲劳断裂形态。
齿轮断裂后,断口面呈现出光洁的疲劳裂纹。
经过初步观察,断裂的位置位于齿轮齿面附近,断裂面呈现出明显的齿形状。
3. 分析方法为了确定齿轮断裂的原因,我们采用以下分析方法:•疲劳断裂分析•材料性能测试•断裂面观察•齿轮设计与制造参数分析4. 分析结果4.1 疲劳断裂分析通过对齿轮断裂的疲劳裂纹进行观察和分析,我们可以确定齿轮断裂是由于长期疲劳加载引起的。
疲劳裂纹的形成是由于齿轮在工作过程中受到交变载荷作用,导致应力集中,进一步引发裂纹的产生和扩展。
4.2 材料性能测试对齿轮材料进行性能测试,包括硬度、韧性和强度等方面的指标。
通过测试结果的分析,发现齿轮材料的硬度指标较低,韧性指标较高,而强度指标处于合理范围内。
这说明齿轮材料的选材相对合理,但存在着材料强度不足的问题。
4.3 断裂面观察通过对齿轮断裂面的观察,发现断口面呈现典型的齿形状。
这说明齿轮断裂是由于齿轮齿面的弯曲应力和接触疲劳造成的。
进一步观察发现,断裂面上存在着一些磨损和腐蚀痕迹,这表明齿轮在工作中可能遭受了外界腐蚀和磨损的影响,使得齿面损伤加剧。
4.4 齿轮设计与制造参数分析通过对齿轮的设计与制造参数进行分析,发现齿轮的齿形参数设计较为合理,但存在着切向齿厚较小的问题,这会导致齿轮在工作中承受更大的应力集中。
此外,制造过程中可能存在着一些缺陷,如焊接接合不良、热处理工艺不合理等,这些因素都可能影响齿轮的强度和可靠性。
5. 解决方案基于以上的分析结果,我们提出以下解决方案以提高齿轮的可靠性和寿命:1.优化材料选用,选择具有更高强度和疲劳寿命的材料制造齿轮。
采煤机行走部齿轮故障分析与诊断
设备管理与维修2021翼4(下)扬群策群力、团结协作的团队精神,不只是相关电气维护人员、运行人员的职责与义务,任何人员只要发现就应立即通知当值值长和电气维护人员,为及时成功处置创造有利条件[5]。
为提高检电气维护人员、电气运行人员对环火事件的重视,电厂可制定责任制度与激励制度,将环火故障责任落实到具体工作人员,提高工作人员的责任意识。
对于及时发现环火事件,并采取有效应急措施的工作人员,给予通报表扬和奖金激励,调动工作人员工作热情,确保在第一时间发现环火故障。
(2)电气维护人员对应急情况下的处置方法、流程的熟练掌握是成功处置的关键。
首先,电气维护人员要准备好应急物资。
应将一盒碳刷(25个),刷握、钳型电流表、更换的专用工具放置于班组工具柜内,并告知全体电气维护人员,以便发生突发事件时能带处置物资第一时间赶到现场;其次,处置人员要熟练掌握处置方法、流程。
电气维护人员针对此类突发事件专门开展处置方法与流程的培训,通过故障模拟,使全体电气维护人员反复练习,掌握操作要点。
(3)做到临危不乱、判断清楚、果断处置、默契配合,是成功处置的核心。
在第一时间赶到现场后,首先判断发展程度,然后立即处理。
处理的原则:对打火严重的不要动,立即对刷辫没有烧断、接触的碳刷尽最大可能进行压紧处理。
压紧前先处理刷辫不要靠近手,以防止烫伤。
电气运行值班员应汇报值长并及时按《电气运行规程》有关规定迅速降低发电机无功,并派人就地观察和处理。
根据现场情况,及时安排对刷辫烧断、刷握没有损坏的碳刷进行更换。
随着环火逐渐消失后,开始对损坏的刷握进行更换。
整个处置过程中要求维护与运行通力协作、紧密配合,在较短的时间内处置完毕。
6总结发电机作为发电企业的重要设备,其健康状况直接关系到机组的安全稳定运行。
而发电机碳刷作为导入励磁电流动静结合部分的“咽喉”。
其状态的好坏成为制约发电机稳定运行的瓶颈。
因此在准确分析故障原因的基础上,制定出有针对性的对策并严格执行显得非常迫切。
齿轮故障分析 (DEMO)
齿轮故障分析一、齿轮失效机理:1.制造和装配不善造成的,如齿形误差、轮齿与内孔不同心,各部分的轴线不对中,大型齿轮的不平衡等;2.齿轮在长期运行中形成的,由于轮齿表面承受的载荷很大,两啮合齿轮之间既有相对滚动又有相对滑动,而且相对滑动的摩擦力在节点两侧的方向相反,从而产生了力的脉动,在长期运行中导致齿面发生点蚀、胶合、磨损、疲劳、剥落、塑性流动及齿根裂纹,甚至断齿等失效现象。
齿轮的第一类失效主要引起不平衡和啮合不良,前者使振动加剧,后者将诱发齿轮的第二类失效。
第二类失效主要是指啮合齿面上的损伤,这些损伤会造成运转时齿面间的撞击,从而产生具有一定频率特征的振动的声音;齿面产生这些损伤时,剥离的金属微粒必然进入齿轮箱的润滑油内,不同类型的损伤其微粒的形貌特征、化学成分、数量多少等方面都有所区别。
二、齿轮脱啮振动机理脱啮振动产生的基本原因是惯性作用。
惯性作用仅反映了脱啮现象产生动因,但不能说明产生脱啮振动齿轮副的内在因素。
侧隙是产生脱啮的基本条件(内因),如果没有侧隙也就不可能产生脱啮。
由于惯性力和脱啮位移效应产生静态脱啮,然后撞击、振动和共振等。
产生动态脱啮影响静态脱啮的因素有:啮合刚度、有效齿形误差、额定载荷、等效从动轮系质量、脱啮时间以及转速n 。
齿轮在传动过程中存在着撞击、振动、共振及耦合共振等,由于上述原因产生动态脱啮。
脱啮振动越严重,齿轮噪声越大。
啮合冲击:齿轮啮合存在间隙与误差,存在啮合刚度变化,在传动过程中不可避免的存在脱啮,即“脱啮—接触—分离—接触”的过程,从而产生了“撞击”称之为啮合撞击。
冲击力F大小取决于脱啮位移量h 。
导致齿轮剧烈振动的内在因素是齿轮啮合刚度,支承扭转刚度和等效转动惯量。
反映了动态耦合特性,属参数激励;啮合刚度变化和相对运动误差变化是产生调制的根源,为传动误差效应。
根据动力学特性分析,说明动态脱啮特征首先是导致共振,其次是产生调制波,随着刚度变化及运动误差变化加剧其基本频率边频增加。